
Perspectives on Standardization in Mobile Robot Programming :
The Carnegie Mellon Navigation (CARMEN) Toolkit

Michael Montemerlo Nicholas Roy Sebastian Thrun
mmde@ri.cmu.edu nickr@ri.cmu.edu thrun@cs.cmu.edu

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
USA

Abstract— In this paper we describe our open-source
robot control software, the Carnegie Mellon Navigation
(CARMEN) Toolkit. The ultimate goals of CARMEN are
to lower the barrier to implementing new algorithms on real
and simulated robots and to facilitate sharing of research
and algorithms between different institutions. In order for
CARMEN to be as inclusive of various research approaches
as possible, we have chosen not to adopt strict software
standards, but to instead focus on good design practices. This
paper will outline the lessons we have learned in developing
these practices.

I. INTRODUCTION

In 2002, we developed a open-source collection of robot
control software called the Carnegie Mellon Navigation
(CARMEN) Toolkit. CARMEN was designed to provide
a consistent interface and a basic set of primitives for
robotics research on a wide variety of commercial robot
platforms. The ultimate goals of CARMEN are to lower
the barrier to implementing new algorithms on real and
simulated robots and to facilitate sharing of research
and algorithms between different institutions. Robotics
research covers a spectrum of different approaches and
formalisms. We have adopted the philosophy of making
CARMEN as inclusive as possible. For this reason, we
have chosen not to adopt strict standards, but to instead
focus on good design practices. This paper will outline
the lessons we have learned in developing these practices.

CARMEN is modular software, organized as an approx-
imate three-tier architecture, popularized by Bonasso et
al. [1]. The base layer governs hardware interaction and
control, by providing an abstract set of base and sensor
interfaces. The base layer also provides low-level control
loops for simple rotation and straight-line motion. Finally,
the base layer integrates sensor and motion information
to provide improved sensor odometry, and also allows
for low-level collision detection (distinct from collision
avoidance). CARMEN base modules can control a wide
range of commercial bases, including but not limited to the
Nomadic Technologies’ Scout and XR4000, ActivMedia
Pioneers, and iRobot’s b21 and ATRV series. CARMEN
also provides a uniform simulation platform for all com-
mercial bases.

The navigation layer implements intermediate navi-
gation primitives including localization, dynamic object
tracking, and motion planning. Unlike many other naviga-
tion systems, motion control is not divided into high-level
(strategic) planning and lower-level (tactical) collision
avoidance; instead, all but the lowest-level motor control
is integrated into a single module. This allows for more
reliable motion planning, at a reasonable computational
cost. Finally, the third tier is reserved for user-level tasks
employing primitives from the second tier. CARMEN also
contains a separate layer of non-autonomous components,
including display modules, editors, etc.

II. STANDARDS IN CARMEN

The nature of research is to improve the state-of-the-art
by developing novel approaches to open problems. As a
consequence, the goals of robotics research and the goal
of standardizing robot software are often in conflict. It
is very difficult to impose standards on a still-maturing
field, because as new techniques evolve, existing standards
will inevitably preclude certain approaches. If developers
ignore the standards, the standards lose their value.

Instead, CARMEN was designed with several driving
principles in mind, namely ease-of-use, extensibility, and
robustness. It is not reasonable to expect one standard to
enforce these principles on any piece of software, however
CARMEN provides a framework and tools that encourage
practices that satisfy these principles. For instance, every
CARMEN module includes a functional interface that
abstracts away the communication mechanism between
modules. As a result, the communication layer can be
upgraded transparently without effect on individual mod-
ules. Similarly, every CARMEN module is robust to the
presence or absence of other CARMEN modules – failure
of a single module will not cause catastrophic failure of
other modules.

CARMEN is freely available over the web and is cur-
rently being used by a number of research groups around
the world in applications such as health care robotics,
mine exploration and multi-robot collaboration. We hope



to be able to leverage CARMEN’s design principles in
extending the state of the art of robotic research.

III. GOOD PRACTICES

CARMEN was designed with the following three goals
in mind:

• Ease of use - The amount of time needed to learn how
to use CARMEN should be small. The basic capa-
bilities of CARMEN should be easy to get running
on a new robot.

