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Abstract

This paper addresses the problem of autonomous navigdtaMaro Air Vehicle (MAV) in GPS-
denied environments. We present experimental validatiohaaalysis for our system that enables
a quadrotor helicopter, equipped with a laser range-finelesar, to autonomously explore and map
unstructured and unknown environments. The key challeagerfabling GPS-denied flight of a
MAV is that the system must be able to estimate its positiah\aiocity by sensing unknown en-
vironmental structure with sufficient accuracy and low egfolatency to stably control the vehicle.
Our solution overcomes this challenge in the face of MAV pad limitations imposed upon sens-
ing, computational, and communication resources. In tafgep we first analyze the requirements
to achieve fully autonomous quadrotor helicopter flight iRSsdenied areas, highlighting the dif-
ferences between ground and air robots that make it diffioulse algorithms developed for ground
robots. We report on experiments that validate our solsttorkey challenges, namely a multi-level
sensing and control hierarchy which incorporates a higredpgaser scan-matching algorithm, data
fusion filter, high-level SLAM, and a goal-directed expltioa module. These experiments illustrate
the quadrotor helicopter’s ability to accurately and aotapusly navigate in a number of large-scale
unknown environments, both indoors and in the urban canyha.system was further validated in
the field by our winning entry in the 2009 International AéRabotics Competition (IARC), which
required the quadrotor to autonomously enter a hazarddasowm environment through a window,
explore the indoor structure without GPS, and search fosaalitarget.

1 Introduction

Many researchers have proposed the use of Micro Air Vehi®le&/s) as a promising alternative to ground robot
platforms for rescue tasks and a host of other applicatiii/s are already being used in several military and civilian
domains, including surveillance operations, weather dasien, disaster relief coordination, and civil engiriegr
inspections. Enabled by the combination of GPS and MEMSialesensors, researchers have been able to develop
MAVs that display an impressive array of capabilities indmgr environments (Scherer et al., 2008; Templetonlet al.,



Figure 1: Our quadrotor helicopter. Sensing and computat@nponents include a Hokuyo laser range-finder (1),
stereo cameras (2), monocular color camera (3), laseretiafiemirrors for altitude (4), 1.6GHz Intel Atom-based
flight computer (5), and the Ascending Technologies intepnacessor and IMU(6). The laser scanner and IMU are
used for localization. The camera sensors were used fag sgcific to the IARC competition.

20071 He et dll, 2010). However, most indoor environmentsnaany parts of the urban canyon remain without access
to external positioning systems such as GPS. As a reswigmieautonomous MAVs have been limited in their ability
to operate in these areas.

In this paper, we describe the estimation, navigation amdrebsystem for a MAV operating in GPS-denied envi-
ronments. We describe experimental assessments of firgg ogsboard sensors to estimate the vehicle’s position
and secondly using the same sensor data to build a map of Wirerenent around the vehicle, a process generally
called simultaneous localization and mapping (SLAM). Altlgh there have been significant advances in developing
accurate SLAM algorithms in large-scale environmentssehegorithms have focused almost exclusively on ground
or underwater vehicles. There have been previous resultgeidorming SLAM on MAVS, I 09;
lLangelaan and Rock, 2005), however, due to a combinatiaméeld payloads for sensing and computation, coupled
with the fast dynamics of air vehicles, the algorithms hagragally been tested in simulation, on ground robots, or
with sensor data first collected from a manually piloted M&r quadrotor helicopter system, shown in Figure 1,
is capable of autonomous flight in unstructured and unknow®-@enied environments. Developing this capability
required careful engineering of a complex system that ssyes existing algorithms to balance the trade-offs imposed
by GPS-denied flight. We report flight results in a number ahdms including indoor flight, outdoor flight through
the MIT campus, and results from the International Aeriab&as Competition 2009.

1.1 Key Challenges

In the ground robotics domain, many algorithms exist foruaate localization in large-scale environments; however,
these algorithms are usually deployed on slow moving rolwléch cannot handle even moderately rough terrain.
MAVs face a number of unique challenges that make develogiggrithms for them far more difficult than their
indoor ground robot counterparts.

e Limited Payload Limited payload reduces the computational power availahlgoard, and eliminates pop-
ular sensors such as SICK laser scanners, large-apertoveras and high-fidelity IMUs. Our hardware
selection discussed in Section]2.1 addresses these timdeof

¢ Indirect Position Estimates While MAVs will generally have an IMU, double-integratingaateration mea-
surements from lightweight MEMS IMUs results in prohibély large position errors. We address this



challenge by estimating our position using the laser scateier presented in Section13.1.

e Fast Dynamics MAVs have fast and unstable dynamics which result in a hoseoing, estimation, control
and planning implications for the vehicle. Furthermore,\#M4such as our quadrotor helicopter are well-
modeled as undamped when operating in the hover regime. Jieefasion filter presented in Sectibh 4
combined with the position controller in Sectigh 5 addréssé challenges.

e Constant Motion Unlike ground vehicles, a MAV cannot simply stop and perfanore sensing or compu-
tation when its state estimates have large uncertaintis¢ead, the vehicle is likely to be unable to estimate
its position and velocity accurately, and as a result, it miak up speed or oscillate, degrading the sensor
measurements further. These concerns motivate our efiploegorithm in Sectiofl?.

There are further challenges that we do not fully addreskigwork such as building and planning in 3D represen-
tations of the environment. Instead, we treat the large gbsin the visible 2D cross section of a 3D environment as
sensor noise, requiring the algorithms to be sufficienthust to handle these changes.

1.2 Related Work

In recent years, the development of autonomous flying rolbagsbeen an area of increasing research interest. This
research has produced a number of systems with a wide rancggabilities when operating in outdoor environ-
ments. For example vehicles have been developed that céormenigh-speed flight through cluttered environ-
ments |(Scherer et al., 2008), or even acrobatics (Coatés 2088). Other researchers have developed systems
capable of autonomous landing and terrain mapping (Temmketal., 2007), as well as a host of high level capa-
bilities such as coordinated tracking and planning of gtbuehicles |(He et all, 2010), or multi-vehicle coordina-
tion (Furukawa et all, 2006; Tisdale et al., 2008; Casbeal £2005). While these are all challenging research areas
in their own right, and pieces of the previous work (such asriodeling and control techniques) carry over to
the development of vehicles operating without GPS, theseiqus systems rely on external systems such as GPS,
or external cameras_(Matsuoka et al., 2007) for localimati8imilarly, a number of researchers (How €tial., 2008;
Hoffmann et al., 2007) have flown indoors using position iinfation from motion capture systems, or external cam-
eras |(M. Achtelik and Buss, 2009; Altug et al., 2002). In disging further related work, we focus on flying robots
that are able to operate autonomously while carrying absenused for localization, control and navigation onboard

Outdoor Visual Control  While outdoor vehicles can usually rely on GPS, there are ns#iogtion where relying

on GPS would be unsafe, since the GPS signal can be lost dudtiepeth, satellites being occluded by buildings and
foliage, or even intentional jamming. In response to theseerns, a number of researchers have developed systems
that rely on vision for control of the vehicle. Early work ini$ area by Saripalli et al. (2003) and Buskey et al. (2004)
used a stereo camera to enable position hold capabilitiber@searchers have developed capabilities such ag visua
servoing relative to a designated tardet (Mejias et al. 620@nding on a moving target (Saripalli and Sukhatme,
2007), and even navigation through urban canyons (HralthBakhatme, 2009). While the systems developed by
these researchers share many of the challenges faced loy odaorban MAVs, they operate on vehicles that are orders
of magnitude larger, with much greater sensing and comipuatptiyloads. In addition, the outdoor environments tend
to be much less cluttered, which gives greater leeway fargin the state estimation and control.

Indoor Obstacle Avoidance Using platforms that are of a similar scale to the ones tarhét this paper, several
researchers (Roberts et al., 2007; Bouabdallah et al.}; 208tue et al., 2005) use a small number of ultrasound or
infrared sensors to perform altitude control and basicamstavoidance in indoor environments. While their MAVs
are able to hover autonomously, they do not achieve any satttonomous goal-directed flight that would enable the
systems to be controlled at a high level such that they caoailalidt upon for more advanced autonomous applications.

Known Structure Instead of using low-resolution sonar and infrared sensenseral authors have attempted to fly
MAVs autonomously indoors using monocular camera sensar®nable tractable vision processing, this work has
typically made strong (and brittle) assumptions about tiirenment. For example, Tournier et al. (2006) performed



visual servoing over known Moire patterns. Kemp (2006) fies in the camera images to the edges of a 3D model
of an office environment with known structure. Reducing thierpknowledge slightly, Johnsbn (2008) detected
lines in a hallway, and used the assumption of a straightvaglito infer the vehicle pose. Similarly, Celik et al.
(2008) developed the MVCSLAM system, which tracks cornatdees along the floor of a hallway. It is unclear
how their work could be extended to other less structured@mments. Their applicability is therefore constrained t
environments with specific features, and does not allow émregal navigation in GPS-denied environments.

