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Abstract

This paper addresses the problem of autonomous navigation of a Micro Air Vehicle (MAV) in GPS-
denied environments. We present experimental validation and analysis for our system that enables
a quadrotor helicopter, equipped with a laser range-finder sensor, to autonomously explore and map
unstructured and unknown environments. The key challenge for enabling GPS-denied flight of a
MAV is that the system must be able to estimate its position and velocity by sensing unknown en-
vironmental structure with sufficient accuracy and low enough latency to stably control the vehicle.
Our solution overcomes this challenge in the face of MAV payload limitations imposed upon sens-
ing, computational, and communication resources. In this paper, we first analyze the requirements
to achieve fully autonomous quadrotor helicopter flight in GPS-denied areas, highlighting the dif-
ferences between ground and air robots that make it difficultto use algorithms developed for ground
robots. We report on experiments that validate our solutions to key challenges, namely a multi-level
sensing and control hierarchy which incorporates a high-speed laser scan-matching algorithm, data
fusion filter, high-level SLAM, and a goal-directed exploration module. These experiments illustrate
the quadrotor helicopter’s ability to accurately and autonomously navigate in a number of large-scale
unknown environments, both indoors and in the urban canyon.The system was further validated in
the field by our winning entry in the 2009 International Aerial Robotics Competition (IARC), which
required the quadrotor to autonomously enter a hazardous unknown environment through a window,
explore the indoor structure without GPS, and search for a visual target.

1 Introduction

Many researchers have proposed the use of Micro Air Vehicles(MAVs) as a promising alternative to ground robot
platforms for rescue tasks and a host of other applications.MAVs are already being used in several military and civilian
domains, including surveillance operations, weather observation, disaster relief coordination, and civil engineering
inspections. Enabled by the combination of GPS and MEMS inertial sensors, researchers have been able to develop
MAVs that display an impressive array of capabilities in outdoor environments (Scherer et al., 2008; Templeton et al.,



Figure 1: Our quadrotor helicopter. Sensing and computation components include a Hokuyo laser range-finder (1),
stereo cameras (2), monocular color camera (3), laser-deflecting mirrors for altitude (4), 1.6GHz Intel Atom-based
flight computer (5), and the Ascending Technologies internal processor and IMU(6). The laser scanner and IMU are
used for localization. The camera sensors were used for tasks specific to the IARC competition.

2007; He et al., 2010). However, most indoor environments and many parts of the urban canyon remain without access
to external positioning systems such as GPS. As a result, previous autonomous MAVs have been limited in their ability
to operate in these areas.

In this paper, we describe the estimation, navigation and control system for a MAV operating in GPS-denied envi-
ronments. We describe experimental assessments of first using onboard sensors to estimate the vehicle’s position
and secondly using the same sensor data to build a map of the environment around the vehicle, a process generally
called simultaneous localization and mapping (SLAM). Although there have been significant advances in developing
accurate SLAM algorithms in large-scale environments, these algorithms have focused almost exclusively on ground
or underwater vehicles. There have been previous results for performing SLAM on MAVs, (Grzonka et al., 2009;
Langelaan and Rock, 2005), however, due to a combination of limited payloads for sensing and computation, coupled
with the fast dynamics of air vehicles, the algorithms have generally been tested in simulation, on ground robots, or
with sensor data first collected from a manually piloted MAV.Our quadrotor helicopter system, shown in Figure 1,
is capable of autonomous flight in unstructured and unknown GPS-denied environments. Developing this capability
required careful engineering of a complex system that leverages existing algorithms to balance the trade-offs imposed
by GPS-denied flight. We report flight results in a number of domains including indoor flight, outdoor flight through
the MIT campus, and results from the International Aerial Robotics Competition 2009.

1.1 Key Challenges

In the ground robotics domain, many algorithms exist for accurate localization in large-scale environments; however,
these algorithms are usually deployed on slow moving robots, which cannot handle even moderately rough terrain.
MAVs face a number of unique challenges that make developingalgorithms for them far more difficult than their
indoor ground robot counterparts.

• Limited Payload Limited payload reduces the computational power availableonboard, and eliminates pop-
ular sensors such as SICK laser scanners, large-aperture cameras and high-fidelity IMUs. Our hardware
selection discussed in Section 2.1 addresses these tradeoffs.

• Indirect Position Estimates While MAVs will generally have an IMU, double-integrating acceleration mea-
surements from lightweight MEMS IMUs results in prohibitively large position errors. We address this



challenge by estimating our position using the laser scan-matcher presented in Section 3.1.

• Fast Dynamics MAVs have fast and unstable dynamics which result in a host ofsensing, estimation, control
and planning implications for the vehicle. Furthermore, MAVs such as our quadrotor helicopter are well-
modeled as undamped when operating in the hover regime. The data fusion filter presented in Section 4
combined with the position controller in Section 5 address these challenges.

• Constant Motion Unlike ground vehicles, a MAV cannot simply stop and performmore sensing or compu-
tation when its state estimates have large uncertainties. Instead, the vehicle is likely to be unable to estimate
its position and velocity accurately, and as a result, it maypick up speed or oscillate, degrading the sensor
measurements further. These concerns motivate our exploration algorithm in Section 7.

There are further challenges that we do not fully address in this work such as building and planning in 3D represen-
tations of the environment. Instead, we treat the large changes in the visible 2D cross section of a 3D environment as
sensor noise, requiring the algorithms to be sufficiently robust to handle these changes.

1.2 Related Work

In recent years, the development of autonomous flying robotshas been an area of increasing research interest. This
research has produced a number of systems with a wide range ofcapabilities when operating in outdoor environ-
ments. For example vehicles have been developed that can perform high-speed flight through cluttered environ-
ments (Scherer et al., 2008), or even acrobatics (Coates et al., 2008). Other researchers have developed systems
capable of autonomous landing and terrain mapping (Templeton et al., 2007), as well as a host of high level capa-
bilities such as coordinated tracking and planning of ground vehicles (He et al., 2010), or multi-vehicle coordina-
tion (Furukawa et al., 2006; Tisdale et al., 2008; Casbeer etal., 2005). While these are all challenging research areas
in their own right, and pieces of the previous work (such as the modeling and control techniques) carry over to
the development of vehicles operating without GPS, these previous systems rely on external systems such as GPS,
or external cameras (Matsuoka et al., 2007) for localization. Similarly, a number of researchers (How et al., 2008;
Hoffmann et al., 2007) have flown indoors using position information from motion capture systems, or external cam-
eras (M. Achtelik and Buss, 2009; Altug et al., 2002). In discussing further related work, we focus on flying robots
that are able to operate autonomously while carrying all sensors used for localization, control and navigation onboard.

Outdoor Visual Control While outdoor vehicles can usually rely on GPS, there are manysituation where relying
on GPS would be unsafe, since the GPS signal can be lost due to multi-path, satellites being occluded by buildings and
foliage, or even intentional jamming. In response to these concerns, a number of researchers have developed systems
that rely on vision for control of the vehicle. Early work in this area by Saripalli et al. (2003) and Buskey et al. (2004)
used a stereo camera to enable position hold capabilities. Other researchers have developed capabilities such as visual
servoing relative to a designated target (Mejias et al., 2006), landing on a moving target (Saripalli and Sukhatme,
2007), and even navigation through urban canyons (Hrabar and Sukhatme, 2009). While the systems developed by
these researchers share many of the challenges faced by indoor or urban MAVs, they operate on vehicles that are orders
of magnitude larger, with much greater sensing and computation payloads. In addition, the outdoor environments tend
to be much less cluttered, which gives greater leeway for errors in the state estimation and control.

Indoor Obstacle Avoidance Using platforms that are of a similar scale to the ones targeted in this paper, several
researchers (Roberts et al., 2007; Bouabdallah et al., 2005; Matsue et al., 2005) use a small number of ultrasound or
infrared sensors to perform altitude control and basic obstacle avoidance in indoor environments. While their MAVs
are able to hover autonomously, they do not achieve any sort of autonomous goal-directed flight that would enable the
systems to be controlled at a high level such that they could be built upon for more advanced autonomous applications.

Known Structure Instead of using low-resolution sonar and infrared sensors, several authors have attempted to fly
MAVs autonomously indoors using monocular camera sensors.To enable tractable vision processing, this work has
typically made strong (and brittle) assumptions about the environment. For example, Tournier et al. (2006) performed



visual servoing over known Moire patterns. Kemp (2006) fit lines in the camera images to the edges of a 3D model
of an office environment with known structure. Reducing the prior knowledge slightly, Johnson (2008) detected
lines in a hallway, and used the assumption of a straight hallway to infer the vehicle pose. Similarly, Celik et al.
(2008) developed the MVCSLAM system, which tracks corner features along the floor of a hallway. It is unclear
how their work could be extended to other less structured environments. Their applicability is therefore constrained to
environments with specific features, and does not allow for general navigation in GPS-denied environments.

