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Information-Guided Robotic Maximum
Seek-and-Sample in Partially Observable

Continuous Environments
Genevieve Flaspohler*1,2 Victoria Preston*1,2 Anna P.M. Michel2 Yogesh Girdhar2 Nicholas Roy1

Abstract—We present PLUMES, a planner for localizing and
collecting samples at the global maximum of an a priori un-
known and partially observable continuous environment. This
“maximum seek-and-sample” (MSS) problem is pervasive in
the environmental and earth sciences. Experts want to collect
scientifically valuable samples at an environmental maximum
(e.g., an oil-spill source), but do not have prior knowledge about
the phenomenon’s distribution. We formulate the MSS problem
as a partially-observable Markov decision process (POMDP) with
continuous state and observation spaces, and a sparse reward
signal. To solve the MSS POMDP, PLUMES uses an information-
theoretic reward heuristic with continuous-observation Monte
Carlo Tree Search to efficiently localize and sample from the
global maximum. In simulation and field experiments, PLUMES
collects more scientifically valuable samples than state-of-the-art
planners in a diverse set of environments, with various platforms,
sensors, and challenging real-world conditions.

Index Terms—Motion and Path Planning, Learning and Adap-
tive Systems, Reactive and Sensor-Based Planning

I. INTRODUCTION

IN many environmental and earth science applications,
experts want to collect scientifically valuable samples of

a maximum (e.g., an oil spill source), but the distribution of
the phenomenon is initially unknown. This maximum seek-
and-sample (MSS) problem is pervasive. Canonically, samples
are collected at predetermined locations by a technician or by
a mobile platform following a uniform coverage trajectory.
These non-adaptive strategies result in sample sparsity at the
maximum and may be infeasible when the geometric struc-
ture of the environment is unknown (e.g., boulder fields) or
changing (e.g., tidal zones). Increasing the number of valuable
samples at the maximum requires adaptive online planning
and execution. We present PLUMES — Plume Localization
under Uncertainty using Maximum-ValuE information and
Search — an adaptive algorithm that enables a mobile robot
to efficiently localize and densely sample an environmental
maximum, subject to practical challenges including dynamic
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Fig. 1. Coral head localization with an autonomous surface vehicle
(ASV): The objective of the ASV is to find and sample at the most exposed
(shallowest) coral head in a region of Bellairs Fringing Reef, Barbados.
Overlaid on the aerial photo is the a priori unknown bathymetry of the region
(yellow is shallow, blue is deep). Equipped with an acoustic point altimeter,
the ASV must explore to infer the location of the maximum (marked with a
star) and then sample at that coral colony.

constraints, unknown geometric map and obstacles, and noisy
sensors with limited field-of-view. Fig. 1 shows a motivating
application of coral head localization.

Informative Path Planning: The MSS problem is closely
related to informative path planning (IPP) problems. Offline
IPP techniques for pure information-gathering that optimize
submodular coverage objectives can achieve near-optimal per-
formance [1], [2]. However, in the MSS problem, the value of a
sample depends on the unknown maximum location, requiring
a robot to adaptively select actions that explore to localize the
maximum and then seamlessly transition to selecting actions
that exploitatively collect valuable samples there. Even for
adaptive IPP methods, the MSS problem presents considerable
challenges. The target environmental phenomenon is partially
observable and most directly modeled as a continuous scalar
function. Additionally, efficient maximum sampling with a
mobile robot requires consideration of vehicle dynamics, travel
cost, and a potentially unknown obstacle map. Handling these
challenges in combination excludes adaptive IPP algorithms
that use discrete state spaces [3], [4], known metric maps [5],
[6], or unconstrained sensor placement [7].

The MSS POMDP: Partially-observable Markov decision
processes (POMDPs) are general models for decision-making
under uncertainty that allow the challenging aspects of the
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MSS problem to be encoded. We define the MSS POMDP in
which the partially observable state represents the continuous
environmental phenomenon and a sparse reward function
encodes the MSS scientific objective by giving reward only
to samples sufficiently close to the global maximum. Solving
a POMDP exactly is generally intractable, and the MSS
POMDP is additionally complicated by both continuous state
and observation spaces, and the sparse MSS reward function.
This presents the two core challenges that PLUMES addresses:
performing online search in a belief-space over continuous
functions, and overcoming reward function sparsity.

