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Abstract— We propose a novel learning-based method for
multi-view stereo (MVS) depth estimation capable of recovering
depth from images taken from known, but unconstrained,
views. Existing MVS methods extract features from each image
independently before projecting them onto a set of planes at
candidate depths to compute matching costs. By projecting
features after extraction, networks must learn rotation and
scale invariant representations even though the relative poses
of the cameras are known. In our approach, we compensate for
viewpoint changes directly in the extraction layers, allowing the
network to learn features that are projected by construction and
reducing the need for rotation and scale invariance.

Compensating for viewpoint changes naively, however, can be
computationally expensive as the feature layers must either be
applied multiple times (once per depth hypothesis), or replaced
by 3D convolutions. We overcome this limitation in two ways.
First, we only compute our matching cost volume at a coarse
image scale before upsampling and refining the outputs. Second,
we incrementally compute our projected features such that the
bulk of the layers need only be executed a single time across
all depth hypotheses. The combination of these two techniques
allows our method to perform competitively with the state-of-
the-art, while being significantly faster. We call our method
MultiViewStereoNet and release our source code publicly for
the benefit of the robotics community.

I. INTRODUCTION

Multi-view stereo (MVS) is a fundamental problem in
computer vision where the geometry of a scene is estimated
from a set of images taken from known, but otherwise
unconstrained, viewpoints. While the scene geometry may be
represented in a variety of ways, a common design choice is
to designate one of the images as a privileged reference and
estimate a depthmap with respect to that image. Classical
methods [1], [2] generally start by defining a volume in
the reference image’s coordinate frame by sampling a set of
depths for each reference pixel. Matching costs that record
how consistent a depth hypothesis is with the neighboring (or
comparison) images are then computed by projecting each
pixel at each candidate depth into the comparison views and
comparing intensities. After filtering the volume to reduce
noise, the reference depthmap that minimizes the matching
costs can be extracted.

Plane Sweep stereo techniques [3]–[5] compute the match-
ing cost volume more efficiently by interpreting the volume
as a set of planes, one for each depth hypothesis. The com-
parison images can then be projected (or warped) onto each
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Fig. 1: MultiViewStereoNet – We propose a novel, learning-based
method for multi-view stereo (MVS) depth estimation that we
call MultiViewStereoNet. By combining coarse stereo matching
costs, guided refinement, and incrementally computed features that
compensate for known viewpoint changes, our method is able to
achieve reconstruction accuracy comparable to the state-of-the-art,
while being significantly faster at runtime. The top row of the figure
above shows input images that are used to generate the depthmap in
the bottom right. The groundtruth depthmap is shown in the bottom
left for comparison.

plane, creating a set of transformed images (one for each
depth hypothesis) that are then compared to the reference
image directly to compute matching costs.

In recent years, deep learning approaches have shown
great promise at solving the MVS problem by exploiting
prior information learned from large training datasets [6]–
[12]. Instead of using raw pixel intensities or hand-crafted
feature extractors and filtering schemes, these systems learn
the MVS components from data by training stacked layers
of convolutional neural networks (CNNs). The weights of
these convolutional layers can encode additional global con-
text and semantic information that can improve estimation
performance in the presence of lighting changes, low texture,
and other imperfections common in natural scenes.

Despite the rapid progress enabled by learned feature
descriptors, MVS depth estimation is still a challenging
problem in the wild, primarily due to the difficulty in
robustly matching dense image features across the viewpoint
changes common with freely moving cameras. Objects in a
scene can appear radically different, or be occluded entirely,
when viewed from disparate viewing angles or lighting. Any
learning-based system must also generalize beyond the data
used to train the network. MVS is a particularly difficult
problem in this sense, as supporting wholly unconstrained
camera motion at test time requires extensive training sam-



ples to ensure adequate coverage of the operating regimes.
Designing networks that can learn distinctive feature rep-

resentations from limited data is therefore of primary im-
portance to solving MVS. Current learning-based methods,
however, do not leverage all information available to aid
this process. In particular, modern networks extract learned
features from each input image independently before project-
ing them onto the planes that comprise the cost volume. By
applying the projection after feature extraction, the learned
features must implicitly compensate for this projection and
exhibit scale and rotation invariance despite never being
exposed to the projection parameters. The projection pa-
rameters (the camera intrinsics and extrinsics) are assumed
known, however, which suggests more structure can be
imposed on the feature extraction layers.