Using a 2D laser scanner instead of a camera, prior work igaup (He et &ll, 2008) presented a planning algorithm
for a quadrotor helicopter that is able to navigate autongtyowithin an indoor environment for which there is
a known map. Recently, Angeletti et el. (2008) and Grzonkd g009) designed quadrotor helicopters that were
similar to the one presented by He et al. (2008). Angelettiletmatched incoming laser scans to a known map to
hover a quadrotor helicopter, while Grzonka et al. used@erfilter methods to localize a MAV in a map built by a
ground robot. However, none of these papers presentedimergal results demonstrating the ability to stabilize all
6 degrees of freedom of the MAV using the onboard sensorsalhmdade use of prior maps, an assumption that is
relaxed in this work.

Indoor SLAM  There is a very large amount of prior work on performing SLAMground vehicles (Grisetti etlal.,
2007; Leonard and Durrant-Whyte, 1991; Lu and Millos, 1997uh and Montemerlo, 2006). These algorithms en-
able the vehicles to localize themselves and build mapsrgelacale environments, however they are too slow to
directly provide the real time state estimates requireddémtrolling a MAV.

Ahrens et al.[(2009) used monocular vision SLAM to stabitteeposition of a quadrotor helicopter. Extracted corner
features were fed into an extended Kalman filter based vSiofM framework, building a low-resolution 3D map
sufficient for localization and planning. An external maotioapture system was used to simulate inertial sensor
readings, instead of using an onboard IMU. As such, theitesysvas constrained to the motion capture volume
where they had access to the high quality simulated IMU. Aidgma slightly different approach, Steder et al. (2007)
mounted a downward-pointing camera on a blimp to createalisiaps of the environment floor. While interesting
algorithmically, this work does not tackle any of the chagjes due to the fast dynamics of other MAVs. Similar work
by[Blosch et al.[(2010) extended monocular vision SLAM to adyotor helicopter using lower quality acceleration
estimates from a more realistic MAV-scale IMU, but this walkso uses a downward-pointing camera and makes
strong assumptions about the environment.

The system presented in this paper was also discussed imégackt al.[(2009a,b). Here we present a more detailed
analysis and evaluation of the algorithms, as well as sitanfly expanded experimental results in the field, inclgdin
new results in large-scale indoor environments and outfimitt in the urban canyon. We also present the results
from our team’s winning entry in the 2009 AUVSI Internatibiarial Robotics Competition.

2 System Overview

To compute the high-precision, low-delay state estimaggsired for indoor and urban flight, we designed a 3-level
sensing and control hierarchy, grouped by color in Figlirdigjnguishing processes based on the real-time require-
ments of their respective outputs. This hierarchical dectiire is one of the key features of our system that enables
flight in GPS-denied environments. By dividing the problartoithe local and global parts that can be solved sepa-
rately, we allow the local computation to run in real-timetwihe limited computational resources available on the
MAV.

The first two layers run in real-time onboard the vehicle, ar@responsible for stabilizing the vehicle and performing
low-level obstacle avoidance. At the base level of the nidna(represented in green in Figlide 2), the onboard IMU
and processor developed by Ascending Technologies Groteates a very tight feedback loop to stabilize the MAV’s
pitch and roll, operating at000Hz. All of our processes control the vehicle by interactinighwthis control loop. At

1Ascending Technologies GmbHt t p: / 7 www. asct ec. de
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Figure 2: Schematic of our hierarchical sensing, contrdl glanning system with the layers distinguished by color.
At the base level, the onboard IMU and controller (greendigra tight feedback loop to stabilize the MAV’s pitch and
roll. The yellow modules make up the real-time sensing androbloop that stabilizes the MAV's pose at the local
level and avoids obstacles. Finally, the red modules peothé high-level mapping and planning functionalities.

the next level (represented in yellow in Figlide 2), a fasghhiesolution laser scan-matching algorithm, described
in Section 3.1, estimates the vehicle’s relative motionilevan Extended Kalman Filter-based data fusion module
(Section[#) fuses the estimates with the IMU measuremengsdade accurate, high frequency estimates of the
vehicle state including velocity. These estimates endidebsition controller to hover the MAV in small, room sized
environments (Sectidd 5). A simple obstacle avoidance rieoglisures that the MAV maintains a minimum distance
from observed obstacles.

The third layer (represented in red in Figlte 2) runs on ampla@tation computer and contains the modules responsible
for creating a consistent global map of the world, as well lasging and executing high level actions. A SLAM
algorithm (Sectioil6) uses the data fusion filter's statereges and incoming laser scans to create a global map,
ensuring globally consistent state estimates. Since thaVBalgorithm takes 1-2 seconds to incorporate incoming
scans, it is not part of the real-time feedback control loathe lower levels. Instead, it provides delayed correctio
signals to the data fusion filter, ensuring that our reaktistate estimates remain globally consistent. Finally, a
planning and exploration module (Sectidn 7) enables thileeto plan paths within the map generated by the SLAM
module, and guide the vehicle towards unexplored regions.

We implemented the hierarchical software system showngdnre[2 as a set of independent processes which, com-
municate using the Lightweight Communications and Maisita(LCM) Iibrary@ (Huang et al., 2009). An 802.11n
WiFi module provides a wireless link to the ground-statidie high bandwidth link allows real-time processing to
be performed either on or offboard the vehicle; however, ingpeomputation onboard reduces the delay, and makes
the vehicle less susceptible to failures due to loss of thiel@gs connection. As a result, we run all of the real-time
state estimation and control modules onboard the vehididgewhe more computationally intensive non-real-time
processes such as the SLAM and planning modules are run gitdhed-station.

2.1 HardwarePlatform

Our system is built using consumer off-the-shelf (COTSHhare throughout. We use the Pelican quadrotor heli-
copter designed by Ascending Technologies, which provateéxtremely robust, stable, and safe platform for our
experiments. Our system uses the Ascending Technolodiasdatcontroller to stabilize the pitch and roll of the
vehicle, as well to provide filtered measurements from it!)i 100Hz. Since the attitude filter does not have access
to the velocity estimates of the vehicle, it is unable to&ffely estimate the biases in the accelerometers. As #resu
we estimate these biases in our data fusion filter describ8ectiori %.

2LCM - Lightweight Communication and Marshallingt t p: // code. googl e. con p/ | cni
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The Pelican is able to carry roughit$0g of payload, which allows a relatively large sensing and potation payload

for a vehicle of its size (maximal dimension ofcm). The vehicle has &5 minute endurance with @000mAh
lithium polymer battery. We oultfitted the vehicle with a ligleight Hokuy UTM-30LX laser range-finder. The
laser range-finder provide2&0° field-of-view at40Hz, up to an effective range 80m indoors. We deflect some of
the laser beams downwards using a right angle mirror to agtitihe vehicle’s height, while the remaining beams are
used for localization. In bright sunlight, the range of thedr scanner is considerably reduced, down to an effective
range of around5m, however the experiments in Sectionl 8.3 were performedat.n

In addition to the laser scanner and IMU, the vehicle is clpabcarrying a monocular color camera and a set of
grayscale stereo cameras. The cameras were used for mégsotfic tasks during the International Aerial Robotics
Competition (Sectiohl9), however they are not currentlyduisehe core navigation system described in this paper.

The onboard computer is based arouridé&Hz Intel Atom processor withGB of RAM. The computer is powerful
enough to allow all of the real-time processing to be pertatranboard the vehicle.

3 Reéative Motion Estimation

One of the major challenges that we identified in operating® M estimating the position and velocity of the vehicle
from on-board sensor data, and we address this challengg ti laser range-finder. While the quadrotor helicopter
moves in SE(3), with the vehicle’s pitch and roll controlled the Ascending Technologies attitude controller, the
motion can be well approximated as motion in SE2R (z,y,yaw X z,). This allows us to decouple the motion
estimation into two separate problems: estimation of théanan SE(2) using laser scan-matching (Lu and Milios,
1997), and estimation of the height of the vehicle using fgerithm described in Sectidn 3.2. To obtain velocity
estimates for the vehicle, we need to differentiate the ageghmotion estimates. As a result, the algorithms must
provide both high-resolution matching and fast real-tiradgrmance.

3.1 Robust High-Speed Probabilistic Scan-M atching

The laser scan-matching algorithm must solve the followpngblem: given two overlapping laser range scans
Si, 81 € R2*X™ each consisting of distinct 2D points{z;} € %2, find the optimal rigid body transform\ that
aligns the current laser scan with the previous scan suctagipdying the transform\ to S,_;, denotedA ® S;_1,
results in a scan that matchg&s

Rather than explicitly match pairs of scafis ; and.S;, we match each scan to an existing nidrontaining the data
from a previous set of scaitt_ .., 1. We use probabilistic scan-matching algorithms due ta tlodiustness to large
discontinuities in the range measurements experienceldeoyehicle as it changes height and attitude in complex 3D
environments. Changes in range measurements due to gjtahthrolling can be partly addressed by projecting the
laser rays using the attitude estimate from the IMU. Howegemmon scan-matching algorithms such as iterative
closest point (ICH; Zhahg, 1994; Censi, 2008) are still¥ite fail in such situations as they attempt to explicitlydin
correspondences fall points in the scans even though a number of points may nasond to the currently visible
cross section of the environment. The poor performance 6€Brbased scan matching metHanh data from a MAV

is shown in Tabl&]1.

