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Abstract. Recent work in the construction of 3D scene graphs has enabled mo-
bile robots to build large-scale metric-semantic hierarchical representations of the
world. These detailed models contain information that is useful for planning, how-
ever an open question is how to derive a planning domain from a 3D scene graph
that enables efficient computation of executable plans. In this work, we present
a novel approach for defining and solving Task and Motion Planning problems
in large-scale environments using hierarchical 3D scene graphs. We describe a
method for building sparse problem instances which enables scaling planning to
large scenes, and we propose a technique for incrementally adding objects to that
domain during planning time that minimizes computation on irrelevant elements
of the scene graph. We evaluate our approach in two real scene graphs built from
perception, including one constructed from the KITTI dataset. Furthermore, we
demonstrate our approach in the real world, building our representation, planning
in it, and executing those plans on a real robotic mobile manipulator. A video sup-
plement is available at https://youtu.be/v8fkwLjBn58.

1 Introduction

We aim to enable an autonomous agent to solve large-scale Task and Motion Plan-
ning (TAMP) problems in real-world environments. In order to do so efficiently, an ab-
stract planning domain is needed, which accurately represents the robot’s environment
as well as its available actions. Recently, significant progress has been made in the area
of generating hierarchical metric-semantic representations of the world using 3D scene
graphs [15, 4]. These environmental abstractions lend themselves well to large-scale
planning problems, as they are capable of storing both higher-level abstractions such as
objects and connectivity of regions which are needed for task planning, as well as the
low-level metric information required to check kinematic feasibility of different actions.

However, as a planning problem instance grows in the number of objects, so too does
the computational burden of finding a plan. TAMP is PSPACE-Hard [27], so problems
can become computationally intractable very quickly as the sizes of the state and action
spaces grow [10]. To create tractable planning problems when converting a 3D scene
graph into a planning domain, it is critical to leverage the scene graph’s structure and
identify which elements of the environment are relevant. Consider, for example, a robot
responding to a Chemical, Biological, Radiological, Nuclear, and Explosive (CBRNE)
scenario, receiving instructions to inspect and neutralize dangerous objects scattered in
a large area, represented as a scene graph. The robot can pass near an object only after it
has neutralized and cleared it, and the robot may be instructed to avoid particular regions
entirely. Depending on the geometry of the scene and the specified goal, only a subset of
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Fig. 1. An illustration of how we derive and encode tasks in our planning representation from a
3D scene graph. (A) An isometric view of a Hydra scene graph generated from the KITTI dataset,
giving an insight to the scale of the environment. (B) A simplified version of this scene, where the
agent is tasked with either visiting Place 6 while avoiding Place 1, or visiting Place 5. We see that
Place 5 is partially obstructed by a suspicious object, so the agent must consider either avoiding
it (green trajectory), or inspecting and neutralizing the object (blue trajectory) to reach its goal.
(C) A mobile robot (which we used to build our scene graphs) executing a plan in the real world,
inspecting an object in the top frame, and moving an obstruction out of its path on the bottom.

these dangerous obstacles and regions may ultimately be relevant to finding a plan. But,
for a robot building a scene graph representation from perception, it is not at all obvious
which elements of the scene graph should be added to a planning domain to ensure a
valid plan can be found and executed.

Previous approaches to the problem of inferring a task-relevant planning domain
have relied on representations of connectivity in the scene graph to prune superfluous
elements [1]. However, these efforts have been limited to specific kinds of task planning
problems, as the pruning approaches employed often remove information necessary for
checking the geometric feasibility of plans, or they implicitly limit the types of goals that
can be specified. Alternative approaches for reducing the planning problem size involve
attempting to learn the relevance of planning objects, then incrementally adding objects
to the domain according to the learned relevance score until the problem is solvable [24].
Unfortunately, this approach requires training on numerous similar planning problems,
and is difficult to generalize to tasks at large scales in the real world.