Using a 2D laser scanner instead of a camera, prior work in ourgroup (He et al., 2008) presented a planning algorithm
for a quadrotor helicopter that is able to navigate autonomously within an indoor environment for which there is
a known map. Recently, Angeletti et al. (2008) and Grzonka etal. (2009) designed quadrotor helicopters that were
similar to the one presented by He et al. (2008). Angeletti etal. matched incoming laser scans to a known map to
hover a quadrotor helicopter, while Grzonka et al. used particle filter methods to localize a MAV in a map built by a
ground robot. However, none of these papers presented experimental results demonstrating the ability to stabilize all
6 degrees of freedom of the MAV using the onboard sensors, andall made use of prior maps, an assumption that is
relaxed in this work.

Indoor SLAM There is a very large amount of prior work on performing SLAM on ground vehicles (Grisetti et al.,
2007; Leonard and Durrant-Whyte, 1991; Lu and Milios, 1997; Thrun and Montemerlo, 2006). These algorithms en-
able the vehicles to localize themselves and build maps in large scale environments, however they are too slow to
directly provide the real time state estimates required forcontrolling a MAV.

Ahrens et al. (2009) used monocular vision SLAM to stabilizethe position of a quadrotor helicopter. Extracted corner
features were fed into an extended Kalman filter based vision-SLAM framework, building a low-resolution 3D map
sufficient for localization and planning. An external motion capture system was used to simulate inertial sensor
readings, instead of using an onboard IMU. As such, their system was constrained to the motion capture volume
where they had access to the high quality simulated IMU. Adopting a slightly different approach, Steder et al. (2007)
mounted a downward-pointing camera on a blimp to create visual maps of the environment floor. While interesting
algorithmically, this work does not tackle any of the challenges due to the fast dynamics of other MAVs. Similar work
by Blosch et al. (2010) extended monocular vision SLAM to a quadrotor helicopter using lower quality acceleration
estimates from a more realistic MAV-scale IMU, but this workalso uses a downward-pointing camera and makes
strong assumptions about the environment.

The system presented in this paper was also discussed in Bachrach et al. (2009a,b). Here we present a more detailed
analysis and evaluation of the algorithms, as well as significantly expanded experimental results in the field, including
new results in large-scale indoor environments and outdoorflight in the urban canyon. We also present the results
from our team’s winning entry in the 2009 AUVSI International Aerial Robotics Competition.

2 System Overview

To compute the high-precision, low-delay state estimates required for indoor and urban flight, we designed a 3-level
sensing and control hierarchy, grouped by color in Figure 2,distinguishing processes based on the real-time require-
ments of their respective outputs. This hierarchical architecture is one of the key features of our system that enables
flight in GPS-denied environments. By dividing the problem into the local and global parts that can be solved sepa-
rately, we allow the local computation to run in real-time with the limited computational resources available on the
MAV.

The first two layers run in real-time onboard the vehicle, andare responsible for stabilizing the vehicle and performing
low-level obstacle avoidance. At the base level of the hierarchy (represented in green in Figure 2), the onboard IMU
and processor developed by Ascending Technologies GmbH1 creates a very tight feedback loop to stabilize the MAV’s
pitch and roll, operating at1000Hz. All of our processes control the vehicle by interacting with this control loop. At

1Ascending Technologies GmbH.http://www.asctec.de
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Figure 2: Schematic of our hierarchical sensing, control and planning system with the layers distinguished by color.
At the base level, the onboard IMU and controller (green) create a tight feedback loop to stabilize the MAV’s pitch and
roll. The yellow modules make up the real-time sensing and control loop that stabilizes the MAV’s pose at the local
level and avoids obstacles. Finally, the red modules provide the high-level mapping and planning functionalities.

the next level (represented in yellow in Figure 2), a fast, high-resolution laser scan-matching algorithm, described
in Section 3.1, estimates the vehicle’s relative motion, while an Extended Kalman Filter-based data fusion module
(Section 4) fuses the estimates with the IMU measurements toprovide accurate, high frequency estimates of the
vehicle state including velocity. These estimates enable the position controller to hover the MAV in small, room sized
environments (Section 5). A simple obstacle avoidance module ensures that the MAV maintains a minimum distance
from observed obstacles.

The third layer (represented in red in Figure 2) runs on a ground station computer and contains the modules responsible
for creating a consistent global map of the world, as well as planning and executing high level actions. A SLAM
algorithm (Section 6) uses the data fusion filter’s state estimates and incoming laser scans to create a global map,
ensuring globally consistent state estimates. Since the SLAM algorithm takes 1-2 seconds to incorporate incoming
scans, it is not part of the real-time feedback control loopsat the lower levels. Instead, it provides delayed correction
signals to the data fusion filter, ensuring that our real-time state estimates remain globally consistent. Finally, a
planning and exploration module (Section 7) enables the vehicle to plan paths within the map generated by the SLAM
module, and guide the vehicle towards unexplored regions.

We implemented the hierarchical software system shown in Figure 2 as a set of independent processes which, com-
municate using the Lightweight Communications and Marshalling (LCM) library2 (Huang et al., 2009). An 802.11n
WiFi module provides a wireless link to the ground-station.The high bandwidth link allows real-time processing to
be performed either on or offboard the vehicle; however, moving computation onboard reduces the delay, and makes
the vehicle less susceptible to failures due to loss of the wireless connection. As a result, we run all of the real-time
state estimation and control modules onboard the vehicle, while the more computationally intensive non-real-time
processes such as the SLAM and planning modules are run at theground-station.

2.1 Hardware Platform

Our system is built using consumer off-the-shelf (COTS) hardware throughout. We use the Pelican quadrotor heli-
copter designed by Ascending Technologies, which providedan extremely robust, stable, and safe platform for our
experiments. Our system uses the Ascending Technologies attitude controller to stabilize the pitch and roll of the
vehicle, as well to provide filtered measurements from its IMU at100Hz. Since the attitude filter does not have access
to the velocity estimates of the vehicle, it is unable to effectively estimate the biases in the accelerometers. As a result,
we estimate these biases in our data fusion filter described in Section 4.

2LCM - Lightweight Communication and Marshalling.http://code.google.com/p/lcm/
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The Pelican is able to carry roughly750g of payload, which allows a relatively large sensing and computation payload
for a vehicle of its size (maximal dimension of70cm). The vehicle has a15 minute endurance with a6000mAh
lithium polymer battery. We outfitted the vehicle with a lightweight Hokuyo3 UTM-30LX laser range-finder. The
laser range-finder provides a270◦ field-of-view at40Hz, up to an effective range of30m indoors. We deflect some of
the laser beams downwards using a right angle mirror to estimate the vehicle’s height, while the remaining beams are
used for localization. In bright sunlight, the range of the laser scanner is considerably reduced, down to an effective
range of around15m, however the experiments in Section 8.3 were performed at night.

In addition to the laser scanner and IMU, the vehicle is capable of carrying a monocular color camera and a set of
grayscale stereo cameras. The cameras were used for mission-specific tasks during the International Aerial Robotics
Competition (Section 9), however they are not currently used in the core navigation system described in this paper.

The onboard computer is based around a1.6GHz Intel Atom processor with1GB of RAM. The computer is powerful
enough to allow all of the real-time processing to be performed onboard the vehicle.

3 Relative Motion Estimation

One of the major challenges that we identified in operating a MAV is estimating the position and velocity of the vehicle
from on-board sensor data, and we address this challenge using the laser range-finder. While the quadrotor helicopter
moves in SE(3), with the vehicle’s pitch and roll controlledby the Ascending Technologies attitude controller, the
motion can be well approximated as motion in SE(2)× R (x, y, yaw× z, ). This allows us to decouple the motion
estimation into two separate problems: estimation of the motion in SE(2) using laser scan-matching (Lu and Milios,
1997), and estimation of the height of the vehicle using the algorithm described in Section 3.2. To obtain velocity
estimates for the vehicle, we need to differentiate the computed motion estimates. As a result, the algorithms must
provide both high-resolution matching and fast real-time performance.

3.1 Robust High-Speed Probabilistic Scan-Matching

The laser scan-matching algorithm must solve the followingproblem: given two overlapping laser range scans
St, St−1 ∈ ℜ2×n each consisting ofn distinct 2D points{xi} ∈ ℜ2, find the optimal rigid body transform∆ that
aligns the current laser scan with the previous scan such that applying the transform∆ to St−1, denoted∆ ⊗ St−1,
results in a scan that matchesSt.

Rather than explicitly match pairs of scansSt−1 andSt, we match each scan to an existing mapM containing the data
from a previous set of scansSt−τ :t−1. We use probabilistic scan-matching algorithms due to their robustness to large
discontinuities in the range measurements experienced by the vehicle as it changes height and attitude in complex 3D
environments. Changes in range measurements due to pitching and rolling can be partly addressed by projecting the
laser rays using the attitude estimate from the IMU. However, common scan-matching algorithms such as iterative
closest point (ICP; Zhang, 1994; Censi, 2008) are still likely to fail in such situations as they attempt to explicitly find
correspondences forall points in the scans even though a number of points may not correspond to the currently visible
cross section of the environment. The poor performance of anICP based scan matching method4 on data from a MAV
is shown in Table 1.

