Online Self-Calibration For Mobile Robots

Nicholas Roy and Sebastian Thrun
Robotics Institute and Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15232

Abstract
This paper proposes a statistical method for calibrating the odometry of mobile robots. In contrast to previous approaches, which require explicit measurements of actual motion when calibrating a robot’s odometry, the algorithm proposed here uses the robot’s sensors to automatically calibrate the robot as it operates. An efficient, incremental maximum likelihood algorithm enables the robot to adapt to changes in its kinematics on-line, as they occur. The appropriateness of the approach is demonstrated in two large-scale environments, where the amount of odometric error is reduced by an order of magnitude.

1 Introduction
Calibration is the problem of estimating a robot’s physical model from data. It has long been recognized that robots change their physical properties over time. In mobile robotics, wear and tear can change the diameter of wheels, loosen belts, and so on. Such effects can introduce significant systematic errors into a robot’s odometry. The need for such calibration is as old as the field of robotics itself, and the literature is full of methods for calibrating robots (see e.g., [CW90, Vuk89]). As examples shown elsewhere illustrate, the resulting errors can be substantial [Bor94, Ren93, Thr98b].

Virtually all existing calibration methods, however, have certain disadvantages when applied to mobile robots. Many existing calibration methods require human intervention. To calibrate a mobile robot’s odometry, a person (or some external device) has to measure the exact motion of the robot, and infer from these measurements the physical model. Such approaches are undesirable for two reasons. First, a certain amount of effort is involved in calibrating a mobile robot, usually disrupting the robot’s operation. Second, and more importantly, the physics of mobile robots change, often rapidly.

By comparison, a mobile robot’s odometry is dependent on the kind of surface the robot is travelling on. As the surface changes (from carpet to tile, for example) the calibration parameters change. To maintain an up-to-date model, the calibration has to be repeated at regular intervals. This can be expensive in practical applications—such as robots that are operated in private homes.

Consequently, rather than performing position estimation solely based on odometry data (dead-reckoning), mobile robots typically combine odometry data with sensor feedback from the environment. In such a localization process, the position of the robot is estimated from both uncalibrated odometry and sensor data such as from a laser proximity sensor [BFT97, MD94], eliminating the need for a model of the odometric error. One problem, however, with this type of position estimation is that in areas of the environment with little or no sensor data, such as large open spaces, or unreliable sensor data (such as in crowded environments) the sensor feedback becomes unreliable or nonexistent, and the robot can become quickly lost.

Robot calibration is not a novel idea; however, few calibration techniques have been applied to mobile robot odometry. For robot arms, robot platforms and many other stationary devices, the environment is mostly static, thus the calibration parameters are unlikely to change except with changes to the robot. Furthermore, the odometric error of a robot arm joint is strictly internal to the joint and is not affected by most changes to the environment. We address the problem of odometric calibration through statistical means, using existing sensors. Our approach phrases the calibration problem as a maximum likelihood estimation problem, which seeks to identify the most likely model parameters under the data. While the general maximum likelihood estimation problem is intractable, we have devised an efficient, incremental solution. The estimator proposed here is an exponential estimator that determines calibration parameters through iterative comparisons of pairs of sensor readings, and automatically adapts to changes that might occur over the lifetime of the robot.

Experimental results, obtained in two large, populated indoor environments, demonstrate the appropriateness of the approach. The odometric error is reduced by approximately 83%, along trajectories 741m and 269m long.
2 Probabilistic Model of the Kinematics

Our approach models robot motion probabilistically. More specifically, let $\xi = (x, y, \theta)$ denote a robot’s pose in x-y-space (θ is the robot’s heading direction). The model of robot motion is denoted by the conditional probability distribution $P(\xi' | \xi, o)$, where ξ is the robot’s pose before executing a control (action), o is the displacement measured by the robot’s odometry, and ξ' is the pose after executing the control. To simplify the notation, we will assume that odometric measurements o consist of two numbers, one that measures the robot’s rotational displacement (denoted by o_{rot}), and one that measures its translational displacement (denoted by o_{trans}).

![Figure 1](image)

Figure 1: Three example probability distributions of the robot’s (x, y) position after a rotation and a forward translation. Figure (b) shows a model with high translational error, and figure (c) shows a model with high rotational error.

