
Online Self-Calibration For Mobile Robots

Nicholas Roy and Sebastian Thrun
Robotics Institute and Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15232

Abstract

This paper proposes a statistical method for calibrating the
odometry of mobile robots. In contrast to previous ap-
proaches, which require explicit measurements of actual mo-
tion when calibrating a robot’s odometry, the algorithm pro-
posed here uses the robot’s sensors to automatically cal-
ibrate the robot as it operates. An efficient, incremental
maximum likelihood algorithm enables the robot to adapt
to changes in its kinematics on-line, as they occur. The ap-
propriateness of the approach is demonstrated in two large-
scale environments, where the amount of odometric error is
reduced by an order of magnitude.

1 Introduction

Calibration is the problem of estimating a robot’s phys-
ical model from data. It has long been recognized that
robots change their physical properties over time. In mo-
bile robotics, wear and tear can change the diameter of
wheels, loosen belts, and so on. Such effects can introduce
significant systematic errors into a robot’s odometry. The
need for such calibration is as old as the field of robotics
itself, and the literature is full of methods for calibrating
robots (see e.g., [CW90, Vuk89]). As examples shown
elsewhere illustrate, the resulting errors can be substantial
[Bor94, Ren93, Thr98b].

Virtually all existing calibration methods, however, have
certain disadvantages when applied to mobile robots. Many
existing calibration methods require human intervention. To
calibrate a mobile robot’s odometry, a person (or some ex-
ternal device) has to measure the exact motion of the robot,
and infer from these measurements the physical model. Such
approaches are undesirable for two reasons. First, a cer-
tain amount of effort is involved in calibrating a mobile
robot, usually disrupting the robot’s operation. Second, and
more importantly, the physics of mobile robots change, often
rapidly.

By comparison, a mobile robot’s odometry is dependent
on the kind of surface the robot is travelling on. As the sur-
face changes (from carpet to tile, for example) the calibra-
tion parameters change. To maintain an up-to-date model,

the calibration has to be repeated at regular intervals. This
can be expensive in practical applications—such as robots
that are operated in private homes.

Consequently, rather than performing position estimation
solely based on odometry data (dead-reckoning), mobile
robots typically combine odometry data with sensor feed-
back from the environment. In such a localization process,
the position of the robot is estimated from both uncalibrated
odometry and sensor data such as from a laser proximity sen-
sor [BFT97, MD94], eliminating the need for a model of the
odometric error. One problem, however, with this type of
position estimation is that in areas of the environment with
little or no sensor data, such as large open spaces, or un-
reliable sensor data (such as in crowded environments) the
sensor feedback becomes unreliable or nonexistent, and the
robot can become quickly lost.

Robot calibration is not a novel idea; however, few cali-
bration techniques have been applied to mobile robot odom-
etry. For robot arms, robot platforms and many other sta-
tionary devices, the environment is mostly static, thus the
calibration parameters are unlikely to change except with
changes to the robot. Furthermore, the odometric error of
a robot arm joint is strictly internal to the joint and is not af-
fected by most changes to the environment. We address the
problem of odometric calibration through statistical means,
using existing sensors. Our approach phrases the calibra-
tion problem as a maximum likelihood estimation problem,
which seeks to identify the most likely model parameters
under the data. While the general maximum likelihood esti-
mation problem is intractable, we have devised an efficient,
incremental solution. The estimator proposed here is an ex-
ponential estimator that determines calibration parameters
through iterative comparisons of pairs of sensor readings,
and automatically adapts to changes that might occur over
the lifetime of the robot.

Experimental results, obtained in two large, populated in-
door environments, demonstrate the appropriateness of the
approach. The odometric error is reduced by approximately
83%, along trajectories 741m and 269m long.



2 Probabilistic Model of the Kinematics

Our approach models robot motion probabilistically. More
specifically, let ξ = 〈x, y, θ〉 denote a robot’s pose in x-
y-space (θ is the robot’s heading direction). The model of
robot motion is denoted by the conditional probability distri-
bution P (ξ′|ξ, o), where ξ is the robot’s pose before execut-
ing a control (action), o is the displacement measured by the
robot’s odometry, and ξ′ is the pose after executing the con-
trol. To simplify the notation, we will assume that odometric
measurements o consist of two numbers, one that measures
the robot’s rotational displacement (denoted by orot), and
one that measures its translational displacement (denoted by
otrans).
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Figure 1: Three example probability distributions of the robot’s (x, y) po-
sition after a rotation and a forward translation. Figure (b) shows a model
with high translational error, and figure (c) shows a model with high rota-
tional error.

