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Abstract—The MAV '08 competition focused on the problem the navigation and sensing payload. We present a schenfiatic o
of using air and ground vehicles to locate and rescue hostagesour complete system and discuss some of our design choices.
being held in a remote building. To execute this mission, a number Second, we describe the vision and state estimation algo-

of technical challenges were addressed, including designing the . .
micro air vehicle (MAV), using the MAV to geo-locate ground rithms used to track ground features through image segsence

targets, and planning the motion of ground vehicles to reach the Obtained by the MAV, including stationary obstacles and a
hostage location without detection. moving adversary. Specifically, we use an adaptive algorith
In this paper, we describe the complete system designed for (Avidan, 2007) that learns to discriminate the target from t

the MAV "08 competition, and present our solutions to three packground, coupled with standard Bayesian filtering tokira

technical challenges that were addressed within this system. First the obiect . 0] . lobal dinat t
we summarize the design of our micro air vehicle, focusing on the € object from image 1o 1Image In a giobal co-ordinate system

navigation and sensing payload. Second, we describe the visionThird, we describe the planning algorithm used to generate
and state estimation algorithms used to track ground features, motion plans for the ground vehicles to approach the hostage
including stationary obstacles and moving adversaries, from a puilding undetected by the moving adversary. In order tm pla
sequence of images collected by the MAV. Third, we describe with respect to the changing position of the ground advgysar

the planning algorithm used to generate motion plans for the . . . .
ground vehicles to approach the hostage building undetected by we examine different variants of standard search algogthm

adversaries; these adversaries are tracked by the MAV from thatallow us to plan efficiently and react to unexpected or un
the air. We examine different variants of a search algorithm and modeled changes in the ground adversary’s position. Kinall

describe their performance under different conditions. Finally, we we provide results of our system’s performance during the
provide_ results of our system’s performance during the mission mission execution.

execution.

2. RELATED WORK
1. INTRODUCTION

The MAV ’'08 competition in Agra, India focused on the We built on work from the different f|eIQis of rObOt'C,S’
mputer vision, and planning to compete in the MAV '08

problem of using air and ground vehicles to locate and resctid o
hostages being held in a remote building. Executing tHEOmpetition. There have been many rotorcraft UAV platforms

mission required addressing a number of technical chadkeng eveloped, including quad-rotors (Hoffmann et al., 200dr-G

The first technical challenge was the design and operatigﬁn et al,, 2007) that operate on the same principles as the

of micro air vehicles (MAVs) that were capable of flying ex-rotor developed here. Other autonomous rotorcraft mor

the necessary distances and carrying the sensor payloa I?Bl?g'fzsz'(;l&we goamal Vt?h'dleﬁ EB ou?bdatll?fh et alg&0
locate the hostages. The second technical challenge was etal., & ) and conventional helicopter platforms g
Schneider, 2001).

design and implementation of vision and state estimati o ) i
The computer vision community has seen considerable work

algorithms to detect and track a ground adversary guardin
g g vy g @%object tracking, and an exhaustive survey of this liteeat

the hostages. The third technical challenge was the des] h £ thi ‘ th
and implementation of robust planning algorithms to geﬁeaerd beyond the scope of this paper. However, surveys of the

tactical motion plans for our ground vehicles to reach fHgirrent state of the art include Yilmaz et al. (2006) and iori

hostage location without detection by the ground adversar;fZO?]G)' V\k/)h"i there dhavg been many Zucceslsful algorithms
In this paper, we describe the complete system desig as background subtraction (Javed et al.,, 2002), mean

for the MAV '08 competition, and present our squtionsSh'f,t tracking (Comgnigiu et aI.I, 2Q0h0), qnd ensemble ﬁmﬁ:kf
to the three technical challenges described above. First, w‘wdan, 2007) (which our algorithm is based on), all o

summarize the design of our micro air vehicle, focusing dRESE algorithms make the assumption of a relatively statio
camera, which does not hold for the camera on our vehicle.
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(b) Hostage building

(a) Prior Map (c) View from the ingress point

Fig. 1. (a) The map of the environment from the ingress pointl@Rer right) to the hostage building (top middle). The lighdhaded rectangles are cover
points for the commandos, the circles are mine locations andahe boxes are potential terrain obstacles. The cover powste provideda priori but the
MAV was required to detect the mines and obstacles. (b) The wiethe hostage building from the on-board MAV camera. (c) Viev of the hostage
building from the ingress point, 1km away. The rectangutarec positions can be seen faintly near the horizon.

appearance. In this work, we have been able to integrategeneral path planning algorithm can then be used to find

modern computer vision inference algorithms with Bayesigdhe optimal path in that space. One interesting fact is that

filtering to effectively track the targets over time. path planning with dynamic obstacles can be viewed as a
Similarly, we have built on existing work in spatial-tempbr special case of cooperative path planning with multiplenége

planning, showing the trade-offs present between full spasvhere all dynamic obstacles are simply moving agents with

time planning and approximate techniques. Path plannipgedefined paths. Silver (2005) explored a similar appraach

with moving obstacles has been a challenging problem fBraichard’s, resolving collisions in multi-agent path rpiang

researchers in many fields, including robotics and nawgati by using a reservation table.

One option (van den Berg and Overmars, 2004) is to use

a Probabilistic Road Map (PRM) to first generate discrete 3. THE MAV '08 M ISSION

points in a continuous map that takes into account obstaclel_he MAV 08! mission was a hostage-rescue scenario

locations. Given a model of the dynamics of the movin% which commandos had to be guided across a field by

obstacles, the resulting points are then extended intoiries t ~ . : - -
. ) . - erial vehicles to a remote building. The hostage buildiag w
dimension to calculate the optimal path. A similar approac . .
arded by a moving adversary; to allow the commandos to

. . e u
(Jaillet and Simeon, 2004) generates the initial map based § . : : .
static obstacles and then uses a lazy-evaluation techmigu réach the building undetected, aerial surveillance wasired

Q estimate the guard vehicle’s position and its field-awi

gener.ate a complgte map of state-time space. S'm"a”?" PAs the guard vehicle moved, the commandos were able to
planning in state-time space has been considered (Frdichar

1999), where all dynam'(_: obstacles 'n_ the 2-d|_men5|_onaiespa 11st US-Asian Demonstration & Assessment of Micro-Aerial & Ummed
are represented as static obstacles in a 3-dimensiona¢.spaeound Vehicle Technologht t p: / / www. nal . res. i n/ mav08/
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Fig. 2. Schematic of our sensing, tracking, planning androbsystem. hardware.

