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Abstract—Robot manipulators typically rely on complete
knowledge of object geometry in order to plan motions and
compute grasps. But when an object is not fully in view it can
be difficult to form an accurate estimate of the object's shape
and pose, particularly when the object deforms.

In this paper we describe a generative model of object geom-
etry based on Mardia and Dryden’s “Probabilistic Procrustean
Shape” which captures both non-rigid deformations and object
variability in a class. We extend their shape model to the
setting where point correspondences are unknown using Scott
and Nowak’s COPAP framework. We use this model to recognize
objects in a cluttered image and to infer their complete 2-D —
boundaries with a novel algorithm called OSIRIS. We show (@) Original Image (b) Recovered Geometry
examples of learned models from image data and demonstrate
how the models can be used by a manipulation planner to grasp

Fig. 1. (a) A collection of toys in a box. The toys partiallyohede each other,
making object identification and grasp planning difficull By using learned

objects in cluttered visual scenes. models of the bear, we can identify the bear from the thredleisegments
and predict its complete geometry (shown by the red line; treheth lines
1. INTRODUCTION are the predicted outline of the hidden shape). This priedicif the complete

Robot manipulators largely rely on complete knowledge éﬂape can then be used in planning a grasp of the bear (plgnaspl points

. . . . shown by the blue circles).
object geometry in order to plan their motion and compute
successful grasps. If an object is fully in view, its shape loa In this paper we describe an algorithm for learning proba-
inferred from sensor data and a grasp computed directligelf thilistic models of visual object geometry. Statistical retsdof
object is occluded by other entities in the scene, manijmmiat shape geometry have recently received attention in a number
based on the visible part of the object may fail; to compensabf domains, including computer vision and robotics (Felzen
object recognition is often used to identify the locatiorttoé szwalb 2005; Elidan et al. 2006), but existing techniques
object and compute the grasp from a prior model. Howevérave largely been coupled to tasks such as shape locatizatio
new instances of a known class of objects may vary fro(lidan et al. 2006), recognition and retrieval (Mokhtaria
the prior model, and known objects may appear in novehd Mackworth 1992; Belongie et al. 2002). On the other
configurations if they are not perfectly rigid. As a resulthand, many effective recognition and retrieval algorithans
manipulation planning can pose a substantial challengenwldiscriminative in nature and create representations of tiape
objects are not fully in view. that make it difficult to perform additional inference such a

Consider the camera imageof four toys in a box in recovering hidden object geometry.
figure 1(a). Prior knowledge of each object's geometry is Since we are specifically interested in using object gegmetr
extremely useful in that the geometry of the visible segmernfor manipulation planning, in section 3 we describe the eepr
(such as the three parts of the stuffed bear) can be usedséatation of shapes as dense 2-D contours uBingrustean
recognize each object, and a grasp can then be planned usingpe model¢Dryden and Mardia 1998; Kendall et al. 1999)
the known geometry as in figure 1(b). However, having suethich provide invariance to translation, scale and rotatio
a prior model of the geometry of every stuffed bear in thsection 4 we present an algorithm for learning a Procrustean
world is not only infeasible but unnecessary. Although thshape model from a set of complete object contours for a
bear may change shape as it is handled and placed in differiembwn object class. One challenge in using these shape sodel
configurations, the general shape in terms of a head, limigsthat to compute the likelihood of a particular shape given
etc. are roughly constant. Regardless of configuratiomgiesi a model, we musa priori know which points on the contour
robust model for each class of objects which accounts fof the observed shape correspond to which points on the
deformations in shape should be sufficient for recognitioth acontour of the learned model. Thus, as part of the model
grasp planning for most object types. learning process, we describe in section 4.2 how to solve

INote that for the purposes of reproduction, the images hasa bepped the data a:SSOCIatIO-n problem bet\,Neen points OI?] two Cor-]tours
and modified from the original in brightness ahd contrastyTdre otherwise by eXtendlng Mardia and Dryden’s model learning algomhm
unchanged. to the setting where correspondences are unknown. To infer

correspondences between shapes, we use Scott and Nowak’s



Corap framework (2006) which relies on the cyclic orderingf-parts” or “bin-picking” problem. Despite being desaib
of points around 2-D object boundaries to generate pomt-toy early vision researchers as the most difficult problem in
point matchings. automatic assembly (Gottschalk et al. 1989), there wereyman
In the second technical section of the paper, we describeccessful systems developed in the 1980’s which solved the
an algorithm for using the learned models to recognizgn-of-parts problem in controlled environments. Mostteyss
occluded objects and complete the occluded geometry, @sed greedy, heuristic search in a “guess-and-test” framew
algorithm we call OSIRIS (Occluded Shape Inference Routiffédus, in order to scale well with the number of object classes
for Identification of Silhouettes, section 5). Given a set dand the number of objects in the image) they needed to be
learned models, we adapto@ApP to allow recognition and especiallygreedy, pruning away as much of the search space
inference of partially-hidden, deformable shapes using tvas possible to avoid an exponential running time. As a result
modifications. We extend the Procrustean model to incotpordhese approaches were especially sensitive to variations i
“wildcard” points that match the hidden parts of partiallyshape.
occluded shapes and secondly, we provide a novel point-An explosion of interest in object detection and segmen-
assignment cost function based on a local Procrustean shtgi®n in recent years has led to many advances in modeling
distance which we call thBrocrustean Local Shape Distanceshape variability (Cremers et al. 2003; Cootes et al. 1995;
(PLSD). We conclude with an experimental analysis of theelzenszwalb 2005; Blake and Isard 1998; Elidan et al. 2006)
algorithm on a large data set of object contours, a data setHwever, most of these shape deformation models have been
real images and a demonstration of using the learned modaplied in constrained environments, detecting only a fudnd
to compute grasps. of prescribed object types—for example in medical imaging
The goal of this work is to provide estimates of geometrfMcinerney and Terzopoulos 1996) or face detection (Cootes
that allow a grasp to be planned for an object in a cluttered al. 1995). We believe our work is one of the first to
scene given a single image of the scene. The input to therform probabilistic inference of deformable objectsniro
algorithm is therefore a single image which is first segm@ént@artially occluded views. In terms of shape classification,
into perceptually similar regions. Although image segraentshape contexts (Belongie et al. 2002) and spin images (dohns
tion is a challenging research problem, it is outside thgpecoand Hebert 1999) provide robust frameworks for estimating
of this paper and we rely on existing segmentation algosthroorrespondences between shape features for recognitibn an
such as that of Shi and Malik (2000). The boundaries onodelling problems. Our work is very related but initial
contours of the image segments are extracted, and it is thegperiments with these descriptors motivated developroént
representations of object geometry that are used throughaubetter shape model for partial views of objects. In additio
this paper. All of the techniques in this paper in principléo the Procrustean shape model, Hu moments (Hu 1962) also
extend to 3-D, but following the observation of Bone and Dprovide invariance to position, scale, and rotation (ad ael
(2001) that “grasp planning is much simpler in 2D, and 2Bkew); however, our emphasis on boundary completion and
grasps are applicable to many 3D objects”, we concentrat@nipulation made us choose the point-based, Procrustean
on the 2-D representations required to grasp objects (})ama@pproach over invariant moment, image-based approaches.
1996; Mirtich and Canny 1994) with a planar manipulato€lassical statistical shape models require a large amaolunt o
capable of supporting the weight of the object. human intervention (e.g., hand-labelled landmarks) ineord
This paper extends the methods presented in Glover ettallearn accurate models of shape (Dryden and Mardia 1998);
(2006) to include extensions of the shape completion dlgori only recently have algorithms emerged that require little
and a complete description of the model learning and shape ftuman intervention (Felzenszwalb 2005; Elidan et al. 2006)
ference algorithms. In addition to the preliminary expents The goal of our shape inference algorithm is to infer
on a small set of shapes reported in Glover et al. (2006), wbject geometry required for traditional grasp planningwr O
present results on the larger MPEG-7 shape dataset (Latgmiésentation of object grasping in section 7 is intended as a
et al. 2000). demonstration of shape inferenicesitu, and could be used by
any grasping algorithm that guaranteed geometricallyuctos
properties Nguyen (1989); Pollard (1996). Our approaci is i
Point-based statistical shape modeling began with the wadéntrast to recent work by Saxena et al. (2006) that learns ma
of Kendall (1984) and Bookstein (1984) on landmark datgipulation strategies directly from monocular images. \&hil
in the 1980s. However, algorithms for finding Procrusteafis technique shows promise, the focus has been genatalizi
mean shapes (Kristof and Wingersky 1971; Gower 19785 much as possible from as simple a data source as possible,
Berge 1977) were developed long before the topology gither than reasoning about multiple occluding objectsreMo
shape spaces were well-understood (Kendall et al. 1999l Smacently, Katz and Brock (2008) showed that manipulation
1996) In the classical computer vision literature, thees hstrategies could be learned from Changes in Object geometry

been considerable work on recognizing occluded objeds, ejn occluded scenes their work would complement ours.
Lin and Chellappa (1987); Koch and Kashyap (1987); Grimson

and Lozano-Brez (1987). Recognizing and localizing oc-
cluded objects when the objects are rigid is known as the “bin

