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Abstract
Online representational expansion techniques
have improved the learning speed of existing re-
inforcement learning (RL) algorithms in low di-
mensional domains, yet existing online expan-
sion methods do not scale well to high dimen-
sional problems. We conjecture that one of
the main difficulties limiting this scaling is that
features defined over the full-dimensional state
space often generalize poorly. Hence, we in-
troduce incremental Feature Dependency Dis-
covery (iFDD) as a computationally-inexpensive
method for representational expansion that can
be combined with any online, value-based RL
method that uses binary features. Unlike other
online expansion techniques, iFDD creates new
features in low dimensional subspaces of the full
state space where feedback errors persist. We
provide convergence and computational com-
plexity guarantees for iFDD, as well as showing
empirically that iFDD scales well to high dimen-
sional multi-agent planning domains with hun-
dreds of millions of state-action pairs.

1. Introduction
Large, combinatorial spaces in multi-agent domains pose
significant challenges for RL agents. A standard approach
for tractable learning in such domains is to map each state
to a set of features, where each feature captures some prop-
erty of the state (e.g., Sutton, 1996). For example, a fea-
ture in a mission-planning scenario might correspond to an
agent’s fuel level. Function approximation on the feature
space allows information to be shared across states with
similar features (i.e., generalization).

Linear approximators with binary features (e.g., Albus,
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1971) are a popular approximation choice as they are easy
to train (Sutton, 1996; Geramifard et al., 2006) and are the-
oretically sound (Tsitsiklis & Van Roy, 1997). However,
linear approximators assume that each feature contributes
to the value function linearly independently of other fea-
tures, which is not true for many cooperative multi-agent
scenarios. For example, suppose we assign a feature to
each (agent, location) pair, and the task requires multiple
agents to approach distinct targets. A linear approximation
of each state’s value using only these features can reward
agents for being at a target but cannot encode the advantage
of two agents being at distinct targets. By adding conjunc-
tions of existing features as new features (e.g., agents A
and B are at X and Y ), these nonlinearities in the value
function are encoded in the new representation; a linear ap-
proximator applied to this new representation will perform
as well as a nonlinear approximator on the original features.
Unfortunately, an initial set of n features will result in 2n

features in the new representation, rendering it computa-
tionally impractical.

While manually specifying important feature dependencies
has been pursued in the literature (Albus, 1971; Sturte-
vant & White, 2006), learning dependencies online and ex-
panding the representation automatically is becoming more
popular as it simplifies the design process (e.g., Munos
& Moore, 2002; Ratitch & Precup, 2004; Whiteson et al.,
2007). However, one of the main drawbacks of existing on-
line expansion techniques is their inability to scale to high
dimensional problems. A common property among these
methods, as discussed in Sec. 5, is that new features cor-
respond to a range of values along every dimension of the
state space; features cannot ignore or constrain values in
only a subset of dimensions. Thus, as the dimensionality of
the state space grows, the degree of generalization of each
feature (i.e., the size of the set of states for which it is ac-
tive) decays substantially. We conjecture that this property
plays a major role in preventing existing techniques from
scaling to higher dimensional domains.

To address this issue, we introduce incremental Feature
Dependency Discovery (iFDD) as a general, model-free
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representational learning algorithm that expands the initial
representation by creating new features which are defined
in low dimensional subspaces of the full state space. These
new features are created as feature dependencies and are
introduced in regions where value function errors persist.
This process eliminates improper generalization (i.e., inap-
propriate sharing of weights among states) through time.
Hence, given an initial set of binary features1, we prove
that iFDD reaches the best performance that any non-linear
function approximation could achieve with those same fea-
tures. We also show that the per-time-step computational
complexity of iFDD scales with the number of active
(i.e., non-zero) features in each state, which can be kept
sparse. Finally, compared to two state-of-the-art expansion
methods, Sarsa using iFDD is shown to provide much faster
learning in high dimensional problems.