. vehicle. The MAV planner processes the human input and

take advantage (.)f covered positions at kn(_)wn GP_S locatioig, s goal GPS waypoints to the MAV onboard controller
throughout the field. When the guard vehicle’s view of th ection 4), which deals with the low-level controls for GPS

ffld was occ(;uded by ol:lJ)sl,tacIesdsuch as; the hostagz buildig@ynoint navigation. As the MAV surveys the environment,
the commandos were able to advance from covered positioNf,o 5 gata is streamed back to the ground station, and the

tg CO\I/_ere_d p%sition,blrem?inir?g hidden fath all otherb time$ision tracking and detection module (Section 5) enables th
omp L(j:atmg_t_ € pro emblurtk e(;, Eome E the rOLt’)teS Ietweﬁ man operator to track particular objects of interest. GBS
covered positions were blocked by unknown obstacles agfhinaies of the geo-located mines and guard vehicle are the

terrain, and some of the routes were seeded with mines gf e eq to the ground vehicle planner (Section 6), which
unknown positions. These obstructions had to be detec#d Q1o this real-time information to plan paths for the ground
geo-located aerially to plan safe paths for the Command%t?ents to reach the bank building safely.
Once detected and geo-located, the mines could also be

disposed of using an explosive ordinance disposal (EOD)
vehicle. Finally, the commandos were required to reach the ) . ) .
hostage building within 40 minutes of the start of the missio OUr Vehicle design consists of a custom-designed carbon-
including completion of the surveillance, mine disposati afiP€r airframe, with & brushless motors as the propulsion
guard tracking tasks. system. The vehicle is 29 cm rotor-tip to rotor-tip and weigh

In order to obtain the position of the guard vehicle, detetJ:t42 grams _W'thOUt the nawgauon elgctronlcs, _camera or
route blockages and geo-locate mines, aerial surveillarse communication hardware. The vehicle is shown in Figure 3.

essential. However, the MAV '08 rules dictated a maximur?;he_tOtaI flight time of the vehicle is_ 10-12 ”_“”“‘es' With
size of air vehicle of 30 cm. Our approach to the missiof 2XImum speed of 10 m/sec, depending on wind conditions,

was to use a series of rotorcrafts to survey the field, seafginperature, etc.
for mines and obstacles, and also maintain a position etima
of the guard vehicle. Figure 1(a) shows a map of the field;1. Hex-rotor Vehicle Design
containing the covered positions (Al to F2) at known GPS For an efficient design of a Vertical Take-Off and Landing
locations. The circles along the edges are mine positiods gWvTOL) vehicle, it is important to maximize the total rotor
the black bars are route blockages (these positions arenshewea. Lift is generated by the impulse of the air accelerhied
here for the purposes of explanation, but were not providéite rotors, and the impulseis linear in the velocityy, and
before or during the competition). The ingress point for MAYhe massm, of the accelerated aip = m,v,. The energy
launch, commando and EOD vehicle entry is shown at ti7e required to accelerate the air is linear in the mass of the
bottom right (IP) and the hostage building is at the top neddhir, but is proportional to the square of the air's velociy=
(shown in Figure 1(b) from the on-board MAV camera). Th%mava2. Thus, to produce a certain impulse, it is more energy
view from the ingress point to the hostage building across tefficient to accelerate more air to a lower velocity than to
1 km field is shown in Figure 1(c). accelerate less air to a higher velocity. Consequently, jarma
Figure 2 presents a schematic of our software architecteal in the design of our air vehicle was to maximize the
for the MAV '08 mission, describing the communication linksoverall rotor area.
between the different modules at the ground station, on theOther driving factors of building a multi-rotor system in-
MAV, and with the ground agents. Via the human interfacejude the increased agility, maximum wind-load and mechan-
ground station operators choose high-level goals for th& MAical robustness of quad- or hex-rotor designs, relativénéirt
such as searching areas for mines and tracking the guaodxial counterparts. Additionally, the rules of the MAVB'0

4, THE MICRO AIR VEHICLE



competition required that the vehicle be smaller than 30 coommand has no influence on pitch, roll or thrust, and the
in diameter. As custom propeller design and molding is vesame is true for the other three command channels.
expensive, we sought the use of COTS propellers. The only

COTS propellers that complied with the size limitations and

were available in both the clockwise and counter-clockwigs2. Onboard Sensing and Navigation

rotation variants necessary for a quad- or hex-rotor swiuti

: . The navigation system consists of a 60 MHz Philips ARM
were 3-blade propellers with a 92 mm rotor-diameter.

microprocessor, u-blox GPS receiver, compass, IMU and
pressure sensor. The software on the ARM microprocessor
integrates the IMU and GPS measurements to provide a
consistent state estimate at 1000 Hz. The on-board software
accepts goal waypointéz,y, z,6) in the GPS (world) co-
ordinate frame and uses PID control to achieve the desired
position. Changing wind conditions affect how accuratélg t
cow , PID controller can achieve a specific waypoint; the integral
- — (I) term can compensate for this error, but the time required
for the | term to integrate the error and respond accordingly
is frequently not worth the improved accuracy. We therefore
. . use a dead-band in the position controller that describes th

o - ) expected error in the controller, and we estimate the widith o
‘ o this dead-band online using a series of progressively small
(@) Hex-rotor design. CW: Clock Wise rotation, CCW: Courock Wise distance thresholds for each GPS waypoint. The position
rotation. controller attempts to achieve the desired GPS positidiaityi
with a minimum 15 m accuracy, and then takes an additional
30 seconds to achieve the position with 2.5 m accuracy. If
the waypoint is not achieved to within 2.5 m in those 30
seconds, the control software assumes that external $actor
(i.e., wind) are interfering and ends the attempt. In thig,wze
are guaranteed to get within 15 m of the desired waypoint, and
the vehicle will attempt to achieve a higher level of accyrac
without incurring excessive time delagsiowever, the control
loop will not keep trying indefinitely if wind or other exteah
factors prevent it from achieving a 2.5 m accuracy.

The vehicle carries a Digi 900 MHz Xtend RF module
operating at 100 mW, connected to the ARM microprocessor
over an RS-232 serial line. The ground station communicates
with the MAV via a USB-serial converter to the Xtend base
station; the bandwidth is such that the ground station gljyic
(b) Actual vehicle. 1) Antenna, 2) Analog RC link 3) IMU senst) ARM  receives telemetry packets of 35 bytes at 30 Hz. The vehicle
microprocessor 5) GPS sensor 6) Shock absorber 7) Rotors is configured to use the digital data link as the primary
communication mechanism, over which GPS commands are
sent to the vehicle and the vehicle’s current GPS position
is received in the telemetry data. Our assumption is that as

An initial quad-rotor prototype using these propellers WaIt%ng as the ground station can communicate with the vehicle,

unfortunately unable to provide the required payload aigthtfli i elovseth:rfj Ctaz beroﬁzgtrgltlaet(ijor?a:q% \I/fe:;(e:ledlggil ggt?élr']n or
time. However, it was possible to design a hex-rotor platfor 9 g

within the size limitations specified by the rules, as shown Icommumcate, then the on-board controller reduces power to