2. RELATED WORK



3. PROBABILISTIC MODELS OF2-D SHAPE fixed. We call the rotate@> which achieves this optimum the

We begin with a summary of the Procrustean shape rodélfthogonal Procrustes fiof 7, onto i, and the angle” is
Formally, we represent an objegtin an image as a set of Called theProcrustes fit angle
ordered points on the contour of the shajgéz? - - - z7), in a We can solve for.the minimi;ation of equatiqn (3) in closed
2-D Euclidean space, wheee = (z;,v;), andz € R?". Our form _by representing t_he points af, and 7 in c_omplex
goal is to learn a probabilistic, generative modelzoivhich coordinates £ + yi), which naturally encode rotation in the
is invariant to 2-D translation, scaling, and rotation. Wgin Plane by scalar complex multiplication. This givés as
by making the contour invariant with respect to position and

scale, normalizing: so as to have unit length with centroid at N %
the origin, that is, 0° = arg(ry'm), (6)

dplm1,m0] = COS_1|T2HT1| (5)

;o ;o _ _ where 74! is the Hermitian or complex conjugate transpose
Z = {Z,i =@ -2y -9} (1) of the complex vector,, andarg(-) is the complex argument
T o= |Z7/|7 (2) operator: i.earg(z + iy) = tan~ ' (y/x).
Z
wherer is called thepre-shapeof the contourz. Sincer is a 4. LEARNING SHAPE MODELS
unit vector, the space of all possible pre-shapes pbints is In order to learn a probabilistic model of the geometry of
the unit hyper-spheré&§2"—3, called pre-shape space different object classes, we compute a distribution forheac
Any pre-shape is a point on the hypersphere, and it can ®@ject class from complete object contours extracted from
shown that all 2-D rotations of the pre-shape lie on an orbffaining images. We will start by describing the classical
O(r), of this hypersphere. (In fact)(r) is a “great circle” tangent-space model learning approach of Dryden and Mardia
orbit, or orbit of maximal length on this hypersphere.) lhat (1998), which requires known point-to-point corresporuéen
words, rotating an object in a 2-D image corresponds to-+ot&€tween all of the training shapes as input. We then describe
ing its pre-shape along a great circle orbit of a hyperspher80w to compute correspondences between the points on two
Since we can rotate any pre-shape through its orbit withotftape contours, so that by section 4.6 we can present a model
changing the geometry of we define the “shape” of as an learning algorithm which does not require correspondebhzes
equivalence class of pre-shapes over rotations. In thiswmey Pe known ahead of time.
arrive at a convenient vector-based description of shapehwh [N many applications, pre-shape data will be tightly lo-
is fully invariant to translation, scaling, and rotation. calized around a mean shape. In such cases, the tangent
If we can define a distance metric between shapes, then $&ce to the pre-shape hypersphere located at the mean shape
can infer a parametric distribution over the shape space. TWill be a good approximation to the pre-shape space, as in
spherical geometry of the pre-shape space requires a geod@gure 2. By linearizing the distribution in this manner, one
distance rather than Euclidean distance. The distancesbatwcan take advantage of standard multivariate statisticalyais
71 and 7, is defined as the smallest distance between thé&chniques by representing the shape distribution as asiaus
orbits, and reducing the dimensionality of the model with Principal

_ Components Analysis (PCA) in order to prevent overfitting
dp[7—177—2} - lnf[d(%w) v € O(Tl)vw S O(TQ)] (3)

d(e, ) = cos ! (p-1p). 4)

Kendall et al. (1999) defined,, as theProcrustean metric
whered(y, ) is the geodesic distance betwegrand, and
o andt) are specific vectors on the orbits of and . (Note

i
that while great circle orbits in a standard 3-D sphere will //
always intersect, the extra dimensions in a hyperspheoevall i

for great circles that do not intersect.) > il

Since the inverse cosine function is monotonically decreas

; ; T s i T Fig. 2. Although the distribution of pre-shape geometries bn the surface
Ing over its domain, it is sufficient to maximize-, which is of a hypersphere, we approximate this distribution with arithistion over

equivalent to minimizing the sum of squared distances b&twehe plane tangent to the sphere.

corresponding points o and vy (since ¢ and ) are unit

vectors). For every rotation ap along O(r1) there exists a

rotation ofy» alongO(7) which will find the global minimum 4In cases where the pre-shape data is more spread out, one €aam us

desic dist Th to find th - dist complex Bingham distributiofDryden and Mardia 1998), one of several
geoadesic distance. Ihus, to fin € minimum distance, Wiibutions which attempt to incorporate the non-linsacf shape space

need only rotate one pre-shape while holding the other ogigctly, with no approximation. The primary advantage tangsihe tangent
space Gaussian model lies in its simplicity; more experimentas needed
2For a fuller treatment of this subject, we refer the reader tgdBn and t0 determine whether the gains in modelling accuracy by usthgroshape
Mardia (1998); Kendall et al. (1999); Small (1996). distributions would justify the additional complexity in otbotic grasping
3Following Small (1996), the star subscript is added to remisdthat domain.
$27~3 is embedded iR2", not the usuaR2m—2,



(a) Example Object (b) Class Distribution

. . Fig. 4. Order-preserving matching (left) vs. Non-ordergereing matching
Fig. 3. (a) An example image of a chalk compass. The compass camrdef (right). The thin black lines depict the correspondencewsen points in the
by opening and closing. (b) Sample shapes from the learntribdison along  yed and blue contour. Notice the violation of the cyclicaridg constraint
different eigenvalues of the distribution. between the right arms of the two contours in the right image.

In order to fit a tangent space Gaussian approximation tQgss,C', which we can compute as
set of shapes, it is sufficient to compute the mean and covari- .
ance of the training data. For each object classe compute C = argmax P(Cklx) )
a mean shape* from a set of pre-shapegr™, ..., 7(M} — argmax P(x|Cy) P(Ci) (10)
by minimizing the sum of Procrustean distances from each - eI ¥ m
pre-shape to the mean, Given the mean and covariance of a shape class, we can
ur = argian[dp(T(j),p)}Q, @) comput_e the likelihood of a measured objept gl\@’;@ by
w5 computingr, the pre—shape ok, _and then _pro_Jectmg into
. ) L C's tangent space with equation (8), yieldipgx|Cj) =
subject to the constraint thdf:|| = 1. In 2-D, this minimiza- N(v®;0,5®). Assuming a uniform prior orC}, we can
tion can be done in closed form; iterative algorithms exighmpute the maximum likelinood class as

for computingp* in higher dimensions (Berge 1977; Gower

1975). C = argmax N (v(®); 0, 2(F), (11)
In order to estimate the covariance of the shape distributio Ck
from the sample pre-shapds(?), ..., 7("1, we rotate each Note that we place the origin of the tangent spacat ;.(*);