Planning over Continuous Domains: In the MSS problem,
the state of the environment can be modeled as a continuous
function. PLUMES uses a Gaussian Process (GP) model to
represent the belief over this continuous function, and must
plan over the uncountable set of possible GP beliefs that arise
from future continuous observations. To address planning in
continuous spaces, state-of-the-art online POMDP solvers use
deterministic discretization [8] or a combination of sampling
techniques and particle filter belief representations [9]–[12].
Efficiently discretizing or maintaining a sufficiently rich parti-
cle set to represent the underlying continuous function in MSS
applications is itself a challenging problem, and can lead to
inaccurate inference of the maximum [13]. Other approaches
have considered using the maximum-likelihood observation
to make search tractable [14]. However, this assumption can
compromise search and has optimality guarantees only in
linear-Gaussian systems [15]. Instead, PLUMES uses Monte
Carlo Tree Search (MCTS) with progressive widening to limit
planning tree growth [16] and retains optimality guarantees
[17] in continuous environments.

Rewards and Heuristics: In the MSS POMDP, the reward
function is sparse and does not explicitly encode the value
of exploration. Planning with sparse rewards requires long-
horizon information gathering and is an open problem in
robotics [18]. To alleviate this difficulty, less sparse heuristic
reward functions can be optimized in place of the true reward,
but these heuristics need to be selected carefully to ensure
the planner performs well with respect to the true objective.
In IPP, heuristics based on the value of information have
been applied successfully [7], [14], [19], [20], primarily using
the GP-UCB criteria [1], [21]. We demonstrate that within
practical mission constraints, using UCB as the heuristic
reward function for the MSS POMDP can lead to suboptimal
convergence to local maxima due to a mismatch between the
UCB heuristic and the true MSS reward. Instead, PLUMES
takes advantage of a heuristic function from the Bayesian
optimization (BO) community for state-of-the-art black-box
optimization [22] which we call maximum-value information
(MVI). MVI overcomes sparsity and encourages long-term
information gathering, while still converging to the true reward
of the MSS POMDP.

The contribution of this paper is the MSS POMDP formal-
ism and the corresponding PLUMES planner, which by virtue
of its belief model, information-theoretic reward heuristic, and
search framework, enables efficient maximum sampling with
asymptotic optimality guarantees for continuous environments.
PLUMES extends the state-of-the-art in MSS planners by

applying a BO heuristic reward function to MSS that alle-
viates the challenges of the true sparse MSS reward function,
and integrating GP belief representations within continuous-
observation MCTS. The utility of PLUMES for MSS applica-
tions is demonstrated in extensive simulation and field trials,
showing a statistically significant performance improvement
over state-of-the-art baselines.

II. MAXIMUM SEEK-AND-SAMPLE POMDP

We formalize the MSS problem by considering a target envi-
ronmental domain as a d-dimensional compact set Xw ⊂ Rd.
We allow Xw to contain obstacles with arbitrary geometry
and let X ⊂ Xw be the set of reachable points with respect
to the robot’s initial pose. We assume there is an unknown
underlying continuous function f : Xw → R representing the
value of a continuous phenomenon of interest. The objective
is to find the unique global maximizer x∗ = arg maxx∈X f(x)
by safely navigating while receiving noisy observations of this
function f . Because f is unknown, we cannot access derivative
information or any analytic form.

We model the process of navigating and generating
observations as the MSS POMDP: an 8-tuple
(S,A,Z, T,O,R, γ, b0):
• S: continuous state space of the robot and environment
• A: discrete set of action primitives
• Z: continuous space of possible observations
• T : S ×A → P(S), the transition function, i.e.,

Pr(St+1 = s′ | St = s,At = a)
• O: S ×A → P(Z), the observation model, i.e.,

Pr(Zt+1 = z | St+1 = s,At = a)
• R: S × A → R, the reward of taking action a when

robot’s state is s, i.e., R(s, a)
• γ: discount factor, 0 ≤ γ ≤ 1
• b0: initial belief state of the robot, b0 ∈ P(S0)

where P(·) denotes the space of probability distributions over
the argument.