Figure 4. By using six rotors instead of four, our heIicopte%O% of full throttle and attempts to land. The GPS waypoint

was able to generate up to 50% more thrust with less thar& ntlrizlll(er Cargti?1|Soatbszml\l/lelz_zndlcfie; S";‘fteht a””at“)é'tl)'ggvzgagﬁg
10% increase in vehicle weight. operating - y pilo e

The six motors are mounted undemeath the frame SuV(z]hicle behaving incorrectly, then an RC transmitter can be
l? ed to assume control over the vehicle and return it to base

. X - . . B 1and it safely. The onset of manual (analog) control digina
the chassis, increasing energy efficiency and flight-tintes TiS processed by the software on the ARM Microprocessor.

ve.hlcl'e has three rotors'splnnmg CIOCk.W'SPT’ and thre?rmt%ince the vehicle is unstable without attitude control tslihg
spinning counter-clockwise, as shown in Figure 4. With this

rotor configuration, all rotational degrees of freedom can, _ ) .
In practice, we were always able to achieve 15 m accuracy asvup to

be _Contm"ed independen'FIy, as is the case for a quad'roigrknots, but were not able to make progress against headwfrioistween
helicopter. Thus, the vehicle controller ensures that a yaw and 20 knots.

ccw cw

Fig. 4. Top-view of hex-rotor. (a) Vehicle schematic. (b) Rhof actual
vehicle.



(b) (©) (d)

Fig. 5. Operation of tilt-camera. The camera ha80& range of motion in the tilt direction. When the vehicle is belbwn, the camera is automatically
retured to the forward view.

to manual control disables GPS-waypoint following while
keeping attitude control active.
The camera sensor is a Panasonic KX141 480 line CCD 4

camera with a 90 field-of-view lens. Since the 900 MHz s : X

digital transmitter does not have sufficient bandwidth feail¥ T2 s N

time video, we use a LawMate TM-240500 2.4 GHz 500 mW. RN R SR

L . . s Flee o2

transmitter to transmit the analog video data, and an Iftron DR A S 2

Technologies YellowJacket 2.4 GHz diversity receiver & th

ground station. This camera and transmitter provide eswell

video capability at long ranges, and the 2.4 GHz frequency

does not interfere with our 900 MHz data link. The camera at BN

is mounted on a small servo that provides 90otion along '

one degree of freedom, allowing the camera to tilt towards T ¢ =« s 5

any angle between the forward and straight down directions. e

Th_e se_zrvo IS cont_rolled from_ the ARM navigation CompUteﬁig. 6. Target geo-location estimates for an obstacle withawk location.

which in turn receives servo instructions from the baseastat The true location is mapped 1@, 0)

The camera lens extends below the frame of the vehicle when

pointing straight down, so that the camera is automatically

returned to the forward view when the vehicle is below 5 @ modified version of the classifier-based adaptive ensemble

(Figure 5). tracker, developed by Avidan (2007). Our algorithm, whiat w

call Agile Ensemble Tracking (AET), uses the same object

5. OBJECTTRACKING appearance classifier as Avidan. However, instead of using

mean-shift to track the object across frames, we use a more

The first phase of the MAV "08 mission involved SurVeymgrobust, particle-filter based, Bayesian filter approach tha

the field, identifying obstacles and mines, and then tr@k'%ble to handle the fast motion of the MAV-mounted camera.

the guard vehicle. These tasks presented the second gall nhile this approach does not allow completely autonomous

of identifying the positions of targets on the ground. Our : L )
; . . . eration, it significantly reduces the amount of attention
approach was to locate objects in the image received from R

camera, and use the known position of the MAV from GPS arngwred from the operator.

a calibrated camera model to geo-locate the objects. Haweve _ )

due to noisy estimates of the vehicle pose, it was necessarytl- Learning Object Appearance Models

combine projections from many successive images to achievéOnce an initial estimate of the target object in an image

an accurate geo-location estimate. For example, when igddentified by a human operator, we use a machine learning

analyzed the geo-location estimates for an object with knowlassifier to learn a model of the object's appearance. The

world position, we see in Figure 6 that the individual estiesa classifier is trained to distinguish pixels that belong te th

deviated from the ground-truth by up to 6 m. However, thebject from background pixels. To train the classifier, we

distribution of measurements shows a systematic erroram bassume that the object is localized within a knowrnx m

of approximately 3.3 m. This bias was likely due to errorsub-block of the image; pixels within that sub-block areegiv

in the calibration of the transformation between the body amositive labels, and pixels outside that sub-block are rgive

camera co-ordinate frames. negative labels. Each pixel is described dyocal features,
We were given minimal prior information of the appeare.g., local color features and a histogram of local oriented

ance of the guards, obstacles and mines; hence, we did gigtdient features (Dalal and Triggs, 2005). Each pixeit

have enough information regarding a specific color, shapmage locationp, is therefore a separate training instance

or motion to allow general object detection of any of theonsisting of ad-dimensional feature vectat; € X and a

target objects. We instead focused on the problem of objdabel y; € Y. To distinguish the object from the background,

tracking, first relying on a human operator to detect theahit we learn a classifier that predicts the label for each pixséta

appearance of each object in the scene before tracking threthe local image features. Following Avidan's work, we use

object in successive frames. For object tracking, we deeslo a boosting method inspired by AdaBoost (Schapire, 2003) to

W errar {m)
(Y




learn this classifier. AdaBoost requires a weak classifibichv
in this algorithm is implemented as a linear separating hype
planeh, such that

(%) = h(x;) = sign(h”x;) 1)

where g(x) is the classifier output label for instange The
separating hyper-plane for a set of examples is computed usi
weighted least squares. This weak classifier is then boosted
to learn an ensemble of classifiefs = {hy,...,hx} with
associated weightsyq,...,ax. K is the total number of
classifiers that are maintained by the algorithm. These ht®ig
are chosen iteratively, as shown in Algorithm 1.

Algorithm 1 : ADABOOST

Require: N training instancesx;, y; }
1: Initialize weights{w;}Y, to be &
2. for k=1...K do
3. Normalize {w;}Y, to sum tol
. Train weak classifiehy,

4
5  err= Zf\il w;|hg(x;) — 4]
6:  ap= %log%

7

8:

- Updatew; = wier e (xi)=wil for j =1...n
end for

K
9 return  H(x;) = Y _ axhy(x;)
=1

Fig. 7.
block are assumed to be positive training instances, and ittespin the
outer block are negative training instances. (b) The respaf the weighted
classifiers across the sub-image of the detected vehicleinidesity of each

(b) Ensemble Filter Response

(a) An example training sub-block. The pixels in the Benainner

pixel is the likelihood of belonging to the object as proxddey the classifier.

