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Abstract

We describe a mobile robot system, designed to assist
residents of an retirement facility. This system is being de-
veloped to respond to an aging population and a predicted
shortage of nursing professionals. In this paper, we discuss
the task of finding and escorting people from place to place
in the facility, a task containing uncertainty throughout the
problem.

Planning algorithms that model uncertainty well such
as Partially Observable Markov Decision Processes (POM-
DPs) do not scale tractably to most real world problems.
We demonstrate an algorithm for representing real world
POMDP problems compactly, which allows us to find good
policies in reasonable amounts of time. We show that our
algorithm is able to find moving people in close to optimal
time, where the optimal policy would start with knowledge
of the person’s location.

1 Introduction

We describe a mobile robot system, designed to assist
residents of an retirement facility. This system is being de-
veloped to respond to an aging population and a predicted
shortage of nursing professionals. Previously, we have re-
ported on work focused on the task of reminding people
of events (e.g., appointments) and accompanying them to
these events [1, 2]. In this paper, we discuss the task of
finding and escorting people from place to place in the fa-
cility. This problem contains many common aspects of real
world uncertainty: the state of the world is not completely
known (the initial position of the person in the environ-
ment is unknown), the state changes (people are free to
move around), and sensor noise can lead to perceptual er-
rors. These sources of uncertainty, if unmodelled, can lead
to sub-optimal behaviour on the part of the robot.

Unfortunately, the kind of planning that is required for
reliable robot operation is difficult to approximate with sim-
ple heuristics for handling the uncertainty, so we must use

a planning methodology that explicitly models the real-
world uncertainty. One such model is the Partially Ob-
servable Markov Decision Process (POMDP), but conven-
tional approaches to finding policies for POMDPs are often
intractable for the size of problems we wish to address.

We will take advantage of dimensionality reduction tech-
niques to find low-dimensional representations that can be
planned for much more easily, by using structure inher-
ent in many real world domains. For example, Principal
Components Analysis (PCA) is well-suited to dimension-
ality reduction for data on or near a linear manifold in the
higher-dimensional space. Unfortunately, POMDP belief
manifolds are rarely linear; in particular, sparse beliefs are
usually very non-linear. We therefore transform the data
into a space where it does lie near a linear manifold; the
algorithm which does so (while also correctly handling the
transformed residual errors) is called Exponential Family
PCA (E-PCA) [3, 4]. E-PCA will allow us to represent
POMDPs with only a handful of dimensions, even for be-
lief spaces with thousands of dimensions. We will demon-
strate the use of this planning technique on the problem of
how to find a person whose location is initially unknown.

2 Finding People

The problem we wish to solve is how to find people
in a health care facility as quickly as possible. The robot
is assumed to begin with a grid map of the environment,
but no knowledge of where the person might be located,
in which grid cell of the map. The robot can move about
the environment to look for the person, and receives sensor
information when the robot can and cannot see the person.
Our implementation is based on a laser-range finder, but
this work is independent of the particular sensing modality.

We assume a probabilistic state estimator that provides
probability distributions over where people might be lo-
cated. We will refer to this a distributions as a “belief” of
the person’s location. The belief is updated over time after
each action and observation from the robot according to a
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Figure 1: (a) Pearl, the Nursebot (b) & (c) Pearl interacting with residents of Longwood at Oakmont.

well-formed probabilistic rules [5]. The planning task can
then be phrased as one of choosing the next action, based
on the current belief, as depicted in figure 2. Not shown in
this figure is the true state of the world, which is also not
observable by the agent.
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Figure 2: The execution process for finding people. The observation is
generated according to an emission probability model conditioned on the
current state, that is hidden from the controller. The controller only has
access to the observation, not the true state generating the observation.

The Partially Observable Markov Decision Process is
a decision-theoretic model for planning successfully with
beliefs. The POMDP is solved by defining a “value func-
tion” over the space of beliefs, which assigns a value and
action to each belief. By iteratively updating the value
function appropriately, the value function can be made to
converge to the greatest expected reward from each belief,
and the action that will achieve that reward in expectation.
The POMDP finds a policy that maximises the expected
sum of future (possibly discounted) rewards of the agent
executing the policy; for the problem of finding people, we
can write a reward function for each possible configuration
of the world such that the maximum reward is achieved for
finding people fastest.

There are a large number of value function approaches
[6, 7] that explicitly compute the expected reward of ev-
ery belief. Such approaches produce complete policies (the
optimal action for every belief), and can guarantee this op-

timality under a wide range of conditions. However, find-
ing a value function this way is usually computationally
intractable [6, 8].