In map-based probabilistic scan matching, a grid mapM is created from previous scans, and incoming scans are
matched against that map. Each cell in the map stores the likelihood of a laser return being measured at that point.
Assuming that each of the point measurements in a laser scan are independent, the likelihood for an entire scan can be
computed as

P (St|M) =
n
∏

i=1

P (xi|M), (1)

3Hokuyo UTM-30LX Laser.http://www.hokuyo-aut.jp
4The C(anonical) Scan Matcherhttp://andreacensi.github.com/csm/
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whereP (xi|M) represents the probability of measuring point pointxi ∈ St at that location in the map. The map
then allows us to search over candidate rigid body transforms∆ (a 3D search space in(x, y, yaw)) to find the∆∗ that
maximizes the likelihood of the measured laser scan,

∆∗ = argmax
∆

P (∆⊗ St|M), (2)

where∆⊗ St is the set of laser pointsSt transformed by the rigid body transform∆.

The two major design components of a map-based probabilistic scan-matching algorithm are the generation of a
map from scansSt−τ :t−1 that allows us to compute the likelihood of a pointxi, and an alignment search procedure
that allows us to compute∆∗. Our algorithm uses Olson (2008)’s map representation, however after experimentally
characterizing the performance of the search approaches, we chose to employ the coordinate ascent search strategy
used by Haehnel (2004)5. When performing scan-matching at high scan rates, we found that the initial estimate from
a constant velocity motion model is good enough for hill climbing to find the global optimum. This is in contrast to
situations where scan-matching is used for loop closure detection, as demonstrated by the experiments performed by
Olson (2009).

3.1.1 Likelihood Map Generation

A common approach to map generation from laser scans is to store all pointsxi from previous scans, and compute the
likelihood of each point in the new scan from the distance to the nearest point in the previous scans. However, many
indoor and urban environments are made up of planar surfaceswith a 2D cross section that is a set of piecewise linear
line segments. The points in successive scans will generally not correspond to identical points in the environment
due to the motion of the laser scanner, but will often measurepoints on the same surface. As a result, attempting to
correspond points explicitly can produce poor results.

We therefore match the points of each new scan to contours extracted from previous scans to provide more robust
matches. We build a map of likelihood contours by initializing the map with individual points, and then iteratively
joining contours until no more contours satisfy a set of joining constraints. The algorithm prioritizes joining nearby
contours, which allows it to handle partially transparent surfaces such as the railings in the environment depicted in
Figure 3(a). The contour extraction algorithm can be implemented efficiently by storing candidate contour merges in a
priority queue, sorted by the distance between the endpoints of the candidate contours. The overall contour extraction
algorithm takes0.5ms to process a 350 point scan on the onboard computer.

Laser range-finders provide noisy measurements of the rangeand bearing to obstacles in the environment. While
each of these degrees of freedom has an independent noise term, we assume a radially symmetric sensor model for
simplicity. Our noise model approximates the probability of a single lidar pointxi as proportional to the distance
d(xi, C) to the nearest contourC, such that

P (xi|C) ∝ e(−d(xi,C)/σ), (3)

whereσ is a parameter that accounts for the length scale of the sensor noise. To enable efficient evaluation of scan
likelihoods, we precompute a grid-map representation where each cell stores the approximate log-likelihood of a laser
reading being returned from a given location.

Map Resolution and Velocity Estimation For most ground robotics applications, a map resolution of10cm or more
is often sufficient. However, to compute thevelocityof the vehicle, we must differentiate the position estimates from
the scan-matcher, which means that rounding errors due to the discretization of the state space are amplified. As a
result, we require a much higher resolution map. The resolution of the map has a direct effect on the accuracy of the
scan-matcher velocity estimates as shown by Figure 4(b). With a map resolution of10cm, the scan-matcher estimates
have an RMS error of almost0.5m/s, which is a very significant amount of noise for a vehicle that is attempting to
hover. While the velocity estimate computed with a10cm map resolution (red line in Figure 4(a)) could be improved
by low-pass filtering, this would induce significant delay.

5Vasco Scan Matcher in CARMEN robotics toolkit.http://carmen.sourceforge.net
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(a) (b) (c)

Figure 3: (a) Contours (blue lines) extracted from the raw laser measurements alongside the raw laser readings (red
dots). Notice how the contour extraction algorithm handlesthe partially transparent railing on the left. A picture of
the environment in which the laser scan was taken is shown in (b). The resulting likelihood map generated from the
contours is shown in (c). Brighter colors (red) indicates higher likelihood.

Algorithm 1 Compute The Likelihood Map
Require: set of piecewise linear contoursC
Require: set of kernelsK indexed by slope

create grid mapM allocated with enough space for contours
for each line segments ∈ C do

select kernelk ∈ K based on slope ofs
for each pixelp along segments do

for each pixel offseto in kernelk do
M(pi + oi, pj + oj) = max(M(pi + oi, pj + oj), k(oi, oj))

end for
end for

end for
return M

Fast Likelihood Map Computation Generating such a high-resolution map is computationally intensive. However,
if one examines a likelihood map such as the one shown in Figure 3(c), one quickly realizes that for any reasonable
value ofσ, eachxi will have zero probability for the vast majority of map cells. In order to create the high-resolution
likelihood maps in real-time, we developed a drawing primitive that explicitly “draws” the non-zero likelihoods around
each line segment. The drawing primitive operates by sliding a 1-pixel wide vertical or horizontal kernel along the
cells spanned by a line segment (Bresenham, 1965), applyingamax operator between the current map value and the
kernel’s value. The appropriate kernel is chosen based on the slope of the line, with the kernel values set according
to Equation 3. The algorithm for rendering the likelihood map is shown in Algorithm 1. As a final optimization, the
inner loop of the algorithm can be performed using optimizedmatrix libraries. The drawing primitive enables us to
render the likelihood maps for normal sized environments in20ms on the onboard computer. For comparison, the map
generation routines due to Olson (2009) takes200ms at the same resolution.

Sliding Window Local Maps Scan-matching algorithms generally operate on consecutive pairs of scans, without
maintaining any history. However, any small errors in the matching will be retained and integrated into the current
position estimate, resulting in drift. Instead of matchingeach pair of incoming scans, we create a sliding window local
map constructed from a non-consecutive but overlapping setof previous scans that extend beyond the immediate field
of view of the sensor. Matching against this map provides more accurate position estimates due to the fact that fewer
scans get added into the representation, and the position estimates will be locally consistent, and drift-free as long as
the vehicle navigates within the map. The reduced drift is demonstrated in Table 1, where the scan-to-scan matching
results in significantly larger position error.
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Figure 4: Demonstration of the effect of map resolution on the velocity estimates computed by the scan-matcher. (a)
The ground truth velocity over time (blue), with the velocities estimated by the scan-matcher with a map resolution of
1cm (green) and10cm (red), which have an RMS error of0.2m/s and0.5m/s respectively. (b) A plot of the RMS error
in velocity as a function of the map resolution. Note, that a map resolution of10cm or more is common for ground
robots. Ground truth was given by an external motion capturesystem.

Method Time Per Scan RMS Vel Error Position Error
Map-Based Coordinate Ascent 12.5ms 0.197m/s 1.05m, 0.41◦

Map-Based Multires Grid Search 16.0ms 0.279m/s 2.33m, 0.46◦

Map-Based scan-to-scan 32.5ms 0.197m/s 5.64m, 3.35◦

Iterative Closest Point 15.8ms 0.198m/s 10.3m, 12.3◦

Table 1: Comparison of the coordinate ascent and multi-resolution grid search methods, as well as the effect of the
sliding window local map. All three methods are tested with amap resolution of1cm. The exhaustive search method
used a step size of0.5◦ in yaw. The position error represents the accumulated errorafter closing the first loop of the
Killian Court dataset in Figure 9, a300m long trajectory. The robustness of our methods result in greatly reduced
position error compared to the ICP implementation from Censi (2008).

Additionally, when the MAV changes height, new contours will appear and be added into the map. By including all
contours induced by planes in the environment but only aligning against the best subset, the vehicle can remain well
localized even in situations where oscillations in the attitude of the vehicle cause the incoming scan to jump back and
forth between multiple surfaces.

We add contours to the local map when the fraction of points inan incoming scan that are given a high likelihood
in the current map drops below a threshold. The threshold is set high enough that incoming scans are still able to be
matched accurately, but low enough that scans are not added too often. We experimentally determined that a threshold
of 75% gave a good trade-off, adding a scan to the map approximatelyevery 2 seconds during normal operation.

3.1.2 Scan-to-Map Alignment

Given a likelihood map constructed from contours as described above, we now need a procedure to search for the most
likely alignment of a new scan to the map. We experimented with both co-ordinate ascent and grid search methods
to find the aligning rigid body transform∆∗ with respect to the precomputed map. While grid search might initially
seem hopelessly inefficient for large search windows, it canbe performed very quickly by structuring the computation
appropriately (Olson, 2009).
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Figure 5: (a) A plot showing a comparison of the height estimates from our algorithm (green) alongside the raw
measurements (red), and the ground truth (blue). (b) A plot showing the velocity estimates from differentiating the
raw measurements. The large discontinuities in the red lines occurred when the vehicle flew over the edge of a15cm
tall object. Our algorithm produces position estimates with an RMS error of2cm, while the velocity estimates have an
RMS error of0.2m/s.