7U) to fit the mean shapg (in the Procrustean sense), anés a result, the Gaussian distribution in the tangent sgace i
then project the rotated pre-shapes into the tangent sppéloe o zero mean but the projection onto the tangent space imiplicit
pre-shape hypersphere at the mean shape.targent space accounts for the distance from the mean.

coordinatesfor pre-shaper?) with respect to mean shape 4.2. Data Association and Shape Correspondences

are given by
v = (I - MMH)e“’*T(j), (8) Evaluating the likelihood given by equation (11) requires
) ) ) . calculating the Procrustean distantebetween the pre-shape
wherei* = —1 and ¢* is the optimal Procrustes-matchingyf the observed contour and the mean(*). More generally,

rotation angle ofr(/) onto 4. (The e term rotates the pre- the Procrustean distance between any two conteurnd
shaper’) by ¢, while (I — up') projects the rotated pre- y impjicitly assumes that there is a known correspondence
shape into tangent space.) _ ~ between poink; in x and pointy; in y, for all i. Therefore,

We then use Principal Components Analysis (PCA) in thgsfore we can compute the probability of a contour or leaen th
tangent space to model the principal axes of the GaussidBan and covariance of a set of pre-shapes, we must be able
shape distribution ofv("), ..., v(™}. Figure 3(a) shows one , compute the correspondences between contours, matching
example out of a training set of images of a deformablg;.h point inx to a corresponding point opS.
object. Figure 3(b) shows sample objects drawn from theqy, goal is to match the points of one contoxr, . . . , x,,
learned distribution. The red contour is the mean, and th§ the points on anotheg, . ..,ym. Let ® denote a corre-
green and blue samples are taken along the first two prinCiBﬁbndence vector, wherg; is the index ofy to which x;
components of the distribution. corresponds; that isx; — y,,. We wish to find the most
4.1. Shape Classification likely @ givenx andyz thgt is, o* = argmaxg p(fb\x, y). If
we assume that the likelihood of individual points;} and
{y;} are conditionally independent given (that is, two mea-
surements of the same object are independent given knogvledg

Given K previously learned shape classés,...,Ck
with shape means/(V,..., x¥) and covariance matrices
»® .., 2% and given a measuremertof an unknown
object shape, we can now compute the likelihood of a shaperthere is also an assumption that the number of points &ndy are the
class given a measured objeBt(C’k‘X)_ The shape classifica- same. Ifx andy differ in their number of points, we must find a way to add

; ; TRRE : Lali oints to one shape (or remove points from the other) in omdring them
tion problem is then one of finding the maximum ||ke||h00(|£]to one-to-one correspondence. We address this issuetiorset.6.



of the object, a very standard assumption in robotics), then

1
O* = argmax - p(x,y|)p(®)
o Z

1 n
= argmax [1p(xi,v6,)p(®) (12)
i=1
where Z is a normalizing constant. @ ()
Solving for the most likely correspondences between sefg. 5. Local shape neighborhoods. (a) The full contour afraing person.
of data is an open problem in a number of fields, includin@g) Cloieup of theftop of the C(O:)tour in (aE)i)with (Ijocal sh?p;'ighbhorhoor?s
. . . . . - ghout the poine of sizek =1 (¢), k =2 , andk = 3 (A), where the
computer VISIOI_’] and rO.bOtIC. mapping. As object geomem% ginal contour points are shown as small blue circtgsafid the interpolated
vary due to projection distortions, sensor error, or evenm& neighborhood points are shown as small rets. The neighborhoods are
object dynamics, it is non-trivial to determiméhich part of an chosen ISO thﬁt the length of the largest neighborhagdg(20% of the full
object image corresponds thich part of a previous image. contour length.
However, we can take advantage of geometric properties of

objects to prune the search space, generating solutiomtetogimmy not present iny, or must be “skipped”. However,
correspondence problem efficiently. These geometric propg,e prefer models where as much fis matched toy as
ties constitute priors over the likelihogd®) in equation (12), possible. We therefore use a prior over correspondeptes,
either reducing or setting to O tkepriori likelihood of certain  iat is an exponential distribution over the number of skipp
correspondences. correspondences, subject to the cyclic ordering constrain
4.3. Priors over Correspondences We “skip” individual correspondences ir by allowing

The first geometric property that we use is a hard constraf;rsft = 0. (Pointsy; are skipped wheffi s.t. ¢; = j). To

on correspondence orderinas. By the nature of obiect cosito minimize the number of such skipped assignments, we give
b gs. By ) o LHiminishing likelihood to® as the number of skipped points

our specific ;hape corrgspondgnce problem contaieyctc increases. Fo® with ke skipped assignments (ix andy),
order-preservingconstraint, that is, correspondences between

the two contours cannot “cross” each other numerically (as ——exp{—kqe - A} if @ is cyclic ordered

opposed to geometrically—we are not suggesting that lines p(®) = *

drawn between matched points cannot cross). For example, if

x5 corresponds ty; andxs corresponds tys, thenx, must Where Zg is a normalizing constant and is a likelihood

correspond tay4 (or nothing); it is a violation of the cyclic penalty for skipped assignments. A high valueloindicates

ordering constraint fok, to correspond tqy, or yg. that the algorithm should skip over as few points as possible
Scott and Nowak (2006) define the Cyclic Order-Preservintile a low value tells the algorithm to skip over any points

Assignment Problem (6PAP) as the problem of finding anthat do not have a near-perfect match on the other shape

optimal one-to-one matching such that the assignment Rgundary. Throughout this paper, we use a value0dffor

corresponding points preserves the cyclic ordering inderi A-

from the contours. Figure 4 shows an example set of corre-We add to this prior the cyclic-ordering constraint by

spondences (the thin black lines) that preserve the cyddiero allowing p(®) > 0 if and only if

preserving constraint on the left, whereas the correspuede

on the right of figure 4 violate the constraint at the right of Fw st Pu < Pupr < < <1 <o < dore (14)

the shape (notice that the association lines cross). Wefthher We call w the wrapping pointof the assignment vectob.

setp(®) = 0 for any correspondence vector that would violatEach assignment vecto®, which obeys the cyclic-ordering

the order-preserving constraint. In the following sectiowe constraint must have a unique wrapping point,

show how the @PAP?.lgOl‘Ithm can bg used 'Fo solvg for thes%A_ Correspondence Likelihoods: PLSD

correspondences using an appropriate point-assignmeiit co ) )

function for matching the contours of deformable objects. ~ Given an expression for the correspondence prior, we also
The second geometric property we use as a pridr) over need an expression for the likelihood tha.t two poirtsand

correspondences is to prefer models which provide theggeat/¢: correspond to each other(x;, y, ), which we model as

number of corresponding points between the two shapes. ThE likelihood that the local geometry of the contours match

correspondence model must allow for the possibility that deeection 3 described a probabilistic model for global gecimet

to variations in object geometry, some poits;, .. .,x;} in similarity using th_e ProcrL_lste_s metric, and we modﬁy this

sequence do not correspond to any pointsirFor example, model for computing the |I!(e|lh00d. of Iocgl geometries. We

if sensor noise has introduced spurious points along arcobjompute this likelihood by flrst forming a distance metrieov

edge or if the shapes vary in some significant way, such 8§al shape geometry, which we call tiocrustean Local

an animal contour with three legs where another has foqt'@pe DistancgPLSD). Given such a distancéprs, we

the most likely correspondence is that some points iare Compute the likelihood as the probability df-.s under a
zero-mean Gaussian model with fixed varianeeSinceo is

. (13)
0 otherwise,



| nm
fixed for every local shape correspondence likelihood, we ca P A —— l:
simply write it as part of the normalization constant to @esu

—
that the distributiorp(x;,y,,) sums to one. Thus, % Hilt
1 S— \. > | {
e\
PL

p(xi7y¢'i) = ZpLs C€Xp {_[dPLS(J;i’ ydn)]Q} (15)

where Zp15 is a normalization constant.