Our key insight is that by compensating for the known
viewpoint changes during the feature extraction process
itself, the network can learn features that are specific to the
desired reference frame and projected by construction. This
technique lessens the burden on the network to achieve scale
and rotation invariance and therefore increases robustness to
viewpoint changes during matching.

Compensating for viewpoint changes in this way can be
computationally expensive, however, if care is not taken.
In principle, we must extract features not from a single
comparison image, but from the set of warped comparison
images produced by projecting the image data onto the
planes that comprise the cost volume. One can naively
apply a conventional feature extractor CNN to each warped
image, but this approach quickly grows unmanageable as
the number of planes (i.e. depth samples) increases and the
feature extractor must be run repeatedly. Alternatively, layers
of 3D convolutions could be used to extract features from
the volume generated by concatenating the warped images,
but these more complex layers are similarly expensive and
prevent the use of commonly accepted network architectures
built on stacks of 2D convolutions.

In this work, we overcome these limitations in two key
ways. First, we generalize the approach of Khamis et al.
(StereoNet) [13] from the two-view, rectified stereo domain
to the multi-view, unrectified setting using differentiable
Spatial Transformer Networks (STNs) [14]. Like StereoNet,
we compute features and matching costs at a reduced image
scale to produce coarse depthmaps that are then iteratively
upsampled and refined with the image data as guidance. This
type of architecture retains the benefits of learned stereopsis,
but drastically reduces the amount of costly high-resolution
feature matching for improved speed.

Second, we incrementally compute our projected features
such that the bulk of the feature extraction layers need
only be executed a single time across all depth hypotheses.
We initially generate a single feature map corresponding to
the furthest depth plane in the volume with a conventional
feature network. Then we apply a series of inexpensive
homographies, coupled with simple refinement layers, that
incrementally warp this feature map to other depth planes in
the reference volume.

The combination of these two techniques allows our
method to achieve reconstruction accuracy comparable to the
state-of-the-art, while being significantly more efficient. We
call our method MultiViewStereoNet and release our source
code publicly for the benefit of the robotics community.

II. RELATED WORK

A. Two-View Stereo

Two-view stereo generally refers to the scenario where
two cameras are rigidly mounted along a narrow baseline
such that the corresponding images can be rectified onto
a common image plane to estimate disparities [15], [16].
Early attempts to apply machine learning to this problem
replaced one or more classical building blocks with learned
components before completely end-to-end solutions were
proposed.

Zbontar and LeCun, for example, proposed a network to
compute matching costs from small image patches, before
using the costs in a classical pipeline [17]. Mayer et al.
developed a network that directly regresses disparity using
stacks of convolutions and deconvolutions [18]. Kendall
et al. aggregate global context in the stereo cost volume
using 3D convolutions [19]. Khamis et al. similarly use 3D
convolutions to aggregate information in the cost volume,
but significantly reduce the spatial resolution of the volume
for speed before applying image-guided refiners to upsample
the resulting disparities [13]. Our solution takes inspiration
from this network structure and generalizes it to the multi-
view setting.

B. Multi-View Stereo

Learning-based approaches to MVS often follow Plane
Sweep [3], where matching costs from multiple images are
aggregated in a single volume after geometric warping [3]–
[5]. MVSNet from Yao et al., for example, extracts features
per image, transforms them into the reference volume using
a differentiable warp, then regularizes the costs using multi-
scale 3D convolutions [8], [10]. Gu et al. and Luo et al. build
upon MVSNet by improving the efficiency and accuracy of
cost volume generation [9], [11]. Similarly, Im et al. refine
the costs for each depth hypothesis using the reference image
features [6]. Wang and Shen compute a multi-view cost
volume using classical techniques, but then regress the depths
using an encoder-decoder network [20]. Huang et al., on the
other hand, estimate depthmaps on 64 × 64 pixel patches
before tiling the results to the input resolution [7].