2. Preliminaries
Markov Decision Processes A Markov Decision Pro-
cess (MDP) (Sutton & Barto, 1998) is a tuple defined by
(S,A,Pass′ ,Rass′ , γ) where S is a finite set of states,A is a
set of actions, Pass′ is the probability of getting to state s′ by
taking action a in state s,Rass′ is the corresponding reward,
and γ ∈ [0, 1] is a discount factor that balances current and
future rewards. A trajectory is a sequence s0, a0, r0, s1, a1,
r1, s2, . . ., where the action at is chosen given a policy
π : S → A mapping states to actions. Given a policy π,
the value Qπ(s, a) of each state-action pair is the expected
sum of discounted rewards for an agent starting at s, doing
a, and then following π:

Qπ(s, a) = Eπ

[ ∞∑
t=0

γtrt

∣∣∣∣s0 = s, a0 = a

]
. (1)

In discrete spaces, Qπ(s, a) can be stored in a table. The
optimal policy π∗ maximizes the value function V π(s):

∀s, π∗(s) = argmax
a

Qπ
∗
(s, a),

V π
∗
(s) = V ∗(s) = max

a
Qπ
∗
(s, a).

Temporal Difference Learning The temporal difference
(TD) error at time t is the difference between the current
value for the state-action pair and an estimate based on the
observed reward and the value for the next state-action pair:

δt = rt + γQπ(st+1, at+1)−Qπ(st, at).

TD methods (Sutton, 1988) use the TD error δt as the gra-
dient for reducing the error in the Q-function.

Linear Function Approximation A tabular representa-
tion of the action-value function Q is impractical for large

1Determining this initial set of binary features is important but
is not the focus of this paper.

state spaces, and a common approximation is to use a linear
approximation of the form Qπ(s, a) = θTφ(s, a). The fea-
ture representation φ : S×A → <n maps states to a vector
of features; the vector θ holds linear weights. Each element
of the basis function φ(s) is called a feature; φf (s) = c de-
notes feature f has value c in state s.2

Of special interest is the set of basis functions φ where the
output is a binary vector (φ : S × A → {0, 1}n). In this
case, not only can the estimated values be computed effi-
ciently (Buro, 1999), but the weights also indicate the im-
portance of each binary property. Finally, if φ contains a
unique feature that is active for each state-action pair then
the function approximation reduces to a lookup table that
assigns a separate value to each state-action pair (Eqn. 1).

3. Approach
We consider online value-based RL using linear function
approximation given an initial set of binary features. The
iFDD algorithm gradually captures nonlinearities within
the linear approximation framework by introducing feature
conjunctions as new binary features. We show in Sec. 4
that, especially in high-dimensional domains, gradually
adding feature dependencies (e.g., features corresponding
to low dimensional subspaces of the full state space), en-
courages early generalization, which can speed up learning.
The algorithm begins by building a linear approximation to
the value function online using the initial set of binary fea-
tures. It tracks the sum of absolute value of the approxi-
mation errors for all simultaneously activated feature pairs.
We term the conjunction of each tracked feature pair as a
potential feature and the cumulative approximation error
associated with it as relevance. Once a potential feature’s
relevance exceeds a user-defined threshold, iFDD discovers
that feature as a new binary feature, thus capturing the non-
linearity between the corresponding feature pair. We note
that stochastic transitions may introduce some complica-
tions that we discuss in section 6. The algorithm proceeds
in three steps:

(i) Identify potential features that can reduce the approx-
imation error,

(ii) Track the relevance of each potential feature, and
(iii) Add potential features with relevance above a discov-

ery threshold to the pool of features used for approx-
imation.

Fig. 1 shows iFDD in progress. The circles represent ini-
tial features, while rectangles depict conjunctive features.
The relevance of each potential feature f , ψf , is the filled
part of the rectangle. The discovery threshold ξ, shown as
the length of rectangles, is the only parameter of iFDD and

2For readability, we write φ(s) instead of φ(s, a), but φ al-
ways conditions on the action. When a new feature is discovered,
it is added for all actions.
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Figure 1. A snapshot of iFDD: Initial features are circles, con-
junctive features are rectangles. The relevance ψf of a potential
feature f is the filled part of the rectangle. Potential features are
discovered if their relevance ψ reaches the discovery threshold ξ.

controls the rate of expansion. This parameter is domain-
dependent and requires expert knowledge to set appropri-
ately. However, intuitively lower values encourage faster
expansion and improve the convergence to the best possible
representation, while higher values slow down the expan-
sion and allow for a better exploitation of generalization.
While the ideal value for ξ will depend on the stochasticity
of the environment, we found our empirical results to be
fairly robust to the value of the discovery threshold.