In order to compute the Procrustean local shape distance,
we first need a description of the local shape abqu{When Fig. 6. PLSD matrix for two butterfly contours (a-b). The iriip of pixel
the local spacing ok and v is uneven. we sample oints(”) represents the squared Procrustean chal Shape Distatweebex;

p 9 y s ', ple p andy;. Note that the squared-distance matrix has a very regulactate.
evenly spaced about; andy,,, interpolating as necessary to
ensure that there is the same number of evenly-spaced points
in the local neighborhood on each shape.) We definédted 4.5, SolvingCopap

neighborhoodof size k € N aboutx; as:

(a) contourx (b) contoury (c) PLSD matrix

Although we assume independence between local features
(i) = (0L(—2"A), ..., 04(0),...,05(2FA))  (16) x; andy; in equation (12), the cyclic-ordering constraint leads

; ) , , to dependencies between the assignment variablem a
whered; (d) returns the point fronx’s contour a distance of 5 n_trivial way. However, if we initially assign the wrapgj

starting fromx; (clockwise ford positive or counter-clockwise pqint, from equation (14), the cyclic constraint then becomes
for d negative). Alsog;, (0) = x;. The parameted determines 5 jinear one, which leads to a Markov chain. The standard
the step size between points, and thus_ the resolution of roach to solving GrPAPis thus to try setting the wrapping
local shape. We have found that settidg such that the point, w, to each possible value fromto n. Givenw = k, the

Ie}rgest neighborhood is between 10_30% of the t(_)tal Shar%%ulting chain can be solved by dynamic programming. (We
circumference (we use 20% throughout this paper) yieldslgopser the reader to Scott and Nowak (2006) for a full treatmen

results on most datasets (figure 5). of this dynamic programming algorithm.)
The Procrustean Local Shape Distan€gy s, between two |, this approach, the point-assignment likelihoods of equa
points,z; andy; is the mean Procrustean shape distance oygj, (15) are converted into a cost functiofi(, ¢;) =

neighborhood sizes: dprs(zi,ys,) by taking a log likelihood, and is optimized
dprs(wiy;) =Y & - dplms(xi), me(y;)]  (17) Using
k

with neighborhood size priot. Experimentally, we found o = argznax log (Hp(xi,y@) 'p@)) (18)
that settingé, to be inversely proportional to the contour ‘
length of the local shape neighborhood of sizeyielded . . .
thegbest results on ourpdata§etmtuitively, this choice of = argit (Z C(Z’@)) +A-k(9) (19)
neighborhood size prior expresses the common-sensegdéanci st vlqi Peol(d) > 0
that the points closest to; andy,; matter most in determining T ReoRT
the quality of the local shape match betwegnandy;. The wherek(®) is the number of points skipped in the assignment
Procrustean Local Shape Distance can thus be thought ofasSolving for ® using equation (19) takeS(n?m) running
a locally-weighted, multi-scale shape distance desagiltire time; however a bisection strategy exists in the dynamic
“dissimilarity” between the local shapes arourd andy;. programming search graph (Maes 1990; Scott and Nowak
Since it is a weighted combination of Procrustean distarites2006) which reduces the complexity (nm logn).
is also invariant to changes in position, scale, and oriemta  Figure 7 shows examples of the inference process and
which is why we chose to use it in this work to match theorrespondences between pairs of contours. Figure 7(a) is
points of deformable contours. interesting because the correspondence algorithm hasctigrr

In figure 6(c), we see the matrix of squared Procrusteassociated all of the single leg present in the blue contour
Local Shape Distances between all pairs of points on tweth the right-most leg in the red contour, and skipped any
butterfly contours. The figure shows that the squared-distarassociations of the left-leg in the red contour. Figure , e
matrix has a very regular structure. The dark, high-dissanbeetle model, shows a failed correspondence at the top-righ
rows and columns correspond to strong local features on edefp of beetle; this is a challenging case because there are a
shape—for example, the tips of the wings, or the antennamimber of similar structures for the correspondence to matc

while the light, low-distance rows and columns correspand t . .
flat, smooth portions of the two contours. 4.6. Model Learning With Unknown Correspondences

In the beginning of this section, we showed how to learn a
®Throughout the experiments in this work, we use= {1,2,3} with  probabilistic shape model from a set of training shapes & on
o T ?S/ [ :S%ézba;sdéj‘eE%Z:;Sﬁﬁ;ﬁ‘hié?ilf ;i'ghborhoc’d of size1_one correspondence with each other. We can now extend
this learning algorithm to the case when correspondences be



LEARN-SHAPE-MODEL(x(), ... x(™)
Input: A set ofn full shape contours{x®, ... x(™},

Output: Shape modeB consisting of mean shape
and covariance..
1) Setji — x).
2) Fori=2,...,n:
a) x — x(,
b) ® «— CoPAR(x, [i).
c) (x/,f') «— ADD-SKIPPED-PTS(x, ji, D).

(d) Beetle (e) Beetle d) 7, «+ PRESHAPHX').
Fig. 7. Examples of shape correspondences found usipga€with the e) 7 < PRESHAPH).
Procrustean Local Shape Distance. Note that in (e) theigp-tegs of the f) Rotater, to fit Th-
beetles are incorrectly matched due to the local nature gidire assignment. g) i (i—1)Tp+Te

—
3) Fori=1,...,n:
tween training shapes are unknown. The entire model legrn|n a) SET-SKIP-COST(xy), 00), Vj
algorithm is shown in table I. b) ® — CopaAR(x"), 1).
In order to build a shape model from a setoftraining ¢) x( «— ADD-SKIPPED-PTS(x(¥), 11, ®).

shapesx™,...,x(™ we first estimate the mean shagg, 4) LetX = {xM, ... ,x™}.

by sequentially adding in one training shape at a time ahd 5) Return(y,Y) < SHAPE-PCA(X).
recomputing the model. Each time a new training shape, ABLE |
iS added to the mOdel' we ﬁrSt_ COI’respOﬂﬁ) to /Aj’ using THE SHAPE MODEL LEARNING ALGORITHM, WITH UNKNOWN
CoprAP. We then updatg: by taking the average of, and  coRRESPONDENCESIN THE FIRST FORLOOP, AN INITIAL ESTIMATE OF
Ta (after rotating the pre-shape in), Tz, 1O matchﬂ’s pre- THE MEAN SHAPE, /i, IS LEARNED. IN THE SECOND FORL?OR ALL THE
shape), where the average is weighted by the number Gl AiiS SHA7ES AR BFOLGHT N0 AL GUMENT Wi, FEsutTive
training shapes used to computeso far. TANGENT SPACEPCA ALGORITHM FROM THE BEGINNING OF SECTION4.

Once an initial estimate of mean shape is obtained, we use
this estimate as a reference shape to bring &lhining shapes
into one-to-one correspondence with each other by agamngusi
CoPaP to correspond eack(® to the mean shape estimateAlthough not strictly necessary, this option has been sisfoé
fi. After the training shapes have been brought into one-téL increasing the accuracy of shape models in our datasets,
one correspondence with (and thus with each other), weSO We include this step throughout the experiments destribe
can then use the fully-corresponded training set as input Rgre-
the basic tangent space PCA learner from the beginning ofVe use a similar (but simpler) algorithm to compute the
section 4 to estimate mean shape and covariance. likelihood of a new shape measurementwith respect to a

A critical issue we have not yet addressed is ensuring tifgtape modelS = A(u, %), when correspondences between
the training contours are all sampled with the same poi¥tandsS are unknown. First, we bring’s points into one-to-
density in the same regions and have the same overall lemgti®€ correspondence with the mean shapesing GPAP. As
allow an eventual one-to-one correspondence of trainirig d@¢efore, we prohibit ©pAPfrom skipping any ofy’s points so
to the model. We ensure this by incrementally growing tHgat measurements are not thrown away. Then, we rgtate
model to take the union of all contour points on all trainin§"e-shape to match, project into tangent-space, and compute
instances. During learning, &) contains points not in the the Gaussian likelihood of the projected pre-shape witheaets
current moden, we add the Sk|pped points frort® to il and to X. The shape likelihood algorithm is shown in table II.
yice-yersa. Once the initial mean shape has _been compuged, w 5. SHAPE COMPLETION: OSIRIS
iteratively recompute the mean, adding pointsxt® where
/i's points are skipped in the correspondence (ot vice-
versa since all ok(" was added to the model in a previou
iteration). Additionally, we have the option tforce all of
x("’s points to correspond to some point ¢gn so that no
training points are thrown away in the model learning prstes

We now turn to the second technical contribution in this
paper, which is an algorithm for estimating the complete
geometry of an object from an observation of part of its
contour, with respect to a given shape model. (We will reder t
this as the “shape completion” problem.) After presenting o
shape completion algorithm, which we call OSIRIS (Occluded

"We implement this asymmetric correspondence option by chanthieg Shape Inference Routine for Identification of Silhouettes)
skip cost from to oo in CopAP for all points onx(*). In the algorithm in - will then discuss how to perform classification from partial

Table 1, tne E’;ﬁif” §r-Skip-CosTon line (3a) sets the skip costta for - g ane observations; finally, we will conclude this sectiothw



likelihood

1
m 5 I
- -
~——
-
=
&£

n
]
i
¢
.
A
3
ting
bay
rat
beqy
Wang,
bay
bay,, ang
%WM
“my, Ope
C
%%m

i
! .