III. MULTIVIEWSTEREONET

The MultiViewStereoNet architecture is divided into four
primary components as shown in Figure 2 and Figure 3. The
reference image is first passed through a conventional feature
extraction network composed of strided 2D convolutional
layers with residual connections [21] to generate a set of
reference features. Each comparison image, on the other
hand, is passed through our novel, viewpoint-compensated
feature network that incrementally computes projected fea-
tures for each candidate depth. These feature maps are then
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Fig. 2: MultiViewStereoNet Block Diagram – In our network,
coarse-resolution features are extracted from the input images using
two subnetworks: a traditional CNN for the reference image and a
novel CNN that compensates for the known viewpoint change for
the comparison images. The two sets of feature volumes are then
combined to form a cost volume, from which a coarse depthmap
is extracted. A series of image-guided refiners is then used to
upsample the depthmap to the input image size.

concatenated to form a warped feature volume. After tiling
the reference feature map to create an identically sized
feature volume, the absolute difference of the two volumes
forms our coarse cost volume. We then apply a series of
3D convolutions and normalization steps to filter the costs,
before extracting depths using a softargmin operator.
The coarse depthmap is then passed through a series of
upsampling and image-guided refinement layers to produce
the final depthmap.

A. Reference Feature Network

Our reference feature network is derived from that detailed
by Khamis et al. [13]. The reference image is first passed
through 4 2D convolutional layers with kernel size 5, stride
2, and 32 output channels. The resulting feature map is then
passed through 6 residual blocks with kernel size 3, stride 1,
and the same 32 output channels. We make two modifications
to the residual connections described in [13]. First, we use
only a single convolution in the skip connection, instead
of the normal two as described by He et al. [21], which
achieves similar performance with fewer parameters. Second,
we replace the batch normalization [22] layer with a group
normalization layer [23] to better support small batch sizes
during training. For an image of size H×W×3, this network
produces a feature map of size H ′×W ′×C for W ′ = W/16,
H ′ = H/16, and C = 32. Given a set of D candidate depth
samples {di}Di=1, we then tile the feature map to produce
our reference feature volume of size H ′ ×W ′ ×D × C.

B. Incremental Viewpoint-Compensated Feature Network

Before describing our incremental, viewpoint-
compensated feature network, we first review some key
concepts from multi-view geometry [24], [25]. Assume we
have two cameras: a reference camera r and a comparison
camera c, with the same intrinsic parameters K ∈ R3×3.
Let Ωr,Ωc ⊂ R2 denote the image domain of each camera,
respectively. Let Ir : Ωr → R3 and Ic : Ωr → R3 designate
the images from the two cameras with 3 channels (e.g.
representing RGB values). Finally, let Rr

c ∈ SO(3) and

Image

W x H x 3

Feature 
Volume

W’ x H’ x D x C

Warp

Warped 
Image

W x H x 3

co
nv

2d

co
nv

2d

co
nv

2d

Convs Warped 
Features
W’ x H’ x C

Inc. Warps + 
Refinement

Pose 
K, R, t

Fig. 3: Incremental Viewpoint-Compensated Feature Network – Our
novel feature network compensates for known viewpoint changes by
projecting the comparison image before (rather than after) extrac-
tion. We incrementally compute each plane Fi of the comparison
feature volume (corresponding to depth hypothesis di) from the
previous plane using the relative homography ∆H between the
planes. This allows for the feature maps to be computed for each
depth hypothesis, while only requiring the bulk of the convolutional
layers to be executed once, increasing the network’s speed.

trc ∈ R3 represent rotation and translation of the comparison
camera with respect to the reference camera, which we
assume are known.

If the scene geometry can be represented by a single plane
with normal vector n ∈ R3 and depth d > 0 with respect to
the reference coordinate system, the transform that projects
(homogeneous) pixels from Ωr to Ωc is given by the function
H(d) : Ωr → Ωc, which can be represented by a 3 × 3
homography matrix:

H(d) = K(Rc
r − tcrnT /d)K−1. (1)

The image Ĩd : Ωr → R3 represents the projection of the
comparison image onto the reference plane at depth d and
is given by

Ĩd(u) = Ic(π(H(d)ū)), (2)

where x̄ = (x, 1) signifies a homogeneous pixel coordi-
nate and π(x, y, z) = (x/z, y/z) denotes the perspective
projection function. When implemented, the pixel domain
Ωr is uniformly sampled to generate discrete pixels before
applying H(d) and the indexing into Ic is accomplished
using bilinear interpolation, which describes a type of Spatial
Transformer Network (STN) [14].

