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Abstract—Robot manipulators typically rely on complete
knowledge of object geometry in order to plan motions and
compute grasps. But when an object is not fully in view it can
be difficult to form an accurate estimate of the object’s shape
and pose, particularly when the object deforms.

In this paper we describe a generative model of object geom-
etry based on Mardia and Dryden’s “Probabilistic Procrustean
Shape” which captures both non-rigid deformations and object
variability in a class. We extend their shape model to the
setting where point correspondences are unknown using Scott
and Nowak’s COPAP framework. We use this model to recognize
objects in a cluttered image and to infer their complete 2-D
boundaries with a novel algorithm called OSIRIS. We show
examples of learned models from image data and demonstrate
how the models can be used by a manipulation planner to grasp
objects in cluttered visual scenes.

1. INTRODUCTION

Robot manipulators largely rely on complete knowledge of
object geometry in order to plan their motion and compute
successful grasps. If an object is fully in view, its shape can be
inferred from sensor data and a grasp computed directly. If the
object is occluded by other entities in the scene, manipulations
based on the visible part of the object may fail; to compensate,
object recognition is often used to identify the location ofthe
object and compute the grasp from a prior model. However,
new instances of a known class of objects may vary from
the prior model, and known objects may appear in novel
configurations if they are not perfectly rigid. As a result,
manipulation planning can pose a substantial challenge when
objects are not fully in view.

Consider the camera image1 of four toys in a box in
figure 1(a). Prior knowledge of each object’s geometry is
extremely useful in that the geometry of the visible segments
(such as the three parts of the stuffed bear) can be used to
recognize each object, and a grasp can then be planned using
the known geometry as in figure 1(b). However, having such
a prior model of the geometry of every stuffed bear in the
world is not only infeasible but unnecessary. Although the
bear may change shape as it is handled and placed in different
configurations, the general shape in terms of a head, limbs,
etc. are roughly constant. Regardless of configuration, a single
robust model for each class of objects which accounts for
deformations in shape should be sufficient for recognition and
grasp planning for most object types.

1Note that for the purposes of reproduction, the images have been cropped
and modified from the original in brightness and contrast. They are otherwise
unchanged.

(a) Original Image (b) Recovered Geometry

Fig. 1. (a) A collection of toys in a box. The toys partially occlude each other,
making object identification and grasp planning difficult. (b) By using learned
models of the bear, we can identify the bear from the three visible segments
and predict its complete geometry (shown by the red line; the dashed lines
are the predicted outline of the hidden shape). This prediction of the complete
shape can then be used in planning a grasp of the bear (plannedgrasp points
shown by the blue circles).

In this paper we describe an algorithm for learning proba-
bilistic models of visual object geometry. Statistical models of
shape geometry have recently received attention in a number
of domains, including computer vision and robotics (Felzen-
szwalb 2005; Elidan et al. 2006), but existing techniques
have largely been coupled to tasks such as shape localization
(Elidan et al. 2006), recognition and retrieval (Mokhtarian
and Mackworth 1992; Belongie et al. 2002). On the other
hand, many effective recognition and retrieval algorithmsare
discriminative in nature and create representations of theshape
that make it difficult to perform additional inference such as
recovering hidden object geometry.

Since we are specifically interested in using object geometry
for manipulation planning, in section 3 we describe the repre-
sentation of shapes as dense 2-D contours usingProcrustean
shape models(Dryden and Mardia 1998; Kendall et al. 1999)
which provide invariance to translation, scale and rotation. In
section 4 we present an algorithm for learning a Procrustean
shape model from a set of complete object contours for a
known object class. One challenge in using these shape models
is that to compute the likelihood of a particular shape given
a model, we musta priori know which points on the contour
of the observed shape correspond to which points on the
contour of the learned model. Thus, as part of the model
learning process, we describe in section 4.2 how to solve
the data association problem between points on two contours
by extending Mardia and Dryden’s model learning algorithm
to the setting where correspondences are unknown. To infer
correspondences between shapes, we use Scott and Nowak’s



COPAP framework (2006) which relies on the cyclic ordering
of points around 2-D object boundaries to generate point-to-
point matchings.

In the second technical section of the paper, we describe
an algorithm for using the learned models to recognize
occluded objects and complete the occluded geometry, an
algorithm we call OSIRIS (Occluded Shape Inference Routine
for Identification of Silhouettes, section 5). Given a set of
learned models, we adapt COPAP to allow recognition and
inference of partially-hidden, deformable shapes using two
modifications. We extend the Procrustean model to incorporate
“wildcard” points that match the hidden parts of partially-
occluded shapes and secondly, we provide a novel point-
assignment cost function based on a local Procrustean shape
distance which we call theProcrustean Local Shape Distance
(PLSD). We conclude with an experimental analysis of the
algorithm on a large data set of object contours, a data set of
real images and a demonstration of using the learned models
to compute grasps.

The goal of this work is to provide estimates of geometry
that allow a grasp to be planned for an object in a cluttered
scene given a single image of the scene. The input to the
algorithm is therefore a single image which is first segmented
into perceptually similar regions. Although image segmenta-
tion is a challenging research problem, it is outside the scope
of this paper and we rely on existing segmentation algorithms
such as that of Shi and Malik (2000). The boundaries or
contours of the image segments are extracted, and it is these
representations of object geometry that are used throughout
this paper. All of the techniques in this paper in principle
extend to 3-D, but following the observation of Bone and Du
(2001) that “grasp planning is much simpler in 2D, and 2D
grasps are applicable to many 3D objects”, we concentrate
on the 2-D representations required to grasp objects (Shimoga
1996; Mirtich and Canny 1994) with a planar manipulator
capable of supporting the weight of the object.

This paper extends the methods presented in Glover et al.
(2006) to include extensions of the shape completion algorithm
and a complete description of the model learning and shape in-
ference algorithms. In addition to the preliminary experiments
on a small set of shapes reported in Glover et al. (2006), we
present results on the larger MPEG-7 shape dataset (Latecki
et al. 2000).

2. RELATED WORK

Point-based statistical shape modeling began with the work
of Kendall (1984) and Bookstein (1984) on landmark data
in the 1980s. However, algorithms for finding Procrustean
mean shapes (Kristof and Wingersky 1971; Gower 1975;
Berge 1977) were developed long before the topology of
shape spaces were well-understood (Kendall et al. 1999; Small
1996). In the classical computer vision literature, there has
been considerable work on recognizing occluded objects, e.g.,
Lin and Chellappa (1987); Koch and Kashyap (1987); Grimson
and Lozano-Ṕerez (1987). Recognizing and localizing oc-
cluded objects when the objects are rigid is known as the “bin-

of-parts” or “bin-picking” problem. Despite being described
by early vision researchers as the most difficult problem in
automatic assembly (Gottschalk et al. 1989), there were many
successful systems developed in the 1980’s which solved the
bin-of-parts problem in controlled environments. Most systems
used greedy, heuristic search in a “guess-and-test” framework.
Thus, in order to scale well with the number of object classes
(and the number of objects in the image) they needed to be
especiallygreedy, pruning away as much of the search space
as possible to avoid an exponential running time. As a result,
these approaches were especially sensitive to variations in
shape.

An explosion of interest in object detection and segmen-
tation in recent years has led to many advances in modeling
shape variability (Cremers et al. 2003; Cootes et al. 1995;
Felzenszwalb 2005; Blake and Isard 1998; Elidan et al. 2006).
However, most of these shape deformation models have been
applied in constrained environments, detecting only a handful
of prescribed object types–for example in medical imaging
(McInerney and Terzopoulos 1996) or face detection (Cootes
et al. 1995). We believe our work is one of the first to
perform probabilistic inference of deformable objects from
partially occluded views. In terms of shape classification,
shape contexts (Belongie et al. 2002) and spin images (Johnson
and Hebert 1999) provide robust frameworks for estimating
correspondences between shape features for recognition and
modelling problems. Our work is very related but initial
experiments with these descriptors motivated developmentof
a better shape model for partial views of objects. In addition
to the Procrustean shape model, Hu moments (Hu 1962) also
provide invariance to position, scale, and rotation (as well as
skew); however, our emphasis on boundary completion and
manipulation made us choose the point-based, Procrustean
approach over invariant moment, image-based approaches.
Classical statistical shape models require a large amount of
human intervention (e.g., hand-labelled landmarks) in order
to learn accurate models of shape (Dryden and Mardia 1998);
only recently have algorithms emerged that require little
human intervention (Felzenszwalb 2005; Elidan et al. 2006).