We compared the two approaches (grid search and co-ordinateascent) for performing the alignment search using
logged data from the vehicle in two environments. In the firstexperiment, we flew the vehicle inside of a motion
capture environment which gave us access to ground truth data alongside the laser measurements. The ground truth
data allowed us to compare the velocity estimates produced by differentiating the position estimates. In the second
experiment, we flew the vehicle around a large300m long loop, which allowed us to measure the total accumulated
error in position by using the scan matcher to register the final scan to first measurement at the starting point. We then
computed the motion estimates with the scan-matcher using the two alignment search methods described above. As
can be seen in Table 1, while both search methods are efficientenough to run in real-time (40Hz) on the1.6Ghz Atom
processor onboard the vehicle, the coordinate ascent search outperforms the grid-search both in terms of speed, and
accuracy. This indicates that the additional robustness ofgrid search is not needed at the high scan rates used in our
system. The improved accuracy is due to the sub-cell resolution enabled by coordinate ascent.

In our implementation, we use a map resolution of1cm. At this resolution, it takes approximately12.5ms to search for
the aligning pose using coordinate ascent. Rebuilding the map when a scan needs to be added is an aperiodic job that
would otherwise disrupt the real-time state estimation. Asa result, we regenerate the likelihood map in a background
computational thread, allowing state estimation to continue unimpeded.

3.2 Laser Based Height Estimation

We use the onboard IMU of the vehicle to estimate the roll and pitch of the vehicle, and the scan-matching uses
measurements from a planar laser range-finder to estimate the (x, y, yaw) degrees of freedom. To estimate altitude,
the remaining degree of freedom of the vehicle, we redirect asmall portion of the field of view of the laser downward
using a right-angle mirror in order to estimate the height ofthe vehicle. Only20 beams are redirected toward the floor,
so there is insufficient data to disambiguate the motion of the vehicle from changes in the height of the floor. If we
assume that the vehicle is flying over a flat floor, we can directly use the average range (rejecting outliers) measured by
the redirected beams of the laser scanner,rt, as an estimate of the absolute height of the vehicle at timet. However, if
the vehicle flies over an object such as a table, these height estimates will be incorrect. To make matters worse, flying
over the table will appear as a large step discontinuity in the height estimate, as shown by the red line in Figure 5(a),
which can result in aggressive corrections from the position controller.

However, if we look at the velocityvt computed from the difference between consecutive measurements we see that
there are very large outliers that occur when the vehicle flies over an object. As a result, we can use the maximum
expected accelerationamax of the vehicle to filter out these outliers, allowing us to obtain accurate estimates of the
z-velocity with an RMS error of0.2m/s.



Directly integrating the estimated velocitŷvt would have a potentially unbounded drift. To eliminate thisdrift, we
assume that the vehicle will predominantly be flying over a flat floor, but sometimes will fly over furniture or other
objects. With this assumption, the range measurements fromthe downward pointed laser beams accurately measure
the height of the vehicle, subject to short lived local disturbances.

We combine the range-to-floor and velocity estimates using an approach inspired by complementary filtering
(Zimmerman and Sulzer, 1991). The range measurements,rt, are treated as the globally accurate “low frequency”
information, while the filtered velocity estimate,v̂t, is treated as the locally accurate “high frequency” information.
However, since the amount of time that a vehicle will spend above an object is unknown, we cannot use a frequency cri-
teria to combine the two signals. We instead use the distancethe vehicle has traveled since it measured a discontinuity
in the surface underneath it.

Algorithm 2 Laser Height Estimation
Require: rt, rt−1 //current and previous redirect range measurements
Require: ĥt−1 //previous height estimate
Require: vt−1 //previous velocity estimate
Require: d //linear distance to previous discarded measurement
vt = (rt − rt−1)/dt
if |vt − vt−1| > amax then
h′ = ĥt−1

d = 0
else
h′ = ĥt−1 + (rt − rt−1)

end if
ĥt = h′ + α sgn(rt − h′)/(1 + exp(σd(c− d)))

return ĥt, d, vt

The height estimation process is shown in Algorithm 2. The parametersσd andc control the width and center of the
logistic function used to smoothly apply corrections. The parameters are chosen such that we expect the vehicle to no
longer be above an object when the larger corrections are being applied (∼ 2m). The current height estimate can be
arbitrarily far away from the measured range to the floor, so we use the sign of the the error in the correction, ignoring
the magnitude. The correction scaling termα is set such that the maximum correction per time step is smallenough
(1cm/s) to induce smooth motions of the vehicle.

4 Data Fusion Filter

To control the vehicle, we require accurate estimates of theMAV position and velocity. We compute these estimates
by fusing the estimated change in position computed by the scan-matching algorithm described in the previous section
with the acceleration measurements from the IMU. While the IMU readings drift significantly, they are useful over
short time periods and allow us to improve our estimate of thevehicle velocities.

The data fusion filter provides us with a way to trade off the reliance on each sensor and fuse the different sources
of information which arrive asynchronously, and at different rates. We estimate the state of the MAV at time stept,
denoted byxt, given the set of IMU measurements{zI1, z
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We adopt the standard practice for fusing GPS and an IMU measurements on outdoor UAVs (Jun et al., 1999), which
employs an Extended Kalman Filter (EKF) to estimate the vehicle state from noisy GPS and IMU measurements.
However, instead of absolute position estimates provided by GPS, the scan-matcher provides relative position estimates
∆t, which can be viewed as noisy measurements of the transformation between the states at two points in timext



andxt−k. These relative measurements make the exact solution of theinference problem significantly more difficult.
While this model could be solved using smoothing techniques such as those proposed by Ranganathan et al. (2007), for
ease of implementation we simplified the model by incorporating the relative scan-matcher measurements conditioned
onxt−k, that is the scan-matcher estimates are modeled as absolutemeasurements of the vehicle’s position given the
most likely originating state estimate.

z
L
t = ∆t|xt−k (5)

We then use a standard EKF formulation to solve the inferenceproblem and provide estimates of the vehicle state.
Our filter was implemented using the open source KFilter library6. The filter to estimates the positions, velocities, and
accelerations of the vehicle, along with biases in the IMU. The state is represented as:

x = [x, y, z, ẋb, ẏb, żb, ẍb, ÿb, z̈b, φ, θ, ψ, bẍ, bÿ, bz̈, bφ, bθ] (6)

The position(x, y, z) is represented in the global coordinate frame, with the origin placed where the vehicle is initial-
ized. The orientation(φ, θ, ψ) or (roll, pitch, yaw) is represented using Euler angles. Thevelocities and accelerations
are represented in the body frame, where the origin is located at the center of body with thex-axis pointing towards
the front of the vehicle,y to the left, andz up. We estimate the biasesb∗ in the accelerometers, roll and pitch of the
IMU. We rely on the Ascending Technologies IMU to provide theattitude estimate, so we do not estimate the angular
velocities or the biases in the gyros. In addition, since we use the scan-matcher to estimate the heading of the vehicle,
we do not estimate a bias for yaw.

4.1 Filter Process Model

We estimate the heading of the vehicle separately from the pitch and roll. This in turn makes thez axis independent
of thex andy axes. As a result, the nonlinear state update equations forx andy are:

xt = xt−1 + dt(ẋbt−1 cos(ψt−1)− ẏbt−1 sin(ψt−1)) + ωx, ωx ∼ N(0, σx)

yt = yt−1 + dt(ẋbt−1 sin(ψt−1) + ẏbt−1 cos(ψt−1)) + ωy, ωy ∼ N(0, σy) (7)

wheredt is the filter update period, andωx,y are zero mean Gaussian noise terms. We have flown the vehicle at speeds
up to3m/s without issue, but at higher speeds these simplifications to the dynamics model may lead to state prediction
errors.

We use discrete integration to update thez axis and velocity states:

vt = vt−1 + dtv̇t−1 + ωv, ωv ∼ N(0, σv) (8)

wherev = [z, ẋb, ẏb, żb] is a sub-vector of the vehicle statex.

We model the linear accelerations inx andy as proportional to the attitude and velocity, using the simple dynamics
model from Tournier et al. (2006):

ẍb = kθθ − kẋẋ
b + ωẍ, ωẍ ∼ N(0, σẍ)

ÿb = kφφ− kẏ ẏ
b + ωÿ, ωÿ ∼ N(0, σÿ) (9)

The parameterskθ andkφ are a function of the mass, inertia, and thrust required for the vehicle to hover. While the
damping parameterskẋ andkẏ are small enough that they could be ignored when the vehicle is in the hover regime,
they are included here to prevent the model from allowing theestimated velocity to grow without bound in the absence
of position corrections. The model parameters are learned by a linear least-squares system identification process from
flight and control data collected offline in a motion capture studio.

Finally, the remaining states are modeled using a random walk motion model:

at = at−1 + ωa, ωa ∼ N(0, σa) (10)

wherea = [z̈b, φ, θ, ψ, bẍ, bÿ, bz̈, bφ, bψ].