In this work, we propose a novel approach to both enable and accelerate TAMP in
large environments (Fig. 1). Our first contribution is a three-level hierarchical planner
for planning in large domains derived from 3D scene graphs. Next, we present the for-
mulation of a sufficient condition for removing symbols from a planning problem while
maintaining feasibility, which can greatly reduce computation when planning. This con-
dition shows that many of the places in a 3D scene graph can be ignored when formulat-
ing planning problems that factorize according to our three-level hierarchy. We introduce
a technique for reasoning about whether the sparsified domain matches the original in-
tent of the planning domain, which reveals extra constraints that must be imposed on
the motion planner. Finally, we develop a method to further accelerate planning by in-
crementally identifying objects in the scene as relevant during search according to how
the geometry of the scene affects the feasibility of certain high-level plans. We show
the effectiveness of our approach across two hand-crafted domains, two scene graphs
built from real perception with planning in simulation, and finally a real-world mobile
manipulation task on a Spot robot.
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2 Task and Motion Planning in 3D Scene Graphs

In this section, we introduce how we encode TAMP problems, review the 3D scene
graph structure that we leverage for grounding planning problems, and finally propose
a CBRNE-inspired planning domain as an example of formulating a planning problem
based on a 3D scene graph.

2.1 Task and Motion Planning Preliminaries
The TAMP problem jointly considers elements of high-level task planning [11, 16] and
low-level motion planning [20] in an attempt to solve hybrid discrete/continuous, multi-
modal planning problems [10]. A common formalism for encoding task planning prob-
lems is the Planning Domain Definition Language (PDDL). In a PDDL problem, a state
I is a set of facts, where each fact is an instance of a boolean function called a predicate
p(x̄) ∈ P , which is parameterized by a tuple of symbols x̄ = [x1, . . . , xk] from a given
set of symbols O = {xi}. Each symbol xi is a discretization of a state variable. Transi-
tions between states are defined by actions a(x̄) ∈ A (also parameterized by symbols)
which are expressed as two sets of predicates: preconditions Pre(ai) and effects Eff(ai).
An action’s preconditions determine if an instance can be applied from a particular state
I, and its effects define the set of facts that are added (Eff+(ai)) or removed (Eff−(ai))
from the state I. A planning domain is composed of lifted sets of predicates P and ac-
tions A, and a problem instance P = (P,A,O, I0,G) combines a domain with an initial
state I0 and a set of goal states G, parameterized by symbols O.

Solutions to PDDL problems take the form of a sequence of parameterized action
instances π = [a1(x̄1), a2(x̄2), ..., an(x̄n)] where the state after taking each action sat-
isfies the precondition of the following action [10]. For any action sequence, there is a
corresponding sequence of states Iπ = [I0, I1, I2, ..., In], leading from the initial state
to a goal state that can be constructed from each action’s effects. We will use the fact that
only a subset of state symbols are needed for each action to enable a factorization of the
planning problem in Section 3.1. For an action plan π, its corresponding state plan Iπ is
valid if Ii ∈ Pre(ai+1) for i = 0, ..., N − 1, and IN ∈ G. A range of solvers [13, 14]
can solve tasks specified in PDDL, and any state plan found by such a solver is valid by
construction. A feasible planning problem is one for which there is a valid solution.

The continuous nature of TAMP problems, coupled with the scale of environments
we consider here, make discretizing and encoding a planning problem directly in pure
PDDL infeasible. We therefore use an extension of PDDL called PDDLStream [9] to rep-
resent and solve TAMP problems. A PDDLStream problem instance (P,A,S,O, I0,G)
represents the discrete search portion of a TAMP problem in PDDL, as a set of predi-
cates, actions, symbols, initial state, and set of goal states, but also introduces the notion
of streams s ∈ S , which can query external samplers/solvers (e.g. a motion planner)
during search to produce new symbols and facts within the problem instance. Streams
make the problem encoding more efficient, as they obviate the need to evaluate predi-
cates for all possible continuous values of a symbol. PDDLStream solves1 problems by
first finding an optimistic solution that satisfies the domain’s symbolic constraints – a
task skeleton – and then attempting to solve for feasible continuous parameters. We refer
the reader to [9] for a detailed description of PDDLstream.

In a TAMP problem, each symbol xi can represent a continuous value (e.g., a pose),
and the grounded parameters of an action depend on these values. From these parame-
ters, we can derive a motion sequence, which specifies how a robot executes an action.

1 Specifically, the PDDLStream adaptive solution algorithm.
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For example, from an action plan composed of a sequence of move actions, the corre-
sponding motion sequence would be composed of the trajectories that were solved for
by the motion planner and describes the continuous values of the parameters x̄i for each
move action. Executing that sequence involves multiple calls to a trajectory controller,
where two motion sequences are equivalent if they result in the agent acting identically.