In map-based probabilistic scan matching, a grid Mmags created from previous scans, and incoming scans are
matched against that map. Each cell in the map stores thébkel of a laser return being measured at that point.

Assuming that each of the point measurements in a laser seami@pendent, the likelihood for an entire scan can be
computed as

P(Sy|M) = ] P(ail M), (1)

=1

SHokuyo UTM-30LX Laserht t p: /7 www. hokuyo- aut. | p
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where P(z;| M) represents the probability of measuring point paipte S; at that location in the map. The map
then allows us to search over candidate rigid body transfdxrte 3D search space (&, y, yaw)) to find theA* that
maximizes the likelihood of the measured laser scan,

A* = argmaxP(A ® S¢|M), (2
A
whereA ® S; is the set of laser pointS; transformed by the rigid body transforf

The two major design components of a map-based probabiisin-matching algorithm are the generation of a
map from scans;_,.,_; that allows us to compute the likelihood of a point and an alignment search procedure
that allows us to computA*. Our algorithm uses Olson (2008)'s map representationghiewafter experimentally
characterizing the performance of the search approacheshwase to employ the coordinate ascent search strategy
used by Haehnel (20@)When performing scan-matching at high scan rates, we fduatdhe initial estimate from

a constant velocity motion model is good enough for hill ding to find the global optimum. This is in contrast to
situations where scan-matching is used for loop closurectiet, as demonstrated by the experiments performed by
Olson (20009).

3.1.1 Likelihood Map Generation

A common approach to map generation from laser scans ista&f@ointsz; from previous scans, and compute the
likelihood of each point in the new scan from the distancéhtortearest point in the previous scans. However, many
indoor and urban environments are made up of planar surfeittes 2D cross section that is a set of piecewise linear
line segments. The points in successive scans will gegematl correspond to identical points in the environment
due to the motion of the laser scanner, but will often meapoiets on the same surface. As a result, attempting to
correspond points explicitly can produce poor results.

We therefore match the points of each new scan to contouractet! from previous scans to provide more robust
matches. We build a map of likelihood contours by initialzithe map with individual points, and then iteratively
joining contours until no more contours satisfy a set ofijggnconstraints. The algorithm prioritizes joining nearby
contours, which allows it to handle partially transparanfaces such as the railings in the environment depicted in
Figurd 3(d). The contour extraction algorithm can be imgletad efficiently by storing candidate contour merges in a
priority queue, sorted by the distance between the endpofrthe candidate contours. The overall contour extraction
algorithm take$).5ms to process a 350 point scan on the onboard computer.

Laser range-finders provide noisy measurements of the randdearing to obstacles in the environment. While
each of these degrees of freedom has an independent narsenterassume a radially symmetric sensor model for
simplicity. Our noise model approximates the probabilifyacsingle lidar pointz; as proportional to the distance
d(z;, C) to the nearest contod, such that

P(x,]C) oc =40/, 3

whereo is a parameter that accounts for the length scale of the senge. To enable efficient evaluation of scan
likelihoods, we precompute a grid-map representation e/each cell stores the approximate log-likelihood of a laser
reading being returned from a given location.

Map Resolution and Velocity Estimation For most ground robotics applications, a map resolutiarbofm or more

is often sufficient. However, to compute thelocityof the vehicle, we must differentiate the position estiradtem

the scan-matcher, which means that rounding errors duestdiitretization of the state space are amplified. As a
result, we require a much higher resolution map. The resolutf the map has a direct effect on the accuracy of the
scan-matcher velocity estimates as shown by Figuré 4(ith &inap resolution of0cm, the scan-matcher estimates
have an RMS error of almo$tsm/s, which is a very significant amount of noise for a vehiblat is attempting to
hover. While the velocity estimate computed witii@m map resolution (red line in Figuire 4(a)) could be improved
by low-pass filtering, this would induce significant delay.

5Vasco Scan Matcher in CARMEN robotics toolHit t p: // car men. sour cef or ge. net
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Figure 3: (a) Contours (blue lines) extracted from the rasetaneasurements alongside the raw laser readings (red
dots). Notice how the contour extraction algorithm handfespartially transparent railing on the left. A picture of
the environment in which the laser scan was taken is show)inThe resulting likelihood map generated from the
contours is shown in (c). Brighter colors (red) indicateghlier likelihood.

Algorithm 1 Compute The Likelihood Map
Require: set of piecewise linear contoufs
Require: set of kerneld< indexed by slope
create grid map/ allocated with enough space for contours
for each line segmente C do
select kernek € K based on slope of
for each pixelp along segmend do
for each pixel offseb in kernelk do
M(pi + 0i,pj + 0;) = max(M(p; + 0i,p; + 05), k(0i, 05))
end for
end for
end for
return M

Fast Likelihood Map Computation Generating such a high-resolution map is computationatinisive. However,

if one examines a likelihood map such as the one shown in &ig(a), one quickly realizes that for any reasonable
value ofg, eachz; will have zero probability for the vast majority of map cella order to create the high-resolution
likelihood maps in real-time, we developed a drawing priveithat explicitly “draws” the non-zero likelihoods aralin
each line segment. The drawing primitive operates by dlidirl-pixel wide vertical or horizontal kernel along the
cells spanned by a line segm 1965), appying: operator between the current map value and the
kernel's value. The appropriate kernel is chosen basedesltipe of the line, with the kernel values set according
to Equatior B. The algorithm for rendering the likelihoodmig shown in Algorithni L. As a final optimization, the
inner loop of the algorithm can be performed using optimizeadrix libraries. The drawing primitive enables us to
render the likelihood maps for normal sized environmen2)ms on the onboard computer. For comparison, the map
generation routines due @m_(zbog) tak@@ms at the same resolution.

Sliding Window Local Maps Scan-matching algorithms generally operate on consecptirs of scans, without
maintaining any history. However, any small errors in theahig will be retained and integrated into the current
position estimate, resulting in drift. Instead of match@agh pair of incoming scans, we create a sliding window local
map constructed from a non-consecutive but overlappingfgevious scans that extend beyond the immediate field
of view of the sensor. Matching against this map providesena@curate position estimates due to the fact that fewer
scans get added into the representation, and the positiioma¢ss will be locally consistent, and drift-free as lorgy a
the vehicle navigates within the map. The reduced drift imalestrated in Tablgl 1, where the scan-to-scan matching
results in significantly larger position error.
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Figure 4: Demonstration of the effect of map resolution anvblocity estimates computed by the scan-matcher. (a)
The ground truth velocity over time (blue), with the velaedtestimated by the scan-matcher with a map resolution of
1lcm (green) andOcm (red), which have an RMS error @2m/s andd.5m/s respectively. (b) A plot of the RMS error

in velocity as a function of the map resolution. Note, thata@pmesolution ofil0cm or more is common for ground
robots. Ground truth was given by an external motion caggyséem.

Method Time Per Scan RMS Vel Error | Position Error
Map-Based Coordinate Ascent 12.5ms 0.197m/s 1.05m, 0.41°
Map-Based Multires Grid Search 16.0ms 0.279m/s 2.33m, 0.46°
Map-Based scan-to-scan 32.5ms 0.197m/s 5.64m, 3.35°
Iterative Closest Point 15.8ms 0.198 m/s 10.3m, 12.3°

Table 1: Comparison of the coordinate ascent and multiluéea grid search methods, as well as the effect of the
sliding window local map. All three methods are tested withap resolution ol cm. The exhaustive search method
used a step size 0f5° in yaw. The position error represents the accumulated efter closing the first loop of the
Killian Court dataset in Figurgl9, 300m long trajectory. The robustness of our methods result éatty reduced
position error compared to the ICP implementation from C&G08).

Additionally, when the MAV changes height, new contours wppear and be added into the map. By including all
contours induced by planes in the environment but only aligjagainst the best subset, the vehicle can remain well
localized even in situations where oscillations in thetadé of the vehicle cause the incoming scan to jump back and
forth between multiple surfaces.

We add contours to the local map when the fraction of poinninncoming scan that are given a high likelihood
in the current map drops below a threshold. The thresholdtisigh enough that incoming scans are still able to be
matched accurately, but low enough that scans are not addexdten. We experimentally determined that a threshold
of 75% gave a good trade-off, adding a scan to the map approximexely 2 seconds during normal operation.

3.1.2 Scan-to-Map Alignment

Given a likelihood map constructed from contours as deedrdbove, we nhow need a procedure to search for the most
likely alignment of a new scan to the map. We experimentetl With co-ordinate ascent and grid search methods
to find the aligning rigid body transformd* with respect to the precomputed map. While grid search migti&ily
seem hopelessly inefficient for large search windows, itteaperformed very quickly by structuring the computation
appropriatelyl(Olson, 2009).
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Figure 5: (a) A plot showing a comparison of the height estmdrom our algorithm (green) alongside the raw
measurements (red), and the ground truth (blue). (b) A plotving the velocity estimates from differentiating the
raw measurements. The large discontinuities in the red lmeurred when the vehicle flew over the edge d5em

tall object. Our algorithm produces position estimatesnait RMS error ocm, while the velocity estimates have an
RMS error of0.2m/s.