The Bellman equation is used to recursively quantify the
value of belief bt = P(St) over a finite horizon h under policy
π : bt → at as:

V πh (bt) =E[R(st, π(bt))]+

γ

∫
z∈Z

V πh−1(b
π(bt),z
t+1 ) Pr(z | bt, π(bt)) dz,

(1)

where the expectation is taken over the current belief and
b
π(bt),z
t+1 is the updated belief after taking action π(bt) and

observing z ∈ Z . The optimal policy π∗h over horizon-h is the
maximizer of the value function over the space of possible
policies Π: π∗h = arg maxπ∈Π V

π
h (bt). However, Eq. 1 is

intractable to compute in continuous state and observation
spaces; the optimal policy must be approximated. PLUMES
uses a receding-horizon, online POMDP planner and heuristic
reward function to approximately solve the MSS POMDP in
real-time on robotic systems.

III. THE PLUMES ALGORITHM

PLUMES is an online planning algorithm with a sequential
decision-making structure:
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1) Conditioned on bt, approximate the optimal policy π∗h
for finite horizon h and execute the action a = π̂∗h(bt).

2) Collect observations z ∈ Z , according to O.
3) Update bt to incorporate this new observation; repeat.

In the following sections, we define the specific choice of
belief model, search algorithm, and heuristic reward function
PLUMES uses to solve the MSS POMDP.

A. Gaussian Process Belief Model

We assume the robot’s pose xt at planning iteration t is
fully observable, and the unknown environmental phenomenon
f is partially observable. The full belief-state is represented
as a tuple bt of robot state xt and environment belief gt =
P(f) at time t. Because f is a continuous function, we cannot
represent the belief gt as a distribution over discrete states,
as is standard in POMDP literature [23], and must choose
an alternate representation. PLUMES uses a Gaussian process
(GP) [24] to represent gt conditioned on a history of past
observations. This GP is parameterized by mean µ(x) and
covariance function κ(x,x′).

As the robot traverses a location x, it gathers observations
z ∈ Z of f subject to sensor noise σ2

n, such that z = f(x)+ ε

with ε i.i.d.∼ N (0, σ2
n). Given a history Dt = {xi, zi}Di=0 of D

observations and observation locations at planning iteration t,
the posterior belief at a new location x′ ∈ X is computed:

gt(x
′) | Dt ∼ N (µt(x

′), σ2
t (x′)),where (2)

µt(x
′) = κt(x

′)>(Kt + σ2
nI)
−1zt, (3)

σ2
t (x′) = κ(x′,x′)− κt(x′)>(Kt + σ2

nI)
−1κt(x

′), (4)

where zt = [z0, . . . , zD−1]>, Kt is the positive definite kernel
matrix with Kt[i, j] = κ(xi,xj) for all xi,xj ∈ Dt, and
κt(x

′) = [κ(x0,x
′), . . . , κ(xD−1,x

′)]>.

B. Planning with Continuous-Observation MCTS

PLUMES selects high-reward actions with receding-horizon
search over possible belief states. This search requires a sim-
ulator that can sample observations and generate beliefs given
a proposed action sequence. For PLUMES, this simulator is
the GP model, which represents the belief over the continuous
function f , and in turn generates continuous observations from
action queries using Eq. 3 & 4.

PLUMES uses continuous-observation MCTS to overcome
the challenges of planning in continuous state and observation
spaces. There are three stages: selection, forward simulation,
and back-propagation. Each node in the tree can be repre-
sented as the tuple of robot pose and GP belief, bt = {xt,
gt}. Additionally, we will refer to two types of nodes: belief
nodes and belief-action nodes. The root of the tree is always
a belief node, which represents the entire history of actions
and observations up through the current planning iteration.
Through selection and simulation, belief and belief-action
nodes are alternately added to the tree (Fig. 2).

From the root, a rollout begins with the selection stage,
in which a belief-action child is selected according to the
Polynomial Upper Confidence Tree (PUCT) policy [17]. The
PUCT value Q̂∗aug(bt, a) is the sum of the average heuristic

Fig. 2. Continuous-observation MCTS: Illustrated to horizon h = 1, the
tree consists of alternating belief and belief-action nodes. Action decisions
are made at belief nodes and random belief transitions according to the
observation function occur at belief-action nodes. Note that belief-action nodes
have a varying number of children due to progressive widening and unequal
simulation (not visualized) due to PUCT policy.

rewards (i.e., MVI) from all previous simulations and a term
that favors less-simulated action sequences:

Q̂∗aug(bt, a) = Q̂∗(bt, a) +

√
N(bt)

ed

N(bt, a)
, (5)

where Q̂∗(bt, a) is the average heuristic reward of choosing
action a with belief bt in all previous rollouts, N(bt) is the
number of times the node bt has been simulated, N(bt, a) is
the number of times that particular action from node bt has
been selected, and ed is a depth-dependent parameter*.