6KFilter. http://kalman.sourceforge.net

http://kalman.sourceforge.net


4.2 Filter Measurement Model

The measurements from each type of sensor arrive asynchronously and at different rates, which means that we must
create a separate measurement model for each sensor. We receive IMU measurements from the vehicle’s filter (used
by the attitude controller) at100Hz, while the scan-matcher estimates arrive at40Hz. Before each measurement is
integrated, we propagate the filter state forward using the process model described above fordt seconds, wheredt is
the time since the last measurement arrived.

IMU Measurements We subtract the gravity vector from the IMU measurements using the attitude estimate before
integratingzI . This allows us to model the IMU as if it measures the accelerations and attitude plus the associated
bias terms, corrupted by zero mean Gaussian noise,

z
I
t =













ẍbt + bẍt
ÿbt + bÿt
z̈bt + bÿt
φt + bφt
θt + bθt













+ vIMU , vIMU ∼ N(0, σI). (11)

Laser Measurements We condition the scan-matcher estimate on the prior filter statext−k (as described in Equa-
tion 5) to convert the relative motion estimate∆ computed by the scan-matcher in Equation 2 into a measurement of
the absolute vehicle positionzLt . The relative transformation∆t is applied toxt−k, obtained from the logged state
history. This allows us to model the laser measurement as a measurement of the position and heading of the MAV
corrupted by Gaussian noise,

z
L
t = xt−k ⊕∆t + vS , vS ∼ N(0, σL). (12)

We use diagonal process and measurement covariance matrices to limit the number of parameters that needed to be
tuned. We learn the variance parameters using a method similar to the one described by Abbeel et al. (2005).

4.3 Out of Order Measurements

We process IMU measurements as soon as they arrive so that thecontroller has state estimates computed from all
available information. Due to the computation time needed to process incoming laser readings to obtain the relative
motion estimates, the scan-matcher measurements generally arrive out of order relative to the IMU measurements.
One option for handling out of order measurements is to add measurements to a buffer, and wait until all delayed
measurements have arrived before adding them to the filter. This approach imposes a delay on the state estimates that
would be problematic for controlling the MAV. Instead we save the history of IMU measurements and associated filter
states between scan-matcher measurements such that we can roll back the filter state and replay the measurements in
the correct order. Our filter state is small enough that the relatively short computational delays typically experienced
by repeated rollbacks are negligible.

5 Position Control

The Ascending Technologies quadrotor helicopters are equipped with a manufacturer-provided attitude stabilization
module. This module uses an onboard IMU and processor to control the MAV’s pitch and roll (Gurdan et al., 2007).
The attitude stabilization allows us to focus on stabilizing the remaining degrees of freedom in position and heading.
While the attitude controller simplifies the problem substantially, the remaining degrees of freedom in position are
highly dynamic, requiring careful controller design to stabilize the vehicle.

The onboard controller takes 4 inputs:
u = [uφ, uθ, ut, uψ̇] (13)
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Figure 6: Demonstration of the trajectory following performance with commanded position (blue dashed) and actual
position (green). The vehicle was commanded to move along the X-axis. (a) The position of the vehicle alongside the
desired trajectory and (b) the deviation from the desired trajectory over time. The maximum deviation was8cm. The
vehicle was flying autonomously with the state estimates generated by our system.

whereuφ anduθ denote the desired set points for the onboard PD control loops in pitch (φ) and roll (θ) respectively.
Unlike these two control inputs,uψ sets the desired rotational velocity in yaw (ψ) rather than specifying an absolute
attitude. Finallyut is mapped to the desired baseline rotation rate for all four motors in the motor speed controller,
which gives control of the net thrust.

The decoupled control inputs provided by the Ascending Technologies autopilot enable us to control the vehicle’s
position using4 independent PID control loops. To find the initial control gains, we perform offline linear least
squares system identification on the simple dynamics model from Tournier et al. (2006), and use the Matlab linear
quadratic regulator (LQR) toolbox. Subsequent tuning was performed manually with the vehicle flying autonomously.

The final controller was able to hover the vehicle with an RMS error of 6cm, and could accurately follow straight
line trajectories with under8cm deviation from the desired trajectory (RMS error of7cm). An example of the vehicle
following such a trajectory, along with the tracking error is shown in Figure 6.

6 Simultaneous Localization And Mapping

With the MAV state locally estimated by the scan-matcher anddata fusion algorithms, we can leverage more computa-
tionally intensive SLAM algorithms originally developed for other platforms to refine the position estimates and build
maps of the environment. The SLAM process could be integrated directly inside of the data fusion filter described
in the previous section, however, this would add a significant computational delay to the estimation process since
the filter state would expand to include the positions of environmental features. Instead we keep the SLAM process
separate from the realtime control loop, having it provide periodic corrections to the real-time position estimates. This
allows the SLAM algorithm to take much more time to integrateinformation than would be possible if it was part of
the local estimation process.

The SLAM module sends position corrections to the data fusion filter to correct any drift in the position estimates.
Since these position corrections are delayed significantlyfrom when the measurement upon which they were based
was taken, we must account for this delay when we incorporatethe correction. Similar to how we compensated for the
delay in computing posterior states from the scan-matcher,we retroactively modify the appropriate position estimate
in the state history. All future local state estimates are then computed to be relative to the corrected position, resulting
in globally consistent real-time state estimates. Under normal operation, the SLAM module sends out updates roughly
every2 seconds with the estimates delayed by∼ 200ms, so only the past1 second of history must be kept. By
incorporating the SLAM corrections after the fact, we allowthe real-time state estimates to be processed with low



enough delay to control the MAV, while still incorporating the information from SLAM to ensure drift free position
estimation.

While there has been a tremendous amount of research on SLAM algorithms, the vast majority of the algorithms
have focused on building 2D maps (Leonard and Durrant-Whyte,1991; Lu and Milios, 1997; Thrun and Montemerlo,
2006; Grisetti et al., 2007). More recently, several groupshave begun to achieve success with using either monocular
(Davison et al., 2007; Klein and Murray, 2008) or stereo cameras (Mei et al., 2009; Paz et al., 2008) for performing
3D SLAM. Unfortunately, none of the publicly available implementations of 3D SLAM scale to large enough envi-
ronments, so we instead we make use of more mature 2D SLAM implementations.

We have experimented and successfully flown with two separate SLAM algorithms. Initial experiments were per-
formed with the GMapping algorithm (Grisetti et al., 2007) available in the OpenSlam repository7, while more recent
experiments use the pose graph optimization SLAM implementation described below. The two modules can be in-
terchanged without requiring modifications to the rest of the system, which indicates that it should be easy to replace
them with a 3D SLAM solution when one becomes available.

6.1 Pose Graph Optimization SLAM

Pose graph-based techniques are attractive for use on MAVs due to their robustness and computational efficiency. In
our implementation, we construct the pose graph using the scan-matcher presented in Section 3.1 for both incremental
odometry (after data fusion with IMU) and loop closure detection. We optimize the graph using Kaess’ Incremental
Smoothing and Mapping (iSAM) library8 (Kaess et al., 2008) which is fast enough to operate online without difficulty.
This approach was used in Kim et al. (2010).

The SLAM graphG is constructed from two types of edges: odometry edges, and loop-closing edges. The odometry
edges connect successive poses of the vehicle through time,as estimated by the data fusion filter. For computational
efficiency we add a new node to the graph whenever the vehicle has moved a sufficient distance (1m or 15◦). Each
nodeGi contains the associated laser scanGsi and the current best estimate of the poseGpi . Each node that gets added
to the graph is checked against the rest of the nodes in the graph for a possible loop closure.

We use a relatively simple approach to loop closure that leverages the capabilities of the scan-matcher described
in Section 3.1. The algorithm checks the current node against the closest node in the graph (excluding the nodes
immediately preceding it), using the quality of the match, and a rigidity check to reject false positives. The loop
closure detection algorithm is described in Algorithm 3. Whenever a loop closure edge is added to the pose graph we
optimize the trajectory using iSAM, and send the optimized estimate of the current pose to the data fusion filter.

While the loop closure technique is limited by the scan-matcher search region (currently10m×10m), it has proven
effective in our testing. The state estimates are accurate enough that even after going around the large loops such as
the ones described in Sections 8.2 and 8.3 the estimate is within this search region. Checking a node for loop closure
takes roughly2sec, which is sufficiently fast for online operation since the SLAM algorithm is not part of the real-time
control loop.

7 Planning and Exploration

To achieve full autonomy we require a high-level planner that chooses motion and sensing actions to guide the search
of an unknown environment. We follow the well-known frontier-based exploration approach (Yamauchi, 1997), in
which the thresholds of unknown portions of a map are identified asfrontier regionsdeserving further investigation.