In order to capture the appearance characteristics of an
object at different scales, we train a separate ensemble of

classifiers for a range of image scales. We then classify tH@t are known to be correct.

pixels of a new image using the multi-scale, boosted, en
semble classifier, such that each pixel receives a (norewjliz

Algorithm 2 : ADABOOSTONLINE UPDATE

weighted vote for each label from each classifier based on fRgduire: N training instancegx;,y;}, existing strong clas-

local image features at each pixel. The output of the classifi

sifier H;, = {hy, ..

ahK}

is a new image where each pixel has an associated likelihood Initialize weights{w;}}Y, to be 5

value that it belongs to the tracked object.

20 Hoyr = {w}

Figure 7(a) illustrates an example training image, wheee th3: for k=1... 3 do

pixels in the inner block are positive training instances an 4
the pixels in the outer block are negative training instance
Figure 7(b) shows the weighted classifier response to th&
same image after training. Notice that pixels along theggar 7:
distinct color boundaries have the greatest classifieroresp 8

During tracking, the appearance of both the object and thé&:
background will vary over time; for instance, the orieraati 10:
of edge features will change as objects rotate in the imagé

Normalize {w;}¥, to sum tol
for h; € H;,, do
Computeerr; = Zf.vzl w;hy(x;) — i

end for
Chooseh € H;,, with minimum érr
& = Llogl=gr

Removeh from H;, and add toH,,;
Updatew; = w;ehc)-vil for i =1...n

frame. We therefore continually learn new classifiers frorai2: end for
the incoming images. After tracking has been performed o8: for k=B +1... K do

each image, the image is used as a new training instance fdr

learning new classifiers. Using boosting, tBebest classifiers 15:
are retained from the currerk’ classifiers, whileK — B 16

Normalize {w;}}¥, to sum tol
Train weak classifieh;, as in ADABOOST
Add hk to Hout

additional classifiers are trained and added to the set ok wesr: end for
classifiers. This process of updating the classifiers is shows: return  H,,;

in Algorithm 2. In order to ensure that this retraining does
not result in a drift over time away from the original image,
we also investigated a variation where a subset of the @iigin

K classifiers are kept, regardless of the performance of tfi€- Image Space Object Tracking
classifier subset at the current time step. This modificationin the original ensemble tracker (Avidan, 2007), the esti-
would ensure that there always exist at least some classifierate of the object’s location is found using mean-shift on



the likelihood image computed from the classifier respondellows,

Starting from the previous target rectangle, mean-shisus

hill-climbing technique to find then x n rectangular region  ,(q,)|p, = l+e q: = Pty e. ~ N(0,0.),
which contains the greatest aggregate response. While this 0+e; otherwise,

approach works quite well for relatively stationary cansgra _ - i)
we found that the mean-shift approach was unable to han¥Bere z:(q:) is the response of the classifier at pixgl.
the fast motion of our MAV platform. Equation 4 essentially predicts that the classifier wilpoersd

As a result, we modified the tracking algorithm to use With @ 1 at the predicted locatiom; in the image, and)
particle-filter based Bayes filter to update the positiomeste everywhere else, where the measurements have Gaussian nois
of the object. We incorporate an estimate of the camera ege- 1he model is clearly approximate since the noise is not
motion as a prior for predicting the location of the object ifPaussian (and measurements can never exceed 1), but the
a subsequent image. This ego-motion estimate is essential@aussian model worked well experimentally.
compensating for unpredictable motions of the camera, twhic It is computationally expensive to run the classifier on the
would otherwise cause the tracker to lose track of the objegftire image. Hence, we only run the classifier in the viginit
The attitude of the vehicle, as estimated by its onboard IMQf the current particle filter mean estimate, and assumetteat
was too noisy to provide an adequate estimate of this egg)ject has a minimal likelihood of being at all other locasto
motion. Instead we estimate it directly from the imagery bl the image. Additionally, we smooth the classifier resjgsns
computing optical flow between the entire previous and currez: across the image using a Gaussian blur operator to obtain a
images. We make use of the Pyramidal-Lucas-Kanade optiggptially smooth likelihood map, and each particle is gieen
flow implementation available in the OpenCV packdgehe Weight equal to the value in the Gaussian-blurred prokgbili

0ptica| flow a|g0rithm computes a sparse Setﬁ)ffeature image at its location in the image. Although this Gaussian
matches{pﬁ_l’pg}l.f;ll wherep!~! is the 2D pixel location Smoothing creates minor correlations between image pixels

of featurei in the imagel,_1, Zand p! is its corresponding We continue to assume that the likelihood of object detactio
location in imagel, at the next time-step. Using these featurat €ach pixel is independent; experimentally the Gaussian

matches, we can estimate the camera ego_motion s a SmOOthing of the classifier responses led to more rObUStbbje

affine transformation matriA such that: tracking even with this independence assumption, and more
closely matched our Gaussian model of the classifier.
pit! ~ [1 pt]A 2) The motion modeb(p;|p:—1) is equal to the ego-motion

) ] ) ) _ estimated from optical flow with additive Gaussian noise
This affine transformation captures translation, rotation

scaling, and shearing effects in image space. Due to thétheig P¢/pi—1 = 1 Pi-1 |A+6dp,  dp ~N(0,0p) (5)

?rl;ahsefo\;(ranhellft:ilc?r,m ?Qd é?]irgﬁarg g:gg;:g%ugd S;L(;r):ﬁ](q:ziig:eafﬂn Algorithm 3 presents the complete Agile Ensemble Tracking
; g y PP " algorithm. For clarity, although the algorithm is presenss
Since some of the feature matches may be wrong or corfes, . . 4
: . ; : ~"I'the images are all given to the algorithm at the start, an th
spond to moving objects, we refine the ego-motion estimate . . :
: . A ) : real system, the images are actually processed in realasne
by performing expectation-maximization (EM) to identifyet ;
. . : they are streamed from the vehicle.
affine transformation that best explains the apparent Gamer . — .
. In contrast to more conventional filtering techniques such
motion. Other methods such as RANSAC could also be used. ) . : :
. A ; : as the Kalman filter (Kalman, 1960), the particle filter is
The affine transformation is then used in the motion model . : o
: : . better at modeling the non-linearities in the sensor andamot
of a Bayes filter, while the learned object appearance médel : : .
. : . . models. In contrast to ground vehicles and fixed-wing aftcra
is used in the associated sensor model. We use a particte fijie

to approximate the posterior distributiiip;|zo.;) accordin at generally have stable attitudes, the attitude of the/MA
to PP P Pt|Z0:¢ 9 rotorcraft is particularly dynamic and non-linear. Freque

attitude changes of the MAV would cause very large object
p(Pelz0:) = ap(Ztlpt)/ P(Pe|Pt-1)p(P—1z04-1)dt.  displacements in the image. o
X1 Table I(b) illustrates the benefits of the particle filterirtds

i , o i ' the modified motion model, we were able to maintain a track

where_zpt IS the_ location of the object in the image at UM&yt the person in Figure 8(b) for over 2 minutes, requiring
t, 2 is the object measurement calculated from the imageman intervention only once when the person left the frame
at ime ¢, p(p|p,—1) is our motion modelp(z|p:) IS OUr (o 5 few seconds. In contrast, a much higher rate of human
sensor model, and(p;—1|zo:1—1) is the prior distribution of jhtervention to reacquire lost tracks was required when the

the object’s location. . ; ; -
original (non-optical-flow-based) motion prediction wased.
The object measuremest is obtained by using the learned g ( P ) P

object appearance model to classify the image at tinhe
classifier outputs a real value in the inter{fal1] for each pixel 5.3. World Location Object Tracking

q. in the image, and Figure 7(b) is a sample measurementgjan the position of a tracked object in an image, but
Our sensor modeb(z|p;) can therefore be characterized aW¥ithout knowing the distance between the object and the