Once a child belief-action node is selected, the action asso-
ciated with the child is forward simulated using the generative
observation model O, and a new belief node is generated
bt+1 = {xt+1, gt+1} as though the action were taken and
samples observed. The simulated observations are drawn from
the belief-action node’s GP model gt, and the robot’s pose is
updated deterministically based on the selected action. Since
the observations in a GP are continuous, every sampled obser-
vation is unique with probability one. Progressive widening,
with depth-dependent parameter∗ αd incrementally grows the
tree by limiting the number of belief children of each belief-
action node. When growing the tree, bt+1 is either chosen to
be the least visited node if bN(bt, a)αdc = b(N(bt, a)−1)αdc,
or otherwise is a new child with observations simulated from
bt. By limiting the width of the search tree and incrementally
growing the number of explored children, progressive widen-
ing avoids search degeneracy in continuous environments.

Once a sequence of actions has been rolled out to a horizon
h, the accumulated heuristic reward is propagated upward
from the leaves to the tree root. The average accumulated
heuristic reward and number of queries are updated for each
node visited in the rollout. Rollouts continue until the com-
putation budget is exhausted. The most visited belief-action
child of the root node is executed.

Continuous-observation MCTS within PLUMES provides
both practical and theoretical benefits. Practically, progressive-
widening directly addresses search degeneracy by visiting
belief nodes multiple times even in continuous observation
spaces, allowing for a more representative estimate of their

*Refer to Table 1 of Auger et al. [17] for parameter settings.
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value. Theoretically, PLUMES can be shown to select asymp-
totically optimal actions. We briefly describe how analysis in
Auger et al. [17] for PUCT-MCTS with progressive widening
in MDPs can be extended to PLUMES.

Using standard methods [23], we can reduce the MSS
POMDP to an equivalent belief-state MDP. This belief-state
MDP has a state space equal to the set of all possible beliefs,
and a transition distribution that captures the effect of both
the dynamics and the observation model after each action.
Planning in this representation is often intractable as the
state space is continuous and infinite-dimensional. However,
PLUMES plans directly in the belief-state MDP by using its
GP belief state to compute the transition function efficiently.

Subsequently, Theorem 1 in Auger et al. [17] shows that for
an MDP with a continuous state space, like the belief-state
MDP representation suggested, the value function estimated
by continuous-observation MCTS asymptotically converges to
that of the optimal policy:∣∣∣Q̂∗h(bt, a)−Q∗h(bt, a)

∣∣∣ ≤ C

N(bt, a)γd
, (6)

with high probability [17], for constants C > 0 and γd∗.

C. Maximum-Value Information Reward

The true state-dependent reward function for the MSS
POMDP would place value on collecting sample points x
within an ε-ball of the true global maximum x∗:

R(f,x) = 1‖x−x∗‖<ε, (7)

where ε is determined by the scientific application. Opti-
mizing this sparse reward function directly is challenging,
so PLUMES approximates the true MSS reward by using
the maximum-value information (MVI) heuristic reward [22].

MVI initially encourages exploration behavior, but ultimately
rewards exploitative sampling near the inferred maximum.

The belief-dependent MVI heuristic reward R̃(bt,x) quan-
tifies the expected value of having belief bt and collecting a
sample at location x ∈ X. MVI reward quantifies the mutual
information between the random variable Z, representing the
observation at location x, and Z∗, the random variable repre-
senting the value of the function f at the global maximum:

R̃(bt,x) = I({x, Z};Z∗ | bt), (8)

where Z∗ = maxx′∈X f(x′). To compute the reward of
collecting a random observation Z at location x under belief
bt, we approximate the expectation over the unknown Z∗ by
sampling from the posterior distribution z∗i ∼ p(Z∗ | bt) and
use Monte Carlo integration with M samples [22]:
R̃(bt,x) = H[Pr(Z | x, bt)]−

Ez′∼Pr(Z∗|bt)[H[Pr(Z | x, bt, Z∗ = z′)],
(9)

≈ H[Pr(Z | x, bt)]−
1

M

M∑
i=0

H[Pr(Z | x, bt, Z∗ = z∗i )].