While the autonomous exploration problem is not new (Whaite and Ferrie, 1997; Stachniss et al., 2005; Rocha et al.,

7OpenSlam.http://openslam.org
8iSAM library. http://people.csail.mit.edu/kaess/isam/
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Algorithm 3 Loop Closure Detection
Require: SLAM graphG //Node to check for loop closure isGt

1: get nearest nodeGc ∈ G0:t−30

2: if ||Gp
t −Gp

c || > 10m then
3: return ∅
4: end if
5: Create a likelihood mapM from scansGs

c−5 : Gs
c+5 using algorithm 1

6: ∆t = ScanMatch(Gs
t ,M)

7: if Number of points with high likelihood< .85% then
8: return ∅
9: end if

10: //Perform a “rigidity” check:
11: ∆t−1 = ScanMatch(Gs

t−1,M)
12: if ‖‖Gp

t ⊖G
p
t−1‖ ⊖ ‖∆t ⊖∆t−1‖‖ > .01 then

13: return ∅
14: end if
15: return Gc

2005), an additional consideration in planning for the quadrotor helicopter is the need to constantly maintain accu-
rate position and velocity estimates to ensure safe flight. The planner must choose trajectories that provide suffi-
cient sensor information to keep the vehicle well-localized. A sampling-based approach such as the Belief Roadmap
(Prentice and Roy, 2009) could be used to generate safe trajectories; however, with no prior map and frequent SLAM
updates, it becomes infeasible to maintain a belief roadmapin real-time without substantial deliberation costs. We
propose using an abridged metric for localizability based on the Sensor Uncertainty Field (SUF) (He et al., 2008) to
quickly evaluate goal locations.

7.1 Uncertainty Based Frontier Exploration

We use a modified definition of frontiers to choose possible poses in free space where the vehicle should fly to next,
such that it both observes previously unexplored regions and remains well-localized. Yamauchi (1997) grouped free
cells that are adjacent to unknown cells in the grid map into frontier regions as possible goals for the robot. In each of
these frontier regions, we sample potential poses(x, y, ψ) and calculate their weight according to two metrics.

The first metric captures the amount of unexplored space thatthe vehicle will observe by simulating laser sensor data
from the sampled pose and computing the number of unexploredgrid cells in the laser’s field-of-view. After dividing
by the maximum number of grid cells covered by a laser range scan, we compute a normalized weightIUR(x) ∈ [0, 1]
for the amount of unexplored information that the vehicle isexpected to gather from posex = (x, y, ψ).

We use a second “Sensor Uncertainty” metric to measure localizability because the first metric favors poses facing
into unexplored regions which could provide arbitrarily poor sensor information (e.g. wide open space generating
maximum laser ranges). A Sensor Uncertainty Field, first coined by Takeda and Latombe (1992), maps locationsx in
the state space to expected information gain,x → ISU (x), by calculating the difference in entropy of the prior and
posterior distributionISU (x) = H(p(x))−H(p(x|z)) where entropy isH(p(x)) = −

∫

p(x) log p(x)dx.

He et al. (2008) showed that the measure of information gain for laser data is typically insensitive to the choice of
prior. We therefore use a constant priorp(x) = Σ0 such thatH(p(x)) = C, as well as Bayes’ rule to compute
p(x|z) = p(z|x) · p(x), such thatISU (x) = C −H(p(z|x))Σ0.

The entropy ofp(z|x) is computed by deterministically extracting a set of sigma points (Julier et al., 1995), or samples
along the main axes of the current covariance estimate, and observing how they are transformed by the measurement
function. We simulate the laser measurement from a frontierpose and compute the probability of obtaining this
observation at each sigma point. The lower the probability of the observation at the neighboring sigma points, the
smaller the entropy of the posterior distribution, and therefore the greater the information gain. Poses with high



Figure 7: The blue points indicate frontiers that allow the quadrotor helicopter to explore and self-localize simulta-
neously. The laser’s field-of-view at those frontiers is drawn in brown. Notice that at the edges of free space, the
chosen frontiers position the vehicle such that the expected laser scan spans both unexplored regions for exploration
and unique obstacles for localization.

information gain correspond to localizable regions in the state space.ISU (x) ∈ [0, 1] is normalized by the prior
entropyH(p(x)).

In each frontier region, we accept as a goal point the sample that maximizes the weighted sum of the two information
metrics, such thatI(x) = IUR(x) + ISU (x). Figure 7 shows the frontier points generated accordingly,where points
are chosen such that the expected laser scan will both uncover unexplored regions and observe known obstacles,
enabling the MAV to simultaneously explore and localize itself.

7.2 Exploration Algorithm

The exploration module was designed as a general template that can be customized to address various tasks that
require balancing time efficiency, map coverage, localizability, or other mission objectives such as target search (see
Section 9.2). Our general exploration algorithm captures these trade-offs in the following cost function:

J(fi) =

T
∑

t=0

CSUF + αdCd −Rl, (14)

wherefi is a candidate frontier,CSUF = {0,∞} is the cost of uncertainty in localization determined by theSUF
threshold,Cd is the shortest-path distance cost of motion, andRl is the reward for viewing unexplored cells in the
map with the laser (proportional to reduction in entropy over maps). The values ofCd,Rl are normalized to[0, 1]. αd
is the weight placed on traveling distance; a large value ofαd favors frontier waypoints that are close to the robot.

Note thatCSUF enables a quick metric for evaluating localizability; in practice, we have found that in typical indoor
and office-like environments, a binary localizability termis sufficient to choose paths that avoid poses (such as front-
ward down a long corridor) that compromise the robot’s ability to localize. Also, a conventional trajectory planner
based on dynamic programming is used to determine which frontier goals are reachable, and then to plan and navigate
a series of waypoints to the selected goal. Our general exploration algorithm is shown in Algorithm 4.

8 Flight Tests

The system presented in this paper has been tested extensively and has demonstrated stable control of the vehicle in
many real world situations. Flight tests were performed in anumber of different environments around the MIT campus,



Algorithm 4 Exploration algorithm.
1: initialize, takeoff, enter environment
2: while mission not completedo
3: obtain partial map, robot position
4: generate frontier setF
5: for all frontiersfi ∈ F do
6: computeJ(fi) =

∑T

t=0
CSUF + αdCd −Rl

7: end for
8: goal = minfi J(fi)
9: while not reachedgoal do

10: execute trajectory to goal
11: end while
12: end while
13: land

as well as in a competition setting at the 2009 AUVSI International Aerial Robotics Competition. The statistics of
these different environments are shown in Table 2. In total,we have logged roughly 100 hours of autonomous flight
time. In all situations, the vehicle did not have a prior map,or other information about the environment. The aerial
imagery shown in the figures was manually aligned after the test flights for visualization purposes.

To ensure safety during autonomy tests, two people monitor the state of the system. One person manages the ground
station, monitoring the real-time data and providing operator input if necessary. The second person acts as a safety pilot
who is able to take over control of the vehicle via an RC transmitter in case any problems arise. The vehicle processes
are managed from a mobile ground-station which consists of alaptop placed on a mobile cart. During flights, the
laptop is powered by batteries which allows it to be moved to keep the vehicle within sight and communications range
if necessary.

The vehicle is able to take off and land autonomously, so flight tests begin with the vehicle being placed on
the ground at the designated start location. Then, once the ground control operator verifies that the state esti-
mation and control processes are running properly, the safety pilot turns on the vehicle, and switches it into au-
tonomous mode. The vehicle can either be instructed to explore the environment, or fly to high level waypoints
provided by the user. The experiments presented in this section are conducted in the latter mode, where the oper-
ator is manually designating goal waypoints. In Section 9 wepresent experiments which employed the fully au-
tonomous exploration capabilities of the system. Videos that demonstrate the capabilities of the system are avaiable at
http://groups.csail.mit.edu/rrg/jfr2011-mav.

Environment Stata Center Killian Court Urban Canyon
Flight Area 130m×90m 240m×130m 270m×160m
Distance Traveled 285m 745m 710m
Flight Time 15min 15min 30min
Nominal Cruise Velocity 0.6m/s 1.0m/s 0.5m/s
Longest Loop n/a 300m 400m
Max Height 1.9m 1.5m 3m

Table 2: Statistics for the environments navigated in the flight test experiments. Note that we swapped out the battery
during the urban canyon experiment to extend the flight time.

8.1 Autonomous Navigation in Unstructured Environments

To test the large-scale navigation capabilities of our system in an unstructured indoor environment, we flew the vehicle
around the first floor of MIT’s Stata Center. The vehicle was not given a prior map of the environment, and flew
autonomously using only sensors onboard the MAV. The vehicle was guided by a human operator choosing goals in
the map that was being built in real-time, after which the planner planned the best path to the goal. Figure 8 shows

http://groups.csail.mit.edu/rrg/jfr2011-mav


(a) (b)

Figure 8: (a) The occupancy map of the first floor of MIT’s Statacenter constructed by the vehicle during autonomous
flight. The trajectory of the vehicle is shown in cyan, and detected loop closures are drawn in red. (b) The architectural
floor plan of the building for comparison purposes.

(a) (b)

Figure 9: (a) The occupancy map of MIT’s Killian Court area computed by the SLAM algorithm. The trajectory of
the vehicle is shown in cyan, and detected loop closures are drawn in red. (b) The laser measurements overlaid upon
aerial imagery. While the vehicle was flying inside the building, the detected structure aligns with the structure visible
in the aerial imagery, providing a qualitative notion of accuracy.

the final map generated by the SLAM algorithm at the end of the experiment as well as the path taken by the vehicle.
As can be seen from the map, the Stata Center has a free-form floor plan which would prevent the use of specific
environmental assumptions such as straight hallways, as was done in Celik et al. (2008) and Johnson (2008). Despite
these challenges, our system allowed the vehicle to fly untilthe battery was exhausted. During the15 minutes of flight,
the vehicle flew a distance of285m.