We focus on iFDD integrated with TD learning, but any on-
line, value-based RL method could supply the feedback er-
ror. Sec. 3.2 provides a proof that for the policy evaluation
case the iFDD algorithm with TD learning will converge to
the best possible function approximation given an initial set
of binary features. We note that, if the initial features are
such that no function approximation – linear or nonlinear
– can satisfactorily approximate the underlying value func-
tion, then applying iFDD will not help. For example, if a
key feature such as an agent’s location is not included in
the initial set of features, then the value function approxi-
mation will be poor even after applying iFDD.

3.1. Algorithm Details

The process begins with an initial set of binary features; let
F be the current set of features used for the linear function
approximation at any point in time. We use φf (s) = 1 to
indicate that feature f ∈ F is active in state s. After every
interaction, we compute the local value function approxi-
mation error δt (e.g., the TD error), the current feature vec-
tor φ(st), and update the weight vector θ (in the TD case,
θt+1 = θt+αtδtφ(st), where αt is the learning rate). Next,
Algorithm 1 is applied to discover new features.

The first step in the discovery process (lines 1,2) iden-
tifies all conjunctions of active features as potential fea-
tures.3 Considering only conjunctive features is sufficient

3Conjunctions are stored in a “flat” representation, so there
is only one conjunctive feature a ∧ b ∧ c for the conjunction of

Algorithm 1:Discover
Input: φ(s), δt, ξ,F, ψ
Output: F, ψ
foreach (g, h) ∈ {(i, j)|φi(s)φj(s) = 1} do1

f ← g ∧ h2

if f /∈ F then3

ψf ← ψf + |δt|4

if ψf > ξ then5

F← F ∪ f6

Algorithm 2:Generate Feature Vector (φ)
Input: φ0(s),F
Output: φ(s)
φ(s)← 0̄1

activeInitialFeatures← {i|φ0i (s) = 1}2

Candidates← ℘(activeInitialFeatures) *sorted3

while activeInitialFeatures 6= ∅ do4

f ← Candidates.next()5

if f ∈ F then6

activeInitialFeatures← activeInitialFeatures −f7

φf (s)← 18

return φ(s)9

for iFDD to converge to the best approximation possible
given the initial feature set; conjunctive features also re-
main sparse and thus keep the per-time-step computation
low. The relevance ψf of each potential feature f = g∧h is
then incremented by the absolute approximation error |δt|
(line 4). If the relevance ψf of a feature f exceeds the dis-
covery threshold ξ, then feature f is added to the set F and
used for future approximation (lines 5,6).

The computational complexity of iFDD can be reduced
through a sparse summary of all active features. Note that if
feature f = g ∧ h is active, then features g and h must also
be active. Thus, we can greedily consider the features com-
posed of the largest conjunction sets until all active initial
features have been included to create a sparse set of fea-
tures that provides a summary of all active features.4 For
example, if initial features g and h are active in state s and
feature f = g ∧ h has been discovered, then we set the
φf (s) = 1 and φg(s), φh(s) = 0 since g and h are cov-
ered by f . Algorithm 2 describes the above process more
formally: given the initial feature vector, φ0(s), candidate
features are found by identifying the active initial features
and calculating its power set (℘) sorted by set sizes (lines
2,3). The loop (line 4) keeps activating candidate features
that exist in the feature set F until all active initial features
are covered (lines 5-8). In the beginning, when no feature
dependencies have been discovered, this function simply
outputs the initial features.