• Extensibility - New CARMEN programs should be
easy to write. The core CARMEN programs should
serve as a solid foundation for building higher level
capabilities. It should also be easy to replace existing
CARMEN modules.

• Robustness - CARMEN programs should be robust
to a variety of failures, including failures in commu-
nications and failures of other programs.

The following sections will describe seven programming
practices which encourage these principles in CARMEN.

A. Modularity

CARMEN was designed as a modular software ar-
chitecture, with each major major capability built as a
separate module. Modules communicate with each other
over a communication protocol called IPC, developed
by Reid Simmons at Carnegie Mellon University [9].
While modularity introduces some overhead, it has several
important advantages over monolithic systems:

• Flexibility - Robots come in many configurations. A
user can mix and match different robot bases and
sensors by simply running the appropriate modules.
This eliminates the need to accommodate all possible
hardware configurations in a single process.

• Network support - All of the modules need not run
on the same processor. Processor intensive tasks can
even be run off-board the robot.

• Reliability - If a single module fails, it does not cause
the remaining modules to fail.

• Extensibility - It is much easier to modify robot
components, or develop new ones, if each component
is self-contained.

Modularity encourages ease-of-use and extensibility, in
that different modules that perform the same function (for
example, the modules for each base type) must converge
to a single abstract interface. For example, by developing
each base controller as a separate module, the need for a
single abstract base interface became clear, and easier to
implement.

B. Simple core modules

We have isolated a set of core CARMEN modules
that provide a simple set of navigation primitives; these
primitives (base control, localization, tracking, and path

Hardware management
and communication

Collision detection

NavigationLocalization

High level tasks, e.g. tour giving, interaction, etc.

Fig. 1. The approximate separation of modules within Carmen.

planning) should serve as a strong foundation for building
higher-level robot capabilities. Many existing robot soft-
ware packages tend to bundle multiple features into single
modules. Our approach is to constrain tightly the number
of features in the core modules, and require additional
features to be implemented in higher layers.

Providing a small set of core functionality addresses
all of our stated design goals, in that simple modules
are typically easier to understand, and are more easily
made reliable. Tracking down bugs becomes increasingly
time-consuming for developers as the size of the modules
(and the size of distributions) balloon. Large software
distributions can also be overwhelming for both developers
and users alike.

C. Separation of control and display

One important design principle of CARMEN is the
separation of robot control from graphical displays. No
CARMEN core module that is required for autonomous
control has embedded graphical displays; instead, displays
run in separate processes. Information is communicated
between the controlling modules and the displays using
standard communication protocols.

This design principle is an example of the software
paradigm known as the Model-View-Controller, and was
chosen to encourage more transparent modules. Robot
control software often employs graphical displays as de-
bugging tools. Embedded displays can lead to the situation
where the state of the software is visible to the user,
but inaccessible to other programs. It is not possible, or
even desirable, to require complete transparency (e.g., the
contents of all internal variables and data structures) of
every module. However, we have found that separating
graphical displays from the implemented algorithms pro-
motes an appropriate degree of transparency. This ensures
that information in a module that could be useful is
available to all other modules. Additionally using the
Model-View-Controller paradigm allows for distributed
displays. A single graphical display can be used to display
the state of multiple robots, where the display is remote
from all robots.



D. Abstract Communication

During the development of CARMEN, we have em-
ployed three different communications protocols for
module-to-module communication. One lesson from this
experience is that exposing the particular quirks of a
given communication protocol to the developer can have
unintended consequences on the design of the robot mod-
ules. Tight integration of the communication protocol and
the core modules also makes upgrading communications
packages extremely difficult if a better alternative becomes
available. For these reasons, we encourage all commu-
nication functionality in CARMEN to be hidden behind
abstract interfaces.

All functions generating outbound communication traf-
fic from a module are placed in a separate source file.
Calls to these functions make no assumptions about the
particular communications protocol being used. All mod-
ules include a separate interface library that abstracts the
subscription process to the modules’ messages. In order to
upgrade the communication protocol, only the code in the
outbound and inbound interface libraries must be changed.
All of the robot code will remain unchanged.