8.2 Autonomous Navigation in Environments With Large Loops

While the first floor of the Stata Center provided a large-scaleenvironment in which to test our vehicle, it did not pro-
vide opportunities for testing the SLAM algorithms in an environment with large loops. To test in such an environment,
we flew the vehicle around MIT’s Killian court area. The very large loops in this dataset pose a significant challenge
to SLAM algorithms, and motivated our use of the pose graph SLAM approach described in Section 6. The SLAM
module was able to successfully detect the loop closure occurrences, and optimize the trajectory. The computed map
compares favorably with the structure visible in aerial imagery, as shown in Figure 9. During the15 minute flight,
the vehicle traveled a distance of745m. Interestingly, the recessed door frames in the otherwisefeatureless hallways



provided enough environmental structure for the scan-matcher to allow the system to maintain control of the vehicle
throughout the flight.

8.3 Autonomous Navigation in the Urban Canyon

In addition to the indoor experiments, we have conducted a number of flight tests outdoors in GPS-denied urban
canyon environments. Using our state estimation system in an outdoor environment presented a number of challenges
not generally seen in indoor environments such as wind, large open spaces, and organic structures such as trees. The
system proved robust and was able to handle many of the challenges presented by the urban canyon environment.
While the vehicle was able to fly the chosen route across campus, other areas caused problems for the state estimation
algorithms. For example, areas which contained mostly irregular non-vertical surfaces such as bushes and tree foliage
(as opposed to the trunks), broke the assumptions made by thescan-matcher. Similarly, the limited range of the laser
scanner is problematic in large open areas where the laser would not observe sufficient structure for the scan-matcher
to estimate the position of the vehicle. The operator guiding the exploration during the flight test gave the vehicle
waypoints that avoided such problem areas.

The vehicle carried a GPS receiver during the flight, however, due to the surrounding buildings and generally poor
RF landscape on the MIT campus, the receiver never acquired alock on enough satellites to estimate the position of
the vehicle. While we were unable to use the GPS receiver to provide ground truth comparison, we aligned the laser
point cloud on top of geo-registered aerial imagery which provides a qualitative measure of the accuracy of our state
estimates.

Figure 10 shows the map generated by the vehicle as it was guided on a path across the MIT campus, as well as
the laser measurements overlaid on aerial imagery. Perspective renderings of the 3D point cloud generated using
the SLAM corrected state estimates are shown in Figure 11. One particularly interesting section of the trajectory is
shown in Figure 11(a) when the vehicle passed through a building to cross between two open courtyards. The vehicle
flew through a set of open doors, down the hallway, and then outon the opposite side of the building. The ability
to transition between indoor and outdoor flight is likely to be very important for many of the potential applications
envisioned for MAVs.

Figure 12 shows the path taken by the vehicle during a 45 second long portion of the experiment that we used to
evaluate the performance of the position controller in the outdoor setting. The vehicle flew at1m/s down a road
between two buildings that was lined with trees and bushes. The height of the vehicle was commanded to be2m so
that the plane of the laser range-finder was above the parked cars alongside the road. Despite the clutter from the
foliage, we can see that the position of the vehicle was accurately estimated by the straightness of the lines visible in
the laser point cloud. Our scan matcher is robust enough thatit was able to ignore the non-matching scans from the
trees, while locking onto the vertical walls of the buildings.

While the state estimates provided by our system were sufficiently accurate to enable robust position control of the
vehicle, the velocity estimates were noisier than in normaloperation in indoor environments with vertical walls. The
noisier state estimates resulted in larger tracking errorsthan those seen in Section 5. At the beginning of the trajectory
(first 20 seconds), the laser scans were aligned quite well, resulting in crisp lines in the point cloud. During this time,
the vehicle flew with an average deviation from the trajectory of 0.08m/s. Toward the end of the section, the state
estimates were noisier as can seen by the slightly blurry lines in the right half of Figure 12(a). This caused the average
error of the position controller to increased to0.12m/s. In addition to the increased RMS error, the quadrotor helicopter
experienced a maximum deviation from the desired trajectory of 0.27m. This maximum error was significantly higher
than in the indoor settings and indicates the vehicle must plan more conservative trajectories outdoors. Fortunately,
the scale of outdoor environments typically do not require flight in as tightly constrained spaces as indoors.

During the experiment, the vehicle was commanded to fly at various altitudes between1.5m and3m. However, since
the ground was not level, the height estimation algorithm described in Section 3.2 was unable to estimate the absolute
altitude of the vehicle. Instead of the absolute altitude estimate that the algorithm normally computes, it computed a
smoothed estimate of the height relative to the local groundsurface. While the ground relative height estimates were
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Figure 10: (a) The occupancy map created while flying across the MIT campus. (b) The laser measurements (blue)
overlaid upon aerial imagery of the campus to provide a qualitative measure of the estimation accuracy while flying
between the buildings. The trajectory flown by the vehicle isshown in cyan, with loop closures marked in red. Starting
from the lower left corner, the vehicle traversed the path drawn in cyan, going around the large loop counter-clockwise.

(a) (b)

(c) (d)

Figure 11: (a) A perspective view of the area where the vehicle crossed through a building. (b) A picture of the vehicle
flying through the doors as it exited the building. (c) An areawith trees that demonstrates the 3D structure visible in
the laser point cloud. (d) A perspective view of the section used in Figure 12. In all renderings, the path taken by
the vehicle is drawn in cyan, with a blue ribbon to indicate height. While the vehicle was predominantly flying at a
constant height, the natural rocking of the vehicle causes the laser to sweep over the 3D environment above and below
the vehicle. The laser point-cloud is false colored by height. Note that the point cloud is overlaid upon aerial imagery
that depicts the roof of the buildings rather than the groundlevel where the vehicle was flying.
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Figure 12: (a) The laser point cloud for the portion of the trajectory used to evaluate the performance of the position
controller. The laser returns from trees and bushes create clutter, however the correctly aligned building structures
are clearly visible. The overlapping red and green lines along the center are the commanded, and actual paths as the
vehicle traversed the area from left to right. (b) The deviation from the desired trajectory while traversing this area.
The quality of the position estimation degrades in the second half, leading to larger deviations from the trajectory.

not as good for mapping and environment modeling, they were sufficient for control purposes.

During the 30 minutes of flight, the vehicle flew more than700m at speeds of up to1.5m/s. Due to the limited flight
time provided by a single charge, we stopped to change batteries during the flight.

9 The International Aerial Robotics Competition

The system presented in this paper was used in our winning entry as Team MIT-Ascending Technologies in the 2009
International Aerial Robotics competition (IARC), hostedby the Association of Unmanned Vehicle Systems Inter-
national (AUVSI). The majority of the experiments described in Section 8 relied on a human operator for high-level
guidance. In contrast, a primary constraint of the IARC mission was that no human intervention of any kind was al-
lowed. As a result, we developed an additional set of modulesthat performed tasks specific to the competition. These
modules were added to the top of the system hierarchy, and therefore did not affect the state-estimation or control.

The IARC mission consisted of a disaster recovery scenario in which the MAV must enter a nuclear power plant
through an open window and search for a control panel that contained critical information for diagnosing the fault.
Our vehicle completed the entire mission; this was the first time in the 19 years of IARC that a team won during the first
year of a mission. The competition used artificial walls set up to simulate the interior of a power plant. An overhead
view of the30m×15m competition arena is shown in Figure 14(a). The specific mission entailed the following tasks:
(1) takeoff roughly3m from the opening of the arena; (2) identify and fly through a1m×1m window into the arena; (3)
explore the unknown environment and search for the control panel; and, (4) autonomously identify the correct gauge
(designated by a steady blue LED) and transmit imagery to thejudges.

The mission had to be performed completely autonomously in under 10 minutes and prior to each mission run, the
arena layout was unknown. Once the operator told the vehicleto start, no human input was allowed until the mission
was complete. Each team was given four attempts to complete the mission. For the system to reason about the mission
task sequence, we developed a high-level mission planner module that was placed at the top of the system hierarchy
(shown in Figure 2). This module commanded the execution of high-level tasks including window entry, exploration,
boundary coverage, target inspection and final target designation.
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Figure 13: (a) A 3D rendering of the point cloud used for window detection, false colored by height. The laser
measurements are projected using the state estimates computed by the filter in Section 4. The detected position of the
window is designated by the pink lines. (b) A Photo of the MAV autonomously flying through the1m×1m window
into the arena.

9.1 Window Entry

The mission required flying through a window that was only25cm wider than the width of the vehicle. Assuming the
system could perfectly identify the center of the window, the vehicle could only deviate a maximum of12cm from the
straight-line entry trajectory and errors in the position controller or window identification could result in a catastrophic
crash. Fortunately, this task was within the normal error bounds of our position controller described in Section 5.

To detect the window, the vehicle performed a “vertical sweep”, accumulating 2D laser scans to generate a 3D point
cloud of the window. With the position estimates generated by our state estimator, the system was able to register the
set of laser scans into the dense 3D point cloud shown in Figure 13(a). The window was identified by searching the
point cloud for a1m×1m hole in an otherwise connected flat surface (designated by the pink lines in Figure 13(a)).
Once detected, the mission planner executed a trajectory through the window center, as shown in in Figure 13(b).