Figure 1 illustrates a specific $P(\xi' | \xi, o)$. Here the robot’s initial pose, ξ, is shown at the bottom. The shaded grey area depicts the distribution over possible posterior poses, $P(\xi' | \xi, o)$, after measuring that the robot moved as indicated. The darker a value, the more likely it is. Figure 1(b) shows a motion model that assumes high translational error, and figure 1(c) shows a situation with excessive rotational error.

Mathematically speaking, the motion model is defined through the robot’s kinematics with the assumption that the robot might non-deterministically suffer errors in its translational and rotational measurements. The robot’s final pose is given by

$$
\begin{pmatrix}
x'
\end{pmatrix} =
\begin{pmatrix}
x + \hat{o}_{\text{trans}} \cos(\theta + \hat{o}_{\text{rot}})
y + \hat{o}_{\text{trans}} \sin(\theta + \hat{o}_{\text{rot}})
(\theta + \hat{o}_{\text{rot}}) \text{ modulo } 2\pi
\end{pmatrix} (1)
$$

where \hat{o}_{trans} and \hat{o}_{rot} denote the robot’s true translation and rotation, respectively. Recall that $o = (o_{\text{trans}}, o_{\text{rot}})$ is the displacement measured by the robot. If the robot’s odometry is 100% accurate, $o_{\text{trans}} = \hat{o}_{\text{trans}}$ and $o_{\text{rot}} = \hat{o}_{\text{rot}}$, and there is no calibration problem. In practice, however, the measured and actual odometry differ.

In this paper we assume that the difference is accounted for by two factors: a systematic error and a random error, where the latter has an expected value of zero (zero-mean). More specifically, the true rotation and translation differ from the measured odometry by two additive terms

$$
\begin{align*}
\hat{o}_{\text{trans}} &= o_{\text{trans}} + \delta_{\text{trans}} |d| + \varepsilon_{\text{trans}} \\
\hat{o}_{\text{rot}} &= o_{\text{rot}} + \delta_{\text{rot}} |d| + \varepsilon_{\text{rot}}
\end{align*} (2)
$$

Here $\varepsilon_{\text{trans}}$ and ε_{rot} are two random variables with zero mean. The numerical parameters δ_{trans} and δ_{rot} describe the systematic error, the drift. The problem of robot calibration, thus, is the problem of estimating δ_{trans} and δ_{rot}.

As the functional form (2) suggests, our model assumes that both errors grow linearly with the distance traveled. In practice we found this model to be superior over various other choices, including models with more parameters. Our choice of parameters was heavily influenced in fact by experimental evidence. The odometric error that the robot accumulated was almost completely attributable to translational motion. The controller used for this robot performed very little pure rotation; most paths were curved, combining rotation and forward motion. The error occurred almost exclusively during these kinds of trajectories, supporting our use of error parameters only over the translational motion.

3 Parameter Estimation

Our approach estimates the kinematic parameters, δ_{trans} and δ_{rot} using data collected during everyday robot motion. Let

$$
d = \{s^{(1)}, o^{(1)}, s^{(2)}, o^{(2)}, \ldots \} (3)
$$

denote the data, where $s^{(i)}$ denotes a sensor measurement (e.g., a laser scan), and $o^{(i)}$ denotes the displacement measured by the robot’s odometry between two consecutive sensor measurement.

In statistical terms, the calibration problem is a maximum likelihood estimation problem where one seeks to identify the kinematic parameters $\delta^{*}_{\text{trans}}$ and δ^{*}_{rot} that appear most plausible under the data d:

$$
\delta^{*}_{\text{trans}}, \delta^{*}_{\text{rot}} = \arg \max_{\delta_{\text{trans}}, \delta_{\text{rot}}} P(\delta_{\text{trans}}, \delta_{\text{rot}} | d) \quad (4)
$$

If the data set is large, this problem is mathematically intractable (see [TFB98]). In addition, computing (4) would require that the robot memorized all data d, which is undesirable for a robot that calibrates its motion parameters continuously.