(c) dolphin

(d) class likelihoods

05 I
0 -
; g
<Q

v o
§ &
g §
§ 8

likelihood

]
’

0) Bear

(h) class likelihoods

likelihood

) II II
0 PO
, ~ N g

Mh () class likelihoods

Fig. 8. Example shape completions. Each row contains a diffgrartial contour. Each column shows the most-likely comptetjiven each of the top
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Pp as a Gaussian tangent-space likelihood, we must know
which dimensions in the model distributio® correspond

to the observed and hidden poingsand z. Our approach
therefore to solving the shape completion optimizationois t
jointly optimize over both the correspondencds, and the
hidden pointsg, as in

SHAPE-LIKELIHOOD(y,S)

Input: A full shape contoury, and a shape modd&
with meany and covariance:.

Output: Likelihood, L.
e SET-SKIP-COST(y;, ), Vi

® — COPAF(y, ).

y’ « ADD-SKIPPED-PTS(y, 1, @).

T, < PRESHAPHY').
Rotater, to fit p.

v — PROJECT(1y, 11).
ReturnL «— N(v;0,%).

(Z*vé*) = argm%XPD(yazv(I))' (21)

There is no closed-form solution to this optimization, bug w
do know how to solve for eithex* given ®* or ®* given

z*: given knowledge of the correspondences of the observed
points y to the model, we will show in section 5.3 how to
determine which model dimensionsare unobserved and infer

TABLE |I maximum likelihood values for these points, completing the
THE SHAPE LIKELIHOOD ALGORITHM, WITH UNKNOWN shape. Similarly, given knowledge of the values for bgth
CORRESPONDENCES

and z, the correspondence algorithm for complete contours
given in section 4.2 can be applied (with slight modificasipn
which we describe next in section 5.2. We therefore alteipat
compute a local estimatg given &, then compute a local
estimate® given z, which leads to the approximate, iterative
5.1. The Shape Completion Algorithm procedurd given in table IlI. In practice, we have found this

We phrase the shape completion problem as a maxim@gorithm to converge after only a few iterations. (Notettha
likelihood estimation problem, estimating the missingngei to begin this process, we assume an initial assignmept,

of a shape with respect to a Gaussian tangent space shiép@éing a good initial assignment is very important, which we
distribution D as discuss in the next section.)

In order to optimize the data associatiods given the
current estimated complete shager= {y, z}, we will use the

wherey and z represent the observed and hidden portion(§OPAPc0rrespondence algorithm, augmented to handle partial

pf the _ObjeCt bogndary, rG.SpeC.tively' A key Cha”enge we fac 8Note that this iterative procedure can be thought of as af"rexpectation
in finding the hidden pointz is that in order to compute maximization (EM) algorithm.

some extensions to the basic OSIRIS algorithm.

z" = argmax Pp(y, z), (20)



observations. Recall thatd®Apr requires two specific shape
contours as arguments, and outputs an assignment véetor] COMPLETE-SEGMENT{y"),...,y(*)}, S, R)
Since our correspondence problems is franto the dimen-
sions of the model distributioD, we use a representative
shape fromD within the CopaP algorithm. One possible
choice is to compute correspondences framo the mean
shape, ;.. However, better results can be achieved on eacloutput: Completed shapes,.
iteration by corresponding to x, —the projection ofx into 1) (x,h) — ConnecT({y("),...,y(™)} R),
D’s eigenspace (i.e., the linear space spanned by thé: top- whereh; = 1 <= x; is hidden.
principal components). This projected shape is often aeclos 2) ® — COPAP-PARTIAL (x, h, j1).
match tox than the mean shape is (since linear projection 3) Setx’ « ADD-SKIPPED-PTS(x, 11, ®);
yields the closest shape in Euclidean distancexton D’s updateh — .
eigenspace), resulting in more accurate point correspude 4) z — COMPLETE-SHAPE(x', I, S).

We note that we assume that each contour piece can|be 5) L — SHAPE—LIKELIHOOD(7Z,S,).
associated with an object correctly, and that all contoars |i 6)

Input: Set of M partial shape contours (polylines)
{yM, ...,y shape modeB (with meany), and
size ratioR.

y are (different) partial observations of a single obje@t, 7) Zb:::t:ZL'_

with shape distributionD. Thus, our task is to connect the 8) While L > Lyes:
contour pieceg™®, ..., y(™) with hidden contour pieces, = -
{zM), ..., 2™} so that when they are connected in the right a) x — 2

b) 7, <« PRESHAPHEX).

c) Rotater, to fit pu.

d) x, « PROJECT(7,, 1).

e) SET-SKIP-COoSsT(x;,00),Vi S.t.h; =0

f) ® — CoPAP(x,x ).

g) x' < ADD-SKIPPED-PTS(x,x , ¢);
updateh — h’.

h) z «— COMPLETE-SHAPE(x',h’,S).

i) L < SHAPE-LIKELIHOOD(z, S, k).

order, the points of andz together form a single, continuous
object boundary.

From the viewpoint of a computer vision algorithm which
has just extracted a set of partial contours from an image, th
assumption of correctly associating a contour with an dbjec
may present somewhat of a challenge. First, the grouping
problem is a complex and well-studied problem in computer
vision as well as in human vision. Mistakes in grouping @érti
observations are commonplace, and will have a substantial

negative impact on the results of any shape completion re- )M L> Lycat:
sulting from such a grouping. For practical applications, |a ® Zpest < 2.
search over possible groupings may be necessary to avdid suc o Liest — L.
mistakes. 9) Returnz « zpq.
TABLE Il

5.2. Correspondences in Shape Completion

To begin the iterative optimization of the partial correspo
dences, we must first generate an initial correspondenderyec
®,. In this case, we do not yet have an estimatéut only a
set of observed contour piecag), ..., y™). Our task is to We modify the correspondence likelihood of equation (15) so
determine (1) their ordering, (2) the number of hidden mointhat p(x;, x1;) is uniform for all ; whenx; is unobserved;
connecting each piece, and (3) the point correspondenoes fithat is, all unobserved (wildcard) points required to coetspl
the ordered contour pieces (both observed and hidden) to the contour may be assigned to any.f points with zero (or
model, D. minimal) cost. (We must still pay a penalty affor skipping

We can constrain the ordering of the contours by notirigjdden points, however.) We refer to this new algorithm as
that the interiors of all the observed object segments mUsPPAP-PARTIAL.
remain on the interior of any completed shape. For mostIn order to identify how large the hidden portion of the
real-world cases, this topological constraint is enough &®ntour is (and therefore, how many hidden points should be
identify a unique connection ordering; in cases where tt@glded to connect the observed contour segments), we use the
ordering of components is still ambiguous, a search proceégsight that objects of the same type generally have a simila
through the orderings can be used to identify the most likeggale. We can therefore use the ratio of the observed object
correspondences. segment areas to the expected full shape area in order to

