
Adapting Probabilistic Roadmaps to Handle
Uncertain Maps

Patrycja E. Missiuro and Nicholas Roy
MIT Computer Science and Artificial Intelligence Lab (CSAIL)
Stata Center, 32 Vassar Street, 32-331, Cambridge, MA 02139

Email: {patrycja|nickroy}@csail.mit.edu

Abstract— Randomized motion planning techniques are very
good at solving high-dimensional motion planning problems.
However, most planners assume complete knowledge of the
environment, an assumption that can lead to collisions if there
are errors in the world model due to uncertainty. We propose
an extension of the Probabilistic Roadmap [1] algorithm that
computes motion plans that are robust to uncertain maps.
We show that the adapted PRM generates less collision-prone
trajectories with fewer samples than the standard method.

I. INTRODUCTION

Randomized motion planners, such as the Probabilistic
Roadmap (PRM) [1] and the Rapidly-exploring Randomized
Tree (RRT) [2] have been very successful in solving planning
problems for robots with many degrees of freedom, problems
that were previously considered intractable [3], [4]. However,
these algorithms depend on having a complete and accurate
model of the world.

In carefully engineered settings, such as a robot manipulator
on the factory floor, the “perfect map” assumption is a reason-
able one, as the environment can be precisely measured and
tightly controlled. In contrast, major successes in robotics have
been driven by appropriate models of uncertainty. Statistical
inference techniques such as Markov localization and the
Kalman filter [5], [6] have enabled mobile robots to navigate
safely in populated, dynamic, uncertain environments without
getting lost. For robots with few degrees of freedom, non-
randomized motion planning algorithms have become more
robust to sensor and model errors by using robust control
techniques that incorporate both the cost of control errors
and position uncertainty [7]. In order to allow the same
robust operation for high-dimensional robots such as humanoid
robots interacting with the real world, we need to incorporate
knowledge of model uncertainty into the motion planning.

This paper extends the Probabilistic Roadmap (PRM) algo-
rithm in two ways. Firstly, we modify randomized sampling
of poses in order to minimize the number of samples required
to express good plans. Our results show that good sampling
strategies that respect map uncertainty can be used to substan-
tially reduce the number of samples required to express good
(less collision-prone) trajectories in uncertain worlds. Since
the complexity of the trajectory search process is strongly
dependent on the number of nodes, minimizing the set of
samples is a major factor in keeping the planning problem
tractable. Secondly, we show how to evaluate PRM actions
efficiently in the context of uncertainty and generate motion
plans with minimal expected cost.

II. THE PROBABILISTIC ROADMAP METHOD

Given a map, robot dimensions, and the start and goal
positions, the PRM method [1], [8] aims to produce a valid
path from start to goal. We use C to denote the configuration
space, the space of all robot poses [9], Cfree as the set of all
collision-free poses and Cobst as the set of poses resulting in
collision with obstacles, so that C ≡ Cfree ∪ Cobst. The PRM
solves the planning problem in two stages [1], [10]1:

1) The preprocessing phase, during which robot poses are
sampled from C, and only collision-free samples are
retained. The retained samples, with the start and goal
configurations constitute the nodes of a graph. The graph
edges are found using a local planner that determines
connectivity of each node to its k nearest neighbors. If
the local planner finds a collision-free path between two
nodes, then an edge between the nodes is added to the
graph; the edge is labelled with an associated cost, such
as distance.

2) The query phase, during which a graph search algorithm
finds path from the start to the goal node.