Instead, our approach decomposes the estimation problem into a sequence of single-step problems, which can be estimated much more efficiently:

$$
\delta^{(i)*}_{\text{trans}}, \delta^{(i)*}_{\text{rot}} = \arg \max_{\delta_{\text{trans}}, \delta_{\text{rot}}} P(\delta_{\text{trans}}, \delta_{\text{rot}} | s^{(i)}, o^{(i)}, s^{(i+1)}) \quad (5)
$$

Here i is a time index. This series of local maximum likelihood estimators determines the motion parameters $\delta^{(i)*}_{\text{trans}}$
and δ_{rot} based on data just perceived. More specifically, the estimator considers only the sensor data obtained before the transition, $s^{(i)}$, sensor data obtained after the transition, $s^{(i+1)}$, and the displacement measured by the robot’s odometry $o^{(i)}$. The probability on the right-hand side of (5) is called the parameter likelihood function. It will be derived in the next section.

Finally, the desired kinematic parameters, δ_{trans} and δ_{rot}, are estimated recursively using an exponential estimator, where past estimates are discounted exponentially over time:

$$
\begin{pmatrix}
\delta_{\text{trans}}^{*} \\
\delta_{\text{rot}}^{*}
\end{pmatrix} \leftarrow \gamma \begin{pmatrix}
\delta_{\text{trans}} \\
\delta_{\text{rot}}
\end{pmatrix} + (1-\gamma) \begin{pmatrix}
\delta_{\text{trans}}^{(i)*} \\
\delta_{\text{rot}}^{(i)*}
\end{pmatrix}
$$

(6)

Here $\gamma \approx 1$ is an exponential discount factor that decays the weight of measurements over time. This exponential estimator has three important advantages over the original maximum likelihood estimator (4):

- it is incremental, i.e., it does not require that the robot memorizes past data,
- it can be computed in constant time, independent of the data set size d, and
- it adapts to changes in the robot’s drift, by exponentially decaying past measurements.

Thus, with an appropriate choice of γ, it can be used for continuously calibrating a robot whose drift parameters change slowly over time, e.g., with wear and tear. In our experiments, we used $\gamma = 0.9$.

4 Parameter Likelihood Function

It remains to be shown how to compute the parameter likelihood function $P(\delta_{\text{trans}}, \delta_{\text{rot}}|s^{(i)}, o^{(i)}, s^{(i+1)})$ in equation (5). Since the parameters are estimated based on actual sensor data (e.g., laser range measurements), the parameter likelihood function involves the definition of a sensor model.

According to Bayes’ rule, the parameter likelihood can be transformed into:

$$
P(\delta_{\text{trans}}, \delta_{\text{rot}}|s^{(i)}, o^{(i)}, s^{(i+1)}) = \alpha P(s^{(i+1)}|s^{(i)}, o^{(i)}, \delta_{\text{trans}}, \delta_{\text{rot}}) P(\delta_{\text{trans}}, \delta_{\text{rot}}|s^{(i)}, o^{(i)}),
$$

(7)

where α is a constant normalizer that can safely be ignored in the maximization. Since knowledge of just $s^{(i)}$ and $o^{(i)}$ (without $s^{(i+1)}$!) does not convey any information about the parameters δ_{trans} and δ_{rot}, $P(\delta_{\text{trans}}, \delta_{\text{rot}}|s^{(i)}, o^{(i)}) = P(\delta_{\text{trans}}, \delta_{\text{rot}})$, and equation (7) can further be simplified to

$$
P(\delta_{\text{trans}}, \delta_{\text{rot}}|s^{(i)}, o^{(i)}, s^{(i+1)}) = \alpha P(s^{(i+1)}|s^{(i)}, o^{(i)}, \delta_{\text{trans}}, \delta_{\text{rot}}) P(\delta_{\text{trans}}, \delta_{\text{rot}}).
$$

(8)

The probability $P(\delta_{\text{trans}}, \delta_{\text{rot}})$ is the prior on the parameters δ_{trans} and δ_{rot}. Typically, one might have a Gaussian or a uniform prior on the drift parameters.

The other term in equation 8, the probability $P(s^{(i+1)}|s^{(i)}, o^{(i)}, \delta_{\text{trans}}, \delta_{\text{rot}})$ is called the perceptual likelihood. It specifies the likelihood of observing $s^{(i+1)}$ under the assumptions that

- the robot initially observed $s^{(i)}$,
- then measured an odometric displacement $o^{(i)}$,
- but its odometry was corrupted according to δ_{trans} and δ_{rot}.