SIntel Corporation. Open Source Computer Vision Library (OQ¥). camera, we _WOUld norma”y. not be able to compute the
http://www.intel.com/technology/computing/opencv/irdem global co-ordinates of the object. However, for the MAV'08



(a) EOD Vehicle (b) Person (c) Guard Vehicle

Fig. 8. Examples of the variety of objects tracked. (a) The E@bicle for mine disposal. (b) A walking person. (c) The gueediicle circling the hostage
building. (a) was relatively easy to track, but (b) and (quieed a better motion prediction model.

No optical flow, no retraining 0 Hz (0) No opt. flow, no retrain. 0.140 Hz (21) No opt. flow, no retrain. 0.39 Hz (21)
No retraining 0 Hz (0) No retraining 0.040 Hz (6) No retraining 0.26 Hz (14)
Keep first 3 classifiers 0 Hz (0) Keep first 3 classifiers 0.027 Hz (4) Retain first 3 classifiers 0.28 Hz (15)
Full retraining 0 Hz (0) Full retraining 0.007 Hz (1) Full retraining 0.30 Hz (16)
(a) 250 frames, 17 seconds (b) 2683 frames, 150 seconds (c) 1000 frames, 54 seconds
TABLE |

PERFORMANCE COMPARISON FOR THAGILE ENSEMBLE TRACKING ALGORITHM, COMPARING THE EFFECT OF RETRAININGAND THE OPTICAL FLOW
BASED MOTION MODEL. THE FREQUENCY OF REQUIRED TRACK RENITIALIZATIONS IS SHOWN, WITH THE TOTAL NUMBER OF ERRORS IN PARENTHESES

Algorithm 3 : AGILE ENSEMBLE TRACKING apply a second level of Bayesian filtering to maintain a aean
Require: T video framesI; ... I, initial object bounding estimate of the target's location in global co-ordinatesr F
box r; simplicity, we again use a patrticle filter, though given our
1: Learn initial strong classifiefd; from I; andr; using models here a Kalman filter would have also been applicable.
ADABOOST Our motion model(z:|z;—1) assumes that the particles can
2. for Iy =1...Ip do be propagated with Gaussian noise. A common approach is to
3. Compute ego-motion estimatk from 7;_; to I, estimate the target velocity with the filter, improving theise
4. Propagate image space particle locations uging in the measurements with a stronger model bias. However,
5. UseH; ; to update the likelihood of each particle andn practice, the image space measurements were of too high
perform importance sampling variance to provide accurate position and velocity esfonat
6:  Use filter's maximum likelihood estimate as predictionve therefore estimated only the position over time. Sirhyilar
of rectangler, our sensor modep(z:|z;) assumes that the output of the
7. ComputeH; using ADABOOSTONLINE UPDATE image-space filter is corrupted by additive Gaussian noise
8: end for when it is projected to world-coordinates. Essentiallythie

world model, we are using the standard technique of a very
strong model bias, coupled with Gaussian noise, to smoeth th
igh variance estimates from image space.

competition, we knew that the MAV would be observin ) . .
P JI In the image-space filter, we generally assume that the noise

the objects from a large height, relative to height variadio . A . .
in the terrain. This knowledge allowed us to assume thg§SOC|ated with the motion model is large and thereforeeplac

the object was located on a flat ground plane. We cougore weight on the sensor measurements. In contrast, when

therefore recover the object’s location in global co-oadés tra(i!qng n ng?baljco-oc;dllrlﬁtes':, we ptlace Tc?re weéght ton the
using the camera’s intrinsic properties (focal length,teen motlon model and modet the Image 1o world co-ordinate pro-

of projection, distortion, and the rigid transformatioror jections as very noisy measurements. With these parameters

the camera image plane to the vehicle’s body center), a filter implicitly averages over more measurements when

the MAV’s GPS position and attitude. The camera parameteq‘gt'matmg the target's location on the ground plane, tiegul

and camera transformation are obtained using a standastd |gy & more accurate estimate.
squares calibration process.

Due to noise in the sensors, the location and attitude ®f* Tracking Analysis
the MAV are not perfectly known. Unfortunately, small esor Human intervention is still required to ensure that the
in attitude can lead to substantial errors during the ptmec object is continuously being tracked, to potentially resthe
from image co-ordinates to world co-ordinates. We therefotracker when it fails, and to initialize the tracker when new



objects of interest appear. We evaluated the tracker undtassifiers actually reduced performance slightly, sineeer
different configurations, including with and without thetiom classifiers in the ensemble were trained on bad data as the
prediction given by optical flow, with and without retraigin tracker began to get lost, thereby creating a positive faeklb

as well as retaining different numbers of original clasesfie cycle from which the tracker could not recover. While it is
We tested the object tracker on very different targets aceosclear that the optical flow plays an important role in keeping
wide variety of scenes, measuring the number of times tleat tihe tracking on target, the optical flow algorithm may be
estimate of the object’s location diverged from hand-latiel unable to capture the full camera motion in some domains,
ground-truth data. resulting in the classifier becoming lost.

The easiest object tracking problem was the EOD vehicle,Fundamentally, to solve the tracking problem in the face
shown in Figure 8(a). This data set contained 17 secondsoffpotentially large inter-frame camera motion, more sephi
video, for a total of 250 frames.Due to the large vehicle ticated object detection is needed. Once the ensembletbase
size, crisp features and stable hover of the MAV, we obtainggcker loses the target, there is no way to recover by using a
good performance for all tracker configurations. As Tabég I(local appearance-based tracker that is learned onlings siny
reveals, even with the non-optical-flow motion model, or theorruption of the current object estimate will be propadate
online retraining of the classifier, the tracker never Idw t forward. Subsequent classifiers would then get corrupted. A
vehicle after initialization. In addition, retaining diffent num- a result, an object detector with higher-level learnedrilavds
bers of the original classifiers had no effect on the traskeiis needed to recover from object tracker failures in the gene
performance for this target. case.