The power of the PRM resides in the preprocessing stage,
which exploits the fact that even if Cfree cannot be tractably
computed, it is relatively efficient to determine if an arbitrary
pose lies in Cfree. The PRM learns a discrete graph approx-
imation of Cfree by sampling poses from C and rejecting
samples that lie in Cobst (i.e., that collide with obstacles). If
the sampling strategy is good, then a relatively small number
of nodes suffices to approximate Cfree. The challenge with
PRM planning is determining good sampling strategies that
capture the topology of Cfree with as few samples as possible,
reducing the time to search for the path during the query
stage of PRM. Although the PRM solution is complete in
the limit of sampling an infinite number of nodes, the rate of
convergence depends on the sampling strategy and difficulty
of the environment [11]. An example of a challenging Cfree

configuration is a narrow passage where a naı̈ve sampling
strategy (such as uniform [12]) may require a large number
of samples before it approximates a trajectory through such a
corridor. Three commonly used sampling strategies are:

Uniform sampling [12] samples poses with uniform proba-
bility from C. The method’s shortcoming is that no information
about the map is used and unnecessarily many points are
sampled in the empty regions (figure 1 left).

1Our work extends a classic variant of the PRM which tests for collisions
during sampling and local planning as opposed to the Lazy PRM method [8].

Fig. 1. A comparison of conventional sampling, column-wise: Uniform, Gaussian, Bridge

Gaussian obstacle-based sampling [13], [14] tries to cap-
ture the fact that the optimal length paths in C follow around
and near the obstacles. It samples points near and only in
the presence of obstacles (figure 1). A first sample, s1, is
drawn using the uniform sampler. A distance d is sampled
from a normal distribution with mean and covariance based
on knowledge of obstacle density in C. A second sample, s2

is then drawn from a uniform distribution of radius d centered
at s1. If both samples are either in Cfree or in Cobst, they are
discarded. Otherwise, the sample inside Cfree is retained.

Bridge obstacle-based sampling [15] biases the sampling
towards narrow passages where retaining connectivity of Cfree

is difficult. A first sample s1 is drawn using the uniform sam-
pler and discarded if it lies in Cfree. Otherwise, a distance d

is drawn from a normal distribution with mean and covariance
based on a priori knowledge of the topology of C. A second
sample s2 is drawn from a uniform distribution with radius d

centered at s1. If s2 lies in Cfree, both samples are discarded.
If, however, s2 is in Cobst, then the midpoint m between s1
and s2 is computed. If pose m falls within Cfree, then m

is added to the graph. This sampler cannot generally be used
alone since it samples only in corridors (figure 1 right).

Note that different sampling strategies can be used in
combination, for example, the Bridge sampler cannot generally
be used alone since it samples only in corridors.

III. UNCERTAIN WORLDS

A. Modelling world uncertainty

The sampling methods described so far assume that the
world model is known exactly. However, this is an unrea-
sonably optimistic assumption, since the statistical techniques
used to estimate maps assume measurement errors. For exam-
ple, the Kalman filter [5] maintains an explicit representation
of the uncertainty of world features. In this paper, we rep-
resent the uncertainty in the map as multivariate Gaussians
over obstacle features as provided by a feature-based EKF
algorithm [5]. Figure 2(left) shows an example map in which
the vertices of the polygons have uncertainty modelled with
Gaussian distributions. The uncertainty of the location of each
vertex is visualized with a one standard deviation uncertainty
ellipse computed from the map covariance Σ around each
vertex. Possible world models are shown in figure 2(right).
The features of the two “

∧

”-shaped obstacles are known with
less precision and the trajectories above them are more likely

to collide with the actual obstacles. The preferred path would
go around these obstacles, not directly across to the goal.

In the following section, we propose a method to sample
poses when the world is uncertain. We adapt the sampling
strategies to adjust for map uncertainty. In subsequent sections,
we describe how to incorporate the obstacle uncertainty into
motion costs and trajectory generation.