We compared the two approaches (grid search and co-ordasatnt) for performing the alignment search using
logged data from the vehicle in two environments. In the fisgberiment, we flew the vehicle inside of a motion
capture environment which gave us access to ground truthadangside the laser measurements. The ground truth
data allowed us to compare the velocity estimates produgatifterentiating the position estimates. In the second
experiment, we flew the vehicle around a laB§®m long loop, which allowed us to measure the total accumdilate
error in position by using the scan matcher to register tred fican to first measurement at the starting point. We then
computed the motion estimates with the scan-matcher ubmgno alignment search methods described above. As
can be seen in Taklé 1, while both search methods are effaienigh to run in real-timetQHz) on thel.6Ghz Atom
processor onboard the vehicle, the coordinate ascentrseatperforms the grid-search both in terms of speed, and
accuracy. This indicates that the additional robustnesgidfsearch is not needed at the high scan rates used in our
system. The improved accuracy is due to the sub-cell résnlehabled by coordinate ascent.

In our implementation, we use a map resolution@h. At this resolution, it takes approximatdl®.5ms to search for

the aligning pose using coordinate ascent. Rebuilding the when a scan needs to be added is an aperiodic job that
would otherwise disrupt the real-time state estimationaAssult, we regenerate the likelihood map in a background
computational thread, allowing state estimation to cainnimpeded.

3.2 Laser Based Height Estimation

We use the onboard IMU of the vehicle to estimate the roll aibchpf the vehicle, and the scan-matching uses
measurements from a planar laser range-finder to estimate th, yaw) degrees of freedom. To estimate altitude,
the remaining degree of freedom of the vehicle, we rediresthall portion of the field of view of the laser downward
using a right-angle mirror in order to estimate the heigtihefvehicle. Onl\20 beams are redirected toward the floor,
so there is insufficient data to disambiguate the motion efvishicle from changes in the height of the floor. If we
assume that the vehicle is flying over a flat floor, we can direrse the average range (rejecting outliers) measured by
the redirected beams of the laser scanners an estimate of the absolute height of the vehicle attirewever, if

the vehicle flies over an object such as a table, these hedtjhitages will be incorrect. To make matters worse, flying
over the table will appear as a large step discontinuity éntteight estimate, as shown by the red line in Fi§urg 5(a),
which can result in aggressive corrections from the pasitiantroller.

However, if we look at the velocity, computed from the difference between consecutive measunsmve see that
there are very large outliers that occur when the vehicls fiieer an object. As a result, we can use the maximum
expected acceleratian,,., of the vehicle to filter out these outliers, allowing us toabtaccurate estimates of the
z-velocity with an RMS error 06.2m/s.



Directly integrating the estimated velocity would have a potentially unbounded drift. To eliminate tti#t, we
assume that the vehicle will predominantly be flying over afftaor, but sometimes will fly over furniture or other
objects. With this assumption, the range measurementstfterdownward pointed laser beams accurately measure
the height of the vehicle, subject to short lived local distinces.

We combine the range-to-floor and velocity estimates usimgapproach inspired by complementary filtering
(Zimmerman and Sulzer, 1991). The range measurementare treated as the globally accurate “low frequency”
information, while the filtered velocity estimat&,, is treated as the locally accurate “high frequency” infation.
However, since the amount of time that a vehicle will spermlatan object is unknown, we cannot use a frequency cri-
teria to combine the two signals. We instead use the distiweceehicle has traveled since it measured a discontinuity
in the surface underneath it.

Algorithm 2 Laser Height Estimation

Require: 74,711 /lcurrent and previous redirect range measurements
Require: hy_1 IIprevious height estimate

Require: v;_4 /Iprevious velocity estimate

Require: d /Nlinear distance to previous discarded measurement

Ve = (’rt — ’I"tfl)/dt
if |’Ut — Ut_1| > Qmax then

hl = h,t,1

d=0
else

B =hi_1 4+ (ry —r-1)
end if

he = h' + asgn(re — h') /(1 + exp(oa(c — d)))
return hy, d, vy

The height estimation process is shown in Algorifim 2. Theupeeterss, andc control the width and center of the
logistic function used to smoothly apply corrections. Thegmeters are chosen such that we expect the vehicle to no
longer be above an object when the larger corrections arglagiplied ¢ 2m). The current height estimate can be
arbitrarily far away from the measured range to the floor, saige the sign of the the error in the correction, ignoring
the magnitude. The correction scaling tedinis set such that the maximum correction per time step is senaligh
(1cm/s) to induce smooth motions of the vehicle.

4 DataFuson Filter

To control the vehicle, we require accurate estimates oMA¥ position and velocity. We compute these estimates
by fusing the estimated change in position computed by the-gstatching algorithm described in the previous section
with the acceleration measurements from the IMU. While thé&JIMadings drift significantly, they are useful over
short time periods and allow us to improve our estimate of/étécle velocities.

The data fusion filter provides us with a way to trade off tHearee on each sensor and fuse the different sources
of information which arrive asynchronously, and at diffetreates. We estimate the state of the MAV at time step
denoted byx;, given the set of IMU measurements!, z. ...z } and measurements computed from the laser data
{zf 2zl .. . zl} as:

P(x¢|x1...%¢—1, z{...zl zleﬁ) (4)

m?

We adopt the standard practice for fusing GPS and an IMU meamnts on outdoor UAVs (Jun et al., 1999), which
employs an Extended Kalman Filter (EKF) to estimate thealetstate from noisy GPS and IMU measurements.
However, instead of absolute position estimates provigega®S, the scan-matcher provides relative position estisnat

A, which can be viewed as noisy measurements of the transfiormaetween the states at two points in tise



andx;_;. These relative measurements make the exact solution @ffdrence problem significantly more difficult.
While this model could be solved using smoothing techniquek as those proposedlby Ranganathan|et al. (2007), for
ease of implementation we simplified the model by incorpoggthe relative scan-matcher measurements conditioned
onx;_y, that is the scan-matcher estimates are modeled as abs@arrements of the vehicle’s position given the
most likely originating state estimate.

ZtL = At|xt7k )
We then use a standard EKF formulation to solve the infer@nablem and provide estimates of the vehicle state.
Our filter was implemented using the open source KFiltealiff. The filter to estimates the positions, velocities, and
accelerations of the vehicle, along with biases in the IMble §tate is represented as:

X = [$7y, Zvj’.bvybv'ébvi'baybvéba ¢7 9,1/)7 b:i’a by7b27 b¢7 b@] (6)

The position(z, y, 2) is represented in the global coordinate frame, with theimpéaced where the vehicle is initial-
ized. The orientatioii¢, 8, ) or (roll, pitch, yaw) is represented using Euler angles. iélecities and accelerations
are represented in the body frame, where the origin is ldcattéhe center of body with the-axis pointing towards

the front of the vehicley to the left, and: up. We estimate the biaségin the accelerometers, roll and pitch of the
IMU. We rely on the Ascending Technologies IMU to provide #iBtude estimate, so we do not estimate the angular
velocities or the biases in the gyros. In addition, since sgthe scan-matcher to estimate the heading of the vehicle,
we do not estimate a bias for yaw.

4.1 Filter Process M odel

We estimate the heading of the vehicle separately from tioh pind roll. This in turn makes theaxis independent
of thex andy axes. As a result, the nonlinear state update equationsdndy are:

Ty = X1 + dt(j:i’_l cos(Pr_1) — yf_l sin(¥—1)) + we, wz ~ N(0,0,)
Yt = Yt—1 + dt(j??—l sin(y—1) + yf—l cos(Pr—1)) + wy, wy ~ N(0,0y) (7)

wheredt is the filter update period, and, , are zero mean Gaussian noise terms. We have flown the vetspeeds
up to3m/s without issue, but at higher speeds these simplificatiothe dynamics model may lead to state prediction
errors.

We use discrete integration to update thexis and velocity states:
Vi =Vi_1 +dtvi1 + Wy, wy ~ N(0,0y) (8)
wherev = [z, 3%, 9%, °] is a sub-vector of the vehicle state
We model the linear accelerationsarandy as proportional to the attitude and velocity, using the sngynamics
model from Tournier et all (2006):
i = kol — ki + wy, wi ~ N(0,0%)
"= koo — kyy® +wy,  wy ~ N(0,0p) ©)

The parameterky andky are a function of the mass, inertia, and thrust requiredHervenhicle to hover. While the
damping parameters; andk,; are small enough that they could be ignored when the velhidtethe hover regime,
they are included here to prevent the model from allowingestenated velocity to grow without bound in the absence
of position corrections. The model parameters are leargedliinear least-squares system identification process from
flight and control data collected offline in a motion captutelo.

Finally, the remaining states are modeled using a randotk mvation model:
a;=a;-1+wa,  Wa~N(0,0a) (10)
wherea = [3°, ¢, 0,1, b% b9, b% b b¥].