The window detection and entry performed without error morethan ten times during the IARC competition, providing
a clear demonstration of the accuracy and precision of the state estimation. Furthermore, while we do not have 3D
ground truth for the arena, we can visually inspect the 3D walls in the point cloud to see that there is not significant
distortion.

9.2 Exploration and Search

From the mission constraints, we identified the need for a planner that could balance time efficiency, geometrical
map exploration, visual boundary coverage, and localizability in the environment. The exploration module described
in Algorithm 4 was extended to use information gathered by the camera sensor to ensure visual boundary coverage
and enable investigation of potential visual targets. To facilitate this, we generate an additional set of candidate goal
waypoints, referred to ascamera frontiers, that correspond to locations in the SLAM map that contain views of the
perimeter not yet viewed by the visual target detector.

A target detector processes each camera image to search for the LED-designated gauge, shown in the inset of Figure
14(a). We trained visual classifiers for two different purposes: (1) to safely discard viewed regions where the target is
not detected; and, (2) to make a confident final detection at close range. The first target classifier was tuned for low
false negative rates at a range of4m so that we could confidently label observed regions of the environment as not
containing the target. In the case that a target is detected,the second classifier, tuned for low false positive rates, is
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Figure 14: (a) An overhead view of the competition arena usedfor the 2009 AUVSI International Aerial Robotics
Competition,5th mission. The inset shows a photo of the IARC control panel. This is one of the frames from the
video stream sent to the judges, which successfully completed the mission. (b) The map built by the vehicle as it
explored the IARC arena searching for the control panel. Black areas are obstacles (or no-fly zones), white is free
space, and gray is unexplored. Starting from the left side, the red line shows the path taken by the vehicle. The
blue and red cross is the final position of the vehicle. The green square in front of the vehicle is the location of the
autonomously designated control panel.

used to provide a confident final classification once the vehicle has maneuvered to view the candidate gauge at close
range (< 1m).

We augment the grid map by marking boundary regions that havebeen classified by visual target detector as nega-
tive. The end points of camera-viewed boundary regions are obtained by scanning the coverage map for grid cells
neighbored by viewed and unviewed regions. Camera frontiers are constructed for each of these boundary points by
ray-tracing obstacle-free viewpoints of the region.

Given a set of laser and camera frontiersF , the exploration objective function in Equation 14 can be modified to
capture mission trade-offs as follows:

J(fi) =

T
∑

t=0

CSUF + αdCd − αeRl − (1− αe)Rc, (15)

wherefi ∈ F is a candidate frontier,CSUF = {0,∞} is the cost of uncertainty in localization determined by the
SUF threshold,Cd is the shortest-path distance cost,Rl is the reward for viewing unexplored cells in the map with
the laser,Rc is the reward for viewing camera boundary cells at a given distance,αd is the weight placed on travel
distance, andαe captures the trade-off between laser exploration and camera coverage.αe can be varied to generate
behaviors biased towards map building (αe = 1) or boundary coverage (αe = 0).

When a potential target is detected, the mission planner postpones exploration to investigate the target at close range.
The vehicle plans a trajectory to a close range view of the target, visually servos to center the target in the camera
field-of-view, and then makes a reliable final classification.

9.3 IARC Flight Performance

Each team was given four attempts to complete the IARC mission. In the first three attempts during the IARC, the
vehicle explored a large portion of the environment, but wasunable to reach the room with the control panel. While
exploring, there were several doors that were exactly 1m wide; such narrow passages other than the entrance window
were unanticipated and the “safety regions” set for obstacle avoidance and path planning labeled these doorways as



impassable. After adjusting parameters, the vehicle foundthe control room on its fourth attempt and transmitted the
picture of the target control panel shown in the inset of Figure 14(a) to the judges, which completed the mission. The
path followed by the vehicle during the successful attempt is shown on top of the constructed map in Figure 14(b).
The mission was completed quickly in 4.5 minutes without having to explore the entire environment.

10 Discussion

In this work we developed a system that enables completely autonomous exploration and mapping in GPS-denied
environments. To enable this capability we developed and integrated a set of modules that address the key challenges
laid out in Section 1.1. In designing the system, we found thefollowing insights to be critical to our success:

• Decoupled System Architecture: Rather than using a single integrated state estimator, we realized that it
was critical to develop a local estimator for controlling the position of the vehicle, with special emphasis
on estimating and controlling the velocity. The multi-level system hierarchy presented in Section 2 allows
for this decomposition and was a critical development that allowed our system to work. Additionally, once
the position of the vehicle is accurately controlled, the task of designing and implementing higher level
algorithms for a MAV is greatly simplified.

• Fast and Robust Laser Scan-Matching: The fast dynamics of MAVs reduce the amount of computation
time allowed for the real-time state estimation algorithms. In addition, the assumptions required for using
a 2D sensor in a 3D world are violated much more frequently than on a ground vehicle. Our work placed
special emphasis on the development of a very fast scan matching algorithm that maintained the accuracy and
robustness required for use on a MAV. The laser scan-matcherin Section 3.1 was the key enabling technology
that allows our vehicle to fly in GPS-denied environments.

While the presented system has demonstrated very good performance in a number of real world settings, further work
will be required to develop the ability to operate in completely unconstrained environments. We have identified two
classes of environments in which our system was unable to operate:

• Complex 3D Environments: Some areas of the Stata Center at MIT have walls that are slanted. If the slanted
walls subtend a large enough portion of the field of view of thelaser scanner, the scan-matcher will be unable
to disregard as outliers the false matches between scans taken at different heights. Similar failures occur in
outdoor environments when the laser scanner predominatelyobserves the leaves and branches of trees (as
opposed to vertical tree trunks).

• Featureless Environments: Featureless hallways with no doors, windows, shelves, etc.provide no structure
for the scan-matcher to distinguish. If the hallway is longer than the maximum range of the sensor (30m),
such that the end of the hallway is not observed, then matching consecutive laser scans is ill-posed along
the axis of the hallway and the scan-matcher is unable to estimate vehicle motion. Similar situations occur
where the surrounding environmental structure is beyond the maximum range of the sensor, such as large
open areas.

The failure modes described above are fundamental limitations of using a 2D laser scanner for estimating the motion
of the vehicle. Developing a system that is able to operate insuch environments will require the integration of other
sensing modalities, such as camera sensors. While this wouldlikely greatly reduce the situations in which the system
would fail, it would not completely eliminate the failure modes. Fully handling these types of challenging scenarios
will likely require relaxing the need to maintain a purely metric representations of the environment and the state of the
vehicle (Kuipers et al., 2000; Sibley et al., 2010).



11 Conclusions & Future Work

This paper presented our solution for enabling robust autonomous navigation in GPS-denied environments. Our system
leverages a multi-level sensing and control hierarchy which is able to successfully close the loop around the fast and
unstable MAV dynamics using only sensors onboard the vehicle. We have developed a very accurate and robust high-
speed laser scan-matching algorithm that allows us to compute the relative position estimates with enough accuracy
and low enough delay for control purposes. By combining these measurements with the data from the onboard IMU in
the data fusion filter, we are able to obtain accurate estimates of the vehicle states. These state estimates are accurate
enough to enable the vehicle to hover and fly in constrained indoor and urban environments.

The system has been thoroughly tested in a number of large-scale environments, both indoors and outdoors in the
urban canyon. In each of these environments the system was able to navigate autonomously, guided either by a human
operator clicking high level goals in the map being built online, or by an exploration algorithm.

The autonomous capabilities of the system were employed by our team’s winning entry into the 2009 AUVSI Interna-
tional Robotics Competition. The system presented a very robust and stable platform on top of which we were able to
build the necessary additional components that carried outthe mission. The state estimation and control architecture
made it such that when we developed these components, we did not have to be concerned with stabilizing the vehicle or
any of the other real-time concerns that traditionally makedeveloping algorithms for MAVs particularly challenging.
The mission was successfully completed with no human intervention once the vehicle was told to start.

In the future, we hope to expand the capabilities of the system by developing algorithms for perceiving, planning, and
operating in arbitrary 3D environments. The 2D SLAM and exploration algorithms that we have developed provide a
proof of concept for achieving high level autonomy on a MAV, however more work will be required to unlock the full
potential of MAVs to operate in 3D. The incorporation of visual information from camera sensors will be an area of
particular interest.

In addition to augmenting the 3D perception capabilities ofthe quadrotor helicopter, we hope to adapt the system
for use on other UAVs. Moving to another hovering MAV should be fairly simple, only requiring the adaptation of
the position controller for the new platform. The state estimation algorithms such as the scan-matcher are agnostic
to the vehicle platform as long as the 2D laser sensor is kept near level. On the other hand, developing autonomous
capabilities for faster moving vehicles such as a (quadrotor) helicopter flying aggressively, or a fixed-wing vehicle will
involve significantly more effort. More work will be required to enable high quality state estimation in the face of
increased motion blur and reduced reaction time. While thesetasks will certainly be quite challenging, we believe that
the system presented in this paper will provide a solid foundation for these future research directions.
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