The goal of our shape inference algorithm is to infer
object geometry required for traditional grasp planning. Our
presentation of object grasping in section 7 is intended as a
demonstration of shape inferencein situ, and could be used by
any grasping algorithm that guaranteed geometrically closure
properties Nguyen (1989); Pollard (1996). Our approach is in
contrast to recent work by Saxena et al. (2006) that learns ma-
nipulation strategies directly from monocular images. While
this technique shows promise, the focus has been generalizing
as much as possible from as simple a data source as possible,
rather than reasoning about multiple occluding objects. More
recently, Katz and Brock (2008) showed that manipulation
strategies could be learned from changes in object geometry;
in occluded scenes their work would complement ours.



3. PROBABILISTIC MODELS OF2-D SHAPE

We begin with a summary of the Procrustean shape model2.
Formally, we represent an objectz in an image as a set ofn
ordered points on the contour of the shape,[zT

1 zT
2 · · · z

T
n ], in a

2-D Euclidean space, wherezi = (xi, yi), andz ∈ R2n. Our
goal is to learn a probabilistic, generative model ofz which
is invariant to 2-D translation, scaling, and rotation. We begin
by making the contour invariant with respect to position and
scale, normalizingz so as to have unit length with centroid at
the origin, that is,

z′ = {z′i = (xi − x̄, yi − ȳ)} (1)

τ =
z′

|z′|
, (2)

whereτ is called thepre-shapeof the contourz. Sinceτ is a
unit vector, the space of all possible pre-shapes ofn points is
the unit hyper-sphere,S2n−3

∗
, calledpre-shape space3.

Any pre-shape is a point on the hypersphere, and it can be
shown that all 2-D rotations of the pre-shape lie on an orbit,
O(τ), of this hypersphere. (In fact,O(τ) is a “great circle”
orbit, or orbit of maximal length on this hypersphere.) In other
words, rotating an object in a 2-D image corresponds to rotat-
ing its pre-shape along a great circle orbit of a hypersphere.

Since we can rotate any pre-shape through its orbit without
changing the geometry ofz, we define the “shape” ofz as an
equivalence class of pre-shapes over rotations. In this waywe
arrive at a convenient vector-based description of shape which
is fully invariant to translation, scaling, and rotation.

If we can define a distance metric between shapes, then we
can infer a parametric distribution over the shape space. The
spherical geometry of the pre-shape space requires a geodesic
distance rather than Euclidean distance. The distance between
τ1 and τ2 is defined as the smallest distance between their
orbits,

dp[τ1, τ2] = inf[d(ϕ,ψ) : ϕ ∈ O(τ1), ψ ∈ O(τ2)] (3)

d(ϕ,ψ) = cos−1(ϕ · ψ). (4)

Kendall et al. (1999) defineddp as theProcrustean metric
whered(ϕ,ψ) is the geodesic distance betweenϕ andψ, and
ϕ andψ are specific vectors on the orbits ofτ1 andτ2. (Note
that while great circle orbits in a standard 3-D sphere will
always intersect, the extra dimensions in a hypersphere allow
for great circles that do not intersect.)

Since the inverse cosine function is monotonically decreas-
ing over its domain, it is sufficient to maximizeϕ ·ψ, which is
equivalent to minimizing the sum of squared distances between
corresponding points onϕ and ψ (since ϕ and ψ are unit
vectors). For every rotation ofϕ alongO(τ1) there exists a
rotation ofψ alongO(τ2) which will find the global minimum
geodesic distance. Thus, to find the minimum distance, we
need only rotate one pre-shape while holding the other one

2For a fuller treatment of this subject, we refer the reader to Dryden and
Mardia (1998); Kendall et al. (1999); Small (1996).

3Following Small (1996), the star subscript is added to remind us that
S
2n−3
∗

is embedded inR2n, not the usualR2n−2.

fixed. We call the rotatedψ which achieves this optimum the
orthogonal Procrustes fitof τ2 onto τ1, and the angleθ∗ is
called theProcrustes fit angle.

We can solve for the minimization of equation (3) in closed
form by representing the points ofτ1 and τ2 in complex
coordinates (x + yi), which naturally encode rotation in the
plane by scalar complex multiplication. This givesdp as

dp[τ1, τ2] = cos−1 |τH
2 τ1| (5)

θ∗ = arg(τH
2 τ1), (6)

whereτH
2 is the Hermitian, or complex conjugate transpose

of the complex vectorτ2, andarg(·) is the complex argument
operator: i.e.arg(x+ iy) = tan−1(y/x).

4. LEARNING SHAPE MODELS

In order to learn a probabilistic model of the geometry of
different object classes, we compute a distribution for each
object class from complete object contours extracted from
training images. We will start by describing the classical
tangent-space model learning approach of Dryden and Mardia
(1998), which requires known point-to-point correspondences
between all of the training shapes as input. We then describe
how to compute correspondences between the points on two
shape contours, so that by section 4.6 we can present a model
learning algorithm which does not require correspondencesto
be known ahead of time.

In many applications, pre-shape data will be tightly lo-
calized around a mean shape. In such cases, the tangent
space to the pre-shape hypersphere located at the mean shape
will be a good approximation to the pre-shape space, as in
figure 2. By linearizing the distribution in this manner, one
can take advantage of standard multivariate statistical analysis
techniques by representing the shape distribution as a Gaussian
and reducing the dimensionality of the model with Principal
Components Analysis (PCA) in order to prevent overfitting4.

Fig. 2. Although the distribution of pre-shape geometries lies on the surface
of a hypersphere, we approximate this distribution with a distribution over
the plane tangent to the sphere.

4In cases where the pre-shape data is more spread out, one can use a
complex Bingham distribution(Dryden and Mardia 1998), one of several
distributions which attempt to incorporate the non-linearity of shape space
directly, with no approximation. The primary advantage to using the tangent
space Gaussian model lies in its simplicity; more experimentation is needed
to determine whether the gains in modelling accuracy by using other shape
distributions would justify the additional complexity in our robotic grasping
domain.



(a) Example Object (b) Class Distribution

Fig. 3. (a) An example image of a chalk compass. The compass can deform
by opening and closing. (b) Sample shapes from the learned distribution along
different eigenvalues of the distribution.

In order to fit a tangent space Gaussian approximation to a
set of shapes, it is sufficient to compute the mean and covari-
ance of the training data. For each object classc, we compute
a mean shapeµ∗ from a set of pre-shapes{τ (1), . . . , τ (n)}
by minimizing the sum of Procrustean distances from each
pre-shape to the mean,

µ∗ = arginf
µ

∑

j

[dp(τ
(j), µ)]2, (7)

subject to the constraint that‖µ‖ = 1. In 2-D, this minimiza-
tion can be done in closed form; iterative algorithms exist
for computingµ∗ in higher dimensions (Berge 1977; Gower
1975).

In order to estimate the covariance of the shape distribution
from the sample pre-shapes{τ (1), . . . , τ (n)}, we rotate each
τ (j) to fit the mean shapeµ (in the Procrustean sense), and
then project the rotated pre-shapes into the tangent space of the
pre-shape hypersphere at the mean shape. Thetangent space
coordinatesfor pre-shapeτ (j) with respect to mean shapeµ
are given by

v(j) = (I − µµH)eiθ∗

τ (j), (8)

where i2 = −1 and θ∗ is the optimal Procrustes-matching
rotation angle ofτ (j) onto µ. (The eiθ∗

term rotates the pre-
shapeτ (j) by θ∗, while (I − µµH) projects the rotated pre-
shape into tangent space.)

We then use Principal Components Analysis (PCA) in the
tangent space to model the principal axes of the Gaussian
shape distribution of{v(1), . . . ,v(n)}. Figure 3(a) shows one
example out of a training set of images of a deformable
object. Figure 3(b) shows sample objects drawn from the
learned distribution. The red contour is the mean, and the
green and blue samples are taken along the first two principal
components of the distribution.