6KFilter.|ht t p: /7 kal man. sour cef or ge. net
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4.2 Filter Measurement Model

The measurements from each type of sensor arrive asynasigrand at different rates, which means that we must
create a separate measurement model for each sensor. We idtld measurements from the vehicle’s filter (used
by the attitude controller) at0O0Hz, while the scan-matcher estimates arrive(@iz. Before each measurement is
integrated, we propagate the filter state forward using thegss model described above fisrseconds, wherét is

the time since the last measurement arrived.

IMU Measurements We subtract the gravity vector from the IMU measurementsgiie attitude estimate before
integratingz’. This allows us to model the IMU as if it measures the accttera and attitude plus the associated
bias terms, corrupted by zero mean Gaussian noise,

&y + by
. ;4 b}
Z; = Zf +bgj +vrymu, VIMU ~ N(OJ)‘]). (11)

by + b9
0; + b

Laser Measurements We condition the scan-matcher estimate on the prior filest, ;. (as described in Equa-
tion[8) to convert the relative motion estimakecomputed by the scan-matcher in Equafibn 2 into a measuteshen
the absolute vehicle positiazf. The relative transformation, is applied toz;_;, obtained from the logged state
history. This allows us to model the laser measurement asasunement of the position and heading of the MAV
corrupted by Gaussian noise,

ZtL :It_k@At+vs, vs NN(O,JL). (12)

We use diagonal process and measurement covariance radtritmit the number of parameters that needed to be
tuned. We learn the variance parameters using a methodsimilhe one described by Abbeel et al. (2005).

4.3 Out of Order M easurements

We process IMU measurements as soon as they arrive so thedttmller has state estimates computed from all
available information. Due to the computation time neeaeprbcess incoming laser readings to obtain the relative
motion estimates, the scan-matcher measurements ggnamé@de out of order relative to the IMU measurements.
One option for handling out of order measurements is to adasarements to a buffer, and wait until all delayed
measurements have arrived before adding them to the filbés.approach imposes a delay on the state estimates that
would be problematic for controlling the MAV. Instead we sdkie history of IMU measurements and associated filter
states between scan-matcher measurements such that wal dzack the filter state and replay the measurements in
the correct order. Our filter state is small enough that tketively short computational delays typically experiethce

by repeated rollbacks are negligible.

5 Position Control

The Ascending Technologies quadrotor helicopters areppedi with a manufacturer-provided attitude stabilization
module. This module uses an onboard IMU and processor toeatdhe MAV's pitch and roll (Gurdan et al., 2007).
The attitude stabilization allows us to focus on stabilizihe remaining degrees of freedom in position and heading.
While the attitude controller simplifies the problem substdly, the remaining degrees of freedom in position are
highly dynamic, requiring careful controller design tolslize the vehicle.

The onboard controller takes 4 inputs:
u = [U¢7U97Ut,u,¢'}] (13)
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Figure 6: Demonstration of the trajectory following perfance with commanded position (blue dashed) and actual
position (green). The vehicle was commanded to move alamg(thxis. (a) The position of the vehicle alongside the
desired trajectory and (b) the deviation from the desirabttory over time. The maximum deviation w&sn. The
vehicle was flying autonomously with the state estimateggdad by our system.

whereuy andug denote the desired set points for the onboard PD controklaopitch ) and roll ¢) respectively.
Unlike these two control inputs,,, sets the desired rotational velocity in yaw)(rather than specifying an absolute
attitude. Finallyu; is mapped to the desired baseline rotation rate for all footons in the motor speed controller,
which gives control of the net thrust.

The decoupled control inputs provided by the Ascending fieldgies autopilot enable us to control the vehicle’s
position using4 independent PID control loops. To find the initial controinga we perform offline linear least

squares system identification on the simple dynamics madei[fTournier et al.| (2006), and use the Matlab linear
guadratic regulator (LQR) toolbox. Subsequent tuning veafopmed manually with the vehicle flying autonomously.

The final controller was able to hover the vehicle with an RM®reof 6¢cm, and could accurately follow straight
line trajectories with undegcm deviation from the desired trajectory (RMS erroffofm). An example of the vehicle
following such a trajectory, along with the tracking erreishown in Figurgl6.

6 Simultaneous L ocalization And M apping

With the MAV state locally estimated by the scan-matcher@end fusion algorithms, we can leverage more computa-
tionally intensive SLAM algorithms originally developearfother platforms to refine the position estimates and build
maps of the environment. The SLAM process could be intedrdiectly inside of the data fusion filter described
in the previous section, however, this would add a significaamputational delay to the estimation process since
the filter state would expand to include the positions of emmental features. Instead we keep the SLAM process
separate from the realtime control loop, having it providegic corrections to the real-time position estimatdssT
allows the SLAM algorithm to take much more time to integrafermation than would be possible if it was part of
the local estimation process.

The SLAM module sends position corrections to the data fufilter to correct any drift in the position estimates.
Since these position corrections are delayed significdraly when the measurement upon which they were based
was taken, we must account for this delay when we incorpénateorrection. Similar to how we compensated for the
delay in computing posterior states from the scan-mateteretroactively modify the appropriate position estimate
in the state history. All future local state estimates aemtbomputed to be relative to the corrected position, result

in globally consistent real-time state estimates. Undemaboperation, the SLAM module sends out updates roughly
every 2 seconds with the estimates delayedy200ms, so only the past second of history must be kept. By
incorporating the SLAM corrections after the fact, we alltve real-time state estimates to be processed with low



enough delay to control the MAV, while still incorporatinigetinformation from SLAM to ensure drift free position
estimation.

While there has been a tremendous amount of research on SLédfithims, the vast majority of the algorithms
have focused on building 2D maps (Leonard and Durrant-Wi@®] ; L u and Milios|, 1997; Thrun and Montemerlo,
2006; Grisetti et all, 2007). More recently, several grougee begun to achieve success with using either monocular
(Davison et al., 2007; Klein and Murray, 2008) or stereo caméMei et al., 2009; Paz etial., 2008) for performing
3D SLAM. Unfortunately, none of the publicly available inephentations of 3D SLAM scale to large enough envi-
ronments, so we instead we make use of more mature 2D SLAMeimmghtations.

We have experimented and successfully flown with two sepaB&fAM algorithms. Initial experiments were per-
formed with the GMapping algorithm_(Grisetti et al., 200va#able in the OpenSlam reposit@rwhile more recent
experiments use the pose graph optimization SLAM impleatent described below. The two modules can be in-
terchanged without requiring modifications to the rest efslistem, which indicates that it should be easy to replace
them with a 3D SLAM solution when one becomes available.

6.1 Pose Graph Optimization SLAM

Pose graph-based techniques are attractive for use on Mé¥ sodtheir robustness and computational efficiency. In
our implementation, we construct the pose graph using e-statcher presented in Sectionl 3.1 for both incrementall
odometry (after data fusion with IMU) and loop closure dét@t We optimize the graph using Kaess’ Incremental
Smoothing and Mapping (iISAM) libraty(Kaess et all, 2008) which is fast enough to operate onlitieowt difficulty.
This approach was usedlin Kim et al. (2010).

The SLAM graphG is constructed from two types of edges: odometry edges,aqmidlosing edges. The odometry
edges connect successive poses of the vehicle throughasmestimated by the data fusion filter. For computational
efficiency we add a new node to the graph whenever the vehidartoved a sufficient distancenf or 15°). Each
nodeG; contains the associated laser s¢gnand the current best estimate of the p6%e Each node that gets added
to the graph is checked against the rest of the nodes in tiph §vaa possible loop closure.

We use a relatively simple approach to loop closure thatréses the capabilities of the scan-matcher described
in Section[3.1l. The algorithm checks the current node ag#iesclosest node in the graph (excluding the nodes
immediately preceding it), using the quality of the matchd @ rigidity check to reject false positives. The loop
closure detection algorithm is described in Algorithim 3. \Weer a loop closure edge is added to the pose graph we
optimize the trajectory using iISAM, and send the optimizsiiheate of the current pose to the data fusion filter.

While the loop closure technique is limited by the scan-mataearch region (currentif0mx10m), it has proven
effective in our testing. The state estimates are accuratagh that even after going around the large loops such as
the ones described in Sectidns|8.2 8.3 the estimatehimlitis search region. Checking a node for loop closure
takes roughly2sec, which is sufficiently fast for online operation since 8LAM algorithm is not part of the real-time
control loop.

7 Planning and Exploration

To achieve full autonomy we require a high-level plannet theoses motion and sensing actions to guide the search
of an unknown environment. We follow the well-known fromtleased exploration approach (Yamauchi, 1997), in
which the thresholds of unknown portions of a map are idewtifisfrontier regionsdeserving further investigation.