Large POMDPs are generally very difficult to solve es-
pecially with standard value iteration techniques. Main-
taining a full value function over the high-dimensional be-
lief space entails finding the expected reward of every pos-
sible belief under the optimal policy. In reality, most POM-
DP policies generate only a small percentage of possible
beliefs. For example, a mobile robot tracking a person is
extremely unlikely to ever encounter a belief about the per-
son’s pose that resembles a checkerboard. If the execu-
tion of a POMDP is viewed as a trajectory inside the be-
lief space, trajectories for most large, real world POMDPs
lie on low-dimensional manifolds embedded in the belief
space. So, POMDP algorithms that compute a value func-
tion over the full belief space do a lot of unnecessary work.

3 Dimensionality Reduction

In order to find the low-dimensional manifold for repre-
senting our belief space, we take advantage of dimension-
ality reduction techniques. One possible technique that we
could consider is Principal Component Analysis1 (PCA).
We collect a data set of beliefs X , and use PCA to find
a low-dimensional representation; so long as the collected
data set is representative of the beliefs we will encounter
during the execution of the people-finding plan, then we
should be able to track the current belief on the low-dimen-
sional manifold accurately.

PCA operates by finding a set of feature vectors U =
{u1, . . . , un} that minimise the loss function

L(U, V ) = ||X − UV ||2 (1)

1Also known as Singular Value Decomposition
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(a) Conventional PCA
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Figure 3: A comparison of the reconstruction quality of conventional PCA and E-PCA, using a probabilistic distance measure, Kullback-Leibler diver-
gence, on a people-tracking data set. Notice that even with 30 bases, the PCA performs poorly and has very high variance in reconstruction quality. The
E-PCA error falls rapidly initially, and the variance in error is low, indicating consistent performance across the entire data set. (Note the different scales
on the Y axes.)

where X is the original data and V is the matrix of low-
dimensional coordinates of X . This particular loss func-
tion assumes that the data lie near a linear manifold, and
that displacements from this manifold are symmetric and
have the same variance everywhere. (For example, i.i.d.
Gaussian errors satisfy these requirements.) Unfortunately,
probability distributions for POMDPs rarely form a linear
subspace. In addition, squared error loss is inappropriate
for modelling probability distributions: it does not enforce
positive probability predictions.

We use exponential family PCA to address this prob-
lem. Other nonlinear dimensionality-reduction techniques
[9, 10] could also work for this purpose, but would have
different domains of applicability. Exponential family Prin-
cipal Component Analysis [3] (E-PCA) varies from con-
ventional PCA by adding a link function, in analogy to
generalised linear models, and modifying the loss function
appropriately. As long as we choose a link function that
corresponds to an exponential family distribution log like-
lihood, and as long as the link and loss functions to match
each other, there will exist efficient algorithms for finding
U and V given X . By picking particular link functions
(with their matching losses), we can reduce the model to
an SVD.

In our case the entries of X are non-negative, and we
wish to ensure accurate representation of low-probability
events. Consequently, a link and loss function that cor-
respond to the Poisson distribution are most appropriate2.
The corresponding link function is

X̄ = f(UV ) = exp(UV ) (2)

2Examples of other choices are the Exponential distribution, the multi-
nomial, the Beta, etc. The Gaussian is also an Exponential family distri-
bution, but a Gaussian link and loss function reduce to conventional PCA.

(taken component-wise) and its associated loss function is

L(U, V ) = exp(UV )−X ◦ UV (3)

where the “matrix dot product”A◦B is the sum of products
of corresponding elements. It is worth noting that using the
Poisson loss for dimensionality reduction is related to Lee
and Seung’s non-negative matrix factorisation [11]. Gor-
don [12, 4] has a Newton’s Method solution for computing
U and V quickly.

In figure 3, we compared the error in the low-dimension-
al representations, for a sample set of 500 beliefs taken
from the person tracking problem for the environment sho-
wn in figure 4. Figure 3(a) shows the average Kullback-
Leibler divergence (a distance metric for probability dis-
tributions) between the high-dimensional belief set and the
low-dimensional representation, using conventional PCA
to find the low-dimensional representation. We see that
the distance is large, does not improve quickly with more
dimensions, and the representation quality is largely in-
consistent, as denoted by the wide error bars. Figure 3(b)
shows the same evaluation (average KL divergence) where
E-PCA was used to find the low-dimensional representa-
tion. In this case, the error is small, improves quickly ini-
tially, and is consistent across the entire data set, in all ways
outperforming conventional PCA.