4.1. Shape Classification

Given K previously learned shape classesC1, . . . , CK

with shape meansµ(1), . . . , µ(K) and covariance matrices
Σ(1), . . . ,Σ(K), and given a measurementx of an unknown
object shape, we can now compute the likelihood of a shape
class given a measured object,P (Ck|x). The shape classifica-
tion problem is then one of finding the maximum likelihood

Fig. 4. Order-preserving matching (left) vs. Non-order-preserving matching
(right). The thin black lines depict the correspondences between points in the
red and blue contour. Notice the violation of the cyclic-ordering constraint
between the right arms of the two contours in the right image.

class,Ĉ, which we can compute as

Ĉ = arg max
Ck

P (Ck|x) (9)

= arg max
Ck

P (x|Ck)P (Ck). (10)

Given the mean and covariance of a shape class, we can
compute the likelihood of a measured object givenCk by
computingτ , the pre-shape ofx, and then projectingτ into
Ck’s tangent space with equation (8), yieldingp(x|Ck) =
N (v(k);0,Σ(k)). Assuming a uniform prior onCk, we can
compute the maximum likelihood class as

Ĉ = argmax
Ck

N (v(k);0,Σ(k)). (11)

Note that we place the origin of the tangent spacek at µ(k);
as a result, the Gaussian distribution in the tangent space is
zero mean but the projection onto the tangent space implicitly
accounts for the distance from the mean.

4.2. Data Association and Shape Correspondences

Evaluating the likelihood given by equation (11) requires
calculating the Procrustean distancedp between the pre-shape
of the observed contourx and the meanµ(k). More generally,
the Procrustean distance between any two contoursx and
y implicitly assumes that there is a known correspondence
between pointxi in x and pointyi in y, for all i. Therefore,
before we can compute the probability of a contour or learn the
mean and covariance of a set of pre-shapes, we must be able
to compute the correspondences between contours, matching
each point inx to a corresponding point ony5.

Our goal is to match the points of one contour,x1, . . . ,xn

to the points on another,y1, . . . ,ym. Let Φ denote a corre-
spondence vector, whereφi is the index ofy to which xi

corresponds; that is:xi → yφi
. We wish to find the most

likely Φ given x andy, that is,Φ∗ = argmaxΦ p(Φ|x,y). If
we assume that the likelihood of individual points{xi} and
{yj} are conditionally independent givenΦ (that is, two mea-
surements of the same object are independent given knowledge

5There is also an assumption that the number of points inx andy are the
same. Ifx andy differ in their number of points, we must find a way to add
points to one shape (or remove points from the other) in order to bring them
into one-to-one correspondence. We address this issue in section 4.6.



of the object, a very standard assumption in robotics), then

Φ∗ = argmax
Φ

1

Z
p(x,y|Φ)p(Φ)

= argmax
Φ

1

Z

n
∏

i=1

p(xi,yφi
)p(Φ) (12)

whereZ is a normalizing constant.
Solving for the most likely correspondences between sets

of data is an open problem in a number of fields, including
computer vision and robotic mapping. As object geometries
vary due to projection distortions, sensor error, or even natural
object dynamics, it is non-trivial to determinewhichpart of an
object image corresponds towhich part of a previous image.
However, we can take advantage of geometric properties of
objects to prune the search space, generating solutions to the
correspondence problem efficiently. These geometric proper-
ties constitute priors over the likelihoodp(Φ) in equation (12),
either reducing or setting to 0 thea priori likelihood of certain
correspondences.

4.3. Priors over Correspondences

The first geometric property that we use is a hard constraint
on correspondence orderings. By the nature of object contours,
our specific shape correspondence problem contains acyclic
order-preservingconstraint, that is, correspondences between
the two contours cannot “cross” each other numerically (as
opposed to geometrically—we are not suggesting that lines
drawn between matched points cannot cross). For example, if
x3 corresponds toy3 andx5 corresponds toy5, thenx4 must
correspond toy4 (or nothing); it is a violation of the cyclic
ordering constraint forx4 to correspond toy2 or y6.

Scott and Nowak (2006) define the Cyclic Order-Preserving
Assignment Problem (COPAP) as the problem of finding an
optimal one-to-one matching such that the assignment of
corresponding points preserves the cyclic ordering inherited
from the contours. Figure 4 shows an example set of corre-
spondences (the thin black lines) that preserve the cyclic order-
preserving constraint on the left, whereas the correspondences
on the right of figure 4 violate the constraint at the right of
the shape (notice that the association lines cross). We therefore
setp(Φ) = 0 for any correspondence vector that would violate
the order-preserving constraint. In the following sections, we
show how the COPAP algorithm can be used to solve for these
correspondences using an appropriate point-assignment cost
function for matching the contours of deformable objects.

The second geometric property we use as a priorp(Φ) over
correspondences is to prefer models which provide the greatest
number of corresponding points between the two shapes. The
correspondence model must allow for the possibility that due
to variations in object geometry, some points{xi, . . . ,xj} in
sequence do not correspond to any points iny. For example,
if sensor noise has introduced spurious points along an object
edge or if the shapes vary in some significant way, such as
an animal contour with three legs where another has four,
the most likely correspondence is that some points inx are

(a) (b)

Fig. 5. Local shape neighborhoods. (a) The full contour of a running person.
(b) Closeup of the top of the contour in (a), with local shape neighborhoods
about the point• of sizek = 1 (�), k = 2 (�), andk = 3 (N), where the
original contour points are shown as small blue circles (◦) and the interpolated
neighborhood points are shown as small red+’s. The neighborhoods are
chosen so that the length of the largest neighborhood (N) is 20% of the full
contour length.

simply not present iny, or must be “skipped”. However,
we prefer models where as much ofx is matched toy as
possible. We therefore use a prior over correspondences,p(Φ),
that is an exponential distribution over the number of skipped
correspondences, subject to the cyclic ordering constraint.

We “skip” individual correspondences inx by allowing
φi = 0. (Points yj are skipped when∄i s.t. φi = j). To
minimize the number of such skipped assignments, we give
diminishing likelihood toΦ as the number of skipped points
increases. ForΦ with kΦ skipped assignments (inx andy),

p(Φ) =

{

1
ZΦ

exp{−kΦ · λ} if Φ is cyclic ordered

0 otherwise,
(13)

where ZΦ is a normalizing constant andλ is a likelihood
penalty for skipped assignments. A high value ofλ indicates
that the algorithm should skip over as few points as possible,
while a low value tells the algorithm to skip over any points
that do not have a near-perfect match on the other shape
boundary. Throughout this paper, we use a value of.03 for
λ.

We add to this prior the cyclic-ordering constraint by
allowing p(Φ) > 0 if and only if

∃ω s.t. φω < φω+1 < · · · < φn < φ1 < · · · < φω−1. (14)

We call ω the wrapping point of the assignment vectorΦ.
Each assignment vector,Φ, which obeys the cyclic-ordering
constraint must have a unique wrapping point,ω.

4.4. Correspondence Likelihoods: PLSD

Given an expression for the correspondence prior, we also
need an expression for the likelihood that two pointsxi and
yφi

correspond to each other,p(xi,yφi
), which we model as

the likelihood that the local geometry of the contours match.
Section 3 described a probabilistic model for global geometric
similarity using the Procrustes metric, and we modify this
model for computing the likelihood of local geometries. We
compute this likelihood by first forming a distance metric over
local shape geometry, which we call theProcrustean Local
Shape Distance(PLSD). Given such a distance,dPLS , we
compute the likelihood as the probability ofdPLS under a
zero-mean Gaussian model with fixed variance,σ. Sinceσ is



fixed for every local shape correspondence likelihood, we can
simply write it as part of the normalization constant to ensure
that the distributionp(xi,yφi

) sums to one. Thus,

p(xi,yφi
) =

1

ZPLS

exp {−[dPLS(xi, yφi
)]2} (15)

whereZPLS is a normalization constant.
In order to compute the Procrustean local shape distance,

we first need a description of the local shape aboutxi. (When
the local spacing ofx and y is uneven, we sample points
evenly spaced aboutxi andyφi

, interpolating as necessary to
ensure that there is the same number of evenly-spaced points
in the local neighborhood on each shape.) We define thelocal
neighborhoodof sizek ∈ N aboutxi as:

ηk(xi) = 〈δi
x(−2k∆), ..., δi

x(0), ..., δi
x(2k∆)〉 (16)

whereδi
x(d) returns the point fromx’s contour a distance ofd

starting fromxi (clockwise ford positive or counter-clockwise
for d negative). Also,δi

x(0) = xi. The parameter∆ determines
the step size between points, and thus the resolution of the
local shape. We have found that setting∆ such that the
largest neighborhood is between 10–30% of the total shape
circumference (we use 20% throughout this paper) yields good
results on most datasets (figure 5).