While the autonomous exploration problem is not new (WhaitkRarrie, 1997; Stachniss et al., 2005; Rocha et al.,
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Algorithm 3 Loop Closure Detection
Require: SLAM graphG //Node to check for loop closure .
: get nearest nod€. € Go.¢—30
Dif[|GY — GE|| > 10m then
return
end if
. Create a likelihood map/ from scansi_s : G%, 5 using algorithniiL
A = ScanMatch(GZ, M)
. if Number of points with high likelihooe: .85% then
return (
end if
. //Perform a “rigidity” check:
: A¢—1 = ScanMatch(G;_, M)
CifIGE © GY_y ]l © [|Ar & Ay—1]]]| > .01 then
return ¢
:end if
s return G
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2005), an additional consideration in planning for the qotat helicopter is the need to constantly maintain accu-
rate position and velocity estimates to ensure safe flighte planner must choose trajectories that provide suffi-
cient sensor information to keep the vehicle well-localiz& sampling-based approach such as the Belief Roadmap
(Prentice and Roy, 2009) could be used to generate safettrags; however, with no prior map and frequent SLAM
updates, it becomes infeasible to maintain a belief roadimapal-time without substantial deliberation costs. We
propose using an abridged metric for localizability basedh® Sensor Uncertainty Field (SUE) (He etlal., 2008) to
quickly evaluate goal locations.

7.1 Uncertainty Based Frontier Exploration

We use a modified definition of frontiers to choose possibkepan free space where the vehicle should fly to next,
such that it both observes previously unexplored regiondsramains well-localized. Yamauchi (1997) grouped free
cells that are adjacent to unknown cells in the grid map irgotfer regions as possible goals for the robot. In each of
these frontier regions, we sample potential pdseg, v») and calculate their weight according to two metrics.

The first metric captures the amount of unexplored spacdtikatehicle will observe by simulating laser sensor data
from the sampled pose and computing the number of unexpipidaells in the laser’s field-of-view. After dividing
by the maximum number of grid cells covered by a laser range,sge compute a normalized weidhix (x) € [0, 1]

for the amount of unexplored information that the vehiclexpected to gather from pose= (x, y, ¥).

We use a second “Sensor Uncertainty” metric to measureitadrlity because the first metric favors poses facing
into unexplored regions which could provide arbitrarilyopsensor information (e.g. wide open space generating
maximum laser ranges). A Sensor Uncertainty Field, firsteoiby Takeda and Latombe (1992), maps locatioirs

the state space to expected information gainy> Zs;(x), by calculating the difference in entropy of the prior and
posterior distributiors;,(x) = H (p(x)) — H(p(x|z)) where entropy id (p(x)) = — [ p(x) log p(x)dx.

He et al. (2008) showed that the measure of information gairtalser data is typically insensitive to the choice of
prior. We therefore use a constant prigix) = X, such thatH (p(x)) = C, as well as Bayes’ rule to compute
p(x]z) = p(z]x) - p(x), such thalZs;,(x) = C — H(p(z|x))o.

The entropy op(z|x) is computed by deterministically extracting a set of sigroiats (Julier et al!, 1995), or samples
along the main axes of the current covariance estimate, asehang how they are transformed by the measurement
function. We simulate the laser measurement from a fromtese and compute the probability of obtaining this
observation at each sigma point. The lower the probabifitthe observation at the neighboring sigma points, the
smaller the entropy of the posterior distribution, and éfi@re the greater the information gain. Poses with high



Figure 7: The blue points indicate frontiers that allow thedyrotor helicopter to explore and self-localize simulta-
neously. The laser’s field-of-view at those frontiers isvelian brown. Notice that at the edges of free space, the
chosen frontiers position the vehicle such that the expdetger scan spans both unexplored regions for exploration
and unique obstacles for localization.

information gain correspond to localizable regions in tteesspace.Zs;(x) € [0,1] is normalized by the prior
entropyH (p(x)).

In each frontier region, we accept as a goal point the sarhptemtaximizes the weighted sum of the two information
metrics, such thaf(x) = Ty r (x) + Zsu/(x). FigurelT shows the frontier points generated accordinghgre points
are chosen such that the expected laser scan will both uncoexplored regions and observe known obstacles,
enabling the MAV to simultaneously explore and localizelits

7.2 Exploration Algorithm

The exploration module was designed as a general templatecéim be customized to address various tasks that
require balancing time efficiency, map coverage, localligbor other mission objectives such as target search (se
Sectior 9.P). Our general exploration algorithm captunese trade-offs in the following cost function:

T
J(fi) = Csur + aqCa — Ry, (14)
=0

where f; is a candidate frontieC'syr = {0, 00} is the cost of uncertainty in localization determined by 8iéF
threshold,Cy is the shortest-path distance cost of motion, &hds the reward for viewing unexplored cells in the
map with the laser (proportional to reduction in entropyraw@ps). The values @, R; are normalized td0, 1]. ay
is the weight placed on traveling distance; a large value dfvors frontier waypoints that are close to the robot.

Note thatC'sy » enables a quick metric for evaluating localizability; iraptice, we have found that in typical indoor
and office-like environments, a binary localizability teisrsufficient to choose paths that avoid poses (such as front-
ward down a long corridor) that compromise the robot’s apiib localize. Also, a conventional trajectory planner
based on dynamic programming is used to determine whichiémgoals are reachable, and then to plan and navigate
a series of waypoints to the selected goal. Our general etfa algorithm is shown in Algorithifg] 4.

8 Flight Tests

The system presented in this paper has been tested extgrsidehas demonstrated stable control of the vehicle in
many real world situations. Flight tests were performednnmber of different environments around the MIT campus,



Algorithm 4 Exploration algorithm.
1: initialize, takeoff, enter environment
2: while mission not completdo
3:  obtain partial map, robot position

4:  generate frontier sef

5.  for all frontiers f; € F do

6: computeJ(fi) = 3/_, Csur + aaCa — Ry
7:  endfor

8:  goal = ming, J(f;)

9:  whilenot reachedjoal do
10: execute trajectory to goal
11:  end while
12: end while
13: land

as well as in a competition setting at the 2009 AUVSI Intdoredl Aerial Robotics Competition. The statistics of

these different environments are shown in Table 2. In tetalhave logged roughly 100 hours of autonomous flight
time. In all situations, the vehicle did not have a prior mapother information about the environment. The aerial
imagery shown in the figures was manually aligned after thiflights for visualization purposes.

To ensure safety during autonomy tests, two people mortitostate of the system. One person manages the ground
station, monitoring the real-time data and providing ofmraput if necessary. The second person acts as a safety pil
who is able to take over control of the vehicle via an RC trattemn case any problems arise. The vehicle processes
are managed from a mobile ground-station which consistslap@p placed on a mobile cart. During flights, the
laptop is powered by batteries which allows it to be moveddexkthe vehicle within sight and communications range
if necessary.

The vehicle is able to take off and land autonomously, so tfligsts begin with the vehicle being placed on
the ground at the designated start location. Then, once rinend control operator verifies that the state esti-
mation and control processes are running properly, thetysaftot turns on the vehicle, and switches it into au-
tonomous mode. The vehicle can either be instructed to exgle environment, or fly to high level waypoints
provided by the user. The experiments presented in thisogeate conducted in the latter mode, where the oper-
ator is manually designating goal waypoints. In Seclibn 9pnesent experiments which employed the fully au-
tonomous exploration capabilities of the system. Videas demonstrate the capabilities of the system are avaiable a
http://groups.csail.mt.edu/rrg/|fr2011- nav.

Environment Stata Center Killian Court | Urban Canyon
Flight Area 130mx90m 240mx130m | 270mx160m
Distance Traveled 285m 745m 710m

Flight Time 15 min 15min 30 min
Nominal Cruise Velocity 0.6m/s 1.0m/s 0.5m/s
Longest Loop n/a 300m 400 m

Max Height 1.9m 1.5m 3m

Table 2: Statistics for the environments navigated in tiyhfltest experiments. Note that we swapped out the battery
during the urban canyon experiment to extend the flight time.

8.1 Autonomous Navigation in Unstructured Environments

To test the large-scale navigation capabilities of ouresysh an unstructured indoor environment, we flew the vehicle
around the first floor of MIT’s Stata Center. The vehicle was gigen a prior map of the environment, and flew

autonomously using only sensors onboard the MAV. The vehiels guided by a human operator choosing goals in
the map that was being built in real-time, after which thenpkr planned the best path to the goal. Fidure 8 shows
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Figure 8: (a) The occupancy map of the first floor of MIT’s Stzeater constructed by the vehicle during autonomous
flight. The trajectory of the vehicle is shown in cyan, ancedégd loop closures are drawn in red. (b) The architectural
floor plan of the building for comparison purposes.

(a) (b)

Figure 9: (a) The occupancy map of MIT’s Killian Court areamguted by the SLAM algorithm. The trajectory of
the vehicle is shown in cyan, and detected loop closuresramndin red. (b) The laser measurements overlaid upon
aerial imagery. While the vehicle was flying inside the bunlflithe detected structure aligns with the structure \asibl
in the aerial imagery, providing a qualitative notion of aacy.

the final map generated by the SLAM algorithm at the end of ¥peement as well as the path taken by the vehicle.
As can be seen from the map, the Stata Center has a free-fasmpfem which would prevent the use of specific
environmental assumptions such as straight hallways, aslame in_Celik et al! (2008) and Johnson (2008). Despite
these challenges, our system allowed the vehicle to fly titibattery was exhausted. During tlieminutes of flight,

the vehicle flew a distance @B5m.