(10)

Each entropy expression H[·] can be respectively approxi-
mated as the entropy of a Gaussian random variable with mean
and variance given by the GP equations (Eq. 3 & 4), and the
entropy of a truncated Gaussian, with upper limit z∗i and the
same mean and variance.

To draw samples z∗i from the posterior p(Z∗ | bt), we
employ spectral sampling [25]. Spectral sampling draws a
function f̂ , which has analytic form and is differentiable,
from the posterior belief of a GP with stationary covariance
function [22], [26]. To complete the evaluation of Eq. 10,
z∗i ∼ p(Z∗ | bt) can be computed by applying standard
efficient global optimization techniques (e.g., sequential least

Fig. 3. Convergence of MVI vs UCB heuristic: The true environmental phenomenon with the global maximum marked by a star is shown in the center;
high regions are colored yellow and low regions blue. In (A,C), the robot trajectory and corresponding reward functions are shown early (20 actions) and later
(140 actions) in a mission. On the top row, snapshots of the robot belief state with planned trajectories are shown, with recent actions colored pink and earlier
actions colored blue. Red stars mark maxima sampled by MVI. In the bottom row, the corresponding reward function is shown, with high-reward regions
colored yellow and low reward regions colored purple. By the end of the mission, MVI clearly converges to placing reward only at the global maximum,
which in turn leads to efficient convergence of the robot. By contrast, the reward landscape resulting from canonically used UCB converges to the underlying
function, causing the UCB planner to uniformly tour high-valued regions of the environment.
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squares programming, quasi-Newton methods) to find the
global maximum of the sampled f̂ . This results in the fol-
lowing expression for MVI reward [22]:

R̃(bt,x) ≈ 1

M

M∑
i=0

γz∗i (x)φ(γz∗i (x))

2Φ(γz∗i (x))
− log(Φ(γz∗i (x))) (11)

where γz∗i (x) =
z∗i−µt(x)
σt(x) , µt(x) and σt(x) are given by Eq. 3

& 4, and φ and Φ are the standard normal PDF and CDF. For
actions that collect samples at more then one location, the
reward of an action R̃(bt, a) is the sum of rewards of the
locations sampled by that action.

MVI initially favors collecting observations in areas that
have high uncertainty due to sampling maxima from the
initial uniform GP belief. As observations are collected and
uncertainty diminishes in the GP, the sampled maxima con-
verge to the true maximum and reward concentrates locally at
this point, encouraging exploitative behavior. This contrasts
with the Upper Confidence Bound (UCB) heuristic, which
distributes reward proportional to predictive mean µt(x) and
weighted variance σt(x) of the current GP belief model
(Eq. 3 & 4): R̃(bt,x) = µt(x) +

√
βtσ(x). As the robot

explores, UCB converges to the underlying phenomenon, f .
The difference in convergence characteristics between MVI
and UCB can be observed in Fig. 3.

IV. EXPERIMENTS AND RESULTS

We analyze the empirical performance of PLUMES in a
breadth of MSS scenarios that feature convex and non-convex
environments. We compare against three baselines used in
environmental surveying: non-adaptive lawnmower-coverage
(Boustro., an abbreviation of boustrophedonic [27]), greedy
myopic planning with UCB reward (UCB-Myopic) [19], and
nonmyopic planning with traditional MCTS [28] that uses
the maximum-likelihood observation and UCB reward (UCB-
MCTS) [14]. The performance of UCB planners has been
shown to be sensitive with respect to β value [14]. In order
to avoid subjective tuning, we select a time-varying βt that is
known to enable no-regret UCB planning [1], [19]. PLUMES
uses continuous-observation MCTS with hyperparameters pre-
sented in Auger et al. [17].