The Procrustean Local Shape Distance,dPLS , between two
points,xi andyj is the mean Procrustean shape distance over
neighborhood sizesk:

dPLS(xi, yj) =
∑

k

ξk · dP [ηk(xi), ηk(yj)] (17)

with neighborhood size priorξ. Experimentally, we found
that settingξk to be inversely proportional to the contour
length of the local shape neighborhood of sizek yielded
the best results on our datasets6. Intuitively, this choice of
neighborhood size prior expresses the common-sense principle
that the points closest toxi andyj matter most in determining
the quality of the local shape match betweenxi andyj . The
Procrustean Local Shape Distance can thus be thought of as
a locally-weighted, multi-scale shape distance describing the
“dissimilarity” between the local shapes aroundxi and yj .
Since it is a weighted combination of Procrustean distances, it
is also invariant to changes in position, scale, and orientation,
which is why we chose to use it in this work to match the
points of deformable contours.

In figure 6(c), we see the matrix of squared Procrustean
Local Shape Distances between all pairs of points on two
butterfly contours. The figure shows that the squared-distance
matrix has a very regular structure. The dark, high-distance
rows and columns correspond to strong local features on each
shape—for example, the tips of the wings, or the antennae;
while the light, low-distance rows and columns correspond to
flat, smooth portions of the two contours.

6Throughout the experiments in this work, we usek = {1, 2, 3} with
ξ1 = 4/7, ξ2 = 2/7, and ξ3 = 1/7 since the local neighborhood of size
k + 1 is twice as long as the local neighborhood of sizek.

(a) contourx (b) contoury (c) PLSD matrix

Fig. 6. PLSD matrix for two butterfly contours (a-b). The intensity of pixel
(i, j) represents the squared Procrustean Local Shape Distance betweenxi

andyj . Note that the squared-distance matrix has a very regular structure.

4.5. SolvingCOPAP

Although we assume independence between local features
xi andyj in equation (12), the cyclic-ordering constraint leads
to dependencies between the assignment variablesφi in a
non-trivial way. However, if we initially assign the wrapping
pointω from equation (14), the cyclic constraint then becomes
a linear one, which leads to a Markov chain. The standard
approach to solving COPAP is thus to try setting the wrapping
point,ω, to each possible value from1 to n. Givenω = k, the
resulting chain can be solved by dynamic programming. (We
refer the reader to Scott and Nowak (2006) for a full treatment
of this dynamic programming algorithm.)

In this approach, the point-assignment likelihoods of equa-
tion (15) are converted into a cost functionC(i, φi) =
dPLS(xi, yφi

) by taking a log likelihood, andΦ is optimized
using

Φ∗ = argmax
Φ

log

(

∏

i

p(xi,yφi
) · p(Φ)

)

(18)

= argmin
Φ

(

∑

i

C(i, φi)

)

+ λ · k(φ) (19)

s.t. ∀φi pco(φi) > 0

wherek(Φ) is the number of points skipped in the assignment
Φ. Solving for Φ using equation (19) takesO(n2m) running
time; however a bisection strategy exists in the dynamic
programming search graph (Maes 1990; Scott and Nowak
2006) which reduces the complexity toO(nm log n).

Figure 7 shows examples of the inference process and
correspondences between pairs of contours. Figure 7(a) is
interesting because the correspondence algorithm has correctly
associated all of the single leg present in the blue contour
with the right-most leg in the red contour, and skipped any
associations of the left-leg in the red contour. Figure 7(e), the
beetle model, shows a failed correspondence at the top-right
leg of beetle; this is a challenging case because there are a
number of similar structures for the correspondence to match.

4.6. Model Learning With Unknown Correspondences

In the beginning of this section, we showed how to learn a
probabilistic shape model from a set of training shapes in one-
to-one correspondence with each other. We can now extend
this learning algorithm to the case when correspondences be-



(a) Bird (b) Dog (c) Running Person

(d) Beetle (e) Beetle

Fig. 7. Examples of shape correspondences found using COPAP with the
Procrustean Local Shape Distance. Note that in (e) the top-right legs of the
beetles are incorrectly matched due to the local nature of thepoint assignment.

tween training shapes are unknown. The entire model learning
algorithm is shown in table I.

In order to build a shape model from a set ofn training
shapes,x(1), . . . ,x(n), we first estimate the mean shape,µ̂,
by sequentially adding in one training shape at a time and
recomputing the model. Each time a new training shape,x(i)

is added to the model, we first correspondx(i) to µ̂ using
COPAP. We then updatêµ by taking the average ofτx and
τµ̂ (after rotating the pre-shape ofx(i), τx, to matchµ̂’s pre-
shape,τµ̂), where the average is weighted by the number of
training shapes used to computeµ̂ so far.

Once an initial estimate of mean shape is obtained, we use
this estimate as a reference shape to bring alln training shapes
into one-to-one correspondence with each other by again using
COPAP to correspond eachx(i) to the mean shape estimate,
µ̂. After the training shapes have been brought into one-to-
one correspondence witĥµ (and thus with each other), we
can then use the fully-corresponded training set as input to
the basic tangent space PCA learner from the beginning of
section 4 to estimate mean shape and covariance.

A critical issue we have not yet addressed is ensuring that
the training contours are all sampled with the same point
density in the same regions and have the same overall length to
allow an eventual one-to-one correspondence of training data
to the model. We ensure this by incrementally growing the
model to take the union of all contour points on all training
instances. During learning, ifx(i) contains points not in the
current model̂µ, we add the skipped points fromx(i) to µ̂, and
vice-versa. Once the initial mean shape has been computed, we
iteratively recompute the mean, adding points tox(i) where
µ̂’s points are skipped in the correspondence (butnot vice-
versa since all ofx(i) was added to the model in a previous
iteration). Additionally, we have the option toforce all of
x(i)’s points to correspond to some point on̂µ, so that no
training points are thrown away in the model learning process7.

7We implement this asymmetric correspondence option by changingthe
skip cost fromλ to ∞ in COPAP for all points onx(i). In the algorithm in
Table I, the function SET-SKIP-COST on line (3a) sets the skip cost to∞ for
all of x(i)’s points.

LEARN-SHAPE-MODEL(x(1), . . . ,x(n))

Input: A set ofn full shape contours,{x(1), . . . ,x(n)}.

Output: Shape modelS consisting of mean shapeµ
and covarianceΣ.

1) Setµ̂← x(1).
2) For i = 2, . . . , n:

a) x← x(i).
b) Φ← COPAP(x, µ̂).
c) (x′, µ̂′)← ADD-SKIPPED-PTS(x, µ̂,Φ).
d) τx ← PRESHAPE(x′).
e) τµ̂ ← PRESHAPE(µ̂′).
f) Rotateτx to fit τµ̂.
g) µ̂← (i−1)τµ̂+τx

i
.

3) For i = 1, . . . , n:

a) SET-SKIP-COST(x
(i)
j ,∞),∀j

b) Φ← COPAP(x(i), µ).
c) x(i) ← ADD-SKIPPED-PTS(x(i), µ,Φ).

4) Let X = {x(1), . . . ,x(n)}.
5) Return(µ,Σ)← SHAPE-PCA(X).

TABLE I
THE SHAPE MODEL LEARNING ALGORITHM, WITH UNKNOWN

CORRESPONDENCES. IN THE FIRST FOR-LOOP, AN INITIAL ESTIMATE OF

THE MEAN SHAPE, µ̂, IS LEARNED. IN THE SECOND FOR-LOOP, ALL THE

TRAINING SHAPES ARE BROUGHT INTO ALIGNMENT WITHµ̂, RESULTING

IN A DATASET OF MATCHED SHAPES, X WHICH ARE FED INTO THE BASIC

TANGENT SPACEPCA ALGORITHM FROM THE BEGINNING OF SECTION4.

Although not strictly necessary, this option has been successful
in increasing the accuracy of shape models in our datasets,
so we include this step throughout the experiments described
here.

We use a similar (but simpler) algorithm to compute the
likelihood of a new shape measurement,y with respect to a
shape model,S = N (µ,Σ), when correspondences between
y andS are unknown. First, we bringy’s points into one-to-
one correspondence with the mean shape,µ using COPAP. As
before, we prohibit COPAP from skipping any ofy’s points so
that measurements are not thrown away. Then, we rotatey’s
pre-shape to matchµ, project into tangent-space, and compute
the Gaussian likelihood of the projected pre-shape with respect
to Σ. The shape likelihood algorithm is shown in table II.