B. Proposed algorithms for sampling in uncertain worlds

In an uncertain world the actual positions of obstacles are
unknown. It is unclear whether a sampled pose s collides with
some obstacle or is in Cfree, thus whether we should accept
or reject it. We propose that the decision to accept or reject s

be a function of the probability that a pose is in Cfree.
Our method can be logically broken down into two steps:
1) Estimate collision probability for sampled pose s.
2) Reject or accept s based on the collision probability.
We will incorporate the world uncertainty into both phases

of the planning process. This does not constitute double-
counting; if we knew a priori the optimal path, then the
optimal sampler would sample only poses on the path. By
incorporating knowledge used in cost calculations, we can
focus the sampling appropriately. For example, our adapted
samplers are biased to sample closer to more certain side of
the corridor space. This allows the PRM planner to focus its
search in regions where collisions are less likely.

C. Estimation of collision probability

Let us use δ(s,W) to denote a function that determines
whether or not s is in Cfree of a possible model W:

δ(s,W) =

{

1 : s ∈ Cfree of W

0 : otherwise.
(1)

Note that the world W is a single instance of sampled world
from the distribution as shown in figure 2(right).

The probability that a sample is in Cfree can then be
computed by

p (s ∈ Cfree) =

∫

W

δ(s,W)p(W)dW (2)

where p(W) is a multivariate probability density of the world
model at the world W, VW is an integration variable being a
volume in a configuration space of all degrees of freedom of

Fig. 2. Map of Robotics3 lab in Stata, MIT used as an example uncertain world in R2. Left: the maximum-likelihood map, shown with distributions of the
features. Ellipses visualize one standard deviation from the mean. Right: example maps sampled from distributions.

all obstacles, and the world W can be uniquely characterized
by the set of vertices of all obstacles.

To simplify the problem we assume that the obstacles are
not correlated. Correlation among obstacle configurations re-
quires domain knowledge which is usually not available from
sensing and increases computational intractability. Assuming
obstacle independence, we can approximate the likelihood that
s is in Cfree by a product of probabilities that s does not
collide with any of the obstacles:

p(s ∈ Cfree) ≈
∏

i∈obstacles

[1 − pcoll,i(s)] (3)

where pcoll,i(s) is the probability of colliding with obstacle i.
Given that, the total collision probability is given by:

pcoll,total(s)=1−p(s ∈ Cfree) = 1 −
∏

i∈obstacles

[1 − pcoll,i(s)] (4)

The remaining task is to compute the probability of collision
with one obstacle, pcoll,i(s).

IV. EFFICIENT ESTIMATION OF COLLISION PROBABILITIES
VIA NEAREST POINT METHOD

On each obstacle in our world model, we can find some
point p∗ which is closest to the robot. Our estimate of
the collision probability is based on the realization that the
likelihood for a robot to collide with a particular obstacle is
dominated by likelihood of colliding with p∗. The robot will
generally collide with the obstacle if the point p∗ appears in
the half-space bounded by the line tangent to the robot and
parallel to the obstacle edge (the area S in figure 3). Due
to the uncertainty of the obstacle, the position of p∗ is also
uncertain, but the probability of collision can be approximated
using only knowledge of the distribution of p∗. Assuming
Gaussian distributions on the vertices, if p∗ lies on some
“obstacle edge”2, p∗ is distributed according to a Gaussian

2The notion of an ’obstacle edge’ is not well-defined since our world
model consists of polygons defined by distributions over vertices. We define
an ’obstacle edge’ as the line connecting the means of a pair of vertices.

Fig. 3. The distribution of a point p
∗ on the obstacle edge which is closest

to s, can be computed from normal distributions of neighboring vertices.
Integrating p

∗ distribution over the region S gives an estimate of the collision
likelihood with a particular obstacle.

with covariance derived from the covariance matrices of the
neighboring vertices:

Σp∗ =
l1

2

l2
Σ2 +

(l − l1)
2

l2
Σ1 (5)

where l is the length of the edge, Σi are the corresponding
covariances of vertices and l1 is a distance from p∗ to the
vertex with covariance Σ1 (see figure 3) [16]. In an uncertain
world, p∗ minimizes the Mahalanobis distance between the
robot pose and the obstacle, but we cannot solve for p∗ since
we do not have a closed-form solution for the distribution of
an entire ‘edge’ and in practice the statistical distance can
be sufficiently approximated by the Euclidean case. In order
to estimate the collision probability, we integrate a Gaussian
function N (p∗,Σp∗) over the half-space:

pcoll,i(s) ≈

∫

S

N (p∗,Σp∗)dV. (6)