8.2 Autonomous Navigation in Environments With Large L oops

While the first floor of the Stata Center provided a large-sealéronment in which to test our vehicle, it did not pro-
vide opportunities for testing the SLAM algorithms in an gamment with large loops. To testin such an environment,
we flew the vehicle around MIT’s Killian court area. The veayde loops in this dataset pose a significant challenge
to SLAM algorithms, and motivated our use of the pose grapAMlapproach described in Sectibh 6. The SLAM
module was able to successfully detect the loop closurerceraees, and optimize the trajectory. The computed map
compares favorably with the structure visible in aerial gewy, as shown in Figuid 9. During thé minute flight,

the vehicle traveled a distance ©fsm. Interestingly, the recessed door frames in the otherfgistaireless hallways



provided enough environmental structure for the scanneatto allow the system to maintain control of the vehicle
throughout the flight.

8.3 Autonomous Navigation in the Urban Canyon

In addition to the indoor experiments, we have conductedrabau of flight tests outdoors in GPS-denied urban
canyon environments. Using our state estimation system outdoor environment presented a number of challenges
not generally seen in indoor environments such as windelapggen spaces, and organic structures such as trees. The
system proved robust and was able to handle many of the nbalepresented by the urban canyon environment.
While the vehicle was able to fly the chosen route across campher areas caused problems for the state estimation
algorithms. For example, areas which contained mostlgifiagg non-vertical surfaces such as bushes and tree foliage
(as opposed to the trunks), broke the assumptions made lsgdimematcher. Similarly, the limited range of the laser
scanner is problematic in large open areas where the lagddwot observe sufficient structure for the scan-matcher
to estimate the position of the vehicle. The operator ggjdive exploration during the flight test gave the vehicle
waypoints that avoided such problem areas.

The vehicle carried a GPS receiver during the flight, howesee to the surrounding buildings and generally poor
RF landscape on the MIT campus, the receiver never acquil@zkan enough satellites to estimate the position of
the vehicle. While we were unable to use the GPS receiver tadearound truth comparison, we aligned the laser
point cloud on top of geo-registered aerial imagery whidbvjates a qualitative measure of the accuracy of our state
estimates.

Figure[I0 shows the map generated by the vehicle as it wagdjuid a path across the MIT campus, as well as
the laser measurements overlaid on aerial imagery. Peigpeenderings of the 3D point cloud generated using
the SLAM corrected state estimates are shown in Figure 1& fnticularly interesting section of the trajectory is

shown in Figuré_l1(a) when the vehicle passed through aibgitd cross between two open courtyards. The vehicle
flew through a set of open doors, down the hallway, and theronuhe opposite side of the building. The ability

to transition between indoor and outdoor flight is likely ® \eery important for many of the potential applications

envisioned for MAVS.

Figure[12 shows the path taken by the vehicle during a 45 seloomy portion of the experiment that we used to
evaluate the performance of the position controller in th&door setting. The vehicle flew am/s down a road
between two buildings that was lined with trees and bushés. height of the vehicle was commanded t2be so
that the plane of the laser range-finder was above the padmsdatongside the road. Despite the clutter from the
foliage, we can see that the position of the vehicle was atelyrestimated by the straightness of the lines visible in
the laser point cloud. Our scan matcher is robust enougtittivais able to ignore the non-matching scans from the
trees, while locking onto the vertical walls of the building

While the state estimates provided by our system were sufflgiaccurate to enable robust position control of the
vehicle, the velocity estimates were noisier than in noroparation in indoor environments with vertical walls. The
noisier state estimates resulted in larger tracking ethans those seen in Sectigh 5. At the beginning of the trajgcto
(first 20 seconds), the laser scans were aligned quite weslijting in crisp lines in the point cloud. During this time,
the vehicle flew with an average deviation from the trajectmfr0.08m/s. Toward the end of the section, the state
estimates were noisier as can seen by the slightly blureglin the right half of Figure 12{a). This caused the average
error of the position controller to increasedt@2m/s. In addition to the increased RMS error, the quadrotlicdyer
experienced a maximum deviation from the desired trajgabf.27m. This maximum error was significantly higher
than in the indoor settings and indicates the vehicle mwst plore conservative trajectories outdoors. Fortunately,
the scale of outdoor environments typically do not requighflin as tightly constrained spaces as indoors.

During the experiment, the vehicle was commanded to fly dbuaraltitudes between5m and3m. However, since

the ground was not level, the height estimation algorithstdbed in Section 312 was unable to estimate the absolute
altitude of the vehicle. Instead of the absolute altitudereste that the algorithm normally computes, it computed a

smoothed estimate of the height relative to the local graurthce. While the ground relative height estimates were
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Figure 10: (a) The occupancy map created while flying actes$viT campus. (b) The laser measurements (blue)
overlaid upon aerial imagery of the campus to provide a tptale measure of the estimation accuracy while flying
between the buildings. The trajectory flown by the vehickhiswn in cyan, with loop closures marked in red. Starting
from the lower left corner, the vehicle traversed the pa#wadrin cyan, going around the large loop counter-clockwise.

Figure 11: (a) A perspective view of the area where the veltigissed through a building. (b) A picture of the vehicle
flying through the doors as it exited the building. (c) An anéth trees that demonstrates the 3D structure visible in
the laser point cloud. (d) A perspective view of the sectisadiin Figuré_12. In all renderings, the path taken by
the vehicle is drawn in cyan, with a blue ribbon to indicateghe While the vehicle was predominantly flying at a
constant height, the natural rocking of the vehicle causesatser to sweep over the 3D environment above and below
the vehicle. The laser point-cloud is false colored by heiljlote that the point cloud is overlaid upon aerial imagery
that depicts the roof of the buildings rather than the grdewmdl where the vehicle was flying.
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Figure 12: (a) The laser point cloud for the portion of thgettéory used to evaluate the performance of the position
controller. The laser returns from trees and bushes crdaiterg however the correctly aligned building structures
are clearly visible. The overlapping red and green lineaglhe center are the commanded, and actual paths as the
vehicle traversed the area from left to right. (b) The désrafrom the desired trajectory while traversing this area.
The quality of the position estimation degrades in the sdd¢wif, leading to larger deviations from the trajectory.

not as good for mapping and environment modeling, they wafegnt for control purposes.

During the 30 minutes of flight, the vehicle flew more tH&¥m at speeds of up tb.5m/s. Due to the limited flight
time provided by a single charge, we stopped to change lesttduring the flight.

9 Thelnternational Aerial Robotics Competition

The system presented in this paper was used in our winnimg asfTeam MIT-Ascending Technologies in the 2009

International Aerial Robotics competition (IARC), hostieg the Association of Unmanned Vehicle Systems Inter-
national (AUVSI). The majority of the experiments descdle Sectior 8 relied on a human operator for high-level

guidance. In contrast, a primary constraint of the IARC ioissvas that no human intervention of any kind was al-

lowed. As a result, we developed an additional set of modukgsperformed tasks specific to the competition. These
modules were added to the top of the system hierarchy, aneftine did not affect the state-estimation or control.

The IARC mission consisted of a disaster recovery scenarighiich the MAV must enter a nuclear power plant
through an open window and search for a control panel thatgwed critical information for diagnosing the fault.
Our vehicle completed the entire mission; this was the firgt in the 19 years of IARC that a team won during the first
year of a mission. The competition used artificial walls getaisimulate the interior of a power plant. An overhead
view of the30mx 15m competition arena is shown in Figdire T4(a). The specifisimisentailed the following tasks:
(1) takeoff roughlydm from the opening of the arena; (2) identify and fly througima< 1m window into the arena; (3)
explore the unknown environment and search for the contmoél and, (4) autonomously identify the correct gauge
(designated by a steady blue LED) and transmit imagery tuthges.

The mission had to be performed completely autonomoushnireu 10 minutes and prior to each mission run, the
arena layout was unknown. Once the operator told the vetud&art, no human input was allowed until the mission
was complete. Each team was given four attempts to completmission. For the system to reason about the mission
task sequence, we developed a high-level mission plannduladhat was placed at the top of the system hierarchy
(shown in FiguréR). This module commanded the executionghf-tevel tasks including window entry, exploration,
boundary coverage, target inspection and final target dasan.
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Figure 13: (a) A 3D rendering of the point cloud used for wwddetection, false colored by height. The laser
measurements are projected using the state estimates thiputhe filter in Sectiofj4. The detected position of the
window is designated by the pink lines. (b) A Photo of the MAM@anomously flying through th&émx1m window
into the arena.

9.1 Window Entry

The mission required flying through a window that was dtilgm wider than the width of the vehicle. Assuming the
system could perfectly identify the center of the windowve #ehicle could only deviate a maximumidfcm from the
straight-line entry trajectory and errors in the positiontroller or window identification could result in a catagthic
crash. Fortunately, this task was within the normal erramtts of our position controller described in Secfibn 5.

To detect the window, the vehicle performed a “vertical sgieaccumulating 2D laser scans to generate a 3D point
cloud of the window. With the position estimates generatedulr state estimator, the system was able to register the
set of laser scans into the dense 3D point cloud shown in &ff8fa). The window was identified by searching the
point cloud for almx1m hole in an otherwise connected flat surface (designatetebpink lines in Figurg 13(p)).
Once detected, the mission planner executed a trajectaygh the window center, as shown in in Figiire I3(b).