Tracking the walking person, shown in Figure 8(b), was
much more challenging due to the small size of the person
in the image. Nevertheless, by taking advantage of the ego-
motion estimation, the AET algorithm was still able to askie ~ Given the MAV's ability to estimate the guard’s position
excellent performance. As Table I(b) demonstrates, opticdd trajectory, the third challenge was to plan a trajectory
flow played an important role in keeping the tracking estemathe€ commandos to reach the hostage building without being
on target. In addition, adapting the object appearance o#&tected by the guard. Additionally, when mines were detect
time led to improved tracking. Although the appearance 8y the MAV, we needed to plan a trajectory for the EOD
the person moving around the field was re|ative|y Consta[\{@hide to reach the mines without being detected. We tdeate
the background changed dramatically when the person moJBgse problems symmetrically as a motion planning problem
from the green grass to the gray dirt patches. Retraining aifdl generic ground vehicles.
adapting the classifier therefore ensured that the claseifie ~ Traditional motion-planning algorithms are based on dearc
able to maintain enough discrimination between the perséfategies through a discretized state space. Althougbptee
and the background to continue tracking accurately. cific MAV "08 planning problem focused on generating routes

Finally, we evaluated the tracker performance in trackir@etween the cover points (marked, ..., F2 in Figure 1a),
the guard vehicle in the MAV '08 competition. Due to theVe sought a general purpose motion planner, one that is
mission profile, the MAV observed the bank building from &exible to unexpected guard motion and would allow us to
distance with the camera pointed forward, rather than foger €Xpress a wider range of trajectories.
directly above the bank building. With a forward-pointing Our motion planner makes a number of assumptions based
camera, image changes between frames due to the MAY the initial problem description, though not all of these a
motion became more pronounced. In addition, as shown SHmMptions were required for the actual MAV "08 competition.
Figure 8(c), the hedges surrounding the bank building wef&€ planner assumes a discretized planning area, a regular
exactly the same color and similar shape as the guard vehi€léd, and assumes that the vehicle can move from a grid cell
As a result, the tracker lost track of the guard vehicle farenoz to any of the 4-connected neighbors. We assume that each
often than in the other data sets we tested on. motion incurs a cost, and that the planner’s objective is to

In this data set, the camera motion, rather than changedififl the lowest cost sequence of states from the start to the
guard vehicle appearance, was the major factor that resul@@! without being detected by the guard. The guard has a
in the tracker becoming lost. The guard vehicle was movingp0 field-of-view with finite range, and a prior map of the
slowly enough that its motion should have had a negligibRvironment reveals which obstacles would occlude thergtou
effect. Instead, from watching the video of the guard vehiclvehicle from the guard. Additionally, the planner assunfes t
there were several situations where the pitching and glliih€ guard's current position is known, and that a model of the
of the MAV caused abnormally large inter-frame motion. Iiguard dynamics allows us to predict the guard's positiomé t
some of these cases, the optical flow was able to estimate &##gre. While a deterministic model of the guard's motion is
compensate for this ego-motion. In others, however, thiealpt Unrealistic, we did not have access to a reasonable stichast
flow computation failed to compensate for the camera motiofiodel of guard motion. As a result, following Bertsekas
and many of these large inter-frame motion coincided with t1995), we used open-loop feedback control in which the

tracker losing track of the vehicle. As a result, retrainthg Planner assumes a deterministic model and replans aftér eac
action. This form of planning under uncertainty relies on

“We typically received data from the vehicle at 15 Hz, but thisnber very fast replgnnlng but .has been shown to converge under
varied depending on the characteristics of the local RF.field reasonably mild assumptions.

6. GROUND VEHICLE PLANNING
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Algorithm 4 ; STATE-A* 6.2. TIME-STATE A*
ReqUil’ei Xstarty Xgoals Xguard

The TIME-STATE A* algorithm, developed by Fraichard

Lome A* (Xstart; Xgoal) (1999), represents the state of the ground vehicle with both
2 ’H.CO_LL'DE(W’XWW) a position and time co-ordinate. In order to account for
3: while 7> 0 do the guard, the 2-dimensional space is extrapolated into the

4 MARK—BLOCKED(”M) time domain, creating a 3-dimensional cost map (or “cube”),

5 Tiail A* (m[i — 1], Xgoat) where each cell represents a separate (t) co-ordinate. All

6: i (mqi == null) then actions are assumed to have the same, constant duration

£ retum  null In addition to the four motion commands, we add AUBE

& endif . action that causes the vehicle to stop in place for an amount
9w m[0:i— 1]+ mai of time At. Longer pauses can be achieved by executing

10:  § «— COLLIDE(T, Xguard)
11: end while
12: return w

PAUSE repeatedly. As before, we search through the cube
using standard A*, but limit the actions from every call ¢, t)
to its 5-connected neighbors at the next time stepl, i.e.
(z,y,t+1), (@—1,y,t+1), (x+1,y,t+1), (z,y—1,t+1) and

. 1 1). The Manh i h "
The planner must incorporate the guard’s temporal beha(\gin-’y + Lt ) e Manhattan distance between the robot's

ior to enerate detection-free paths for the around eh.cféurrent position and the final goal in the 2-dimensional spac
: g : P ground ven IS used as the heuristic; the Manhattan distance is known to

Temppral constraints typically require planni.ng in botla&g) b(? admissible, consistent and is a standard heuristic 1or 2-
and t'm.e’ but do!ng S0 leads to substantlgl COmpm"’mOnsaearch problems. Algorithm 5 shows thevE-STATE A* in
complexity, especially given the large map size. Insteagl, Wetail

examined three different strategies for planning with eesp '

to the guard dynamics, identifying a strategy that scalelé WR|gorithm 5 : TIME-STATE A*

with minimal loss in planner performance.

ReqUire: Xstarts Xgoaly Xguard, tﬂLa.’L‘
1o — A* ((Xstm‘tv Xguard, O)a (Xgoal» ) tmam))

6.1. STATE-A* 2: return

To determine if the additional complexity of planning in
time and space cc_)uld be gvmded, we first examined the P€Notice that the input to A* called from within ilME-STATE
formance of planning only in the state space of the ground VK* now includes states with an explicit time variable and
hicle. The SATE-A* algorithm discretizes the state space and P

searches for a plan from the start position to the goal a maximum time,,,.., in order to prevent infinite search
apa rp start © 9 depth resulting from multiple R&SE actions. We have abused
Xgoal, DOth given in GPS co-ordinates. T_he plarconsists of

an ordered list of states — {x i Xyout} the notation slightly by stating that the goal state of the A*
In order to avoid detectigtr?T.tl’JS/. e guércﬁ%EA* process iSXgoal; *, tmaz ), indicating that the guard can be in

i . : .. any position for the search goal state.
forward S|mulqtes the plan with the gl_Jard star.tmg at parsit By modeling time explicitly during the search process, the
Xgoal - .AS we simulate the ground .v_ehlc_le moving 10 th? nexltu\/lE—STATE A* algorithm can express a wider variety of
state in the plan, the guard position is predicted using t%?ans than $SATE-A* by incorporating plans that deliberately
known guard dynamics. Grid cells that are within the guard’s

field-of-view are marked as dynamic obstacles. The plannvé/"r’ut for the guard to move. Additionally, the search incorpo