We can also look at a sample representation to assess
the quality of the representation. Figure 4 shows an exam-
ple of the tracking process in progress. The true position
of the person is unknown, and the robot instead maintains
a probability distribution over possible poses of the person.
The small grey dots show particles drawn from the original
distribution. As the robot moves around the environment,
sensor information is integrated into the distribution. The
space of possible distributions is 1961-dimensional, for an



(a) Original distribution (b) Reconstruction

Figure 4: Examples of distributions in the Longwood at Oakmont retirement facility. The small grey dots show particles drawn from the original
distribution; the higher the probability, the denser the particles. (a) An example distribution of potential positions of the person being searched for. This
distribution is represented using 1961 dimensions. (b) The same distribution, reconstructed using only 6 dimensions. The true position of the person is not
observable by the robot at a distance.

environment 53 × 37m discretised into 1m grid cells, and
1 dimension for each grid cell. However, by taking ad-
vantage of the E-PCA decomposition we can generate a
faithful representation of the space of actual distributions
in only 6 dimensions. Figure 4(b) shows the original distri-
bution projected to the low-dimensional space and then re-
constructed. Although this is a lossy projection, the recon-
struction is accurate for planning purposes. Remember that
the task is not to reconstruct only the distribution shown in
figure 4a, but to be able to represent all of the distributions
that we expect to see as points in the 6-dimensional space.

4 Planning

Given the belief features acquired through E-PCA, it
remains to compute the policy. Unfortunately, the non-
linearity of the E-PCA projection prevents any guarantees
of value function convexity over the low-dimensional space,
which means that standard POMDP value iteration tech-
niques cannot be used to find policies on the low-dimension-
al manifold directly. Instead, we approximate the low-
dimensional space discretely, converting the POMDP into
a belief space MDP. During execution, the action taken at
each time step is taken from the discrete belief state that is
closest to the current actual belief.

Our conversion algorithm from POMDP to MDP is a
variant of the Augmented MDP, or Coastal Navigation al-
gorithm [13], using belief features instead of entropy. We
can compute the model reward function R(si) easily from
the reconstructed beliefs, using R(b) = b · R(s). To learn
the transition function p(bi|a, bj), we can sample states
from the reconstructed beliefs, sample observations from
those states, and incorporate those observations to produce

new belief states. Table 1 outlines the steps of this algo-
rithm.

1. Collect sample beliefs

2. Use E-PCA to generate low-dimensional belief features

3. Convert low-dimensional space into discrete space S
4. Learn belief transition probabilities T (si, a, sj), and re-

ward functionR(si).

5. Perform value iteration on new model, using states S,
transition probabilities T andR.

Table 1: Algorithm for planning in low-dimensional belief space.

The state space can be discretised in a number of ways,
such as laying a grid over the belief features or using dis-
tance to the closest training beliefs to divide feature space
into Voronoi regions. Thrun [14] has proposed nearest-
neighbor discretisation in high-dimensional belief space;
we propose instead to use nearest-neighbour in a low-di-
mensional feature space, where neighbors should be more
closely related.

In order to find a good policy, we must be sure to dis-
cretise carefully. In some regions of the low-dimensional
manifold, beliefs that are close together we can cluster into
the same, large discrete cell without hurting performance.
In other regions of the belief space, the cells must be much
smaller, in order to distinguish different beliefs that require
different actions. This leads to a variable resolution repre-
sentation of the low-dimensional manifold.

We typically do not have enough belief samples initially
to determine the full discretisation across the entire space;
in places the discretisation will be insufficiently fine. We



compensate by periodically re-evaluating the model at each
grid cell, and splitting the grid-cell into smaller discrete
cells where the model disagrees with some statistics of
the real world. A number of different statistics have been
suggested for testing the model against data from the real
world [15], such as reduction in reward variance, or value
function disagreement. We have opted instead for a simpler
criterion of transition probability disagreement, although
one improvement we are exploring is to use the Kolmogor-
ov-Smirnov criterion for reducing expected reward disagree-
ment [16].

5 Performance
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Figure 5: Example trajectory. (a) Even for this very simple environment,
in order to maximise the likelihood of finding the person, the trajectory
is relatively complicated. (b) The more obvious, sub-optimal trajectory
allows some probability mass to “leak” into already-explored regions.