E. Abstract Hardware Interfaces

1) Base Interfaces: CARMEN supports a wide variety
of commercial robot bases. Unfortunately, these bases
differ not only in form factor, but also in their command
interfaces. Some robots accept wheel velocities, others
accept translational and rotational commands; some robots
report the output of odometers, others perform odometer
integration in the hardware and report (x,y,θ) from some
arbitrary start position.

In order to ensure uniformity across platforms, CAR-
MEN supports a standard set of interface functions, and
performs the necessary transformations to the interface
appropriate for the platform:

• Velocity commands: vtrans,vrot
• Translational acceleration commands:

acceleration,deceleration
• Vector commands: δtrans,δrot
• Odometry reporting: x,y,θ

This interface functionality supports the criterion of ease-
of-use, in that every base can be controlled in the same
manner; higher level code does not need to have special
cases for each kind of base. These interface functions are
also easily implemented in a robust manner.

One disadvantage is that certain kinds of motion are
not supported. For instance, the Nomadic Technologies’
Nomad 200 supports a turret rotation, and the Nomad
XR4000 support translation in arbitrary directions without
rotation; both of these robots give the appearance of true
holonomic motion, which is not directly supported by
CARMEN’s hardware interface. In a similar vein, the

assumption is that all bases are capable of point turns; non-
quasi-holonomic robots (e.g., Ackerman-steered robots)
are not currently supported.

2) Sensor Interfaces: It is often tempting to convert
sensor measurements into a more convenient form, for
example, range measurements into (x,y) pairs that corre-
spond to the obstacles at the end of each range, ignoring
measurements at the end of the sensor range. However,
in order to maintain reliability, CARMEN does not en-
courage or support this approach, because information is
almost always lost during transformations between repre-
sentations. Sensor information should always be preserved
in the form that is closest to the raw data; individual
modules and applications can transform data as they see
fit.

Fig. 2. The Robotgraph display, that shows the information available
at the lowest level of the CARMEN hierarchy. This display shows the
output of odometry and laser sensing information. The white areas are
clear space, and the gray areas are unknown. The black dots correspond
to obstacles detected by the laser range finder. The black square in the
centre depicts the robot’s current pose.

CARMEN currently only supports two basic kinds of
sensors: position sensors (e.g., GPS, INS, etc.) and range
sensors (e.g., laser range finders). While the raw data
from every sensor is available to all modules, CARMEN
provides a higher-level format that is typically much more
useful. Each abstract sensor message has an interpolated
odometry stamp attached, based on timestamps, knowl-
edge of the robot’s motion, and the sensor position on
the robot. By providing position estimates for each sensor
measurement, the robustness of localization (especially
during fast motion) is improved substantially.



F. Standardized Coordinates and Units

One important but often ignored issue of robot architec-
tures is the question of units and co-ordinate frames. CAR-
MEN assumes that all units are in the International System
of Units (SI) 1 [10], with all distances in metres and all
angular measures in radians. 2 The advantage to using the
international standard of SI is that it reduces confusion to
users (“is this parameter in metres or centimetres?”), and
also minimizes the likelihood of disagreement between
collaborators, who wish to standardize on a different
selection of units.

CARMEN allows exactly three co-ordinate frames:

1) The robot’s frame of reference. Distances are in
metres, and the robot always faces along the positive
x axis.

2) The global frame of reference. Distances are in
metres, and θ = 0 lies along the x-axis of the map.

3) The map frame of reference. Distances are in grid
cells, and θ = 0 lies along the x-axis of the map.
This is a meaningless frame of reference without a
map.

It is tempting to occasionally represent information in left-
handed co-ordinate systems (θ increasing clockwise), in
order to allow easier interaction with display systems, such
as X-windows. However, this practice can lead to interface
confusion. There are, in general, many fewer co-ordinate
systems appropriate to robots than often seems to be the
case.