To evaluate the mission performance of all planners, we
report accumulated MSS reward (Eq. 7), which directly cor-
responds to the number of scientifically valuable samples
collected within an ε-ball of the true maximum. This metric is
reported for all trial scenarios in Table I. We additionally report
several metrics commonly used in IPP to evaluate posterior
model quality: overall environmental posterior root mean-
squared error (RMSE) and error in posterior prediction of x∗

at the end of a mission (x∗ error). We use a Mann-Whitney
U non-parametric significance test [29] to report statistical
significance (p = 0.05 level) in performance between PLUMES
and baseline algorithms.

A. Bounded Convex Environments

In marine and atmospheric applications, MSS often occurs
in a geographically bounded, obstacle-free environment. In

Fig. 4. Simulation Environments: The multimodal simulated 10m × 10m
environments. Yellow regions are high-valued; blue regions are low-valued.
The global maximum is marked with a star. The left and center environments
represent convex-worlds (Section IV-A), while the right environment is
representative of a non-convex world (Section IV-B).

50 simulated trials, we applied PLUMES and our baseline
planners to a point robot in a 10 m × 10 m multimodal
environment drawn randomly from a GP prior with a squared-
exponential covariance function and zero mean (l = 1.0,
σ2 = 100.0, σ2

n = 1.0 [1%]) (see Fig.4). The action set
consisted of ten viable trajectories centered at the robot’s
pose with path length 1.5 m, and samples are collected every
0.5 m of travel. Mission lengths were budgeted to be 200 m.
Nonmyopic planners rolled out to a 5-action horizon and
were allowed 250 rollouts per planning iteration. Summary
simulation results are presented in Table I.

In these trials, PLUMES accumulated significantly (0.05-
level) more reward than baselines. The distribution of accu-
mulated reward (Fig. 5) shows that PLUMES has a single
dominating mode near reward 200 and few low-performing
missions (reward <50). In contrast, both UCB-based meth-
ods have distributions which are multimodal, with non-trivial
modes in the low-performance region. Boustro. collected con-
sistently few scientifically valuable samples. In addition to
collecting many more samples at the maximum, PLUMES
achieved statistically indistinguishable levels of posterior
RMSE and x∗ error compared to baselines (Table I).

The corresponding field trial for convex-world maximum-
search was performed in the Bellairs Fringing Reef, Barbados

Fig. 5. Distribution of accumulated MSS reward in 50 convex-world
simulations: Accumulated MSS reward is calculated for each trial and the
distribution for each planner is plotted as a kernel density estimate (solid line).
The dashed lines represent the median accumulated reward for each planner
(reported in Table I). The gray area of the plot indicates a low performance
region where the planner collected <50 samples near the maximum. PLUMES
has a single mode near 200, whereas both UCB-based methods are multi-
modal, with modes in the low performance region.
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TABLE I
ACCUMULATED TRUE MSS REWARD (EQ. 7), RMSE, AND x∗ ERROR, REPORTED AS MEDIAN (INTERQUARTILE RANGE).

ASTERISKS DENOTE BASELINES WHOSE DIFFERENCE IN PERFORMANCE IS STATISTICALLY SIGNIFICANT COMPARED TO PLUMES.

Convex Simulation Trials ASV Trial Non-convex Simulation Trials Dubins Car Trials
ε = 1.5m, 50 trials ε = 10m, 1 trial ε = 1.5m, 50 trials ε = 1.5m, 5 trials

MSS Reward RMSE x∗ Error MSS Reward MSS Reward RMSE x∗ Error MSS Reward
PLUMES 199 (89) 3.8 (9.2) 0.21 (0.23) 524 206 (100) 3.6 (2.1) 0.25 (0.56) 159 (74)
UCB-MCTS 171 (179)* 3.7 (9.6) 0.24 (0.29) - 115 (184)* 3.6 (1.5) 0.27 (1.18) 52 (17)
UCB-Myopic 148 (199)* 3.6 (9.2) 0.33 (3.25) - 86 (102)* 3.4 (1.0) 0.23 (0.34) 42 (66)
Boustro. 27 (3)* 2.7 (10.4) 0.26 (0.46) 63 - - - -

by a custom-built autonomous surface vehicle (ASV) with the
objective of localizing the most exposed coral head. Coral head
exposure is used to select vantage points for coral imaging
[30] and in ultraviolet radiation studies on coral organisms
[31]. Due to time and resource constraints, only one trial of
two planners was feasible on the physical reef; we elected to
demonstrate PLUMES and Boustro., one of the most canonical
surveying strategies in marine sciences.