In Plane Sweep stereo [3]–[5], one computes a series
of such transformed images (one for each candidate depth
di), which are then compared to the reference image to
compute matching costs. In existing learned MVS systems,
the original image channels are simply replaced by learned
features F : Ω → RC , where C denotes the number of
feature channels. Note, however, that the feature extraction
occurs before the projection, which means the features must
implicitly compensate for any scale, rotation, or perspective
changes between the cameras. One could extract features
for each warped image Ĩd independently or concatenate
the Ĩd into a volume and apply 3D convolutions, but both
options are computationally expensive. Instead, we will take
an incremental approach to feature extraction, building the
feature map Fi for candidate depth di from the neighboring
feature map Fi+1 for depth di+1.

We compute the initial feature map FD corresponding
to the maximum candidate depth dD by transforming the
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Fig. 4: DeMoN Depthmaps: Here we show the qualitative re-
construction performance of MultiViewStereoNet on the DeMoN
benchmark test set [26]. MultiViewStereoNet is capable of produc-
ing depthmaps comparable to DPSNet, while being significantly
faster.

comparison image Ic by H(dD) to form ĨdD
and applying

the feature extraction network described in Section III-A.
Computing FD−1 from FD is accomplishing by applying
the relative homography ∆H(dD−1, dD) from depth plane
dD−1 to dD given by

∆H(dD−1, dD) = H(dD)−1H(dD−1). (3)

Note that these homographies use a scaled intrinsic matrix to
reflect the downsampling of the image domain. The features
FD−1 can then be computed as

FD−1(u) = FD(π(∆H(dD−1, dD)u). (4)

This incremental technique allows for the feature maps
for all candidate depths to be computed using only a
single invocation of the feature extraction network, while
still appropriately compensating for the known viewpoint
changes. It is possible, however, that the relative homogra-
phies ∆H(di−1, di) generate pixel locations that lie outside
(or on the boundary) of the valid domain in the parent feature
map Fi. To account for these edge cases, we apply another
instance of refinement using the warped image as guidance.
We concatenate Fi and Ĩi along the channel dimension and
apply 3 convolutional layers with kernel size 3, stride 1, with
a single skip connection. The outputs of these layers are then
added to the original feature map.

After feature refinement, we concatenate the feature maps
across all the depth samples into a warped feature volume
of size H ′ ×W ′ ×D × C.

C. Cost Volume Formulation and Filtering

To compute matching costs, we take the absolute dif-
ference of the reference and warped comparison feature
volumes described in Section III-A and III-B. Although there
is some evidence that asymmetric distance measures [13]
or concatenating feature channels [19] improves matching
quality, we found simple absolute differences to work well.

Truth DPSNet Ours

Fig. 5: GTA-SfM Depthmaps: MultiViewStereoNet is capable of
producing compelling depth estimates on challenging imagery, such
as that from the GTA-SfM dataset. Here, example depthmaps from
the test set are shown.

The cost volume is passed through a series of 3D convolu-
tional layers designed to pool global context information and
reduce noise. We follow the architecture proposed by Khamis
et al. [13] and use 4 3D convolutional layers with each
followed by a groupnorm [23] operation and LeakyReLU
activation. The input and output channels for these layers are
of equal size. A final 3D convolutional layer is then applied
which reduces the feature dimension to a scalar, resulting in
a volume of size H ′×W ′×D. The kernel sizes for all layers
is set to 3× 3× 3.