features a ∧ (b ∧ c) and (a ∧ b) ∧ c.
4Finding the minimum covering set is NP-complete but greedy

selection gives the best polynomial time approximation.
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Using the sparse summary also can help speed up the learn-
ing process. Suppose there are two features g and h that,
when jointly active, result in high approximation errors.
However, if one of them is active, then the approxima-
tion error is relatively low. Let f be the discovered fea-
ture f = g ∧ h. In our sparse summary, when g and h
are both active in the initial representation, we set φf = 1
and φg, φh = 0. If only one is active, then φf = 0. Only
non-zero features contribute to the value function approxi-
mation, so the learning update rule updates θf only if both
g = 1 and h = 1. Otherwise, θf remains unchanged when
θg or θh are updated. By separating the learning process
for the states in which the feature conjunction f = g ∧ h
is true from states in which only one of the features g or h
is true, we can improve our value function approximation
estimates for the more specific cases without affecting the
generalization in other states. The iFDD algorithm initial-
izes the coefficient for a new feature f as θf = θg + θh, so
that the value function approximation remains unchanged
when first adding a feature.

3.2. Properties and Performance Guarantees

The main virtue of iFDD is the way it expands the fea-
ture representation. Unlike other representation-expanding
techniques (e.g., Ratitch & Precup, 2004; Whiteson et al.,
2007), iFDD increases the dimensionality of the space over
which features are defined gradually as opposed to utilizing
the full-dimensional state space. In this section, we show
that our approach asymptotically leads to the best perfor-
mance possible given the initial features: we first show that
iFDD does not stop expanding the representation unless the
representation is perfect or it is fully expanded. Next, we
bound the asymptotic approximation error with respect to
the true value function.

While iFDD can be used with any online, value-based RL
method using binary features, we focus our analysis on
iFDD combined with TD (iFDD-TD). Let si denote the
ith state. The feature function φ(s) outputs which features
are active in state s; we represent all these output vectors
in Φ|S|×n, where the ith row corresponds to φ(si)T . As
feature conjunctions are added as new features, the output
dimensionality of φ(s) grows and adds columns to Φ.

Completeness of Feature Expansion To show that
iFDD-TD will find the best representation possible given
the initial set of features, we first argue that the iFDD-
TD will either find a perfect representation or will add all
possible conjunctive features:

Theorem 3.1 Given initial features and a fixed policy π
that turns the underlying MDP into an ergodic Markov
chain, iFDD-TD is guaranteed to discover all possible fea-
ture conjunctions or converge to a point where the TD error
is identically zero with probability one.

Proof Suppose iFDD-TD has found φ as its final represen-
tation which neither sets the TD error zero everywhere nor
includes all possible feature conjunctions. These proper-
ties imply that there is at least one state s that has at least
two active features, g and h, where g ∧ h has not been ex-
plored (if no state has more than one active feature, then
the feature discovery algorithm would have no combined
features to propose and the representation would have been
fully expanded). The absolute sum of TD errors for this
state s and this feature pair g and h after some time T0 is∑∞
t=T0
|δt|I(st = s), where I indicates whether the agent

was in state s at time t. By the ergodicity of the underlying
Markov chain, we know that state swill be visited infinitely
many times.

Since the value function approximation is not perfect, we
know that there exists some state s′ for which the TD er-
ror δ(s′) is nonzero. We assumed that the Markov chain
induced by the policy was ergodic; ergodicity implies that
there exists a path of finite length from state s′ to state s.
Thus, over time, the TD error at state s′ will propagate to
state s. The only way for feature f = g∧h to not be added
is if the sum

∑∞
t=T0
|δt|I(st = s) converges to some non-

zero value that is less than the discovery threshold ξ.

We now argue that the sum
∑∞
t=T0
|δt|I(st = s) diverges.

Since the policy is fixed, we can consider the value function
V (s) instead of the action-values Q(s, a). Let V∞(s) be
the converged fixed-point value function that would result
from this learning process and Vt(s) be the value function
at time t. Let ε(s, t) = Vt(s)− V∞(s). Then we can write
the absolute TD error at time t as

|δt| = |Vt(s)− r(s)− γVt(s′)|
= |V∞(s) + ε(s, t)− r(s)− γV∞(s′)− γε(s′, t)|
= |(V∞(s)− r(s)− γV∞(s′)) + (ε(s, t)− γε(s′, t))|

where, if the value function is not perfect, the first term
(V∞(s)−r(s)−γV∞(s′)) is some constant c (if the MDP is
stochastic, the absolute TD error |δt| = |V∞(s)− r(s, a)−
γV∞(s′)| will be nonzero simply because the successor
state s′ will vary). The second term (ε(s, t) − γε(s′, t))
decreases as Vt(s) converges toward V∞(s); we can find
a time t = T0 such that |ε(s, t) − γε(s′, t)| < c

2 . There-
fore, the sum of absolute TD errors

∑∞
t=T0
|δt|I(st = s) is

lower bounded by
∑∞
t=T0

c
2I(st = s) and diverges.