. ) : rates knowledge of the guard more accurately by including
then tests to see if a detection (failure) would result, amy! Athe changing guard position as part of the search in the-state

state that is predicted to result in a detection is insentéd i . . . . .
tﬁnee domain. However, the computational cost of increasing

the map as a static obstacle. A new plan is generated, and . - . . .
. . . .. the size of the state space (an additional time dimensioy) ma
process is repeated until a plan that avoids guard deteistion

found, or until all possible plans have been tried. Algarith Zfr;e(;zr:??)fptliiri:eners ability to find good plans in a reasoeabl

4 shows the $ATE-A* in detail. The COLLIDE subroutine '

simulates the ground vehicle motion along the ptgnhand

the MARK_BLOCKED subroutine modifies the map for future®-3- WINDOWED TIME-STATE A* (WTS-A%)

re-planning. Since the search grows exponentially with the search depth,
The SrATE-A* approach is expected to be computationene alternative approach is to redutg,., including only

ally efficient compared to time-state search processedies plans that have a maximum length,.. in the search. How-

branching factor in the search is limited to changes in tlewer, this may significantly reduce the planner’s abilityfital

position of the ground vehicle, rather than changes in bote t good plans when plans need to be longer thap., which

and position. However, this computational saving restribe is likely across a 1 km distance. Instead, we examine an

plan space, since the search process cannot take advaffitagetermediate approach of iteratingMe - STATE A* search in a

pause actions (without a time variable, a pause action woluiichited time window, building off techniques in the coopiva

appear to have no effect). As a result of the restricted plaearch literature that restrict the search windevg.\WHCA*

space, the planner may not be able to find efficient or roby&lver, 2005)) to reduce the overall computational densand

plans that actually exist. of the search process. WHCA* performs cooperative search
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Runtime optimality environments by varying a number of parameters. In pagicul
o0 oo we varied the size of the map, the percentage of the map that
was blocked by static obstacles, as well as the number of
single-occupancy dynamic obstacles that maneuvered in the
environment. Table Il summarizes the 24 map settings uged fo
simulations. All algorithms were tested on each settindn\8@

8,250 95%

5,500 90%

(ms)

2,750 85%

80%

@) (b) randomly generated maps. For each rifiayt andgoal states
were positioned randomly on the two opposite sides of the gri
7000 Memery 2ox Fallure Rate world, while guard positions were randomly generated and

moved to an empty neighbor cell on each time step. Table lli
summarizes the various window Sizég{,40.,) and maximum

3 4,200

£ 2000 8% time (t,nq2) USed in each domain. Additionally, we measured
1400 . . = the memory usage and the failure rate of each algorithm. A
° o% failure occurred if the algorithm failed to find the existipgth
() (d) to the goal.
Hl State-A* [l Time-State A* [l WTS-A*(Small) WTS-A%(Large)
fo o A ; imali 4 fail © GiE Static obstacles
ig. 9. verage runtime, optimality, memory and failure rate :
A*, Time-State A*, WTS-A*(Small), and WTS-A*(Large) across plaing ’ Map Size 20 % ‘ 30 %
problems with sizes30 x 30,70 x 70, and 100 x 100, each over30 runs. 30 x 30 {20, 40, 60, 80} {20, 30, 40, 50}

70 x 70 | {40,70,100,130} | {20,40,60,80}

up to a fixed limited horizon and uses an abstract heuristic fo 100 x 100 | {50,80,110,140} | {10,30, 50,70}
the remaining search to full depth. In contrast, we propese a TABLE Il

alternative form of windowed search by first using the alostra '\ UMBER OF DYNAMIC OBSTACLES USED FOR EACH MAP SETTING
heuristic to compute a path, before dividing it into smaller

sub-plans and performingIMie-STATE A* search within that

space. Window Size(tyindow)
Algorithm 6 : WINDOWED TIME-STATE A* (WTS-A¥*) ’ Map Size | Small ‘ Large tmaz ‘
ReqUire: Xstarts Xgoali Xguarda tmazi twindow ?8 x ig ;g ig 36207
1: 7rapproa@ — A* (Xstarta Xgoal) x
2 {#1} - DIVIDE (Tompron. buindo) 100 x 100 | 25 50 667
3t 0 TABLE III
4: fOr ,ﬁ.z c {ﬁ.l} do WINDOW SIZES AND MAXIMU’\I/\lﬂALII\Q:EZEgRAMETERS USED IN VARIOUS
5 x «— 7'[1]
6. X « 7ilend]
7 Mail < A (X Xguard, 1), (X' tmaz ) Figure 9 depicts the averaged runtime (a), quality (b),
8 if mei == null then memory usage (c), and failure rate (d) of the resulting plan
o: return  null for STATE-A*, T IME-STATE A*, and WTS-A* with different
10:  end if window sizes. As expected, on averageyid-STATE A* was
111 T T+ Miail the most time consuming algorithm, as shown in Figure 9(a).
12: t —t+length(miau) Interestingly, WTS-A* on average outperformedaSe-A*
13: end for in terms of runtime. On the other hand, the quality of the path
14: return 7 found by the WTS-A* were on par with those found byME -

STATE A*, shown in Figure 9(b). The plan performance found

Algorithm 6 presents our complete algorithm. First, apy the WTS-A* was within 97% of the optimal plan (found
approximated plan is computed usingASE-A*, ignoring by TIME-STATE A*), while STATE-A* suffered a drop around
the guard position. This plan is then divided into sub-plano, from the optimal. Figure 9(c) depicts the maximum
according to a window size, and for each start and end stat@mory used by each algorithm in terms of the number of
of the sub-plan, the plan between these states is regetiergd@ntical visited nodes. While this graph resembles theingn
using TiIME-STATE A*. Notice that thet variable is used to time of the corresponding algorithms, withME-STATE A*
maintain the time required to execute each sub-ptanso taking up the most memory, the memory usage ok1&-A*
as to ensure a proper connection between each section ofjggn par with the small window version of WTS-A* and less

path. than the large window version of WTS-A*. This highlights
) ) the fact that although ®TE-A* had to re-plan more often,
6.4. Simulation Results it searched through a more compact space. Figure 9(d) shows

In order to determine the performance of these algorithmbge average failure rate of the various methods. As expgected
we evaluated the three algorithms in a series of random m@paTe-A* suffered the most because of its substantial search



70x70 Maps, 20% Blockage

Optimality

Runtime 100%

90%
80%

70%
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apparent. Figures 10(c) and 10(d) illustrate the runtimeé an
performance results of all algorithms for maps of size 30.
For any number of dynamic obstaclesia$e-A* and WTS-
A* with a large window size exceeded the runtime afviE-
STATE A*. Since the size of this map was small, the number

of possible paths to the goal was limitediIME-STATE A*
found the optimal path by a complete search through thelsearc
space, while both 8a\TE-A* and WTS-A* had to perform

a number of re-planning operations. These results suggest t
applicability of using TME-STATE A* for small search spaces
with dynamic obstacles.