D. Depth Regression and Guided Refinement

We extract a coarse depthmap of size H ′ ×W ′ from the
cost volume before upsampling and refining the outputs to
the input resolution. Relying on upsampling and refinement,
rather than high-resolution feature matching, has significant
advantages in terms of efficiency, as described by Khamis
et al. in StereoNet [13]. StereoNet, however, assumes the
input images are rectified, meaning the feature projection
described in Equation 2 can be accomplished by a simple
shift of indices. Here, we employ a similar upsampling and
guided refinement scheme, but apply it to our multi-view
features and cost volume.

For a given pixel u, let ci denote the matching costs for
depth sample i. We form a probability distribution σ over
the depths by applying the softmin operator:

σ(ci) =
exp(−ci)∑
j exp(−cj)

. (5)

The depth D(u) for pixel u is then given by the mean of
this distribution, D(u) =

∑
i diσ(ci).

Next, we iteratively upsample the coarse depthmap us-
ing bilinear interpolation and then pass it through an
image-guided refinement network to resolve fine structures.
The refinement network concatenates the coarse depthmap
and appropriately-sized reference image before passing
them through an initial convolutional layer with 32 out-
put channels. Group normalization is applied along with a



Fig. 6: Viewpoint Compensation: Our viewpoint-compensated fea-
tures take the known camera poses into account during extraction.
Here we compare reconstruction performance of MultiViewStere-
oNet and DPSNet on the GTA-SfM dataset using two test sets: a
standard test set and a set where one of the images for each sample
is rolled about the optical axis by 180 degrees. Despite being given
the parameters of the roll, DPSNet sees a significant increase in
absolute relative depth error (left) and RMSE depth error (right).
MultiViewStereoNet sees no significant difference in performance
across the two test sets.

LeakyReLU activation. After this, 6 dilated residual block
layers are applied, where each block consists of a single
convolution with group normalization and LeakyReLU acti-
vation, followed by a skip connection. The dilation strides
are set to (1, 2, 4, 8, 1, 1). The input and output channels for
these layers is kept at 32. A final convolution is then applied
to reduce the output to a single channel representing a depth
residual. This residual is then added to the input depthmap.
We apply an initial refinement round to the coarse depthmap
extracted from the cost volume followed by 4 rounds of
upsampling by a factor of 2 and refinement to yield the final
output depthmap of size H ×W .

E. Multi-View Fusion

In conventional Plane Sweep Stereo, fusing depth in-
formation from multiple comparison views is achieved by
simply averaging matching costs for each comparison image.
We found this approach to be brittle in a learned MVS
context since certain locations in the reference volume will
only be observable from a subset of the cameras. Careful
bookkeeping is then required to keep track of these locations
and perform the averaging correctly. We found performing
the fusion at the depthmap level, rather than the cost volume
level, to be more robust. We pass each comparison image
through a subset of the network to producing a set of
coarse depthmaps of size H ′ ×W ′. We then average these
depthmaps and then proceed with the final upsampling and
refinement layers described in Section III-D.

IV. EVALUATION

A. Implementation Details

We implemented our network using PyTorch [28]. Train-
ing was performed on 8 Nvidia V100 GPUs with a batch size
of 8 per GPU, while testing was performed on a single Nvidia
GTX 1080Ti with a batch size of 1. We used the Adam
optimizer [29] for training, with a learning rate of 0.001.
We use the pseudo-Huber loss described by Barron [30]
against groundtruth depth labels applied to the depthmaps
at each image scale. The depth samples {di} for our cost
volumes are generated by sampling uniformly in inverse
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Fig. 7: Viewpoint Compensation: Here we show the qualita-
tive effect of viewpoint-compensated features on the generated
depthmaps. DPSNet sees a significant drop in depth quality when
one of the input images is rotated about the optical axis by 180
degrees. MultiViewStereoNet sees no change in quality.

depth space between 0 (infinite depth) and a maximum
inverse depth value computed for each training example
based on a maximum disparity of 192 pixels. We set D = 12
for all experiments. To remove any dependence on the metric
scale of the geometry, we normalize the camera poses to have
unit baseline before computation. All training was performed
using two input images per sample.