The window detection and entry performed without error nibea ten times during the IARC competition, providing
a clear demonstration of the accuracy and precision of #ite sistimation. Furthermore, while we do not have 3D
ground truth for the arena, we can visually inspect the 30samlthe point cloud to see that there is not significant
distortion.

9.2 Exploration and Search

From the mission constraints, we identified the need for ar@athat could balance time efficiency, geometrical
map exploration, visual boundary coverage, and localiinalm the environment. The exploration module described
in Algorithm[4 was extended to use information gathered leydhmera sensor to ensure visual boundary coverage
and enable investigation of potential visual targets. Tilifate this, we generate an additional set of candidatd go
waypoints, referred to asamera frontiersthat correspond to locations in the SLAM map that contagwei of the
perimeter not yet viewed by the visual target detector.

A target detector processes each camera image to seartte foED-designated gauge, shown in the inset of Figure
[I4(a). We trained visual classifiers for two different pusgs: (1) to safely discard viewed regions where the target is
not detected; and, (2) to make a confident final detectionoastedlange. The first target classifier was tuned for low
false negative rates at a range4ofi so that we could confidently label observed regions of thir@mment as not

containing the target. In the case that a target is detettiedsecond classifier, tuned for low false positive rates, is
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Figure 14: (a) An overhead view of the competition arena dsedhe 2009 AUVSI International Aerial Robotics
Competition,5* mission. The inset shows a photo of the IARC control panelis one of the frames from the
video stream sent to the judges, which successfully comgldte mission. (b) The map built by the vehicle as it
explored the IARC arena searching for the control panelclBireas are obstacles (or no-fly zones), white is free
space, and gray is unexplored. Starting from the left side,réd line shows the path taken by the vehicle. The
blue and red cross is the final position of the vehicle. Themeguare in front of the vehicle is the location of the
autonomously designated control panel.

used to provide a confident final classification once the lelhias maneuvered to view the candidate gauge at close
range € 1m).

We augment the grid map by marking boundary regions that haee classified by visual target detector as nega-
tive. The end points of camera-viewed boundary regions btaireed by scanning the coverage map for grid cells
neighbored by viewed and unviewed regions. Camera franéis constructed for each of these boundary points by
ray-tracing obstacle-free viewpoints of the region.

Given a set of laser and camera frontiéfsthe exploration objective function in Equatibnl 14 can bedified to
capture mission trade-offs as follows:

T
J(fi) =Y Csur + aaCa — acRi — (1 — ae)Re, (15)

t=0

where f; € F is a candidate frontielC'syr = {0, 00} is the cost of uncertainty in localization determined by the
SUF threshold(; is the shortest-path distance coB, is the reward for viewing unexplored cells in the map with
the laser,R, is the reward for viewing camera boundary cells at a givetadie,a is the weight placed on travel
distance, and. captures the trade-off between laser exploration and Gowreragea, can be varied to generate
behaviors biased towards map building (= 1) or boundary coveragey = 0).

When a potential target is detected, the mission planneppost exploration to investigate the target at close range.
The vehicle plans a trajectory to a close range view of thgetawvisually servos to center the target in the camera
field-of-view, and then makes a reliable final classification

9.3 1ARC Flight Performance

Each team was given four attempts to complete the IARC misdio the first three attempts during the IARC, the
vehicle explored a large portion of the environment, but wable to reach the room with the control panel. While
exploring, there were several doors that were exactly 1neygdch narrow passages other than the entrance window
were unanticipated and the “safety regions” set for obstagbidance and path planning labeled these doorways as



impassable. After adjusting parameters, the vehicle fahadtontrol room on its fourth attempt and transmitted the
picture of the target control panel shown in the inset of R{LA(a) to the judges, which completed the mission. The
path followed by the vehicle during the successful atterspghiown on top of the constructed map in Fidure 14(b).
The mission was completed quickly in 4.5 minutes withoutihgto explore the entire environment.

10 Discussion

In this work we developed a system that enables completalynamous exploration and mapping in GPS-denied
environments. To enable this capability we developed ategjiated a set of modules that address the key challenges
laid out in Section T]1. In designing the system, we foundalewing insights to be critical to our success:

e Decoupled System Architecture: Rather than using a single integrated state estimator, alzed that it
was critical to develop a local estimator for controlling thosition of the vehicle, with special emphasis
on estimating and controlling the velocity. The multi-lesgstem hierarchy presented in Sectign 2 allows
for this decomposition and was a critical development thatved our system to work. Additionally, once
the position of the vehicle is accurately controlled, thektaf designing and implementing higher level
algorithms for a MAV is greatly simplified.

e Fast and Robust Laser Scan-Matching: The fast dynamics of MAVs reduce the amount of computation
time allowed for the real-time state estimation algorithrits addition, the assumptions required for using
a 2D sensor in a 3D world are violated much more frequentip ttraa ground vehicle. Our work placed
special emphasis on the development of a very fast scan mgtalgorithm that maintained the accuracy and
robustness required for use on a MAV. The laser scan-maitciSsrctior 3.1L was the key enabling technology
that allows our vehicle to fly in GPS-denied environments.

While the presented system has demonstrated very good parfice in a number of real world settings, further work
will be required to develop the ability to operate in comelgtunconstrained environments. We have identified two
classes of environments in which our system was unable t@tgpe

e Complex 3D Environments: Some areas of the Stata Center at MIT have walls that areedlalfithe slanted
walls subtend a large enough portion of the field of view ofléser scanner, the scan-matcher will be unable
to disregard as outliers the false matches between scaes &kdifferent heights. Similar failures occur in
outdoor environments when the laser scanner predominabsgrves the leaves and branches of trees (as
opposed to vertical tree trunks).

e Featureless Environments: Featureless hallways with no doors, windows, shelvespetwide no structure
for the scan-matcher to distinguish. If the hallway is lontimn the maximum range of the sensaorf),
such that the end of the hallway is not observed, then majotomsecutive laser scans is ill-posed along
the axis of the hallway and the scan-matcher is unable tmasdivehicle motion. Similar situations occur
where the surrounding environmental structure is beyordihximum range of the sensor, such as large
open areas.

The failure modes described above are fundamental limitatof using a 2D laser scanner for estimating the motion
of the vehicle. Developing a system that is able to operasaigl environments will require the integration of other
sensing modalities, such as camera sensors. While this Wkelg greatly reduce the situations in which the system
would fail, it would not completely eliminate the failure whes. Fully handling these types of challenging scenarios
will likely require relaxing the need to maintain a purelytmerepresentations of the environment and the state of the
vehicle (Kuipers et all, 2000; Sibley et al., 2010).



11 Conclusions & Future Work

This paper presented our solution for enabling robust autarus navigation in GPS-denied environments. Our system
leverages a multi-level sensing and control hierarchy tviscable to successfully close the loop around the fast and
unstable MAV dynamics using only sensors onboard the vehitke have developed a very accurate and robust high-
speed laser scan-matching algorithm that allows us to ctertpe relative position estimates with enough accuracy
and low enough delay for control purposes. By combiningghresasurements with the data from the onboard IMU in
the data fusion filter, we are able to obtain accurate estisnaitthe vehicle states. These state estimates are accurate
enough to enable the vehicle to hover and fly in constraingddnand urban environments.

The system has been thoroughly tested in a number of lagje-eavironments, both indoors and outdoors in the
urban canyon. In each of these environments the system Watatavigate autonomously, guided either by a human
operator clicking high level goals in the map being builtina) or by an exploration algorithm.

The autonomous capabilities of the system were employedibteam’s winning entry into the 2009 AUVSI Interna-
tional Robotics Competition. The system presented a vdnysioand stable platform on top of which we were able to
build the necessary additional components that carriedheutnission. The state estimation and control architecture
made it such that when we developed these components, wetdidve to be concerned with stabilizing the vehicle or
any of the other real-time concerns that traditionally ma&eeloping algorithms for MAVs particularly challenging.
The mission was successfully completed with no human ieteion once the vehicle was told to start.

In the future, we hope to expand the capabilities of the syt developing algorithms for perceiving, planning, and
operating in arbitrary 3D environments. The 2D SLAM and exalion algorithms that we have developed provide a
proof of concept for achieving high level autonomy on a MAbever more work will be required to unlock the full
potential of MAVs to operate in 3D. The incorporation of \@information from camera sensors will be an area of
particular interest.

In addition to augmenting the 3D perception capabilitieshef quadrotor helicopter, we hope to adapt the system
for use on other UAVs. Moving to another hovering MAV shoulel fairly simple, only requiring the adaptation of
the position controller for the new platform. The stateraation algorithms such as the scan-matcher are agnostic
to the vehicle platform as long as the 2D laser sensor is kegt level. On the other hand, developing autonomous
capabilities for faster moving vehicles such as a (quadybigicopter flying aggressively, or a fixed-wing vehiclélwi
involve significantly more effort. More work will be requioleo enable high quality state estimation in the face of
increased motion blur and reduced reaction time. While tteesdes will certainly be quite challenging, we believe that
the system presented in this paper will provide a solid fatiod for these future research directions.
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