Corollary 3.2 If at each step of iFDD-TD the policy
changes but still induces an ergodic Markov chain (e.g., via
ε-greedy or Boltzmann exploration), then iFDD-TD will ex-
plore all reachable features or converge to a point where
the TD error is identically zero with probability one.

Asymptotic Quality of Approximation Thm. 3.1 im-
plies that iFDD-TD will converge to a fixed point where
the TD error is zero everywhereor the feature space is fully
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explored. Using the bound derived in Tsitsiklis and Van
Roy (1997), we can bound the asymptotic approximation
error of iFDD with respect to this final representation. Let
Φ∞ be the feature matrix that includes all conjunctive fea-
tures (including initial features), and V∗|S|×1 be the vector
representing the optimal value of all states.

Corollary 3.3 With probability one, iFDD-TD converges
to a weight vector θ and feature matrix Φ, where the ap-
proximated value function error, as originally shown by
Tsitsiklis and Van Roy (1997) for a fixed set of linear bases,
is bounded by:

||Φθ −V∗||D ≤


− γ
||ΠV∗ −V∗||D,

where D|S|×|S| is a diagonal matrix with the sta-
tionary distribution along its diagonal, Π =
Φ∞(Φ∞

TDΦ∞)−1Φ∞
TD, and ||.|| stands for the

weighted Euclidean norm.

Proof Thm. 3.1 states that iFDD-TD either finds a perfect
representation with TD error zero everywhere (the approx-
imation is exact) or exhaustively expands the whole repre-
sentation. In the fully-expanded case, each state will have
exactly one active feature, and thus the final feature matrix
Φ (excluding zero columns) will have full column rank.
The representation reduces to the tabular case and we can
apply Thm. 1 of Tsitsiklis and Van Roy’s work (1997) to
bound the error in the value function approximation.

Corollary 3.3 guarantees that our approach will achieve the
best approximation for the value of policy π given the ini-
tial feature set.

In Sec. 4, we show empirically that our gradual approach
– now combined with learning – learns more quickly than
a full tabular approach (equivalent to starting out with a
full set of “converged” conjunctions of basic features).
Whether that value function is optimal depends on the ini-
tial choice of features; Corollary 3.3 states that we make
the best possible use of given features asymptotically.

Maximum Features Explored Finally, we provide a
bound on the maximum number of features iFDD-TD will
explore. In general, if we begin with an initial feature set
F with |F| = n elements, then the total number of possible
features is the size of the power set of F, |℘(F)| = 2n. In
the specific case where initial features correspond to d in-
dependent variables that can each take q values – such as a
continuous MDP discretized into q buckets for d indepen-
dent dimensions – we can provide a tighter bound on the
number of features to be explored because only one initial
feature will be active for each dimension.

Remark Assume the initial set of features is defined for an
MDP over d variables, each with domain size q. The max-

imum number of features explored (initial + discovered)
using iFDD for such an MDP is (q + 1)d − 1.

Proof The number of feature conjunctions of size k is qk.
Hence the maximum number of features using Pascal’s tri-
angle amounts to:

d∑
k=1

(
d

k

)
qd =

d∑
k=0

(
d

k

)
qd − 1 = (q + 1)d − 1.

A tabular representation for d variables uses qd features,
less than the (q + 1)d − 1 bound on features explored by
iFDD. The difference occurs because the lookup table is
the fringe of the feature tree expanded by iFDD process.
While iFDD might explore more features than the tabular
representation, we empirically find that iFDD often retains
many fewer due to its nature of gradual expansion. Also
because a minimal set of highest order clauses are active in
any state, the asymptotic effective number of features used
by iFDD is bounded by |S| (equal to the number of features
in a tabular representation) unless a perfect representation
is reached before discovering all possible features.