B. DeMoN Benchmark

We evaluate our approach against the DeMoN dataset [26]
commonly used to benchmark MVS systems. This dataset
includes 51k training scenes assembled from both real and
simulated imagery. We use the same training split as [6],
which yields 168k training samples and 708 test samples
at VGA resolution. Groundtruth depths are provided via
RGBD sensors or simulation. For this dataset, we train
for 45 epochs and compute standard depth metrics against
groundtruth that are summarized in Table I. We compare our
proposed network against DPSNet [6], MVDepthNet [20],
DeepMVS [7], and a traditional reconstruction pipeline based
on COLMAP [27]. As shown in Table I, our approach
achieves depth reconstruction accuracy and completeness
comparable to the state-of-the-art, while being significantly
more efficient. Figure 4 shows qualitative performance on the
DeMoN test set, where we compare favorably with DPSNet.

C. GTA-SfM Multi-View Evaluation

We also evaluate our network on the GTA-SfM dataset
presented by Wang and Shen [31]. This dataset contains



DeMoN Benchmark

Dataset Method Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSElog ↓ α1 ↑ α2 ↑ α3 ↑ Runtime [sec] ↓
M

V
S

COLMAP 0.38 1.26 1.48 0.50 0.48 0.66 0.84 -
DeepMVS 0.23 0.62 1.15 0.30 0.67 0.89 0.94 80.9
MVDepthNet 0.20 ± 0.02 0.47 ± 0.10 0.71 ± 0.06 0.25 ± 0.02 0.80 ± 0.02 0.90 ± 0.01 0.94 ± 0.01 0.121 ± 0.005
DPSNet 0.08 ± 0.01 0.07 ± 0.01 0.40 ± 0.03 0.15 ± 0.01 0.90 ± 0.01 0.96 ± 0.01 0.98 ± 0.01 0.630 ± 0.001
Ours 0.18 ± 0.03 0.36 ± 0.18 0.59 ± 0.06 0.22 ± 0.01 0.79 ± 0.02 0.92 ± 0.01 0.96 ± 0.01 0.065 ± 0.001

SU
N

3D

COLMAP 0.62 3.24 2.32 0.66 0.33 0.55 0.72 -
DeepMVS 0.28 0.44 0.94 0.36 0.56 0.74 0.90 80.9
MVDepthNet 0.18 ± 0.01 0.19 ± 0.04 0.55 ± 0.03 0.24 ± 0.01 0.74 ± 0.02 0.91 ± 0.01 0.96 ± 0.01 0.121 ± 0.005
DPSNet 0.16 ± 0.01 0.13 ± 0.01 0.45 ± 0.02 0.20 ± 0.01 0.79 ± 0.02 0.93 ± 0.01 0.98 ± 0.01 0.630 ± 0.001
Ours 0.19 ± 0.02 0.24 ± 0.06 0.55 ± 0.04 0.21 ± 0.01 0.76 ± 0.02 0.92 ± 0.01 0.97 ± 0.01 0.065 ± 0.001

Sc
en

es
11 COLMAP 0.62 3.71 3.66 0.87 0.39 0.57 0.67 -

DeepMVS 0.21 0.37 0.89 0.27 0.69 0.89 0.97 80.9
MVDepthNet 0.08 ± 0.01 0.13 ± 0.01 0.63 ± 0.02 0.16 ± 0.01 0.93 ± 0.01 0.97 ± 0.01 0.98 ± 0.01 0.121 ± 0.005
DPSNet 0.09 ± 0.01 0.20 ± 0.02 0.76 ± 0.03 0.15 ± 0.01 0.93 ± 0.01 0.97 ± 0.01 0.98 ± 0.01 0.630 ± 0.001
Ours 0.13 ± 0.01 0.27 ± 0.02 0.92 ± 0.02 0.22 ± 0.01 0.87 ± 0.01 0.95 ± 0.01 0.97 ± 0.01 0.065 ± 0.001

R
G

B
D

COLMAP 0.54 1.76 1.51 0.72 0.27 0.50 0.72 -
DeepMVS 0.29 0.43 0.87 0.35 0.55 0.81 0.92 80.9
MVDepthNet 0.21 ± 0.01 0.36 ± 0.04 1.07 ± 0.06 0.34 ± 0.02 0.66 ± 0.02 0.82 ± 0.02 0.89 ± 0.01 0.121 ± 0.005
DPSNet 0.16 ± 0.01 0.23 ± 0.04 0.73 ± 0.06 0.24 ± 0.02 0.79 ± 0.02 0.90 ± 0.01 0.95 ± 0.01 0.630 ± 0.001
Ours 0.17 ± 0.01 0.25 ± 0.04 0.80 ± 0.05 0.22 ± 0.01 0.76 ± 0.02 0.92 ± 0.01 0.97 ± 0.01 0.065 ± 0.001