G. Centralized Model Repository

CARMEN has also addressed the robustness and ease-
of-use principles by providing a central repository and
interface for handling parameters. Mobile robot software
is commonly distributed across multiple processors. A
common failure point is the conflict between parameter
values that are loaded from different local sources. By
requiring modules to get their parameters from a single
source (loaded from a single file), CARMEN ensures
that parameters values are consistent across all modules
and platforms. This approach of storing parameters in a
single file, and distributing parameters programmatically,
has the additional benefit that parameters can be updated
during run-time, eliminating the need to restart (or worse,
recompile) modules.

We have also extended the model repository to include
maps. Instead of loading environment descriptions from
local files, all modules also request maps from a cen-
tral server. The same benefits of run-time updating of
parameters can also be extended to maps. Distributing

1Also known as MKS.
2Many systems represent angles in degrees for debugging and printing

ease; however, this practice will inevitable result in a line of code that
passes an angle in degrees to a trigonometric function like sin or cos
that accepts radians.

Fig. 3. The Parameter Editor, that shows the information available in
the CARMEN registry. Parameters are organized according to modules
in the Editor, and while no strict type system exists, the editor attempts
to infer parameter types and display them appropriately.

maps programmatically does have one disadvantage, in
that transferring maps across networks, especially wireless
networks, consumes bandwidth. However, this cost is
only incurred at startup, and when amortized over the
operation of the robot, is negligible compared to the value
of ensuring map consistency. We have also not hesitated
to use freely available compression tools (e.g., zlib [5]) to
reduce map transmission costs.

IV. NAVIGATION

CARMEN also includes map-based people detection
and tracking. This tracking is accomplished by tracking
differences between actual and expected laser scans given
the most likely position of the robot at every timestep.
In the future, we plan to use this same map differencing
technique to modify the map over time.

Navigation is a difficult concept to standardize, and
therefore CARMEN has tried to make it possible to
support many different styles of navigation. The cur-
rent navigation implementation is an implementation of
Konolige’s local gradient descent planner [4], which on
modern CPUs is fast for even the largest maps. Previous
implementations [12] of mobile robot control software
favoured a multi-level support, with coarse strategic plan-
ning providing intermediate goals to a lower-level collision
avoidance module [2]. However, this approach becomes
brittle in the limit of arbitrarily large deviations from
the intended high-level path, and can lead to catastrophic
navigation failures. The integration of collision avoidance



and planning allows CARMEN to achieve a higher nav-
igational reliability, especially when unmapped obstacles
close routes through the environment.

Fig. 4. The CARMEN planner, depicting the current map, the robot’s
current position in the map, and the expected trajectory.

V. LOCALIZATION AND TRACKING

The localization module in CARMEN implements a
variation of Monte-Carlo Localization [12] algorithm. The
module accepts odometry readings and laser readings from
the base modules and is able to estimate the position
of the robot in a map at approximately 10 Hz. Monte-
Carlo Localization for CARMEN because it has a number
of nice properties. By estimating a posterior probability
distribution of possible poses of the robot, the localizer
is robust to error in the robot’s odometry and sensors.
This leads to reliable, long-term operation. Monte-Carlo
Localization is also flexible in that it also supports global
localization. During global localization, the algorithm can
determine the position of the robot given no information
about its starting point in the map.

CARMEN also includes map-based people detection
and tracking. This tracking is accomplished by tracking
differences between actual and expected laser scans given
the most likely position of the robot at every timestep.
In the future, we plan to use this same map differencing
technique to modify the map over time. This procedure
can be used to keep the map up-to-date as furniture is
moved and new areas of the map are exposed. Preliminary
results for lifelong map-learning are shown in Figure 5.
The original map is shown in black. Modifications to the
map are shown in red and yellow. Red cells are new
occupied cells, and yellow cells are new empty cells. Trash
cans and boxes in the main hallway have been removed
from the map, and five new offices have been added to
the map.

Fig. 5. An example of lifelong map learning. The original map is
shown in black. Modifications to the map are shown in red (additions)
and yellow (subtractions).