Given a specific ordering of observed contour segment§)versely) determine the ratio of hidden points to observe
we then add a set of hidden, or “wildcard” points connectingeints. If no size priors are available, one may also perform
the partial contour segments. This forms a single, completiltiple completions with varying hidden point ratios, and
contour,x, where some of the points are hidden and some &elect the best completion using a generic prior such as the
observed. We then correspond the pointsxofo the model minimum description length (MDL) criterion.
mean shapey, by running a modified Grapalgorithm, where  In subsequent iterations of the optimization, equatior) (21

THE PARTIAL SHAPE COMPLETION ALGORITHM OSIRIS.



requires us to compute correspondences ffotn x; given a shape. (Note that the dimensions of the distribution meah an
current estimate of the complete shaggwith hidden points covariance can be permuted so tiyadndz correspond to the
vectorh indicating which ofx’s points are hidden and which beginningp and finaln — p points of the model, respectively.)
are observed). For this correspondence problem, we assurhen, we can write

that x's shape is roughly correct, and so we again disallow x = [y z]”. (25)
skipped assignments ds observed points, changing the skip_.. o . .
co.ftpfrom)\ tcfJ o for the observed pgints oR. (Ho%ve?/er, we pleen_ shape distributiorD on » points with mean; and
use the standard correspondence likelihood equation ¢i5) govarlance matrix., and fixed orientatiorf and scalen, we

both observed and hidden points.) derivez in the following manner.
For a complete contout, we normalize for orientation and

5.3. Shape Completion with Known Correspondences scale using

One final challenge remains to complete our shape com- x' = lex (26)
pletion algorithm—namely, solving the shape completion op- a
timization when correspondences are known: where Ry is the rotation matrix of). To centerx’, we then
subtract off the centroid:
z" = argmax Pp(y, z|®). (22) 1
“ w=x — EC’X/ 27)

As noted in section 5.1, this optimization problem is extegm

non-linear, since transforming = {y, z} into a pre-shape where C is the2n x 2n checkerboard matrix
by normalizing scale and position requires knowledge of the

position of the hidden points, and rotating and projecting (1) (1) é (1)
into D’'s tangent space requires knowledge of this pre-shape.
Translation and projection are both linear operations,hso t C=1v .t 1. (28)
primary sources of non-linearity in equation (22) are: 10 --- 10
1) scalingx onto the pre-shape sphere, and o1 - 01
2) rotating the resulting pre-shape,to match the model 1p,s v s the centered pre-shape. Now [et be the matrix
mean shapey. that projects into the tangent space defined by the Gaussian

D is modeled as a Gaussian distribution (irs tangent djstribution (1, X):

space), therefore any linear transformation/afwill also be -

Gaussian. In other words, if(x) is a linear function ofx, M =1—pp (29)

then Pp(g(x)) is a Gaussian likelihood function of, and The Mahalanobis distance with respectiioirom Mw to the

therefore a maximum value* of Pp(g(x)) can be found in origin in the tangent space is:

closed form. Thus, given a fixed rotation factérand scaling

factor, o, equation (22) can be maximized in closed form. dy = (Mw)'S™ ' Mw. (30)
For every pair(6, ), there exists a correspondiazg which

) ) o Minimizing d,. is equivalent to maximizin ), SO we
achieves the maximum likelihood, g dy >d 9 (")

continue by settin% equal to zero, and letting

C(97OZ) :maXPD(yaz‘q)797a)' (23) 1 1
i . . Wy = My(Iy - *Cy)*Rz (31)
Thus, the shape completion with known correspondences 711 ff
optimization problem can be reduced to the 2-D optimization W, =M. (I, — —C,)—R; (32)
n «
(0%, a") = arg rmax ¢(0, ). (24)  where the subscripts “y” and “z” indicate the left and right

sub-matrices ofM/, I, and C that match the dimensions of
y andz. This yields the following system of linear equations
which can be solved for the missing data,

While this is still a non-linear optimization, we have reddce
the dimensionality of the problem frof(n — p) to 2, where
p is the number of observed points, ands the total number
of points on the contoux—a significant improvement. W,y +W.z)'S~'W, = 0. (33)
Any number of non-linear optimization methods can be
used to solve equation (24) fér and o*. Here we use a
simple sampling technigue to arrive at initial estimatgsand
Q. I_f necessary, an iterative method such as gradient dgs rét pre-shapes of and ., and finding the Procrustes fitting
or simulated annealing can be used to refine these estima a5l .
further. rotation, ¢, from the pre-shape of onto the pre-shape of
To make this concrete, v_ve assume that CorreSpondenC%ecaH that we represent a shageas a vector ofr ordered 2-D points,
® have already been applied to = {y,z}, and thaty [x7xT...xZ], so thatx € R?". Thus, multiplying a shape vector by

contains the firsp points of contourx, which are observed, the checkerboard matrig' simply adds up ther- andy- coordinates of's
and z contains then — p unknown points that complete theP™-

Equation (33) holds for fixed orientatiod, and scaleg.

To design a sampling method f@r and «, we match the
C;(Ji“artial shapey, to the partial mean shapg,, by computing
i



Fig. 9. An example of occluded objects, where the bear ocsltitecompass. (&) Partial contour to be completed  (b) Completed as compass

(a) The original image and (b) the image segmented into (unkhoWjects.
The contour of each segment must be matched against a known model.

ty. This angle can then be used as a mean for a von Mis
distribution (the circular analog of a Gaussian) from which
to sample orientations. Similarly, we can sample scales fro

a Gaussian with mean,, the ratio of scales of the partial
shapesy andp,, as in (c) Completed as stuffed animal  (d) Completed as jump rope
Y

Fig. 10. Shape completion of the partial contour of the compasigure 9.
(34) Note that the correct completion (b) captures the knob in te df the

1
v - el
- ||ﬂy _ %Cyﬂy” ’ gﬁgﬂppeasss. The hypothesized completions in (c) and (d) leadriourdikely

Any sampling method for shape completion will have a
scale bias—completed shapes with smaller scales project to a
point closer to the origin in tangent space, and thus haveehig 5.5. Extensions

likelihood (Since our probablllty model for Shapes is a zero As noted above, we have assumed throughout this discus-
mean Gaussian in tangent space). One way to fix this problefgn that a single contour representation is appropriatedd-

is to solve forz by performing a constrained optimization orejing all object boundaries. This assumption can be relaxed
ds; where the scale of the centered, completed shape vectogjisce multiple-contour representations can be handleld it
constrained to have unit length: search over partitions of the contour pieggd), ..., y(™).

A second simplification was to hold the observatioys,
fixed in the shape completion algorithm—however, one could

However, this constraint yields a much more difficult nor€aSily incorporate Gaussian observation likelihodds,(-)

linear optimization. Furthermore, in our experiments gdale Nt© €guation (20), solving for both andz, as in(y”,z") =
bias has not appeared to provide any obvious errors in shdpe™éXy.z Pp(y,2) Povs (¥[yobs)- _
completion, although more testing and analysis are neesled t!n ©Ur presentation, we have focused on modeling the

determine the precise effect of the scale bias on the qmﬂityinherent shape variability in a class, however perspective
shape completions. transformations can also be included in our shape modeégreit

during the training phase (by including multiple cameralasg

Qy

X — Lox|| = 1. (35)
n

5.4. Partial Shape Classification in the training data) or by including a perspective term in
The partial shape classification problem is the search for optimal scales and orientations during shape
completion (equation (23)).
" = arg mgxp (C=cly) (36) Finally, in some cases it may be possible to take “negative”
where information into account during the classification of peairti

P(C,y) contours. For example, in figure 9, it would be unlikely that
P(Cly) = P(y) x /P(C’y7z)dz 37 the correct completion of the compass object would extend
onto areas of the image labeled as “background” by the image
processor (which is colored white in the segmented image)—
hus, the completion as a “stuffed animal” in figure 10(c)
should be given less likelihood than the other completions.
P(Cly) =7 - P(y,z|C) (38) One can incorporate negativg information by adding an
(39) image likelihood term to equation (39), as B(Cly) =~

0 Pp(y, ) Pimage(2).

Marginalizing over the hidden data, is computationally
infeasible, so we approximate this marginal with the estém
z, the output of our shape completion algorithm, yielding:

=n-Pp(y,2)
wheren is a normalizing constanf) is the Gaussian tangent-
space shape model of clags, and thusPp(y,z) is the
complete shape class likelihood of the completed shape wiitl. Toys Dataset

respect to class’. For our grasping experiments, we generated a dataset of
11 toy shape classes. To learn shape models, we collected 10

6. RESULTS



(a) ring (b) bat

(a) ring (b) (c) rat (d) bear (e) fish
bat

LA

(d) bear (e) fish (f) wand @ — \
U] (9) ball hy 0] (k) compass
wand ba- dol-  jumprope
nana phin
A oy _ Fig. 12. Shape models learned for each of the object claskesedl contours
are the mean shapes, and the others are sampled along eachtag theee
eigenvectors.