5. SHAPE COMPLETION: OSIRIS

We now turn to the second technical contribution in this
paper, which is an algorithm for estimating the complete
geometry of an object from an observation of part of its
contour, with respect to a given shape model. (We will refer to
this as the “shape completion” problem.) After presenting our
shape completion algorithm, which we call OSIRIS (Occluded
Shape Inference Routine for Identification of Silhouettes), we
will then discuss how to perform classification from partial
shape observations; finally, we will conclude this section with
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(d) class likelihoods

(e) dolphin (f) bear (g) rat
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(h) class likelihoods
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dolphin

(j) rat (k) fish
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(l) class likelihoods

Fig. 8. Example shape completions. Each row contains a different partial contour. Each column shows the most-likely completion given each of the top
three most likely classes, ranked in order from left to right.The first row has a single most likely class; the fish is completedcorrectly. The second and third
row have multiple competing hypotheses. In row 2, the dolphin and bear are both reasonable completions, although the dolphin is slightly more likely. In row
three, both the dolphin and rat lead to very reasonable completions and are equally likely.

SHAPE-L IKELIHOOD(y,S)

Input: A full shape contour,y, and a shape modelS
with meanµ and covarianceΣ.

Output: Likelihood, L.

• SET-SKIP-COST(yi,∞),∀i
• Φ← COPAP(y, µ).
• y′ ← ADD-SKIPPED-PTS(y, µ,Φ).
• τy ← PRESHAPE(y′).
• Rotateτy to fit µ.
• v← PROJECT(τy, µ).
• ReturnL← N (v;0,Σ).

TABLE II
THE SHAPE LIKELIHOOD ALGORITHM, WITH UNKNOWN

CORRESPONDENCES.

some extensions to the basic OSIRIS algorithm.

5.1. The Shape Completion Algorithm

We phrase the shape completion problem as a maximum
likelihood estimation problem, estimating the missing points
of a shape with respect to a Gaussian tangent space shape
distributionD as

z∗ = arg max
z
PD(y, z), (20)

where y and z represent the observed and hidden portions
of the object boundary, respectively. A key challenge we face
in finding the hidden pointsz is that in order to compute

PD as a Gaussian tangent-space likelihood, we must know
which dimensions in the model distributionD correspond
to the observed and hidden pointsy and z. Our approach
therefore to solving the shape completion optimization is to
jointly optimize over both the correspondences,Φ, and the
hidden points,z, as in

(z∗,Φ∗) = arg max
z,Φ

PD(y, z,Φ). (21)

There is no closed-form solution to this optimization, but we
do know how to solve for eitherz∗ given Φ∗ or Φ∗ given
z∗: given knowledge of the correspondences of the observed
points y to the model, we will show in section 5.3 how to
determine which model dimensionsz are unobserved and infer
maximum likelihood values for these points, completing the
shape. Similarly, given knowledge of the values for bothy

and z, the correspondence algorithm for complete contours
given in section 4.2 can be applied (with slight modifications),
which we describe next in section 5.2. We therefore alternately
compute a local estimatêz given Φ̂, then compute a local
estimateΦ̂ given ẑ, which leads to the approximate, iterative
procedure8 given in table III. In practice, we have found this
algorithm to converge after only a few iterations. (Note that
to begin this process, we assume an initial assignment,Φ̂0;
finding a good initial assignment is very important, which we
discuss in the next section.)

In order to optimize the data associationsΦ given the
current estimated complete shape,x̂ = {y, ẑ}, we will use the
COPAPcorrespondence algorithm, augmented to handle partial

8Note that this iterative procedure can be thought of as a “hard” expectation
maximization (EM) algorithm.



observations. Recall that COPAP requires two specific shape
contours as arguments, and outputs an assignment vector,Φ.
Since our correspondence problems is fromx̂ to the dimen-
sions of the model distributionD, we use a representative
shape fromD within the COPAP algorithm. One possible
choice is to compute correspondences fromx̂ to the mean
shape,µ. However, better results can be achieved on each
iteration by correspondinĝx to x̂⊥—the projection ofx̂ into
D’s eigenspace (i.e., the linear space spanned by the top-k
principal components). This projected shape is often a closer
match to x̂ than the mean shape is (since linear projection
yields the closest shape in Euclidean distance tox̂ in D’s
eigenspace), resulting in more accurate point correspondences.

We note that we assume that each contour piece can be
associated with an object correctly, and that all contours in
y are (different) partial observations of a single object,O,
with shape distributionD. Thus, our task is to connect the
contour piecesy(1), . . . ,y(m) with hidden contour pieces,z =
{z(1), . . . , z(m)}, so that when they are connected in the right
order, the points ofy andz together form a single, continuous
object boundary.

From the viewpoint of a computer vision algorithm which
has just extracted a set of partial contours from an image, the
assumption of correctly associating a contour with an object
may present somewhat of a challenge. First, the grouping
problem is a complex and well-studied problem in computer
vision as well as in human vision. Mistakes in grouping partial
observations are commonplace, and will have a substantially
negative impact on the results of any shape completion re-
sulting from such a grouping. For practical applications, a
search over possible groupings may be necessary to avoid such
mistakes.

5.2. Correspondences in Shape Completion

To begin the iterative optimization of the partial correspon-
dences, we must first generate an initial correspondence vector,
Φ̂0. In this case, we do not yet have an estimateẑ, but only a
set of observed contour pieces,y(1), . . . ,y(m). Our task is to
determine (1) their ordering, (2) the number of hidden points
connecting each piece, and (3) the point correspondences from
the ordered contour pieces (both observed and hidden) to the
model,D.

We can constrain the ordering of the contours by noting
that the interiors of all the observed object segments must
remain on the interior of any completed shape. For most
real-world cases, this topological constraint is enough to
identify a unique connection ordering; in cases where the
ordering of components is still ambiguous, a search process
through the orderings can be used to identify the most likely
correspondences.

Given a specific ordering of observed contour segments,
we then add a set of hidden, or “wildcard” points connecting
the partial contour segments. This forms a single, complete
contour,x, where some of the points are hidden and some are
observed. We then correspond the points ofx to the model
mean shape,µ, by running a modified COPAPalgorithm, where

COMPLETE-SEGMENTS({y(1), . . . ,y(M)}, S, R)

Input: Set of M partial shape contours (polylines)
{y(1), . . . ,y(M)}, shape modelS (with meanµ), and
size ratioR.

Output: Completed shape,z.

1) (x,h)← CONNECT({y(1), . . . ,y(M)}, R),
wherehi = 1 ⇐⇒ xi is hidden.

2) Φ← COPAP-PARTIAL (x,h, µ).
3) Setx′ ← ADD-SKIPPED-PTS(x, µ,Φ);

updateh→ h′.
4) z← COMPLETE-SHAPE(x′,h′,S).
5) L← SHAPE-L IKELIHOOD(z,S).
6) zbest ← z.
7) Lbest ← L.
8) While L ≥ Lbest:

a) x← z.
b) τx ← PRESHAPE(x).
c) Rotateτx to fit µ.
d) x⊥ ← PROJECT(τx, µ).
e) SET-SKIP-COST(xi,∞),∀i s.t. hi = 0
f) Φ← COPAP(x,x⊥).
g) x′ ← ADD-SKIPPED-PTS(x,x⊥, φ);

updateh→ h′.
h) z← COMPLETE-SHAPE(x′,h′,S).
i) L← SHAPE-L IKELIHOOD(z,S, k).
j) If L > Lbest:

• zbest ← z.
• Lbest ← L.

9) Returnz← zbest.

TABLE III
THE PARTIAL SHAPE COMPLETION ALGORITHM, OSIRIS.

we modify the correspondence likelihood of equation (15) so
that p(xi, µj) is uniform for all µj when xi is unobserved;
that is, all unobserved (wildcard) points required to complete
the contour may be assigned to any ofµ’s points with zero (or
minimal) cost. (We must still pay a penalty ofλ for skipping
hidden points, however.) We refer to this new algorithm as
COPAP-PARTIAL .

In order to identify how large the hidden portion of the
contour is (and therefore, how many hidden points should be
added to connect the observed contour segments), we use the
insight that objects of the same type generally have a similar
scale. We can therefore use the ratio of the observed object
segment areas to the expected full shape area in order to
(inversely) determine the ratio of hidden points to observed
points. If no size priors are available, one may also perform
multiple completions with varying hidden point ratios, and
select the best completion using a generic prior such as the
minimum description length (MDL) criterion.