The ASV (1 m × 0.5 m) had holonomic dynamics and
a downward-facing acoustic point altimeter (Tritech Micron
Echosounder) with returns at 1 Hz. Ten dynamically-feasible
10 m straight paths radiating from the location of the ASV
were used in the action set. The environment was bounded
by a 50 m by 50 m geofence. Localization and control was
provided by a PixHawk Autopilot with GPS and internal IMU;
the fused state estimate was empirically suitable for the desired
maximum localization accuracy (ε = 10 m). The budget for
each mission was 1000 m, which took approx. 45 minutes to
travel. The GP kernel was trained on altimeter data from a
dense data collection deployment the day before (parameters
l = 2.01, σ2 = 0.53, σ2

n = 0.02 [26%]). Note the high noise in
the inferred GP model, as well as the relatively small length-
scale in the 2500 m2 field site. The reconstructed bathymetry
and vehicle are shown in Fig. 6.

PLUMES successfully identified the same coral head to be
maximal as that inferred from the GP trained on prior dense
data collection, as indicated by accumulated reward in Table I,
overcoming the challenges of moving in ocean waves, noisy
altimeter measurements, and highly multimodal environment.
Additionally, the posterior prediction of x∗ had an error of
only 1.78 m while Boustro. reported 8.75 m error due to its

Fig. 6. Coral head map and ASV: (A) The ground truth bathymetric map
inferred from all collected data, mean corrected in depth. Yellow represents
shallower depths, and blue is deeper. The global maximum is marked with a
black star. (B) The custom ASV used to traverse the 2500m2 region.

Fig. 7. Extending PLUMES for Spatiotemporal Monitoring: (A) The
ground truth map at two planning iterations for a dynamic environment. The
maximum is marked with a black star, and migrates from the top left to the
top right of the world. (B) MVI reward is redistributed by using a spacetime
kernel within PLUMES that captures the environment’s dynamics.

non-adaptive sampling strategy.
In the Bellairs Fringing Reef trials, the environment was

assumed to be static. However, in many marine domains the
impact of sediment transport, waves, and tides could physically
change the location of a maximum over the course of a
mission. PLUMES can be extended to dynamic environments
by employing a spatiotemporal kernel in the GP model,
which allows for the predictive mean and variance to change
temporally [32]. If the dynamics of an environment can be
encoded in the kernel function, no other changes to PLUMES
are necessary; MVI will be distributed according to the time
dynamic. Fig. 7 demonstrates the properties of PLUMES with
a squared-exponential kernel over space (l = 1.5, σ2 = 100,
σ2
n = 0.5) and time (l = 100, σ2 = 100, σ2

n = 0.5). In
this illustrative scenario, the global maximum moved between
planning iteration T = 230 and T = 250. PLUMES with a
spatiotemporal kernel maintained multiple hypotheses about
the maximum’s location given the random-walk dynamic of
the environment, resulting in MVI reward being re-distributed
between the two maxima over time.

B. Non-Convex Environments

We next consider non-convex environments with potentially
unknown obstacles, a situation that occurs frequently in prac-
tical MSS applications with geographical no-go zones for
rover or ASV missions, and in indoor or urban settings. We
evaluated PLUMES, UCB-Myopic, and UCB-MCTS planners
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Fig. 8. Distribution of accumulated MSS reward in 50 non-convex mission
simulations: Accumulated MSS reward distribution (solid line) and median
(dashed line, reported in Table I) for each planner. The gray area of the
plot indicates a low performance region (reward <50). PLUMES has few
low-performing missions and a primary mode near reward 250. The primary
mode of both UCB-based methods is in the low performance region due to
convergence to suboptimal local maxima.

in 50 simulated trials with the same environments, vehicle, and
actions as described in Section IV-A, with the inclusion of 12
block obstacles placed uniformly around the world in known
locations (see Fig.4). Boustro. was not used as a baseline
because of non-generality of the offline approach to unknown
obstacle maps.