Figure 1 illustrates a specific P (ξ′|ξ, o). Here the robot’s
initial pose, ξ, is shown at the bottom. The shaded grey
area depicts the distribution over possible posterior poses,
P (ξ′|ξ, o), after measuring that the robot moved as indi-
cated. The darker a value, the more likely it is. Figure 1(b)
shows a motion model that assumes high translational error,
and figure 1(c) shows a situation with excessive rotational
error.

Mathematically speaking, the motion model is defined
through the robot’s kinematics with the assumption that the
robot might non-deterministically suffer errors in its transla-
tional and rotational measurements. The robot’s final pose is
given by




x′

y′

θ′


 =




x+ ôtrans cos(θ + ôrot)
y + ôtrans sin(θ + ôrot)
(θ + ôrot) modulo 2π


 (1)

where ôtrans and ôrot denote the robot’s true translation
and rotation, respectively. Recall that o = 〈otrans, orot〉
is the displacement measured by the robot. If the robot’s
odometry is 100% accurate, ôtrans = otrans and ôrot = orot,
and there is no calibration problem. In practice, however,
the measured and actual odometry differ.

In this paper we assume that the difference is accounted
for by two factors: a systematic error and a random er-
ror, where the latter has an expected value of zero (zero-

mean). More specifically, the true rotation and translation
differ from the measured odometry by two additive terms

ôtrans = otrans + δtrans|d|+ εtrans

ôrot = orot + δrot|d|+ εrot (2)

Here εtrans and εrot are two random variables with zero
mean. The numerical parameters δtrans and δrot describe the
systematic error, the drift. The problem of robot calibration,
thus, is the problem of estimating δtrans and δrot.

As the functional form (2) suggests, our model assumes
that both errors grow linearly with the distance traveled. In
practice we found this model to be superior over various
other choices, including models with more parameters. Our
choice of parameters was heavily influenced in fact by exper-
imental evidence. The odometric error that the robot accu-
mulated was almost completely attributable to translational
motion. The controller used for this robot performed very
little pure rotation; most paths were curved, combining rota-
tion and forward motion. The error occurred almost exclu-
sively during these kinds of trajectories, supporting our use
of error parameters only over the translational motion.

3 Parameter Estimation

Our approach estimates the kinematic parameters, δtrans and
δrot using data collected during everyday robot motion. Let

d = {s(1), o(1), s(2), o(2), . . . } (3)

denote the data, where s(i) denotes a sensor measurement
(e.g., a laser scan), and o(i) denotes the displacement mea-
sured by the robot’s odometry between two consecutive sen-
sor measurement.

In statistical terms, the calibration problem is a maximum
likelihood estimation problem where one seeks to identify
the kinematic parameters δtrans and δrot that appear most
plausible under the data d:

〈δ∗trans, δ
∗
rot〉 = argmax

δtrans,δrot

P (δtrans, δrot|d) (4)

If the data set is large, this problem is mathematically in-
tractable (see [TFB98]). In addition, computing (4) would
require that the robot memorized all data d, which is un-
desirable for a robot that calibrates its motion parameters
continuously.

Instead, our approach decomposes the estimation prob-
lem into a sequence of single-step problems, which can be
estimated much more efficiently:

〈δ(i)∗
trans, δ

(i)∗
rot 〉= argmax

δtrans,δrot

P (δtrans, δrot|s(i),o(i),s(i+1)) (5)

Here i is a time index. This series of local maximum like-
lihood estimators determines the motion parameters δ∗trans



and δ∗rot based on data just perceived. More specifically,
the estimator considers only the sensor data obtained before
the transition, s(i), sensor data obtained after the transition,
s(i+1), and the displacement measured by the robot’s odom-
etry o(i). The probability on the right-hand side of (5) is
called the parameter likelihood function. It will be derived
in the next section.