Figure 5(a) shows an example trajectory for a simple
environment3. Even for this very simple problem, the tra-
jectory is relatively complicated. The robot starts at the
far end of the corridor, with the person’s position com-
pletely unknown (the initial belief is uniform over the en-
tire space). The robot travels past the open door on the
right, part way down the corridor, returns to explore the
room, and then finishes the corridor. This trajectory en-
sures that by the time the robot is finished exploring the
room, the person must either have been found, or be at the
far end of the corridor – there is no possibility for the per-
son to escape into already-explored sections of the envi-
ronment. This is an example of the kind of planning we

3For this environment, the original space was 47m × 17m with a
0.2m resolution, for 20,230 grid cells, reduced to 6 dimensions.

hope to see – our planner has found a strategy that is not
obvious, nor easy to capture using simple heuristics. Fig-
ure 5(b) shows a more obvious but sub-optimal trajectory
in mid-execution. Notice the probability mass that appears
in the already-explored region near the robot start location,
causing the robot eventually to retrace its steps. The opti-
mal strategy in figure 5(a) explicitly avoids this problem.

Figure 6 shows a quantitative comparison of our tech-
nique and other possible heuristics. The horizontal line
is the baseline, “True MDP” situation where the position
of the person is always known correctly, that is, there is
no hidden state. This algorithm is essentially cheating, but
serves as a useful lower bound in that the robot find the per-
son as quickly as possible every iteration. The “Closest”
heuristic takes the robot to the nearest grid cell where the
person might be. The “Densest” heuristic takes the robot
to the location where the most particles are visible. The
“MDP” heuristic takes the robot to the maximum-likelihood
location (the single grid cell with the most particles). The
“E-PCA 72” and “E-PCA 260” is a comparison of the E-
PCA plans before state splitting (with 72 low-dimensional
belief states) and after iterative refinement of the manifold
(to 260 low-dimensional belief states). The “E-PCA 260”
is clearly the best performing algorithm, able to find the
person almost as quickly as the fully-observable planner.
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Figure 6: A comparison of different planning methods, including some
simple heuristic planners. The“True MDP” method is the lower-bound
“cheating” solution which assumes that the true position of the robot is
always known. The optimal method under uncertainty is the “E-PCA-
260” method, which also learns the optimal state decomposition.

6 Related Work

There have been a number of recent advances in solv-
ing large POMDPs. Poupart & Boutilier [17] make use of a
similar dimensionality reduction technique, however, their
representation requires a linear combination of bases to
represent arbitrary data, which is a strong limitation on the
compression they can achieve. (Figure 3(a) demonstrates
the limitation of linear representations.) Pineau et al. [18]



have had success in finding approximate value functions
quickly, but again their approach has not scaled to the size
of the problems discussed in this paper.

Policy search algorithms [8, 19] have addressed some
large problems. We suggest that a large part of the success
of policy search is due to the fact that it focuses compu-
tation on relevant belief states. A disadvantage of policy
search, however, is that can be data-inefficient across prob-
lems: many policy search techniques have trouble reusing
sample trajectories generated from old policies. Our ap-
proach focuses computation on relevant belief states, but
also allows us to use all relevant training data to estimate
the effect of any policy.

Related research has developed heuristics which reduce
the belief space representation. In particular, entropy-based
representations for heuristic control [20] and full value-
function planning [13] have been tried with some success.
However, these approaches make strong assumptions about
the kind of uncertainties that a POMDP generates. By per-
forming principled dimensionality reduction of the belief
space, our technique should be applicable to a wider range
of problems.

7 Conclusion
We have demonstrated a system for finding and tracking

people in the health care setting. The problem of finding
people is computationally difficult in many environments,
because of the high degree of uncertainty. Planners that do
not reason intelligently about this uncertainty can take arbi-
trarily long to perform such real world tasks. The Partially
Observable Markov Decision process is a planner that can
reason about uncertainty, but is typically held not to scale
to large problems.

We have shown that by taking advantage of dimension-
ality reduction techniques, we can represent POMDP prob-
lems compactly, and therefore generate good plans. We
used a variant of PCA called Exponential family PCA (E-
PCA) to find a low-dimensional manifold one which typ-
ical beliefs lie, and compute a value function over that
manifold using a function approximator. We have also
shown that naive function approximation is not sufficient
for finding good plans. Our experimental results indicate
that the optimal plan can be sensitive to small changes to
the function approximation in different regions of the low-
dimensional manifold. By appropriate use of statistical
tests, we are able to find good variable resolution repre-
sentations for the value function that lead to good policies.
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