As indicated in Table I, PLUMES accumulated significantly
more MSS reward than UCB-MCTS and UCB-Myopic, at
the 0.05-level. The distribution of reward across the trials is
visualized in Fig. 8. Like in the convex-world, the PLUMES
has a primary mode between reward 200-250, while the UCB-
based planners have a primary mode in the low-performance
region (reward <50). There was no significant difference
between planners with respect to RMSE or x∗ error. The fact
that MVI maximized the true MSS reward while achieving
statistically indistinguishable error highlights the difference in
exploitation efficiency between MVI and UCB-based methods.

The simulation experiments assume that a geometric map is
known a priori. However in practical applications, like indoor
gas leak detection, access to a map may be limited or unavail-
able. We simulate the scenario in which a nonholonomic car
equipped with a laser range-finder must build a map online
as it seeks the maximum in a cluttered indoor environment
(Fig. 9). We generate a simulated chemical phenomenon from
a GP (l = 0.8, σ2 = 100.0, σ2

n = 2.0 [2%]), and simulate
observations at 1 Hz. The action set for the vehicle consists of
eleven 1.5 m Dubins curves projected in front of the vehicle,
one straight path behind the vehicle, and a “stay in place”
action. Results for five trials are shown in Table I and illustrate
that PLUMES accumulates more MSS reward than baselines,
indicating robust performance.

These simulation and robot trials demonstrate the utility of
PLUMES compared to canonical and state-of-the-art baselines
in a diverse set of environments with challenging practical con-
ditions. For high-stakes scientific deployments, the consistent
convergence and sampling performance of PLUMES is critical
and beneficial.

Fig. 9. Snapshot of unknown non-convex map scenario: (A) shows
examples of how the action-primitives change based upon obstacle detection
(black lines) and safety padding (grey lines). (B-D) show a planning iteration
of PLUMES, starting with the current belief map and obstacle detections (B).
The MVI heuristic is illustrated in (C) where lighter regions are higher value.
(D) shows the rollout visibility of continuous-observation MCTS where darker
regions are visited more often. Areas of high reward are generally visited more
often by the search as the tree expands.

V. DISCUSSION AND FUTURE WORK

Online planning methods for robotic maximum seek-and-
sample are critical in a variety of contexts, including general
environmental monitoring (scientific inquiry, reconnaissance)
and disaster response (oil spill, gas leak, radiation). For
partially observable environments that can be modelled using
a GP, PLUMES is a novel approach for global maximum seek-
and-sample that provides several key insights.

This work presents MVI as an empirically suitable alterna-
tive to the canonical GP-UCB heuristic in MSS solvers, which
is both naturally adaptive and avoids a hand-tuned parameter to
balance exploration and exploitation. MVI samples potential
global maxima from the robot’s full belief state to manage
exploration and exploitation. In contrast, heuristic functions
like UCB place reward on all high-valued or highly uncertain
regions, leading to unnecessary exploration and limiting the
time available to exploit knowledge of the true maximum.
Ultimately, the MVI heuristic allows PLUMES to collect ex-
ploitative samples, while still achieving the same overall level
of posterior model accuracy (shown by RMSE) as UCB-based
planners. Additionally, continuous-observation MCTS allows
PLUMES to search over belief-spaces on continuous functions
without discretization or maximum-likelihood assumptions.

One important area of future work for PLUMES is online
hyperparameter learning [33], which is important when only
one mission is possible and there is insufficient prior knowl-
edge for hyperparameter selection. Another avenue of future
work could examine the proprieties of the maxima sampled by
MVI, to be used as a heuristic for meta-behavior transitions
(e.g., action model switching, dynamic horizon setting) or
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mission termination. Finally, the performance of PLUMES in
non-convex environments is impacted by the discrete action set
encoded. Extending PLUMES to continuous actions spaces,
following the approach of Morere et al. [34], would allow
flexibility in these environments.

VI. CONCLUSION

This paper formalizes the maximum-seek-and-sample
POMDP and presents PLUMES, an adaptive planning al-
gorithm that employs continuous observation MCTS and
maximum-value information reward to perform efficient
maximum-seeking in partially observable, continuous environ-
ments. PLUMES outperforms canonical coverage and UCB-
based state-of-the-art methods with statistical significance in
challenging simulated and real-world conditions (e.g. multiple
local maxima, unknown obstacles, sensor noise). Maximum
seek-and-sample is a critical task in environmental monitoring
for which PLUMES, with theoretical convergence guarantees,
strong empirical performance, and robustness under real-world
conditions, is well-suited.
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