Finally, the desired kinematic parameters, δtrans and δrot,
are estimated recursively using an exponential estimator,
where past estimates are discounted exponentially over time:
(
δ∗trans

δ∗rot

)
←− γ

(
δ∗trans

δ∗rot

)
+ (1−γ)

(
δ

(i)∗
trans

δ
(i)∗
rot

)
(6)

Here γ
<≈ 1 is an exponential discount factor that decays the

weight of measurements over time. This exponential esti-
mator has three important advantages over the original max-
imum likelihood estimator (4):

• it is incremental, i.e., it does not require that the robot
memorizes past data,

• it can be computed in constant time, independent of the
data set size d, and

• it adapts to changes in the robot’s drift, by exponentially
decaying past measurements.

Thus, with an appropriate choice of γ, it can be used for con-
tinuously calibrating a robot whose drift parameters change
slowly over time, e.g., with wear and tear. In our experi-
ments, we used γ = 0.9.

4 Parameter Likelihood Function

It remains to be shown how to compute the parameter like-
lihood function P (δtrans, δrot|s(i), o(i), s(i+1)) in equation
(5). Since the parameters are estimated based on actual sen-
sor data (e.g., laser range measurements), the parameter like-
lihood function involves the definition of a sensor model.

According to Bayes’ rule, the parameter likelihood can
be transformed into:

P (δtrans, δrot|s(i), o(i), s(i+1)) = (7)

αP (s(i+1)|s(i), o(i), δtrans, δrot)P (δtrans, δrot|s(i), o(i)),

where α is a constant normalizer that can safely be ignored
in the maximization. Since knowledge of just s(i) and o(i)

(without s(i+1)!) does not convey any information about
the parameters δtrans and δrot, P (δtrans, δrot|s(i), o(i)) =
P (δtrans, δrot), and equation (7) can further be simplified to

P (δtrans, δrot|s(i), o(i), s(i+1)) = (8)

αP (s(i+1)|s(i), o(i), δtrans, δrot) P (δtrans, δrot).

The probability P (δtrans, δrot) is the prior on the parameters
δtrans and δrot. Typically, one might have a Gaussian or a
uniform prior on the drift parameters.

The other term in equation 8, the probability
P (s(i+1)|s(i), o(i), δtrans, δrot) is called the perceptual
likelihood. It specifies the likelihood of observing s(i+1)

under the assumptions that

• the robot initially observed s(i),
• then measured an odometric displacement o(i),
• but its odometry was corrupted according to δtrans and
δrot.

5 The Perceptual Likelihood

It remains to show how to compute the perceptual likeli-
hood. According to the theorem of total probability (and
under some obvious independence assumptions), the percep-
tual likelihood can be expressed as

P (s(i+1)|s(i), o(i), δtrans, δrot)

=

∫ ∫
P (s(i+1)|W,∆ξ, s(i), o(i), δtrans, δrot) ·

P (W,∆ξ|s(i), o(i), δtrans, δrot) dW d∆ξ

=

∫ ∫
P (s(i+1)|W,∆ξ) · (9)

P (W |s(i))P (∆ξ|o(i), δtrans, δrot) dW d∆ξ

where W denotes the world, the configuration of all obsta-
cles, and ∆ξ denotes the relative displacement between the
robot’s pose ξ(i+1) and ξ(i). Of course, integrating over all
possible worlds W and all displacements ∆ξ is infeasible.

Our approach approximates the perceptual likelihood by
replacing the integrals in (9) with their expected values,
which are much easier to compute (as the need to integrate
over W and ∆ξ is obviated):

P (s(i+1)|s(i), o(i), δtrans, δrot) (10)

≈ P (s(i+1)|W=E[W |s(i)],∆ξ=E[∆ξ|o(i), δtrans, δrot])

Here E[ ] denotes the (conditional) expected value of a ran-
dom variable. This expression is only approximately cor-
rect, but can be computed efficiently (whereas the original
expression cannot). In our implementation, it is computed
in three steps, each of which correspond to one of the terms
in (10).

1. E[W |s(i)]: First, the initial sensor scan s(i) is transformed
into an occupancy grid [Elf87]. This occupancy grid de-
scribes the expected world W under the sensor scan.

2. E[∆ξ|o(i), δtrans, δrot]: The expected relative pose ∆ξ is
obtained by computing the expected pose at time i+1 rel-
ative to the pose at time i. Notice that we exploit the fact
that εtrans and εrot have zero mean and can thus safely be
ignored in the computation of the expected relative pose.