In subsequent iterations of the optimization, equation (21)



requires us to compute correspondences fromx̂ to x̂⊥ given a
current estimate of the complete shape,x̂ (with hidden points
vector ĥ indicating which ofx̂’s points are hidden and which
are observed). For this correspondence problem, we assume
that x̂’s shape is roughly correct, and so we again disallow
skipped assignments tôx’s observed points, changing the skip
cost fromλ to∞ for the observed points on̂x. (However, we
use the standard correspondence likelihood equation (15) for
both observed and hidden points.)

5.3. Shape Completion with Known Correspondences

One final challenge remains to complete our shape com-
pletion algorithm—namely, solving the shape completion op-
timization when correspondences are known:

z∗ = arg max
z
PD(y, z|Φ). (22)

As noted in section 5.1, this optimization problem is extremely
non-linear, since transformingx = {y, z} into a pre-shapeτ
by normalizing scale and position requires knowledge of the
position of the hidden points,z, and rotating and projectingτ
into D’s tangent space requires knowledge of this pre-shape.
Translation and projection are both linear operations, so the
primary sources of non-linearity in equation (22) are:

1) scalingx onto the pre-shape sphere, and
2) rotating the resulting pre-shape,τ to match the model

mean shape,µ.
D is modeled as a Gaussian distribution (inµ’s tangent
space), therefore any linear transformation ofD will also be
Gaussian. In other words, ifg(x) is a linear function ofx,
then PD(g(x)) is a Gaussian likelihood function ofx, and
therefore a maximum valuex∗ of PD(g(x)) can be found in
closed form. Thus, given a fixed rotation factor,θ and scaling
factor,α, equation (22) can be maximized in closed form.

For every pair(θ, α), there exists a correspondingz∗ which
achieves the maximum likelihood,

ζ(θ, α) = max
z
PD(y, z|Φ, θ, α). (23)

Thus, the shape completion with known correspondences
optimization problem can be reduced to the 2-D optimization,

(θ∗, α∗) = arg max
θ,α

ζ(θ, α). (24)

While this is still a non-linear optimization, we have reduced
the dimensionality of the problem from2(n− p) to 2, where
p is the number of observed points, andn is the total number
of points on the contourx—a significant improvement.

Any number of non-linear optimization methods can be
used to solve equation (24) forθ∗ and α∗. Here we use a
simple sampling technique to arrive at initial estimates,θ̂∗ and
α̂∗. If necessary, an iterative method such as gradient descent
or simulated annealing can be used to refine these estimates
further.

To make this concrete, we assume that correspondences
Φ have already been applied tox = {y, z}, and thaty
contains the firstp points of contourx, which are observed,
and z contains then − p unknown points that complete the

shape. (Note that the dimensions of the distribution mean and
covariance can be permuted so thaty andz correspond to the
beginningp and finaln−p points of the model, respectively.)
Then, we can write

x = [y z]T . (25)

Given shape distributionD on n points with meanµ and
covariance matrixΣ, and fixed orientationθ and scaleα, we
derivez in the following manner.

For a complete contourx, we normalize for orientation and
scale using

x′ =
1

α
Rθx (26)

whereRθ is the rotation matrix ofθ. To centerx′, we then
subtract off the centroid:

w = x′ −
1

n
Cx′ (27)

where C is the2n× 2n checkerboard matrix9,

C =















1 0 · · · 1 0
0 1 · · · 0 1
...

...
. . .

...
...

1 0 · · · 1 0
0 1 · · · 0 1















. (28)

Thusw is the centered pre-shape. Now letM be the matrix
that projects into the tangent space defined by the Gaussian
distribution (µ,Σ):

M = I − µµT (29)

The Mahalanobis distance with respect toD from Mw to the
origin in the tangent space is:

d
Σ

= (Mw)T Σ−1Mw. (30)

Minimizing d
Σ

is equivalent to maximizingP
D

(·), so we
continue by setting

∂d
Σ

∂z
equal to zero, and letting

Wy = My(Iy −
1

n
Cy)

1

α
Ry

θ (31)

Wz = Mz(Iz −
1

n
Cz)

1

α
Rz

θ (32)

where the subscripts “y” and “z” indicate the left and right
sub-matrices ofM , I, andC that match the dimensions of
y andz. This yields the following system of linear equations
which can be solved for the missing data,z:

(Wyy +Wzz)
T Σ−1Wz = 0. (33)

Equation (33) holds for fixed orientation,θ and scale,α.
To design a sampling method forθ and α, we match the
partial shape,y, to the partial mean shape,µy, by computing
the pre-shapes ofy andµy and finding the Procrustes fitting
rotation, θ∗y, from the pre-shape ofy onto the pre-shape of

9Recall that we represent a shapex as a vector ofn ordered 2-D points,
[xT

1 xT
2 · · ·xT

n ], so thatx ∈ R2n. Thus, multiplying a shape vectorx by
the checkerboard matrixC simply adds up thex- andy- coordinates ofx’s
points.



Fig. 9. An example of occluded objects, where the bear occludes the compass.
(a) The original image and (b) the image segmented into (unknown) objects.
The contour of each segment must be matched against a known model.

µy. This angle can then be used as a mean for a von Mises
distribution (the circular analog of a Gaussian) from which
to sample orientations. Similarly, we can sample scales from
a Gaussian with meanαy, the ratio of scales of the partial
shapesy andµy, as in

αy =
‖y − 1

p
Cyy‖

‖µy −
1
p
Cyµy‖

. (34)

Any sampling method for shape completion will have a
scale bias—completed shapes with smaller scales project to a
point closer to the origin in tangent space, and thus have higher
likelihood (since our probability model for shapes is a zero-
mean Gaussian in tangent space). One way to fix this problem
is to solve forz by performing a constrained optimization on
dΣ where the scale of the centered, completed shape vector is
constrained to have unit length:

‖x′ −
1

n
Cx′‖ = 1. (35)

However, this constraint yields a much more difficult non-
linear optimization. Furthermore, in our experiments thisscale
bias has not appeared to provide any obvious errors in shape
completion, although more testing and analysis are needed to
determine the precise effect of the scale bias on the qualityof
shape completions.

5.4. Partial Shape Classification

The partial shape classification problem is

c∗ = arg max
c
P (C = c|y) (36)

where

P (C|y) =
P (C,y)

P (y)
∝

∫

P (C,y, z)dz (37)

Marginalizing over the hidden data,z, is computationally
infeasible, so we approximate this marginal with the estimate
ẑ, the output of our shape completion algorithm, yielding:

P (C|y) ≈ η · P (y, ẑ|C) (38)

= η · PD(y, ẑ) (39)

whereη is a normalizing constant,D is the Gaussian tangent-
space shape model of classC, and thusPD(y, ẑ) is the
complete shape class likelihood of the completed shape with
respect to classC.

(a) Partial contour to be completed (b) Completed as compass

(c) Completed as stuffed animal (d) Completed as jump rope

Fig. 10. Shape completion of the partial contour of the compassin figure 9.
Note that the correct completion (b) captures the knob in the top of the
compass. The hypothesized completions in (c) and (d) lead to very unlikely
shapes.

5.5. Extensions

As noted above, we have assumed throughout this discus-
sion that a single contour representation is appropriate inmod-
eling all object boundaries. This assumption can be relaxed,
since multiple-contour representations can be handled with a
search over partitions of the contour piecesy(1), . . . ,y(m).
A second simplification was to hold the observations,y,
fixed in the shape completion algorithm—however, one could
easily incorporate Gaussian observation likelihoodsPobs(·)
into equation (20), solving for bothy andz, as in(y∗, z∗) =
arg maxy,z PD(y, z)Pobs(y|yobs).

In our presentation, we have focused on modeling the
inherent shape variability in a class, however perspective
transformations can also be included in our shape model, either
during the training phase (by including multiple camera angles
in the training data) or by including a perspective term in
the search for optimal scales and orientations during shape
completion (equation (23)).

Finally, in some cases it may be possible to take “negative”
information into account during the classification of partial
contours. For example, in figure 9, it would be unlikely that
the correct completion of the compass object would extend
onto areas of the image labeled as “background” by the image
processor (which is colored white in the segmented image)—
thus, the completion as a “stuffed animal” in figure 10(c)
should be given less likelihood than the other completions.

One can incorporate negative information by adding an
image likelihood term to equation (39), as inP (C|y) ≈
η · PD(y, ẑ) · Pimage(ẑ).