In order to validate this technique, we compared our app-
proximation with collision probability estimates computed
using a Monte Carlo technique. The probability that the pose s

lies inside some obstacle i can be computed by sampling from
the obstacle distribution and counting the number of collisions
with s, which gives

pcoll,i(s) ≈
Ncollision

Ntotal

(7)

where Ncollision is the total number of pose collisions with
obstacle i and Ntotal is the total number of trials. The difficulty
with the Monte Carlo approximation is that it requires many
samples for an accurate estimate, leading to computational
intractability in the general case, but we used Monte Carlo
estimates to validate our approximation, and Nearest-Point
method gave collision probabilities comparable to the Monte
Carlo estimates.

A. Rejection function based on collision probability

Equation 4 provides a way to estimate the cumulative
collision probability for a given pose efficiently; we reject or
accept sampled poses based on this probability, pcoll,total(s):
the higher the collision likelihood of a sampled pose, the
less likely our sampling algorithm will accept such pose. In
practice, we shaped our rejection function to generally reject
samples that lay inside the “nominal obstacle.”3 based on the
notion that samples where robot is 50% or more likely to
collide with obstacles are costly and unlikely to be used by
the planning stage. Our experimental results will indicate that
our sample measure outperforms conventional techniques.
B. Pose rejection algorithm

We summarize the resulting accept/reject decision in the
following algorithm:

Algorithm 1: Accept or reject pose s

Input: pose s, all obstacles
Output: boolean sreject describing whether to reject pose
(1) foreach obstacle i

(2) Compute pcoll,i, the collision probability for s and
i

(3) Compute the collision probability for all obstacles:
pcoll,total(s) = 1 −

∏

i(1 − pcoll,i(s)).
(4) preject(s) ≈ pcoll,total(s).
(5) sreject = randomly sample from Bernoulli distribution

where p = preject(s).
(6) return sreject

Adapted Sampling Strategies

We modify each sampling strategy to accept or reject
samples stochastically, depending on the likelihood of pose
s lying in Cfree.

Adapted Uniform Sampling: poses are drawn uniformly
at random from C and each sample is retained or rejected
based on collision likelihood as summarized in Algorithm 1
(see figure 4 left).

3We define “nominal obstacle” as the obstacle with the vertices at the
maximum likelihood positions which are the means of Gaussian distributions.

Adapted Gaussian sampling: Gaussian sampling generates
samples that are close to obstacles by generating pairs of sam-
ples that lie on opposite sides of an obstacle edge, one inside
the obstacle, the other outside. In an uncertain world, we retain
samples based on probability that the pair of samples lie on
opposite sides of an edge. We first generate a sample s1 inside
the “nominal obstacle,” where the probability of rejection is
high, in our setup preject(s) = 1. Let us call this sample
an “anchor”. Next, we sample a distance d, and generate a
second sample s2 from a uniform distribution of radius d4.
This sample is then retained according to Algorithm 1.

We require the “anchor” points to be inside the “nominal
obstacle,” because we do not want to produce too distant poses.
When we originally did not use this heuristic, many of the
resulting points were very far from the obstacles. This is a
side effect of the fact that, if the first point is already outside
the “nominal obstacle,” and happens to be labelled as being in
Cobst (since the process is stochastic), the second sample may
end up far from the obstacle. Since s2 is far from an obstacle,
preject(s2) will be small, and s2 will be readily accepted as
a sample. By keeping the first sample anchored, we retain the
near-obstacle feature of the original method. Figure 4, middle,
shows Gaussian sampling in an uncertain world.