3. P (s(i+1)|W,∆ξ): Finally, the likelihood of each individ-
ual sensor measurement in s(i+1), the scan recorded in
the final position, is computed using a geometric sensor
model adopted from [BFT97]. Let s(i+1)

k be the k-th in-
dividual sensor value (a single distance measurement) in
the sensor scan s(i+1). The conditional probability of this
measurement, P (s

(i+1)
k |s(i), o(i), δtrans, δrot), is obtained

by ray tracing, where the likelihood of a “hit” depends
on the occupancy probability of the grid cell that is being
traced. As a result, sensor measurements that match the
occupancy map will have high likelihood, whereas mea-
surements that contradict the occupancy map have low
likelihood. We assume conditional independence between
the different measurements, to compute the desired prob-
ability as:

P (s(i+1)|W,∆ξ) =
∏

k

P (s
(i+1)
k |W,∆ξ) (11)

The following table summarizes the parameter estimation al-
gorithm, based on the parameter likelihood function com-
puted from the perceptual likelihood:

1. Acquire a sensor scan, s(i).
2. Update the occupancy grid with s(i).
3. Move to a new location, and record odometry o(i).
4. Acquire a second sensor scan, s(i+1).
5. For each possible position error 〈δtrans, δrot〉, com-

pute the probability of new data given potential pose,
P (s(i+1)|s(i), o(i), δtrans, δrot)

6. Choose most likely 〈δ(i)∗
trans, δ

(i)∗
rot 〉 from maximum likelihood

given by argmax P (s(i+1)|s(i), o(i), δ
(i)∗
trans, δ

(i)∗
rot )

7. Compute new global 〈δ∗trans, δ
∗
rot〉 from 〈δ(i)∗

trans, δ
(i)∗
rot 〉 and pre-

vious global 〈δ∗trans, δ
∗
rot〉

8. Update position as ξ′ = ξ+

(
otrans

orot

)
+

(
δ∗trans

δ∗rot

)
· |d|

9. Set s(i) = s(i+1), and repeat from step 2

6 Experimental Results

Our approach was tested using the RWI B21 robot shown
in figure 2. The robot is equipped with a 4-wheel synchro
drive, an array of 24 sonar sensors, and a SICK laser range
finder. The datasets used in our evaluations were collected
in two museums: the Carnegie Museum of Natural History
in Pittsburgh, PA, and the Smithsonian National Museum
of American History in Washington, DC. In both datasets,
people occasionally blocked the robot’s sensors.

The basic result of our evaluation is that the approach pre-
sented here improves the robot’s odometry by an order of
magnitude. As the results in table 1 indicate, the final odo-
metric error in two extensive runs was 18.0 m, or 69.7m,
which was reduced by our algorithm to 3.05m, or 12.45m,
respectively. Thus, our approach reduces the odometric error

Figure 2: The RWI B21 robot used in our research.

by 83.1%, or 82.4%, by automatically calibrating the kine-
matic model as the robot is in operation.1

Carnegie Smithsonian
Museum Museum

Path Length 269 m 741 m
Raw Odometry 18.0 m 69.7 m

Error
Corrected 3.05 m 12.25 m

Odometry Error

Table 1: Summary of errors for raw and corrected odometry.

6.1 Single Step Calibration

mis-aligned
Features 

Figure 3: Two superimposed sensor scans on the left. The points represent
obstacles, and the circle is the robot position. On the right, the superposition
of the two sensor scans after calibration. Here the scans line up much better.

Figure 3 illustrates the basic estimation step in our algo-
rithm. Figure 3 shows two example range scans in the left
panel, superimposed using the raw odometry measurement.
The scans do not align properly if the robot’s raw odome-
try is used. The result of applying our calibration algorithm
to this pair of sensor scans is shown on the right. Here the
superimposed scans line up much better. This example il-
lustrates a single step in the estimation of robot’s motion
parameters.

1These results are correspond to the results of similar efforts reported
elsewhere [Bor94], but instead of changing the robot’s hardware (the ap-
proach in [Bor94] actually requires that the robot has a trailer), our ap-
proach uses the robot’s sensors to identify systematic errors in the robot’s
kinematics.



6.2 Results Obtained in the Carnegie Museum

A more extensive experiment is shown in figure 4. This dia-
gram shows a fraction of the dataset gathered in the Carnegie
Museum of Natural History. As the diagram indicates, the
error in the robot’s odometry, if uncalibrated, is substantial
(the path should be closed in this figure). After 269 me-
ters (full dataset), the uncalibrated robot has accumulated an
odometric error of 18.0 meters.