(g) ball (h) banana (i) dolphin
1 L .
0.8} |
>
&8 0.6} |
5
3
© 045 classification ]
— — — detection
(i) jumprope (k) compass 0.2 ]
Fig. 11. Examples of one shape from each of the 11 classes @if $&yer 0 : : : :
of the classes contain objects which deform, either becafisetioulation 0 0.2 04 0.6 0.8 1
(compass, jumprope) or because of the object’s soft mategsl l{ear, fis , % observed
dolphin). Two other classes (ring, bat) contain multipletanses of rigid
objects. Fig. 13. Cross-validated classification and detectionsrate a function of

occlusion. The solid blue line shows the percentage of timpartal shape
was correctly classified, while the red dotted line shows ghecentage of

. . . trials in which the correct class was given at leasaprobability. Note that
images of each object type, segmented the object contowkSdetection rate is nearl§0% even when70% of the shape is occluded
from the background using color thresholding (we learndwm view, and aB0% occlusion the classification rate 4§ %, which is still

simple 1- and 2-color models for each object which w@uch better than random guessing'(1 ~ 9%).
calibrated at the start of each experiment), and used the

shape distribution learning algorithm of section 4.6 toldui of the percentage of occluded points on each shape contour

probabilistic shape models for each class, using contofurs .
100 points each. One example object from each class is Séfé%ure 13). The detection rate was nedily: even wherr0%

o of the shape was occluded from view, andié% occlusion
in figure 11. o R
. . . . . the classification rate wa&%, which is still much better than
We reduced the dimensionality of the covariance in eac .
) : . .~ fandom guessingl{11 = 9%).
class using PCA. Reducing the covariance to three principa e .
In table 1V, we show classification and detection results

components led to 100% prediction accuracy of the trainirﬁ%m our manioulation experiments in section 7
set, and 98% cross-validated (= 5) prediction accuracy. P P ’

In figure 12, we show the effects of the top 3 principa$.2. MPEG-7 Results

components on the mean shape for each class. _ In addition to the experiments we performed on images of
We then generated a test set of 880 simulated partial shapg opiects, we also wished to explore the performance of
observations by occluding our training shapes with rangemly, - shape recognition algorithms on a more complex dataset
placed rectangles of varying sizes and orientations. USiggqynthetic objects. For this purpose we chose a subset of 20
cross-validation, we obtained estimates of the classificat classes (out of 70) from the MPEG-7 shape dataset. Examples
and detection rates on our partial shape dataset as a fUnCHgy, each of the 20 classes are shown in figure 14. We used



Object Partial  Complete

' ’ . ‘ r v L' -~ ring 38 1515
l‘ kJ ‘ bat 7/10 8/10
(@) (b) glass  (c) heart (d) bat  (e) (f) bird rat 9/13 4/4
bone beetle bear 7/7 7/7

- fish 9/9 6/6
SIS
VOIR dolphin 1/2 -

(9) butter- (h) cattle (i) carriage  (j) crown (k) () compass 1/3 5/5
fly devicel  device8 totals 37/52 46/49

71.15% 93.88%

n ) detect> 5% | 42/52  48/49
; 80.77% 97.96%

(m) dog (n) flatfish (o) (p) hammer  (q) (r) spoon TABLE IV
for pocket CLASSIFICATION RATES ON TOYS TEST SET

ork
][ s _conger

1

of o watch correct class| 99/134  160/166

(5) ste (0) watc 73.88%  96.39%

Fig. 14. One shape from each of the 20 classes of our subdet MPEG-7 detect> 5% | 110/134 164/166

dataset. 82.09% 98.80%
TABLE V

* CLASSIFICATION RATES ONMPEG-7TEST SET
A

96.39% of the time, while partially occluded shapes were

classified correctly at a rate of 73.88%. The5% detection
(@ (b) (©) ; ; ; ;
rate (i.e. the percentage of objects for which the algorithm
gave at least% likelihood to the correct class) for complete
shapes was 98.80%, while the detection rate for partialeshap
was 82.09%. However, further inspection reveals that most
of the incorrect classifications and detections came from a
single class—"spoon”. If results from this class are left,ou
the classification rates are vastly improved: 97.48% fol ful
@ © ® shapes and 80.49% for partial shapes. (The detection nates a
Fig. 15. Top row: synthetic pile images generated from the @PEdataset. Similarly improved to 99.37% for full shapes and 89.43% for
Bottom row: occluded shape boundaries completed with OSIWRIt respect  partial shapes.)
to the most likely object class. All of the partially occludedapes in these
three images were correctly classified. 6.3. Discussion

In both the toys and MPEG-7 experiments, the full shape

16 (out of 20) randomly chosen images in each class to trﬁﬁ\ssificati_on and_ detection rates were qqite good _(WeIVabo
probabilistic shape models, once again using contours @f 190%), which validates our model learning algorithm from
points each. We used 6 principle components in the PCA f¢ction 4.6. On shape completion with OSIRIS and partial
each class, due to the added complexity in the MPEG-7 data3a#P€ recognition, our initial results are promising, yeire
compared with the toys dataset. The other four images in e&ff S0me simple techniques that could be applied to improve
class were held out as a test set. upon the existing system. We have already discussed some
From this test set, we generated 100 synthetic imag%gthese tech_niqu_es, s_uch a_s_using negati\_/e_: informatioqtabo
containing three randomly placed (and randomly selecta‘%ﬁere the object isot (in gddltlon to the posmve observations
overlapping shapes, as in the top row of figure 15. In t the un-occluded portions of the object boundary). Other

bottom row, we show the completed contours of the partialfffchniques will require a bit more effort to integrate inke t
occluded shapes in each scene, as computed by OSIRIS. system, such as maintaining multiple correspondence hgpot

In table V, we show the classification and detection resuft€S When there is no single optimal point matching between

on the 300 objects from the synthetic MPEG-7 pile imageg’f’o shapes (OSIRIS currently is susceptible to gettingkstuc

Complete (fully observed) shapes were classified correctfy!0cal maxima on the completion likelihood manifold).



The utter failure to correctly classify partial shapes iflgorithm 1 The Manipulation Process.
the “spoon” class from the MPEG-7 dataset demonstratedRaquire: An image of a scene, and learned models of objects
weakness in our partial shape classification formula in that: Segment the image into object components
it struggles to classify objects which have smooth, highly2: Extract contours of components
deformable contours. One reason is that by replacing tha: Determine maximum-likelihood correspondence between
marginal density over the hidden points,in equation (37), observed contours and known models
with the likelihood of the maximum likelihood completion, 4: Infer complete geometry of each object from matched
z in equation (39), there is a bias towards less “peaky” contours
shape distributions; that is, towards shape classes oimgai 5: Return planned grasp strategy based on inferred geome-
less variation. Since the “spoon” class contains both atgrea tries
deal of shape variability, as well as a lack of distinctive
boundary features to match (the contours are very smooth),
our algorithm typically finds high-likelihood completiofier 7.1. Grasping a Single Object
partially-observed spoons with respect to several sh@sses, e have developed a grasp planning system for our mobile
and it chooses to classify the spoon as an instance of a claggipulator (shown in figure 16), a two-link arm on a mobile
which contains less variability than the spoon class costdn  pase with an in-house-designed gripper with two opposable

order to handle these smooth, highly deformable shapeeslassingers. Each finger is a structure capable of edge and surface
a better approximation will need to be found to the margin@hniact with the object to be grasped.

density in equation (37).