Adapted bridge sampling: Once again, in order to retain
the near-obstacle characteristics of the original bridge method,
the adapted bridge method secures anchoring of the first two
sampled points inside the “nominal obstacle” by generating
two samples that each have preject = 1. Next, the midpoint
m is computed. This midpoint is then retained based on
Algorithm 1. As a result, narrow pathways characterized by
higher certainty in the obstacle positions are favored, and the
search for a path with lower collision chance is focused on
those passages (see figure 4, right).

Once a set of samples has been generated using any hybrid
of sampling strategies, we use a local planner to determine if
pairs of samples can be connected. We have not modified this
stage of the PRM, and we use k-nearest-neighbors planner
using the Euclidean distance metric in a world defined by
“nominal obstacles.”

V. PLANNING IN UNCERTAIN WORLDS

To generate good trajectories, the query phase of PRM also
needs to incorporate the world uncertainty. Standard planners
find paths that minimize some quantity such as distance or
travel time represented via a cost function associated with
travelling each path segment. We use a minimum-collision-
cost (MCC) planner to find trajectories that minimize the
expected cost of collision when travelling edges in the graph.
We define the expected cost of traversing a path segment
between robot poses s1 and s2 as:

C(s1, s2) = pseg coll,total(s1, s2) ∗ Ccollision +

[1 − pseg coll,total(s1, s2)]||s1, s2|| (8)

4We need to keep in mind that, because our map is uncertain, the variance
of normal distribution of d must be greater than the variance in map fea-
tures/vertices. This is because the sampled points need to be placed sufficiently
far from the obstacles in order not to have high rejection probability.

Fig. 4. A comparison of the sampling strategies adapted for uncertainty sampling, column-wise: Uniform, Gaussian, Bridge

where pseg coll,total(s1, s2) is the probability that a robot
collides with any obstacle while travelling on the line segment
from s1 to s2, and Ccollision is some fixed estimate of how
much it would cost when a robot collides with something.
Ccollision can also be chosen to be a function of distance;
for example, travelling 1 km less may be worth the risk of
colliding with an obstacle.

Continuing the assumption that individual obstacle distribu-
tions are independent, the total probability of collision can be
approximated as:

pseg coll,total(s1, s2) = 1 −
∏

i∈obstacles

[1 − pseg coll,i(s1, s2)] (9)

where pseg coll,i(s1, s2) is the probability of hitting obstacle
i when travelling between s1 and s2. We cannot use the
approximation technique of equation 6 to calculate the prob-
ability of collision, as this method computes the probability
of a single pose. Integrating equation 6 along the edge would
overestimate the probability of collision due to violated inde-
pendence assumptions. We therefore use a Monte Carlo tech-
nique as in equation 7, but for any collision during simulated
motion along the edge.5. We compute the joint probability
pseg coll,total(s1, s2) via equation 9, and incorporate it into the
cost of traversing segment (s1, s2) using equation 8. Finally, a
graph search algorithm (A*) uses the estimated collision cost
along each roadmap edge and returns the minimum cost path.

VI. EXPERIMENTS: ADAPTED SAMPLING AND PLANNING

In our preliminary experiments, we measured the effects
of adapted sampling strategies on the overall performance of
the PRM algorithm. Each experiment was a motion-planning
problem in the 2D plane for a simple circular robot from any
start to any goal location. The performance was measured by
repeatedly simulating a robot trajectory in maps sampled from
the distribution shown in figure 2 and recording how many
collisions occurred (example shown in figure 6).

We examined planner robustness under 3 sampling methods
in conventional and adapted form, for a total of 6 variants. We
used the Nearest Point method to determine whether a sampled
pose results in a collision for the adapted sampling variants.