1) Automatic Map Building: The use of map-based
navigation assumes the existence of an accurate map of
the environment. CARMEN contains an implementation
of Hähnel et al.’s map-builder [3], which builds high-
quality metric maps from data recorded from the laser-
range finder. CARMEN assumes a single metric map
for all map-based navigation, as opposed to hierarchi-
cal map representations, topological representations, or
feature-based representations. This map representation has
been used by a number of research projects in a num-
ber of different arenas, such as the museum tour-guide
project [11], multi-agent exploration and planning [6]
and mine-mapping [13]. Discrete maps provide a natural
extension to higher-level planning methodologies such as
Partially Observable Markov Decision Processes [8], [7].

VI. CONCLUSION

We have described a set of design practices for CAR-
MEN chosen that encourage the ease-of-use, extensibility,
and reliability of robot control software. CARMEN is
still a work-in-progress, and aspects of the design will
inevitably change over time. However, we believe that
adherence to the design principles described in this paper
will help maintain the utility of CARMEN as the software
continues to mature.

ACKNOWLEDGMENTS

The authors would like to thank the developers of
beeSoft, especially Wolfram Burgard, Dieter Fox and Dirk
Hähnel for the inspiration for Carmen. Many people have
contributed code, patches and test cases, in particular Greg
Armstrong, Drew Bagnell, Curt Bererton, Jeff Biseda,
Charlie Garrod, Jared Glover, Geoff Gordon, Nell Hoff-
man, Emilie Ann Philips, Joelle Pineau, Matt Rosencrantz,
Andy Rubin, Alvaro Soto, Cyrill Stachniss and Rudy
Triebel.

VII. REFERENCES

[1] R. P. Bonasso, R. J. Firby, E. Gat, David Ko-
rtenkamp, D. Miller, and M. Slack. Experiences



with an architecture for intelligent, reactive agents.
Journal of Experimental and Theoretical Artificial
Intelligence, 9(1), 1997.

[2] Dieter Fox, Wolfram Burgard, and Sebastian Thrun.
The dynamic window approach to collision avoid-
ance. IEEE Robotics & Automation Magazine, 4(1),
1997.

[3] D. Hähnel, D. Schulz, and W. Burgard. Map building
with mobile robots in populated environments. In
Proc. of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2002.

[4] Kurt Konolige. A gradient method for realtime
robot control. In Proc. of the IEEE/RSJ Interational
Conference on Intelligent Robotic Systems (IROS),
2000.

[5] Jean loup Gailly and Mark Adler. zlib compression
library. http://www.gzip.org/zlib.

[6] Matt Rosencrantz, Geoff Gordon, and Sebastian
Thrun. Locating moving entities in dynamic in-
door environments with teams of mobile robots. In
Tuomas Sandholm and Makoto Yokoo, editors, Pro-
ceedings of the 2nd International Joint Conference
on Autonomous Agents and Multi-Agent Systems
(AAMAS), volume 2, 2003.

[7] Nicholas Roy and Geoffrey Gordon. Exponential
family pca for belief compression in pomdps. In
Advances in Neural Processing Systems, volume 15,
2002.

[8] Nicholas Roy and Sebastian Thrun. Coastal navi-
gation with mobile robots. In Advances in Neural
Processing Systems, volume 12, pages 1043–1049,
1999.

[9] Reid Simmons. The inter-process
communication (IPC) system. http://www-
2.cs.cmu.edu/afs/cs/project/TCA/www/ipc/ipc.html.

[10] Barry N. Taylor. Guide for the Use of the Interna-
tional System of Units (SI), 1995 edition edition.

[11] S. Thrun, M. Beetz, M. Bennewitz, W. Burgard, A.B.
Cremers, F. Dellaert, D. Fox, D. Haehnel, C. Rosen-
berg, N. Roy, J. Schulte, and D. Schulz. Probabilistic
algorithms and the interactive museum tour-guide
robot minerva. International Journal of Robotics
Research, 19(11):972–999, November 2000.

[12] S. Thrun, D. Fox, W. Burgard, and F. Dellaert.
Robust monte carlo localization for mobile robots.
Artificial Intelligence, 101:99–141, 2000.

[13] S. Thrun, D. Hähnel, D. Ferguson, M. Montemerlo,
R. Triebel, W. Burgard, C. Baker, Z. Omohundro,
S. Thayer, and W. Whittaker. A system for vol-
umetric robotic mapping of abandoned mines. In
Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), 2003.