Figure 4: Path of the robot, using the uncalibrated raw odometry data.
Shown in gray are the obstacles, as detected by the robot’s laser range finder.

Figure 5 shows the result using a well-calibrated model
throughout the entire experiment. The error parameters at
the end of the data set were δtrans = −.073, and δrot =
−.0001607. After 269 meters (full dataset), the final odo-
metric error is only 3.05m, which amounts to a reduction of
83.1%.

Figure 5: The map generated using corrected position estimates. The cor-
rections were made using only the correction parameters δtrans and δr ,
computed from the entire data set.

6.3 Results Obtained in the Smithsonian Museum

To verify these results and further investigate the robustness
of this approach, we applied the algorithm to a dataset that
we recently collected in the National Museum of Ameri-
can History. In many aspects, this environment makes cal-
ibration more difficult. Most of this building consists of
large, open spaces that lack the structure necessary for self-
calibration (there are not many obstacles that the laser range
finder could detect). It is also much larger, amplifying small

�
�	
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Figure 6: Path generated using the robot’s raw, uncalibrated odometry,
from data acquired in the Smithsonian National Museum of American His-
tory. The arrows point to the start and end positions of the robot, which
correspond to the same point in the actual museum.

rotational errors even more. Thus, in our experiments, the
parameters δtrans and δrot were initialized with the values
obtained in the Carnegie Museum (and not just with 0, as in
the previous experiment).

�
�	

�
�	

Figure 7: The map of the Smithsonian, generated with corrected position
estimates, from correction parameters computed in the Carnegie Museum.
Again the arrows correspond to the same point in the museum.

The results indicate that our approach is well-suited for
calibrating the robot even in this environment. Figure 6
shows the path according to the raw, uncalibrated odome-
try — the robot trajectory is clearly unreliable. The start and
end-point in the trajectory were in fact identical, and yet the
end-point is located in the upper-right corner of the map in
figure 6, whereas the start-point is in the lower-center part
of the map. In metric terms, the final error is 69.7m, which
resulted after a total motion of 741m.

Figure 7 shows the corrected path, estimated using our
new self-calibration routine. Here the odometry is much



more accurate, reducing the final error substantially. The
odometric error that resulted after this motion fell to 12.25m
(from 69.7m) over the same 741m, a reduction in error of
82.4%. While these results have to be taken with a grain
of salt — due to the high variance in real-world robot ex-
periments — they nevertheless indicate the importance of
on-line calibration in mobile robotics, and demonstrate the
benefits of the work presented here.

7 Conclusion

This paper presented an algorithm for the life-long self-
calibration of a mobile robot. The algorithm estimates kine-
matic calibration parameters by comparing consecutive sen-
sor scans. The result of this comparison is used to adapt the
kinematic model of the robot, thereby improving its odome-
try. The key advantage of this approach over previous cali-
bration methods lies in the fact that it obviates the need for
external measurements and explicit calibration procedures;
instead, the robot calibrates itself while it is operating. The
advantage to this approach is that the calibration parame-
ters adapt to changes in the environment rapidly and without
human intervention. Experimental results obtained in two
large and irregularly shaped indoor environments illustrate
that the algorithm can reduce a robot’s odometry error sig-
nificantly.

The statistical framework, on which our approach is
based, relates closely to a family of recent statistical meth-
ods that have been applied with great success to various
problems in mobile robotics. For example, similar sta-
tistical methods have been devised for mobile robot lo-
calization [MD94, NPB95, KCK96, SK95, BFT97], map-
ping [LM97, SK97, TFB98, Thr98b], collision avoidance
[FBT98].

To us, the results presented here have significant practical
importance. We have successfully installed a mobile robotic
tour-guide in the Deutsches Museum Bonn [BFL+97] and
the Smithsonian National Museum of American History.
Accurate odometry was essential for the success of the robot,
as many of the obstacles, especially in the Deutsches Mu-
seum Bonn were practically “invisible” to the robot’s sen-
sors. The datasets used in our experiments have been ob-
tained in two much larger museums, one of which (the
Smithsonian) not only has few reference points for our lo-
calization methods, but was a crowded environment where
dynamic obstacles (i.e., people) corrupted the sensor data
regularly.
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