5For computational efficiency, we do not perform the Monte Carlo trial if
the obstacle and the path edge are statistically far from each other and just
set pseg coll,i(s1, s2) = 0

Fig. 6. Map of the MIT Stata Robotic Lab area, trajectories with obstacles
perturbed, standard A* planner (dashed), minimum-collision-cost A* planner
(dotted)

The local planner used the straight-line distance and maximum
of 12 nearest neighbors (k = 12). In the query stage, we
always used the MCC planner in order to focus on the impact
of the sampling method. The resulting path was smoothed by
rerunning the MCC planner on the fully-connected set of path
nodes, including start and goal.

Plots in figure 5 show that adapted sampling improves
the performance of the planner resulting in higher quality
paths (fewer collisions) while keeping the number of nodes
relatively small. Particularly, in the case of sample numbers
less than 200, the adapted sampling methods do substantially
better, resulting in collision rates that the standard sampling
needs more than 1000 points to obtain. This is because the
adapted sampling methods bias the sampling into regions of
certainty, encouraging pathways through those regions with
fewer samples overall.

The adapted sampling methods add a small amount of com-
putational overhead to the standard sampler, because samples
are rejected based on their collision probability and more loop
iterations are required to collect samples. We found that the
time to sample was anywhere from one to three times as long
as the standard sampling method. However, the sampling stage
of the PRM algorithm is a very small fraction (generally less
than 5%) of the overall time to plan and the planner benefits
from a reduced sample set to plan with.

0 200 400 600 800 1000 1200
0

10

20

30

40

50

60

70

80

90

100
O

bs
ta

cl
e

co
lli

si
on

 %
 ra

te

Number of samples

uniform standard sampling
uniform uncertainty−adapted sampling

0 200 400 600 800 1000 1200
0

10

20

30

40

50

60

70

80

90

100

O
bs

ta
cl

e
co

lli
si

on
 %

 ra
te

Number of samples

gaussian standard sampling
gaussian uncertainty−adapted sampling

0 200 400 600 800 1000 1200
0

10

20

30

40

50

60

70

80

90

100

O
bs

ta
cl

e
co

lli
si

on
 %

 ra
te

Number of samples

bridge standard sampling
bridge uncertainty−adapted sampling

Fig. 5. The PRM performance in terms of collision rates using original and adapted sampling as a function of the sample number. The minimum-collision-cost
planner was used in both cases in order to focus on the influence of the sampling strategy. We note that collision rates when sample numbers are small (under
100) are substantially lower when using our adapted sampling techniques.

A. Modelling Orientation
Figure 7 shows planning for rectangular holonomic robots

of varying dimensions. For these rectangular robots, we used
basic (top) and uncertainty-adapted uniform sampling (bottom)
to sample robot poses (x, y, θ) for a total of 3 dimensions.
In both cases, as the length of the robot increases, the path
needs to accommodate it by moving the robot away from the
obstacle before it can turn. In figure 7(top) the differences
in paths are due purely to robot geometry since conventional
planner is used. In figure 7(bottom) paths change due to both
geometry and uncertainty. The trajectories obtained with MCC
planner are further from the uncertain obstacle. Simulations by
perturbing the obstacles show that the collision rates decrease
from an average of 87% for the conventional planner to 35%
for the MCC planner.

B. Modelling Environmental Dynamics
Figure 8 shows results obtained when planning a path for

a circular B21 robot using a conventional, minimum-distance
planner (the solid trajectory) and the probabilistic, minimum-
collision-cost (MCC) planner (dashed) employing segment
collision cost in equation 8. The conventional planner returns
a path that is 41.2m long where some path segments have
pseg coll,total estimated by MCC to be as high as 0.84. The
MCC planner selects the longer (51.0m) path, but with smaller
(less than 0.40 for a given segment) collision likelihood.