6. RESULTS

6.1. Toys Dataset

For our grasping experiments, we generated a dataset of
11 toy shape classes. To learn shape models, we collected 10



(a) ring (b) bat (c) rat

(d) bear (e) fish (f) wand

(g) ball (h) banana (i) dolphin

(j) jumprope (k) compass

Fig. 11. Examples of one shape from each of the 11 classes of toys. Several
of the classes contain objects which deform, either because of articulations
(compass, jumprope) or because of the object’s soft material (rat, bear, fish,
dolphin). Two other classes (ring, bat) contain multiple instances of rigid
objects.

images of each object type, segmented the object contours
from the background using color thresholding (we learned
simple 1- and 2-color models for each object which we
calibrated at the start of each experiment), and used the
shape distribution learning algorithm of section 4.6 to build
probabilistic shape models for each class, using contours of
100 points each. One example object from each class is seen
in figure 11.

We reduced the dimensionality of the covariance in each
class using PCA. Reducing the covariance to three principal
components led to 100% prediction accuracy of the training
set, and 98% cross-validated (k = 5) prediction accuracy.
In figure 12, we show the effects of the top 3 principal
components on the mean shape for each class.

We then generated a test set of 880 simulated partial shape
observations by occluding our training shapes with randomly-
placed rectangles of varying sizes and orientations. Using
cross-validation, we obtained estimates of the classification
and detection rates on our partial shape dataset as a function

(a) ring (b)
bat

(c) rat (d) bear (e) fish

(f)
wand

(g) ball (h)
ba-
nana

(i)
dol-
phin

(j)
jumprope

(k) compass

Fig. 12. Shape models learned for each of the object classes. The red contours
are the mean shapes, and the others are sampled along each of thetop three
eigenvectors.
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Fig. 13. Cross-validated classification and detection rates as a function of
occlusion. The solid blue line shows the percentage of times apartial shape
was correctly classified, while the red dotted line shows thepercentage of
trials in which the correct class was given at least a5% probability. Note that
the detection rate is nearly90% even when70% of the shape is occluded
from view, and at80% occlusion the classification rate is47%, which is still
much better than random guessing (1/11 ≈ 9%).

of the percentage of occluded points on each shape contour
(figure 13). The detection rate was nearly90% even when70%
of the shape was occluded from view, and at80% occlusion
the classification rate was47%, which is still much better than
random guessing (1/11 ≈ 9%).

In table IV, we show classification and detection results
from our manipulation experiments in section 7.

6.2. MPEG-7 Results

In addition to the experiments we performed on images of
real objects, we also wished to explore the performance of
our shape recognition algorithms on a more complex dataset
of synthetic objects. For this purpose we chose a subset of 20
classes (out of 70) from the MPEG-7 shape dataset. Examples
from each of the 20 classes are shown in figure 14. We used



(a)
bone

(b) glass (c) heart (d) bat (e)
beetle

(f) bird
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fly

(h) cattle (i) carriage (j) crown (k)
device1

(l)
device8

(m) dog (n) flatfish (o)
fork

(p) hammer (q)
pocket

(r) spoon

(s) stef (t) watch

Fig. 14. One shape from each of the 20 classes of our subset of the MPEG-7
dataset.

(a) (b) (c)

(d) (e) (f)

Fig. 15. Top row: synthetic pile images generated from the MPEG-7 dataset.
Bottom row: occluded shape boundaries completed with OSIRIS, with respect
to the most likely object class. All of the partially occludedshapes in these
three images were correctly classified.

16 (out of 20) randomly chosen images in each class to train
probabilistic shape models, once again using contours of 100
points each. We used 6 principle components in the PCA for
each class, due to the added complexity in the MPEG-7 dataset
compared with the toys dataset. The other four images in each
class were held out as a test set.

From this test set, we generated 100 synthetic images
containing three randomly placed (and randomly selected)
overlapping shapes, as in the top row of figure 15. In the
bottom row, we show the completed contours of the partially
occluded shapes in each scene, as computed by OSIRIS.

In table V, we show the classification and detection results
on the 300 objects from the synthetic MPEG-7 pile images.
Complete (fully observed) shapes were classified correctly

Object Partial Complete
ring 3/8 15/15
bat 7/10 8/10
rat 9/13 4/4
bear 7/7 7/7
fish 9/9 6/6
banana - 1/2
dolphin 1/2 -
compass 1/3 5/5
totals 37/52 46/49

71.15% 93.88%
detect> 5% 42/52 48/49

80.77% 97.96%

TABLE IV
CLASSIFICATION RATES ON TOYS TEST SET.

Partial Complete
correct class 99/134 160/166

73.88% 96.39%
detect> 5% 110/134 164/166

82.09% 98.80%

TABLE V
CLASSIFICATION RATES ONMPEG-7TEST SET.

96.39% of the time, while partially occluded shapes were
classified correctly at a rate of 73.88%. The> 5% detection
rate (i.e. the percentage of objects for which the algorithm
gave at least5% likelihood to the correct class) for complete
shapes was 98.80%, while the detection rate for partial shapes
was 82.09%. However, further inspection reveals that most
of the incorrect classifications and detections came from a
single class–“spoon”. If results from this class are left out,
the classification rates are vastly improved: 97.48% for full
shapes and 80.49% for partial shapes. (The detection rates are
similarly improved to 99.37% for full shapes and 89.43% for
partial shapes.)

6.3. Discussion

In both the toys and MPEG-7 experiments, the full shape
classification and detection rates were quite good (well above
90%), which validates our model learning algorithm from
section 4.6. On shape completion with OSIRIS and partial
shape recognition, our initial results are promising, yet there
are some simple techniques that could be applied to improve
upon the existing system. We have already discussed some
of these techniques, such as using negative information about
where the object isnot (in addition to the positive observations
of the un-occluded portions of the object boundary). Other
techniques will require a bit more effort to integrate into the
system, such as maintaining multiple correspondence hypothe-
ses when there is no single optimal point matching between
two shapes (OSIRIS currently is susceptible to getting stuck
in local maxima on the completion likelihood manifold).



The utter failure to correctly classify partial shapes in
the “spoon” class from the MPEG-7 dataset demonstrates a
weakness in our partial shape classification formula in that
it struggles to classify objects which have smooth, highly
deformable contours. One reason is that by replacing the
marginal density over the hidden points,z in equation (37),
with the likelihood of the maximum likelihood completion,
ẑ in equation (39), there is a bias towards less “peaky”
shape distributions; that is, towards shape classes containing
less variation. Since the “spoon” class contains both a great
deal of shape variability, as well as a lack of distinctive
boundary features to match (the contours are very smooth),
our algorithm typically finds high-likelihood completionsfor
partially-observed spoons with respect to several shape classes,
and it chooses to classify the spoon as an instance of a class
which contains less variability than the spoon class contains. In
order to handle these smooth, highly deformable shape classes,
a better approximation will need to be found to the marginal
density in equation (37).

Finally, it should be noted that we selected the 20 class
subset from the MPEG-7 dataset as a representative sample
of the types of objects our algorithm is designed to model.
Many of the classes which we left out either contained very
little shape variation, or contained types of variation which
our algorithm was not intended to handle, such as deep cuts
into the contours (which we have found to be best handled
by image scale space techniques), or vastly different views
of complex, 3-D objects containing multiple articulationsand
self-occlusions.

7. GRASPPLANNING

Our manipulation strategy is a pipelined process: first,
we estimate the complete geometric structure of the scene
and then plan a grasp. But before we can decide how an
individual object is grasped, we must first decidewhichobject
to grasp. The problem domains of primary interest—such as
the “box-of-toys” world of figure 1—are domains with a single
“desired” object or object type; for example, a teddy bear.
Thus, our ultimate goal is to retrieve a specific object or type
of object from the scene. Sometimes, the desired object will
be at the top of the pile, fully in view. In this case, after
analyzing the image and recognizing the object, we will be
able to plan a grasp to retrieve the object, irrespective of the
placement of other objects in the scene. However, if the desired
object is occluded, before attempting to pick it up, we must
determine the probability that the sensed object is actually the
desired object, and the probability that a planned grasp on the
accessible part of the object will be successful. If either of
these probabilities are below a pre-determined threshold,we
first remove one or more occluding objects and then re-analyze
the scene before planning a grasp of the desired object. We
implement the first test as a threshold on the class likelihood
of the sensed object,p(Ci|m); the second test is a function
of our strategy for grasping a single object, described below.
Our proposed manipulation process is given in algorithm 1.

Algorithm 1 The Manipulation Process.
Require: An image of a scene, and learned models of objects

1: Segment the image into object components
2: Extract contours of components
3: Determine maximum-likelihood correspondence between

observed contours and known models
4: Infer complete geometry of each object from matched

contours
5: Return planned grasp strategy based on inferred geome-

tries

7.1. Grasping a Single Object

We have developed a grasp planning system for our mobile
manipulator (shown in figure 16), a two-link arm on a mobile
base with an in-house-designed gripper with two opposable
fingers. Each finger is a structure capable of edge and surface
contact with the object to be grasped.