3.3. Computational Complexity

Given φ, let kt be the maximum number of active fea-
tures for any state and nt be the total number of features
in use at time t. The iFDD algorithm does not forget
discovered features and φ uses a greedy set covering ap-
proach to form new feature vectors. Therefore, for all times
i < j ⇒ ni ≤ nj , ki ≥ kj . Hence, ∀t > 0, kt ≤ k0. The
main loop of theDiscover function (Algorithm 1) requires
k2t operations. Using advanced hashing functions such as
Fibonacci heaps, both F and ψ updates require O(1) oper-
ations. Hence the per-time-step complexity of Algorithm 1
is O(k2t ) = O(k20). The outer loop of Algorithm 2 re-
quires O(2k0) operations in the worst case and each iter-
ation through the loop involves O(1) lookup and O(k0)
set difference. Hence the total per-time-step complexity of
evaluating the feature function φ is O(k02k0).

The computational complexity of both algorithms depends
on k, the number of active features, and not n, the number
of initial features. Thus, even if a method like tile coding,
which may introduce large numbers of features, is used to
create initial features, iFDD will still execute quickly.

4. Experimental Results
We compare the effectiveness of iFDD with Sarsa (see Sut-
ton & Barto, 1998) against representations that (i) use only
the initial features, (ii) use the full tabular representation,
and (iii) use two state-of-the-art representation-expansion
methods: adaptive tile coding (ATC), which cuts the space
into finer regions through time (Whiteson et al., 2007), and
sparse distributed memories (SDM), which creates overlap-
ping sets of regions (Ratitch & Precup, 2004). All cases
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used learning rates αt = α0

kt
N0+1

N0+Episode #1.1 , where kt was
the number of active features at time t. For each algorithm
and domain, we used the best α0 from {0.01, 0.1, 1} and
N0 from {100, 1000, 106}. During exploration, we used an
ε-greedy policy with ε = 0.1. Each algorithm was tested on
each domain for 30 runs (60 for the rescue mission). iFDD
was fairly robust with respect to the threshold, ψ, outper-
forming initial and tabular representations for most values.

Inverted Pendulum Following Lagoudakis and Parr’s
work (2003), the system’s state is the pendulum’s angle and
angular velocity, (θ, θ̇), actions are three different torques,
and episodes last up to 3000 steps. The initial features
consisted of discretizing each dimension into 20 levels (for
120 features total). Fig. 2(a) plots the number of steps the
pendulum remained balanced versus the total steps expe-
rienced (Sarsa using the original Gaussian representation
is also plotted). In this relatively low-dimensional space,
SDM and iFDD found good policies quickly, although
SDM outperformed iFDD for the first test case after 10, 000
steps. Sarsa with the initial features never learned to bal-
ance the pendulum for more than 2, 500 steps, suggesting
that the optimal value function was not linear in the initial
features. The tabular representation reached near-optimal
performance after about 60, 000 steps, while the Gaussian
representation approach performed well after 40, 000 steps.
ATC’s initial advantage disappeared after many unhelpful
splits that slowed generalization.

BlocksWorld The BlocksWorld task is to build a color-
ordered 6-block tower starting with all the blocks originally
on the table for a +1 reward. Each block-stacking attempt
costs −0.01 and has a 30% chance of the block falling
back onto the table. Episodes were capped at 1, 000 steps.
Fig. 2(b) shows the return per episode. As expected, the
initial representation does poorly because it cannot capture
correlations between blocks. Our iFDD approach, on the
other hand, discovered the necessary feature dependencies.
The tabular representation could express the optimal policy,
but its expressiveness hindered generalization: it needed
three times the data as iFDD to achieve the same perfor-
mance. Despite our optimization attempts, ATC and SDM
both learned poorly in this larger, 36-dimensional domain.