VII. APPLICABILITY TO MULTIDIMENSIONAL PROBLEMS

We have shown a method for incorporating uncertainty
into the PRM and demonstrated the concepts on 2D world
examples, including robots with rotational dependencies. Our
extension to model uncertainty can be applied to problems
with higher-dimensional configuration, such as multiple dof
robots in 3D. There, sampling can be decomposed for each dof
of the robot. For example, each limb of a humanoid robot can
be treated independently and the overall collision probability
estimated by combining the probability of collision of individ-
ual components. It has been shown experimentally [11] that
when problem dimensionality increases, randomized sampling
and planning methods fare better than deterministic methods
with respect to computational complexity. Our extension is
at worst polynomial in the number of degrees of freedom of
the robot. In contrast, the complexity of occupancy grids [17]

Fig. 7. Rectangular robot sampling of 3 dimensions: position and orientation,
and planning; top: standard PRM planning without uncertainty, bottom:
sampling and planning incorporating uncertainty. Also note how the robot
trajectories change with increasing robot length.

increases as O(nk) where k is the number of dimensions, and
n is inversely proportional to graph resolution.

We must point out that estimating collision probabilities in
a 3D workspace (as distinct from the configuration space)
becomes difficult since the closest point belongs to an ob-
stacle plane, and can no longer be approximated by a linear
combination of the endpoints. To remedy this problem, a new
uncertainty model is needed. Our future work will focus on
modelling uncertainty in higher dimensions and methods to
incorporate stochastic world information into collision proba-
bilities and path costs.

Fig. 8. Map of the 3rd floor MIT Stata Center, the minimum-collision-
cost planner (dashed) selects the longer trajectory for the B21 robot to reach
the goal based on the uncertain position of the doors along its route, while
standard A* planner (solid) selects the shortest path trajectory.

VIII. RELATED WORK

Most randomized planning algorithms are not explicitly
robust to model errors. Some sampling methods such as
Medial Axis PRM (MAPRM) [18] have attempted to generate
trajectories that are robust to model errors since samples on
the medial axis of the plane maximize their distance from
obstacles. However, such conservative sampling methods do
not incorporate uncertainty into the cost function and cannot
bias samples to be closer to more certain obstacles [18].

Both RRTs [2] and the Probabilistic Roadmap of Trees
method (PRT) [19] use randomized sampling and cost func-
tions over samples or trees. Our modified sampling and
planning framework could be incorporated into both the local
planner of the RRT and the global planning mechanism
of the PRM. In particular, the RRT uses the random tree
algorithm as a subroutine in PRM, where the nodes in the
PRM roadmap are trees. Since multiple RRTs are grown in
parallel we could achieve substantial gains in planning speed
by simultaneously exploring and evaluating multiple regions
of a map for trajectory quality.

Leven and Hutchinson in [20] address the problem of
dynamic environments by a variant on PRM, where sampled
nodes are updated according to information about the changing
state of the world. Unlike our work, they do not compute
feasibility of collisionless travel through different regions of
space and their motion plan does not incorporate uncertainty.
Similarly, Berg and Overmars in [21] use the PRM to plan
in dynamic environments by first generating a global path
assuming a static world, and then using local planners to deal
with moving obstacles. Their motion plan selects a global
trajectory assuming that the world is certain.

IX. CONCLUSION

We have demonstrated that conventional motion planning
algorithms can be extended to allow robust motion planning
when the true state of the world is not known exactly. We

proposed incorporating uncertainty into the PRM sampling
and planning and adapted three popular random sampling
techniques to focus samples on regions of higher certainty. In
the planning stage, we modelled the cost of potential collisions
in travelling through uncertain regions of the configuration
space. The experiments showed that using stochastic rejection
of samples biased the path into regions of more certainty,
resulting in more robust paths with small sample numbers.

REFERENCES

[1] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, “Proba-
bilistic roadmaps for path planning in high dimensional configuration
spaces,” IEEE Transactions on Robotics and Automation, vol. 12, no. 4,
pp. 566–580, 1996.

[2] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,”
Int. Journal of Robotics Research, vol. 20, no. 5, pp. 378–400, 2001.

[3] E. Frazzoli, M. Dahleh, and E. Feron, “Real-time motion planning
for agile autonomous vehicles,” in Proc. AIAA Conf. on Guidance,
Navigation and Control, 2000.