TABLE I: DeMoN Benchmark – Our network achieves reconstruction accuracy comparable to the state-of-the-art, while being significantly
faster. Here we compare MultiViewStereoNet to existing methods COLMAP [27], DeepMVS [7], MVDepthNet [20], and DPSNet [6]
on the two-view DeMoN Benchmark. The rows of the table correspond to the different splits of the datasets (MVS, Sun3D, Scenes11,
RGBD), while the columns show commonly used depth accuracy metrics such as Abs Rel (the mean absolute relative depth error) and
depth completion metrics such as α1 (the fraction of pixels with less than 25 percent depth error). Each metric is computed per depthmap
and then averaged across the test set. Standard errors are shown beside each mean (standard errors for COLMAP and DeepMVS are not
available). The top two performing methods according to each metric are bolded. Runtime metrics were computed using VGA image
resolution on an Nvidia GTX 1080Ti GPU for all algorithms.

17k training images and 2k testing images (VGA resolution)
from trajectories produced inside the Grand Theft Auto V
video game. For each training image, we randomly sample
a single comparison view from the camera sequence to form
training samples. For each test image, we randomly sample
N comparison views. We train on this dataset for 150 epochs
and compare reconstruction performance against DPSNet [6]
as the number of comparison views varies. Table II summa-
rizes the results, which shows our method achieves better
depth accuracy and completeness than DPSNet. Furthermore,
performance increases as more comparison images are used,
although the effect quickly plateaus. Each additional compar-
ison image takes an additional 15 milliseconds to process.
Figure 1 and Figure 5 shows qualitative performance on this
dataset, where again, we compare favorably with DPSNet.

D. GTA-SfM Viewpoint Compensation Evaluation

We also investigate the effect of viewpoint compensation
on reconstruction performance using a simple modification
of the GTA-SfM test set. For each test sample, we rotate
the comparison image by 180 degrees about the optical
axis. We similarly update the camera poses and compare
depth estimation performance against the unmodified test set.
Figure 6 shows clearly that not performing viewpoint com-
pensation can have severe effects on depth quality. DPSNet,
which does no compensation, sees a significant increase in
both absolute relative depth error and root-mean-square depth
error between the two test sets, despite the same information
being presented to the network. Our solution, which does
utilize viewpoint compensation, sees no drop in performance.
Figure 7 shows the qualitative effect of compensation, where

GTA-SfM Dataset

Images Method Abs Rel ↓ RMSE ↓ α1 ↑ Runtime [ms] ↓

2 DPSNet 0.103 26.97 0.94 662

2

Ours

0.084 19.69 0.923 65.1
3 0.077 19.47 0.932 79.7
4 0.075 19.41 0.934 92.7
5 0.075 19.40 0.935 106.5

TABLE II: Multi-View Evaluation – Our network can fuse infor-
mation from multiple images to produce depth estimates. Here we
show depth estimation performance as the number of comparison
images increases (one image is designated as the reference).

the DPSNet depthmap suffers a significant drop in quality
when the comparison image is rotated, while that of our
solution is unaffected.

V. CONCLUSION

We present a learning-based method for MVS depth
estimation capable of recovering depth from images taken
from known, but otherwise arbitrary, viewpoints. Our key
insight is that by compensating for the known viewpoint
changes during feature extraction, our network can learn
features that are projected by construction. This technique
lessens the burden on the network to learn invariant fea-
tures, thereby increasing robustness to viewpoint changes
during matching. We employ low-resolution techniques from
Khamis et al. [13] and present a novel incremental extraction
network to perform this viewpoint compensation efficiently.
We show reconstruction performance on benchmark datasets
comparable to the state-of-the-art, while being significantly
more efficient.
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