Persistent Surveillance Fig. 3(a) shows an unmanned
aerial vehicle (UAV) mission-planning task where three
fuel-limited UAVs must provide continuous surveillance of
two targets. At any time, the UAVs may be in maintenance,
refuel, communication, or target states; deterministic ac-
tions allow them to stay in place or move to adjacent states.
All actions except maintenance or refuel cost a unit of fuel;
UAVs gain back fuel by staying in refuel state. UAVs have
perfect sensors to monitor for motor and camera failures;
failed parts can be repaired by going to maintenance. Parts
have a 5% chance of failing at each time step: broken mo-
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Figure 3. Two UAV mission planning scenarios
tors require immediate fixing while broken cameras prevent
the UAV from monitoring a target. All together, the state is
a 12-dimensional vector of remaining fuel, location, motor
sensor status and camera sensor status for each of the three
UAVs for a total of approximately 150 million state-action
pairs. Initial features for each UAV are the fuel indicator,
location, and the state of each of the two sensors. The ac-
tion space is the combination of actions for all UAVs. We
set γ to 0.9 and capped the episodes at 1, 000 steps.

The team received a +20 reward for every time step a target
was reported; to report a target a UAV had to see it from the
target state and a UAV had to relay the message from the
communication state. UAVs were penalized for each unit of
fuel used; running out fuel outside the refuel area cost −50
for each UAV and ended the episode. The results in figure
2(c) show that the lack of generalization slowed learning
for the tabular case: even after 105 steps, it held all agents
in the maintenance area for the entire mission. ATC and
SDM had similarly inefficient generalization in this high-
dimensional space. As before, the initial feature set could
not capture the required correlations: it incorrectly gener-
alized the consequences of running out of fuel. In con-
trast, the iFDD method corrected the improper generaliza-
tion by incrementally adding feature conjunctions combin-
ing fuel and location. The resulting representation was able
to switch to the better policy of sending UAVs out after only
20, 000 steps.

Rescue Mission Fig. 3(b) shows a mission-planning task
where a medic UAV and a communication UAV must com-
plete a rescue mission. The green circle shows UAVs’ base
location; numbers above the remaining nodes indicate the
number of injured people at that node; and the cloud num-
bers are the probability of successful rescue. Victims are
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Figure 2. Empirical results of Sarsa algorithm using various representational schemes in in four RL domains: Inverted Pendulum,
BlocksWorld, Persistent Surveillance, and Rescue Mission.
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Figure 4. Average final feature counts. ATC and SDM, even using
more features, performed poorly on high-dimensional examples.
The black bar depicts the total number of state-action pairs.

saved when the medic UAV is at their node and the com-
munication UAV is no farther than one edge away to re-
lay back information. The medic UAV consumes a unit of
fuel per movement or hover; the communication UAV may
move (costs one fuel cell) or perch (costs nothing). Initial
features were the fuel and position of each UAV, the com-
munication UAV mode, and the rescue status at each node.
The total state-action pairs exceeded 200 million. γ was set
to 1.

The team received +1 for each person rescued, −0.1 for
each unit of fuel spent, and −23 if not at base after 10 time
steps or depleting all fuel. Fig. 2(d) shows the tabular rep-
resentation was crippled by the scale of the problem. ATC
and SDM fared somewhat better by capturing the notion of
crashing early on but could not capture the complex reward
structure. Learning with only the initial features proceeded
quickly for the first 10, 000 steps, showing that the initial
features are largely independent for this domain. However,
after 20, 000 steps, iFDD’s richer representation allowed it
to encode a policy that outperformed all other methods.

Fig. 4 shows the average final feature counts for each do-
main. In Sec. 3.2, we showed iFDD can lead to a represen-
tation with more features than the tabular, but in the UAV
domains, iFDD discovered approximately two orders of
magnitude fewer features than tabular. Even when ATC and
SDM had more features than iFDD, they still did not match
iFDD’s performance (except for SDM on pendulum).

Finally, to verify the effectiveness of error guided repre-
sentation expansion, we compared iFDD with a random

Table 1. The final performance with 95% confidence intervals of
iFDD and random expansion with equal number of features.