60%
° 50%

a0 70 100 130 40 70 100 130
Dynamic Obstacles

(b)
30x30 Maps, 20% Blockage

Runtime

Dynamic Obstacles

@)

Optimality
100%
7. MIsSION PERFORMANCE INMAYV '08

90%

80%

As described in section 3, the goal of the mission was to
guide commandos across a field to a remote building. Our
vehicle has a top speed of 10 m/sec, and the battery provides
a total flight time of 10-12 minutes. We therefore divided the
mission into multiple phases of mine detection, mine digpos
and guard surveillance. Between each phase of the mission,
we planned to return the MAV to the launch point to replace
the battery.

The goal of phase 1 was to identify potential mine locations
and begin guard vehicle estimation before having the MAV
return to recharge. Unfortunately, once the guard poskioh
trajectory were identified, the amount of energy required to
return to the ingress point was underestimated, and theleehi
space restriction. While WTS-A* had a much lower failurdVas lost after 710 seconds, having traveling 1.75 km. We were
rate, it still failed to find the existing path in fewer than #f Prepared to lose the vehicle in the field and therefore had
maps. This is due to the fact that WTS-A* assumes that ea@y/!tiple vehicles at the ingress point.

windowed path in the state space has a valid translation into! "€ goal of phase 2 was to identify additional mine lo-

the time-state space, which is not always truevd-STATE cations, coordinate with the EOD vehicle to perform mine

A* on the other hand is complete, which translates to a o8sposal and to begin execution of the commando plan. During

failure rate. this phase, the mine shown in Figure 11 was geo-located and
Similar results were observed across different map sizeccessfully disposed of, and the MAV returned to the irgres
and obstacles quantity, although some additional obsensat POINt for recharging. Additionally, the commandos conédu
can be made. Figures 10(a) and 10(b) depict the runtime £peuting their planned motion towards the hostage bujldin
performance results of State A*, Time-State A*, and WTS-
A* with window sizes of 20 and 40 in a map of size 70.
As the number of dynamic obstacles increases, the extra cost
of re-planning for SATE-A* dominated the cost of planning
in the time-state space, as shown in Figure 10(a), indigatin
that as the number of obstacles increased, re-planningedeed
to occur more frequently. Even thoughMEE-STATE A* had
to search in a larger space, most plans generatedTbhyeS
A* were infeasible, leading to ®TE-A* incurring a longer
runtime than TME-STATE A*. Eventually after 100 obstacles,
this re-planning cost dominated the planning process in the
larger space. The side-effect of such excessive re-plgruan Fig. 11. A mine discovered during phase 2 embedded in a routeebat
be observed in Figure 10(b), where the optimality ohge:- covered positions.
A* drops rapidly with increasing obstacles. AlthoughMmE-
STATE A* is guaranteed to find the optimal solution, it incurs The goal of phase 3 was to finish identifying mine locations,
a heavy computational cost. In contrast, WTS-A* achieve thHimish disposing of remaining mines and re-acquire the guard
best of both worlds: their running time is less than both th&tajectory before finishing the commando mission. A dekiber
of STATE-A* and TIME-STATE A*, while the quality of the decision was taken by the human operators to abandon the
plans found remains high (about 98% of the optimald- vehicle in the field and avoid the time of the return trip to
STATE A¥). the ingress point for recharging, in order to provide addiil
In very small maps, the cost of re-planning is even moténe to complete the commando mission in the 40 minutes.

T0%
60%
50%

20 40 60 80 20 40 60 80
Dynamic Obstacles

()

Dynamic Obstacles
©

Hl State-A* [l Time-State A* [l WTS-A*(Small) WTS-A*(Large)

Fig. 10. Runtime and optimality results of 30 runs for State-Aime-State
A*, WTS-A*(Small), and WTS-A*(Large) averaged across diffeteumbers
of dynamic obstacles in map sizes @ x 70 (a,b) and30 x 30 (c,d) with
20% blockade.
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(a) Phase (b) hase

Maximum height: 35.7 m Maximum height: 13.0 m
Distance traveled: 1759.2 m Distance traveled: 1247.2 m

Total flight time:  710.0 secs Total flight time:  621.1 m

e X e
(d) Expected Ground Vehicle Path (e) Actual Path

I Obstacle Detected === Ground Vehicle Path
. Mine Detected (O Mine Deactivated

Sy X

(c) Phase 3

Maximum height:  28.8m
Distance traveled: 1290.5m
Total flight time:  644.7 m

Fig. 12. (a-c) The paths executed by the MAV. (d) The initiatl aactual plan executed by the commandos and EOD vehicle.

Figure 12(a-c) shows the actual paths flown by the MAtaken by the vehicles changed from this expected path to the
on each mission. Figure 12(d) shows both the initial plan @fittock (midline) path based on detected mines and obstacle
the ground vehicle computed using the WTS-A* algorithminformation, and the resultant re-planning.

as well as the actual executed p|an during the mission. |n|n genera'l we were very pleased with the performance of
the final mission scenario, the guard vehicle motion W3ge MAV and the co-ordination between the tracked ground
extremely deterministic and did not require much variatioyrgets and the planned trajectories for the EOD vehicle and
in the timing constraints so the timing information is Nokommandos. In particular, during phase 2 of the mission we
shown in the image. The path from cover point to cover poiRfere able to compensate for a temporary loss of GPS on the
took 3 minutes and reliably avoided detection. The actutd p%OD Vehic'e; we repurposed the MAV temporarily to geo-
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locate the EOD as it disposed of a mine. We flew a total of REFERENCES
4296.9m in 40 minutes, detected two mines and two ground
obstacles and successfully disposed of the only mine alomg Avidan, S. (2007). Ensemble trackingEEE transactions on
planned trajectory. pattern analysis and machine intelligen28(2): 261-271.
Bagnell, J. and Schneider, J. (2001). Autonomous helicopte
control using reinforcement learning policy search meghod
In Proceedings of the IEEE International Conference on
This paper described critical hardware and software com-Robotics and Automation
ponents of a combined micro air vehicle and ground vehicBertsekas, D. (1995). Dynamic programming and optimal
system for performing a remote rescue task, as part of thecontrol .
MAV '08 competition organized by the US and Indian governBouabdallah, S., Siegwart, R., and Caprari, G. (2006). gvesi
ments. While our system performed to our satisfaction and wasand control of an indoor coaxial helicopter. Rtoceedings
awarded “Best Mission Execution”, there are a number of key of the IEEE/RSJ International Conference on Intelligent
technical questions that remain unsolved before coorelithat Robots and Systems
air and ground systems can become commodity technologi€asbeer, D., Beard, R., McLain, T., Li, S., and Mehra, R.
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