5 The Perceptual Likelihood

It remains to show how to compute the perceptual likelihood. According to the theorem of total probability (and under some obvious independence assumptions), the perceptual likelihood can be expressed as

$$
P(s^{(i+1)}|s^{(i)}, o^{(i)}, \delta_{\text{trans}}, \delta_{\text{rot}})
= \int \int P(s^{(i+1)}|W, \Delta \xi, s^{(i)}, o^{(i)}, \delta_{\text{trans}}, \delta_{\text{rot}}) \cdot
P(W, \Delta \xi|s^{(i)}, o^{(i)}, \delta_{\text{trans}}, \delta_{\text{rot}}) \ dW \ d\Delta \xi
= \int \int P(s^{(i+1)}|W, \Delta \xi) \cdot
P(W|s^{(i)})P(\Delta \xi|o^{(i)}, \delta_{\text{trans}}, \delta_{\text{rot}}) \ dW \ d\Delta \xi
$$

(9)

where W denotes the world, the configuration of all obstacles, and $\Delta \xi$ denotes the relative displacement between the robot’s pose $\xi^{(i+1)}$ and $\xi^{(i)}$. Of course, integrating over all possible worlds W and all displacements $\Delta \xi$ is infeasible.

Our approach approximates the perceptual likelihood by replacing the integrals in (9) with their expected values, which are much easier to compute (as the need to integrate over W and $\Delta \xi$ is obviated):

$$
P(s^{(i+1)}|s^{(i)}, o^{(i)}, \delta_{\text{trans}}, \delta_{\text{rot}})
\approx \mathbb{E}[W|s^{(i)}, \Delta \xi] = \mathbb{E}[\Delta \xi|o^{(i)}, \delta_{\text{trans}}, \delta_{\text{rot}}]
$$

(10)

Here $\mathbb{E}[]$ denotes the (conditional) expected value of a random variable. This expression is only approximately correct, but can be computed efficiently (whereas the original expression cannot). In our implementation, it is computed in three steps, each of which correspond to one of the terms in (10).

1. $\mathbb{E}[W|s^{(i)}]$: First, the initial sensor scan $s^{(i)}$ is transformed into an occupancy grid [Elf87]. This occupancy grid describes the expected world W under the sensor scan.

2. $\mathbb{E}[\Delta \xi|o^{(i)}, \delta_{\text{trans}}, \delta_{\text{rot}}]$: The expected relative pose $\Delta \xi$ is obtained by computing the expected pose at time $i+1$ relative to the pose at time i. Notice that we exploit the fact that ξ_{trans} and ξ_{rot} have zero mean and can thus safely be ignored in the computation of the expected relative pose.
3. \(P(s^{(i+1)}|W, \Delta \xi) \): Finally, the likelihood of each individual sensor measurement in \(s^{(i+1)} \), the scan recorded in the final position, is computed using a geometric sensor model adopted from [BFT97]. Let \(s_k^{(i+1)} \) be the \(k \)-th individual sensor value (a single distance measurement) in the sensor scan \(s^{(i+1)} \). The conditional probability of this measurement, \(P(s_k^{(i+1)}|s^{(i)}, o^{(i)}, \delta_{\text{trans}}, \delta_{\text{rot}}) \), is obtained by ray tracing, where the likelihood of a "hit" depends on the occupancy probability of the grid cell that is being traced. As a result, sensor measurements that match the occupancy map will have high likelihood, whereas measurements that contradict the occupancy map have low likelihood. We assume conditional independence between the different measurements, to compute the desired probability as:

\[
P(s^{(i+1)}|W, \Delta \xi) = \prod_k P(s_k^{(i+1)}|W, \Delta \xi) \quad (11)
\]

The following table summarizes the parameter estimation algorithm, based on the parameter likelihood function computed from the perceptual likelihood:

1. Acquire a sensor scan, \(s^{(i)} \).
2. Update the occupancy grid with \(s^{(i)} \).
3. Move to a new location, and record odometry \(o^{(i)} \).
4. Acquire a second sensor scan, \(s^{(i+1)} \).
5. For each possible position error \(\langle \delta_{\text{trans}}, \delta_{\text{rot}} \rangle \), compute the probability of new data given potential pose, \(P(s^{(i+1)}|s^{(i)}, o^{(i)}, \delta_{\text{trans}}, \delta_{\text{rot}}) \).
6. Choose most likely \(\langle \delta_{\text{trans}}^{(i)}, \delta_{\text{rot}}^{(i)} \rangle \) from maximum likelihood given by argmax \(P(s^{(i+1)}|s^{(i)}, o^{(i)}, \delta_{\text{trans}}, \delta_{\text{rot}}) \).
7. Compute new global \(\langle \delta_{\text{trans}}^{(i)}, \delta_{\text{rot}}^{(i)} \rangle \) from previous \(\langle \delta_{\text{trans}}^{(i-1)}, \delta_{\text{rot}}^{(i-1)} \rangle \) and new global \(\langle \delta_{\text{trans}}^{(i)}, \delta_{\text{rot}}^{(i)} \rangle \).
8. Update position as \(\xi^{(i+1)} = \xi^{(i)} + \left(\frac{\delta_{\text{trans}}^{(i)}}{\delta_{\text{rot}}^{(i)}} \right) \cdot |d| \).
9. Set \(s^{(i)} = s^{(i+1)} \), and repeat from step 2.

6 Experimental Results

Our approach was tested using the RWI B21 robot shown in figure 2. The robot is equipped with a 4-wheel synchro drive, an array of 24 sonar sensors, and a SICK laser range finder. The datasets used in our evaluations were collected in two museums: the Carnegie Museum of Natural History in Pittsburgh, PA, and the Smithsonian National Museum of American History in Washington, DC. In both datasets, people occasionally blocked the robot’s sensors.

The basic result of our evaluation is that the approach presented here improves the robot’s odometry by an order of magnitude. As the results in table 1 indicate, the final odometric error in two extensive runs was 18.0 m, or 69.7m, which was reduced by our algorithm to 3.05m, or 12.45m, respectively. Thus, our approach reduces the odometric error by 83.1%, or 82.4%, by automatically calibrating the kinematic model as the robot is in operation.¹

![Figure 2: The RWI B21 robot used in our research.](image)

<table>
<thead>
<tr>
<th>Features</th>
<th>Carnegie Museum</th>
<th>Smithsonian Museum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Path Length</td>
<td>269 m</td>
<td>741 m</td>
</tr>
<tr>
<td>Raw Odometry Error</td>
<td>18.0 m</td>
<td>69.7 m</td>
</tr>
<tr>
<td>Corrected Odometry Error</td>
<td>3.05 m</td>
<td>12.25 m</td>
</tr>
</tbody>
</table>

Table 1: Summary of errors for raw and corrected odometry.

6.1 Single Step Calibration

![Figure 3: Two superimposed sensor scans on the left. The points represent obstacles, and the circle is the robot position. On the right, the superposition of the two sensor scans after calibration. Here the scans line up much better.](image)

Figure 3 illustrates the basic estimation step in our algorithm. Figure 3 shows two example range scans in the left panel, superimposed using the raw odometry measurement. The scans do not align properly if the robot’s raw odometry is used. The result of applying our calibration algorithm to this pair of sensor scans is shown on the right. Here the superimposed scans line up much better. This example illustrates a single step in the estimation of robot’s motion parameters.

¹These results are correspond to the results of similar efforts reported elsewhere [Bor94], but instead of changing the robot’s hardware (the approach in [Bor94] actually requires that the robot has a trailer), our approach uses the robot’s sensors to identify systematic errors in the robot’s kinematics.
6.2 Results Obtained in the Carnegie Museum

A more extensive experiment is shown in figure 4. This diagram shows a fraction of the dataset gathered in the Carnegie Museum of Natural History. As the diagram indicates, the error in the robot’s odometry, if uncalibrated, is substantial (the path should be closed in this figure). After 269 meters (full dataset), the uncalibrated robot has accumulated an odometric error of 18.0 meters.

Figure 4: Path of the robot, using the uncalibrated raw odometry data. Shown in gray are the obstacles, as detected by the robot’s laser range finder.

Figure 5 shows the result using a well-calibrated model throughout the entire experiment. The error parameters at the end of the data set were $\delta_{\text{trans}} = -0.073$, and $\delta_{\text{rot}} = -0.001607$. After 269 meters (full dataset), the final odometric error is only 3.05m, which amounts to a reduction of 83.1%.