[4] J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, and H. Inoue, “Motion
planning for humanoid robots,” in Proc. 20th Int’l Symp. Robotics
Research (ISRR’03), Italy, 2003.

[5] J. Leonard and H. Durrant-Whyte, “Mobile robot localization by tracking
geometric beacons,” IEEE Transactions on Robotics and Automation,
vol. 7, no. 3, pp. 376–382, June 1991.

[6] D. Fox, W. Burgard, and S. Thrun, “Markov localization for mobile
robots in dynamic environments,” Journal of Artificial Intelligence
Research, vol. 11, pp. 391–427, 1999.

[7] N. Roy and S. Thrun, “Coastal navigation with mobile robots,” in
Advances in Neural Proc. Systems 12 (NIPS), S. A. Solla, T. K. Leen,
and K. R. Müller, Eds. Denver, CO: MIT Press, 1999, pp. 1043–1049.

[8] R. Bohlin and L. E. Kavraki, “Path planning using lazy prm,” in Proc. of
the IEEE International Conference on Robotics and Automation. San
Fransisco, CA: IEEE Press, April 2000, pp. 521–528.

[9] T. Lozano-Perez, “Spatial planning: A configuration space approach,”
IEEE Trans. on Computers, vol. C-32, no. 2, pp. 108–120, Feb. 1983.

[10] S. R. Lindemann and S. M. LaValle, “Current issues in sampling-based
motion planning,” in Proc. of 8th ISRR, 2004.

[11] D. Hsu, J. Latombe, and H. Kurniawati, “On the probabilistic founda-
tions of probabilistic roadmap planning,” in Proc. ISRR’05, 2005.

[12] Y. K. Hwang and N. Ahuja, “Gross motion planning - a survey,” ACM
Comput. Surv., vol. 24, no. 3, pp. 219–291, 1992.

[13] N. Amato and Y. Wu, “A randomized roadmap method for path and
manipulation planning,” 1996.

[14] V. Boor, M. H. Overmars, and A. F. van der Stappen, “The gaussian
sampling strategy for probabilistic roadmap planners,” in Proc. of IEEE
ICRA, vol. 1, 1999, pp. 1018–1023.

[15] D. Hsu, T. Jiang, J. Reif, and Z. Sun, “The bridge test for sampling
narrow passages with probabilistic roadmap planners,” in Proc. of the
IEEE Int’l Conf. on Robotics and Automation, 2003, pp. 4420–4426.

[16] J.-C. Latombe, Robot Motion Planning. Dordrecht, The Netherlands:
Kluwer, 1991.

[17] H. Moravec and A. Elfes, “High resolution maps from angle sonar,” in
Proc. IEEE Int. Conf. on Robotics and Automation, 1985, pp. 116–121.

[18] S. A. Wilmarth, N. M. Amato, and P. F. Stiller, “Maprm: a probabilistic
roadmap planner with sampling on the medial axis of the free space,”
in Proceedings of the 1999 IEEE ICRA, vol. 2, 1999, pp. 1024 – 1031.

[19] M. Akinc, K. E. Bekris, B. Y. Chen, A. M. Ladd, E. Plaku, and L. E.
Kavraki, “Probabilistic roadmaps of trees for parallel computation of
multiple query roadmaps,” in Proceedings of the International Sympo-
sium on Robotics Research (ISRR), Sienna, Italy, 2003.

[20] P. Leven and S. Hutchinson, “Toward real-time path planning in chang-
ing environments,” in Proc. of WAFR, 2000.

[21] J. P. van den Berg and M. H. Overmars, “Roadmap-based motion
planning in dynamic environments,” in Proc. IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems. IEEE/RSJ, 2004, pp. 1598–1605.

[22] S. LaValle, M. Branicky, and S. Lindemann, “On the relationship
between classical grid search and probabilistic roadmaps,” IJRR, 2003.