Finally, it should be noted that we selected the 20 class
subset from the MPEG-7 dataset as a representative sample
of the types of objects our algorithm is designed to model.
Many of the classes which we left out either contained very
little shape variation, or contained types of variation ethi
our algorithm was not intended to handle, such as deep cuts
into the contours (which we have found to be best handled
by image scale space techniques), or vastly different views
of complex, 3-D objects containing multiple articulaticsusd
self-occlusions.

7. GRASPPLANNING

Our manipulation strategy is a pipelined process: firgfi9: 16. Our mobile manipulator with a two link arm and grippéle use

. ! a’simple webcam mounted on the gripper to capture images of jeetstn
we estimate the complete geometric structure of the scepgt of the robot.
and then plan a grasp. But before we can decide how an
individual object is grasped, we must first decidleich object The input to the grasp planning system is the object geom-
to grasp. The problem domains of primary interest—such ay with the partial contours completed as described in Sec
the “box-of-toys” world of figure 1—are domains with a singldgion 5. The output of the system is two regions, one for each
“desired” object or object type; for example, a teddy bedfinger of the gripper, that can provide an equilibrium grasp
Thus, our ultimate goal is to retrieve a specific object oetydor the object following the algorithms for stable grasping
of object from the scene. Sometimes, the desired object wdiéscribed by Nguyen (1989). Intuitively, the fingers areeth
be at the top of the pile, fully in view. In this case, aftepn opposing edges so that the forces exerted by the fingers can
analyzing the image and recognizing the object, we will bgancel each other out. Friction is modeled as Coulomb dicti
able to plan a grasp to retrieve the object, irrespectivéhef twith empirically estimated parameters. The grasp planser i
placement of other objects in the scene. However, if theelési implemented as a search for a pair of grasping edges that
object is occluded, before attempting to pick it up, we mugield maximal regions for the two grasping fingers using the
determine the probability that the sensed object is agttlaf geometric conditions derived by Nguyen (1989). If two edges
desired object, and the probability that a planned grasghen tan be paired such that their friction cones are overlappiteg
accessible part of the object will be successful. If either ¢hen identify maximal regions for placing the fingers so that
these probabilities are below a pre-determined threshvadd, can tolerate maximal uncertainty in the finger placementgusi
first remove one or more occluding objects and then re-amalyidguyen’s criterion. If the desired object is fully obseryed
the scene before planning a grasp of the desired object. We can use the above grasping algorithm unchanged. If it is
implement the first test as a threshold on the class liketihopartially occluded, we must filter out finger placements \hic
of the sensed objech(C;|m); the second test is a functionlie on hidden (inferred) portions of the object’'s bounddfy.
of our strategy for grasping a single object, describedvaeloafter filtering out infeasible grasps, there is still an astgle
Our proposed manipulation process is given in algorithm 1grasp of sufficient quality according to Nguyen’s criteriore

can attempt a grasp of the object.



In figures 17 and 18 we show the results of two manipu-
lation experiments, where in each case we seek to retrieve
single type of object from a box of toys, and we must locate
and grasp this object while using the minimum number of

D
™. <D
object grasps possible. In both cases, the object we wish | Cﬁ
retrieve is occluded by other objects in the scene, and so U\>

nave grasping strategy would first remove the objects on top (a) original image (b) Segmentation (c) Contours
of the desired object until the full object geometry is obselr
and only then would it attempt to retrieve the object. Usimg t m
inferred geometry of the occluded object boundaries tsiflas -y
and plan a grasp for the desired object, we find in both cases d\ \
that we are able to grasp the object immediately, reduciag th \
number of grasps required from 3 to 1. In addition, we are f\‘> ‘,:b
able to successfully complete and classify the other abjiect (
each scene, even when a substantial portion of their boigrsdar (d) Bear Completion (e) Dolphin Comple- () Grasp

is occluded. The classification of this test set of 7 object tion

contours (from 6 objects classes) was 100% (note the corrEigt 18. A more complex example involving four objects. The bha

; in fi ; and the yellow banana are fully observed, but the stuffed bad dolphin
completlons in figures 17 and 18 of the occluded ObJeCtS)' are significantly occluded. After segmentation (b), the imégeomposes into
seven separate segments shown in (c). The learned modelsk#dghand the
dolphin can be completed (d) and (e), and the complete confahestuffed
[‘Eb bear is correctly positioned in the image (f). The two blueles correspond

D to the planned grasp given the geometry.

U U\N removes it. This time, the fish is again completed (figure )9(h
and successfully classified as a fish, and a grasp is planmed an
(a) Original image (b) Segmentation (c) Contours executed (figure 19(i)). All contours all correctly classifi

throughout the experiment.

In figure 20, the object to be retrieved is the yellow ring,
which is initially occluded by both the blue bear and the
green bat. After segmentation and contour completions, the
algorithm is able to recognize the ring (figure 20(d)), but
it realizes that it must remove the bat before it can access
the ring, so it plans a grasp of the bat (figure 20(g)) and

(d) Bat Completion  (e) Rat Completion (f) Grasp removes it. This time, the ring is again correctly completad
Fig. 17. An example of a very simple planning problem involvifgee identified (figure 20(k)), and a grasp is executed (figure)20(l
objects. The chalk compass is fully observed, but the stufiédand green but fails due to the weight of the bear lying on top of the ring.

bat are partially occluded by the compass. After segmentétiprthe image  aAfter another round of image analysis. the ring is succélssfu
decomposes into five separate segments shown in (c). The dearodels of g ySIS, 9 yS

the bat and the rat can be completed (d) and (e), and the conepleteur of retrieved (ﬁgure 20(p)) NOte_that the rat was miSCIas?ﬁed
the stuffed rat is correctly positioned in the image (f). The blue circles a bear throughout this experiment; however this classificat
correspond to the planned grasp that results from the commeemetry. error had no effect on the retrieval of the ring.

i In total, 52 partial and 49 complete contours were classified
For a more thorough evaluation, we repeated the same tyPf35 grasps were successfully executed (with 3 failures
of experiment on 20 different piles of toys. In each test, Wg,e o a hardware malfunction which were discounted). In
again sought to retrieve a single type of object from the Hox e v, we show classification rates for each class of abjec
toys, and in some cases, the manipulation algorithm reduirg-esent in the images. Partially-observed shapes wereattyrr
several grasps in order to successfully retrieve an obje®, |assified 71.15% of the time, while fully-observed shapes
to not being able to find the object right away or because thgyre correctly classified 93.88% of the time. Several of the
occluding objects were blocking access to a stable graspefqrs were simply a result of ambiguity—when we examine
the desired object. Figures 19 and 20 show 2 of the 20 triglg, - 59 detection rates (i.e. the percentage of objects for
in our experiment. Both trials are examples in which it t00fhich the algorithm gave at leas#s likelihood to the correct
the robot more than one grasp to retrieve the desired objegass) we see an improvement to 80.77% for partial shapes,
_In figure 19, the object to be retrieved is the purplgnq 97.969 for full shapes. While a few of the detection errors
fish, whlch is initially occluded py the green bat._ Aftelyere from poor or noisy image segmentations, most were
segmentation and contour completions, the algorithm 8 #bl o fajled correspondences from the observed contouréo th

recognize the fish (figure 19(c)), but it realizes that theidat .o rect shape model. The most common reason for these failed
in the way, and so it plans a grasp of the bat (figure 19(d)) and




correspondences was a lack of local features for the COPAdAger improves the model; such a technique would lendfitsel
algorithm to latch onto with the PLSD point assignment cosjuite nicely to generating mixture models for shape desssiti
These failures would seem to argue for a combination of local

and global match likelihoods in the correspondence algar;it 9. ACKNOWLEDGMENTS
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grasp tion
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