Fig. 16. Our mobile manipulator with a two link arm and gripper.We use
a simple webcam mounted on the gripper to capture images of the objects in
front of the robot.

The input to the grasp planning system is the object geom-
etry with the partial contours completed as described in Sec-
tion 5. The output of the system is two regions, one for each
finger of the gripper, that can provide an equilibrium grasp
for the object following the algorithms for stable grasping
described by Nguyen (1989). Intuitively, the fingers are placed
on opposing edges so that the forces exerted by the fingers can
cancel each other out. Friction is modeled as Coulomb friction
with empirically estimated parameters. The grasp planner is
implemented as a search for a pair of grasping edges that
yield maximal regions for the two grasping fingers using the
geometric conditions derived by Nguyen (1989). If two edges
can be paired such that their friction cones are overlapping, we
then identify maximal regions for placing the fingers so thatwe
can tolerate maximal uncertainty in the finger placement using
Nguyen’s criterion. If the desired object is fully observed,
we can use the above grasping algorithm unchanged. If it is
partially occluded, we must filter out finger placements which
lie on hidden (inferred) portions of the object’s boundary.If,
after filtering out infeasible grasps, there is still an accessible
grasp of sufficient quality according to Nguyen’s criterion, we
can attempt a grasp of the object.



In figures 17 and 18 we show the results of two manipu-
lation experiments, where in each case we seek to retrieve a
single type of object from a box of toys, and we must locate
and grasp this object while using the minimum number of
object grasps possible. In both cases, the object we wish to
retrieve is occluded by other objects in the scene, and so a
näıve grasping strategy would first remove the objects on top
of the desired object until the full object geometry is observed,
and only then would it attempt to retrieve the object. Using the
inferred geometry of the occluded object boundaries to classify
and plan a grasp for the desired object, we find in both cases
that we are able to grasp the object immediately, reducing the
number of grasps required from 3 to 1. In addition, we are
able to successfully complete and classify the other objects in
each scene, even when a substantial portion of their boundaries
is occluded. The classification of this test set of 7 object
contours (from 6 objects classes) was 100% (note the correct
completions in figures 17 and 18 of the occluded objects).

(a) Original image (b) Segmentation (c) Contours

(d) Bat Completion (e) Rat Completion (f) Grasp

Fig. 17. An example of a very simple planning problem involvingthree
objects. The chalk compass is fully observed, but the stuffedrat and green
bat are partially occluded by the compass. After segmentation(b), the image
decomposes into five separate segments shown in (c). The learned models of
the bat and the rat can be completed (d) and (e), and the completecontour of
the stuffed rat is correctly positioned in the image (f). The two blue circles
correspond to the planned grasp that results from the computed geometry.

For a more thorough evaluation, we repeated the same type
of experiment on 20 different piles of toys. In each test, we
again sought to retrieve a single type of object from the box of
toys, and in some cases, the manipulation algorithm required
several grasps in order to successfully retrieve an object,due
to not being able to find the object right away or because the
occluding objects were blocking access to a stable grasp of
the desired object. Figures 19 and 20 show 2 of the 20 trials
in our experiment. Both trials are examples in which it took
the robot more than one grasp to retrieve the desired object.

In figure 19, the object to be retrieved is the purple
fish, which is initially occluded by the green bat. After
segmentation and contour completions, the algorithm is able to
recognize the fish (figure 19(c)), but it realizes that the batis
in the way, and so it plans a grasp of the bat (figure 19(d)) and

(a) Original image (b) Segmentation (c) Contours

(d) Bear Completion (e) Dolphin Comple-
tion

(f) Grasp

Fig. 18. A more complex example involving four objects. The bluebat
and the yellow banana are fully observed, but the stuffed bear and dolphin
are significantly occluded. After segmentation (b), the imagedecomposes into
seven separate segments shown in (c). The learned models of thebear and the
dolphin can be completed (d) and (e), and the complete contour of the stuffed
bear is correctly positioned in the image (f). The two blue circles correspond
to the planned grasp given the geometry.

removes it. This time, the fish is again completed (figure 19(h))
and successfully classified as a fish, and a grasp is planned and
executed (figure 19(i)). All contours all correctly classified
throughout the experiment.

In figure 20, the object to be retrieved is the yellow ring,
which is initially occluded by both the blue bear and the
green bat. After segmentation and contour completions, the
algorithm is able to recognize the ring (figure 20(d)), but
it realizes that it must remove the bat before it can access
the ring, so it plans a grasp of the bat (figure 20(g)) and
removes it. This time, the ring is again correctly completedand
identified (figure 20(k)), and a grasp is executed (figure 20(l)),
but fails due to the weight of the bear lying on top of the ring.
After another round of image analysis, the ring is successfully
retrieved (figure 20(p)). Note that the rat was misclassifiedas
a bear throughout this experiment; however this classification
error had no effect on the retrieval of the ring.

In total, 52 partial and 49 complete contours were classified,
33/35 grasps were successfully executed (with 3 failures
due to a hardware malfunction which were discounted). In
table IV, we show classification rates for each class of object
present in the images. Partially-observed shapes were correctly
classified 71.15% of the time, while fully-observed shapes
were correctly classified 93.88% of the time. Several of the
errors were simply a result of ambiguity—when we examine
the > 5% detection rates (i.e. the percentage of objects for
which the algorithm gave at least5% likelihood to the correct
class), we see an improvement to 80.77% for partial shapes,
and 97.96% for full shapes. While a few of the detection errors
were from poor or noisy image segmentations, most were
from failed correspondences from the observed contour to the
correct shape model. The most common reason for these failed



correspondences was a lack of local features for the COPAP
algorithm to latch onto with the PLSD point assignment cost.
These failures would seem to argue for a combination of local
and global match likelihoods in the correspondence algorithm,
which is a direction we hope to explore in future work.

8. CONCLUSIONS

In this paper, we used the Procrustean shape metric–which
is invariant to position, scale, and orientation–to develop dense
probabilistic models of object geometry, based on tangent
space principle components analysis. In section 4.2, we pre-
sented a probabilistic model for shape correspondences based
on the Cyclic Order-Preserving Assignment Problem (COPAP)
framework, with a new likelihood model for local shape
similarity based on the Procrustean Local Shape Distance
(PLSD). We then used COPAPto train probabilistic shape mod-
els from datasets with unknown correspondences. In section
5, we presented the OSIRIS algorithm, which uses learned
Procrustean shape models to infer the hidden parts of partially-
occluded, deformable objects. Finally, in section 7, we applied
our shape inference algorithms to the task of robotic grasping,
where we demonstrated that our learned models allow us to
efficiently recognize and retrieve complex objects from a pile
of toys in the presence of sensor noise and occlusions. We also
presented results of the OSIRIS algorithm on synthetic images
generated from the toys dataset as well as the MPEG-7 dataset.

In order to extend our algorithms to process models of
views of 3-D objects which contain multiple articulations
and self-occlusions, it may be useful to combine a skeleton
or parts-based models with our global parametric models in
order to achieve robustness to these highly variable shapes.
Another set of object classes which are currently problematic
are those containing varying numbers of protrusions, such
as the “beetle” class in the MPEG-7 dataset. (Some beetle
contours have six legs while other have eight.) While the
alignment penaltyλ in COPAP encourages the smoothing out
of assignments, the correct correspondence of two shapes
with protrusions may be to skip over large portions of the
contours. This is because such portions of contours contain
a disproportionate number of points in comparison with the
ratio of area of the protrusion to the area of the entire shape.

In future work, we hope to demonstrate improved per-
formance on recognition tasks by incorporating additional
priors into the correspondence and completion models, in
order to bias the inference procedure towards smoother, more
natural correspondences and completions. We would also
like to investigate the use of other probability densities for
modeling shapes in shape space. While tangent space PCA has
many benefits–including simplicity–many of the shape classes
we have encountered in our work would be better modeled
by a multi-modal distribution, such as a Gaussian mixture
model or a complex Bingham. Additionally, we expect that
the sequential model learning algorithm of section 4.6 could
be vastly improved by using a hierarchical model merging
algorithm, which would merge similar shapes until merging no

longer improves the model; such a technique would lend itself
quite nicely to generating mixture models for shape densities.
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