Expansion Scheme
Domain Random iFDD

Inverted Pendulum 2953± 30 3000± 0
BlocksWorld −0.80± 0.06 −0.24± 0.10
Persistent Surveillance 174± 44 280± 49
Rescue Mission 10± .74 12± .75

approach that adds feature conjunctions out of the poten-
tial set of features uniformly. For a fair comparison, we
replaced iFDD’s discovery threshold with a fixed discov-
ery rate shared with the random approach. Table 1 shows
the mean final performance of both methods (100 runs
per domain except Persistent Surveillance with 30 runs);
non-overlapping 95% confidence intervals show iFDD was
significantly better than random expansion in all domains.
Both methods took roughly the same computation time.5

5. Discussion and Related Work
Adaptive Function Approximators (AFAs) have been stud-
ied for more than a decade (see Buşoniu et al., 2010, Sec-
tion 3.6.2). We focused on refinement AFAs with linear
and sublinear per-time-step complexities, amenable to on-
line settings. We empirically showed that iFDD scales RL
methods to high-dimensional problems by creating features
in low dimensional subspaces of the full state space. For
example, in the UAV domain, when a new feature con-
junction of low fuel and being at base is discovered, this
feature is defined in the two-dimensional subspace of fuel
and location, ignoring all other dimensions. Previous work
has done this process manually through tile coding (Sutton,
1996).

Both ATC and SDM create features in the full dimensional
space limiting generalization as the dimensionality grows.
While batch AFAs (Keller et al., 2006; Mahadevan et al.,
2006; Parr et al., 2007) are promising, their computational
demand often limit their application in online settings. Fur-

5Table 1 and Figure 2 differ because the discovery rate was
set low enough to ensure a non-empty pool of potential features
at all time steps. See our technical report for more information at
http://acl.mit.edu/iFDD-Tech.pdf
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thermore, batch methods face the inconsistency between
the distribution of obtained samples and the distribution of
samples under the current policy. Mahadevan and Mag-
gioni (Mahadevan et al., 2006) suggested the use of a fixed
policy for the sample gathering phase. This fixed policy can
still cause problems for some domains, as the representa-
tion expansion method can exert a lot of effort representing
complex value functions corresponding to poor initial poli-
cies. This observation motivated researchers to manually
include samples that are highly likely to be visited during
the execution of the optimal policy (e.g., the bicycle domain
in Petrik et al., 2010).

6. Conclusion and Future Work
We introduced iFDD as a general approach for expand-
ing a linear function approximation of a value function
from an initial set of binary features to a more expres-
sive representation that incorporates feature conjunctions.
Our algorithm is simple to implement, fast to execute,
and can be combined with any online RL technique that
provides an error signal. In the policy evaluation case,
we proved that iFDD asymptotically produces an approx-
imation to the value function that is no worse than us-
ing a fully-expanded representation (that is, a representa-
tion with all possible feature conjunctions). Furthermore,
we empirically showed that iFDD not only boosts learn-
ing in classical RL domains, such as inverted pendulum
and BlocksWorld, but also scales to UAV mission planning
problems with hundreds of millions of state-action pairs
where other adaptive methods, such as ATC and SDM, do
not scale. Finally, while we focused on binary feature in
this paper, the core idea of iFDD can be extended to other
types of features. For example, given continuous features
on [0, 1], a threshold can convert features to a binary set-
ting.

One area for future refinement is the noise sensitivity of
iFDD. Highly stochastic domains may encourage the pro-
cess to quickly add many features or add unnecessary fea-
tures after the convergence of weights. While these fac-
tors do not affect the asymptotic guarantees, unnecessary
features can increase computational load and slow down
learning by refining the representation too quickly. Uti-
lizing techniques that learn a model online, such as linear
Dyna (Sutton et al., 2008), to substitute the sampled TD
error with its expectation is a promising future work.

While orthogonal to the problem of how to best use a given
set of features, specifying a good initial representation is
also an important problem: although ATC and SDM did not
scale well to high dimensional domains, they still have the
advantage of not requiring an initial feature set. In contrast,
the choice of discretization when applying iFDD is user-
dependent: a coarse representation may not allow the value
function to be approximated well, while a fine represen-

tation might limit generalization along a given dimension.
We are currently exploring methods to combine adaptive
discretization within the iFDD process.
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