Figure 5: The map generated using corrected position estimates. The corrections were made using only the correction parameters δ_{trans} and δ_{rot}, computed from the entire data set.

6.3 Results Obtained in the Smithsonian Museum

To verify these results and further investigate the robustness of this approach, we applied the algorithm to a dataset that we recently collected in the National Museum of American History. In many aspects, this environment makes calibration more difficult. Most of this building consists of large, open spaces that lack the structure necessary for self-calibration (there are not many obstacles that the laser range finder could detect). It is also much larger, amplifying small rotational errors even more. Thus, in our experiments, the parameters δ_{trans} and δ_{rot} were initialized with the values obtained in the Carnegie Museum (and not just with 0, as in the previous experiment).

Figure 6: Path generated using the robot’s raw, uncalibrated odometry, from data acquired in the Smithsonian National Museum of American History. The arrows point to the start and end positions of the robot, which correspond to the same point in the actual museum.

Figure 7: The map of the Smithsonian, generated with corrected position estimates, from correction parameters computed in the Carnegie Museum. Again the arrows correspond to the same point in the museum.

The results indicate that our approach is well-suited for calibrating the robot even in this environment. Figure 6 shows the path according to the raw, uncalibrated odometry — the robot trajectory is clearly unreliable. The start and end-point in the trajectory were in fact identical, and yet the end-point is located in the upper-right corner of the map in figure 6, whereas the start-point is in the lower-center part of the map. In metric terms, the final error is 69.7m, which resulted after a total motion of 741m.

Figure 7 shows the corrected path, estimated using our new self-calibration routine. Here the odometry is much
more accurate, reducing the final error substantially. The odometric error that resulted after this motion fell to 12.25m (from 69.7m) over the same 741m, a reduction in error of 82.4%. While these results have to be taken with a grain of salt — due to the high variance in real-world robot experiments — they nevertheless indicate the importance of on-line calibration in mobile robotics, and demonstrate the benefits of the work presented here.

7 Conclusion

This paper presented an algorithm for the life-long self-calibration of a mobile robot. The algorithm estimates kinematic calibration parameters by comparing consecutive sensor scans. The result of this comparison is used to adapt the kinematic model of the robot, thereby improving its odometry. The key advantage of this approach over previous calibration methods lies in the fact that it obviates the need for external measurements and explicit calibration procedures; instead, the robot calibrates itself while it is operating. The advantage to this approach is that the calibration parameters adapt to changes in the environment rapidly and without human intervention. Experimental results obtained in two large and irregularly shaped indoor environments illustrate that the algorithm can reduce a robot’s odometry error significantly.

The statistical framework, on which our approach is based, relates closely to a family of recent statistical methods that have been applied with great success to various problems in mobile robotics. For example, similar statistical methods have been devised for mobile robot localization [MD94, NPB95, KCK96, SK95, BFT97], mapping [LM97, SK97, TFB98, Thr98b], collision avoidance [FBT98].

To us, the results presented here have significant practical importance. We have successfully installed a mobile robotic tour-guide in the Deutsches Museum Bonn [BFL 97] and the Smithsonian National Museum of American History. Accurate odometry was essential for the success of the robot, as many of the obstacles, especially in the Deutsches Museum Bonn were practically “invisible” to the robot’s sensors. The datasets used in our experiments have been obtained in two much larger museums, one of which (the Smithsonian) not only has few reference points for our localization methods, but was a crowded environment where dynamic obstacles (i.e., people) corrupted the sensor data regularly.

Acknowledgments

The authors would like to thank Tom Mitchell for his advice and support of this research. We would also like to thank both the Carnegie Museum of Natural History, and the National Museum of American History for the use of their space for these experiments.

This research was supported in part by Le Fonds pour la Formation de Chercheurs et l’Aide à la Recherche (Fonds FCAR), Daimler-Benz Research (via Frieder Lohnert) and the Defense Advanced Research Projects Agency (DARPA) via the Airforce Missile System Command under contract number F04701-97-C-0022. The views and conclusions contained in this document are those of the author and should not be interpreted as necessarily representing official policies or endorsements, either expressed or implied, of FCAR, Daimler-Benz Research, the Airforce Missile System Command, or the United States Government.

References