2.2 Building 3D Scene Graphs from Perception

A robot operating in the real world ideally is able to build its own PDDL domain model
from perception. We assume the robot is equipped with a prior model of its own state
and a motion controller, as well as the ability to use its sensors to build a dense geometric
model of its environment and the objects in it. To derive a discrete, symbolic model of
the geometry, we take advantage of recent work in 3D scene graph mapping [15] that
infers a discretization of the geometry and the objects in the geometric model. While
our approach is compatible with a range of scene graph implementations, our definition
of a 3D scene graph, directly based on Hydra [15, 26], consists of several layers of
increasing abstraction (see Fig. 1). Each layer consists of a collection of nodes repre-
senting location and other attributes, with edges connecting nodes within the same layer
representing relative spatial constraints and edges between different layers representing
an inclusion relationship. The lowest layer of the hierarchy is a semantically-annotated
mesh of the scene geometry. The next layer contains objects and their locations identified
by a semantic image segmentation. The places layer represents navigable regions of the
environment based on semantic and geometric properties of the mesh. Places are clus-
tered into groups based on geometric and semantic information, and these groups become
nodes in the higher-level regions layer (e.g., rooms in an indoor environment). Hydra can
construct this map representation in realtime from RGBD sensor data while accounting
for odometry drift, enabling large scale, consistent, and information-rich maps.

Previous work on 3D scene graphs has mainly focused on indoor uses. These repre-
sentations rely on the Generalized Voronoi Diagram (GVD) [22] to generate places, an
abstraction of 3D spatial connectivity, which are not well suited for ground robot naviga-
tion. We use an alternate formulation of 2D places in our navigable scene graph, where
each place represents a 2D polygon with consistent terrain classification, representing an
area the robot may traverse (Fig. 1B).

2.3 Inferring the Planning Domain from Scene Graphs

We introduce a framework for deriving a TAMP problem instance from a scene graph to
demonstrate the salient aspects of solving planning problems based on large-scale envi-
ronments. In general, the problem contains a symbol x ∈ O for each node in the scene
graph, as well as a symbol corresponding to the robot. We define six classes of predicates,
derivable from a Hydra scene graph, that may be relevant for planning: 1) Type informa-
tion derived from the nodes of the graph, where each node corresponds to a unary pred-
icate: (Configuration ?c), (Place ?p), and (Object ?o), etc. 2) Agent
or object predicates that define the state of the robot and objects: (AtConfig ?c),
(AtPlace ?p), (AtRoom ?r), etc. 3) Connection predicates defined by edges in
the same level of the graph: (Connected ?n1 ?n2), 4) Inclusion predicates indicat-
ing edges connecting nodes of different levels of the graph: (PoseInPlace ?c ?p),
(PlaceInRoom ?p ?r), etc. 5) Preconditions of actions that are certified by solving
a stream’s associated sub-problem. For example, a move action may require that a tra-
jectory has been found between two configurations: (Trajectory ?c1 ?t ?c2).
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6) Additional, problem-specific predicates defined by the user to specify goal states and
problem constraints such as which places to visit or which objects to collect.

As a running example, we define an example problem using these predicates, moti-
vated by CBRNE scenarios. In our “Inspection Domain”, an agent can be commanded
to visit or avoid certain places, and inspect and neutralize objects that have been marked
as suspicious. The robot cannot move past a suspicious object until it has been inspected
and neutralized. We therefore define problem specific predicates: (VisitedPlace
?p) which indicates the current and past places the robot has been to, and (Safe
?o) or (Suspicious ?o) which describe an object. We define streams for sam-
pling poses for inspecting and neutralizing objects, sampling poses in a specific place,
and planning motion between two poses in order to find feasible continuous parame-
ters for a given abstract plan. Goal specifications in this domain can include positive or
negated facts based on these predicates. The agent’s available actions are to move be-
tween poses in connected places, and to inspect objects from appropriate poses (for
simplicity we do not separate the inspect and neutralize actions). Note that only move
needs to be parameterized by a place symbol. Any valid plan is composed of these ac-
tions, which at execution time are converted into a motion sequence of FollowPath(ti)
and InspectObject(oi) primitives for paths ti and objects oi.

3 Scalable Scene Graph Planning

Our objective is to both enable and accelerate solving TAMP problems in large envi-
ronments. One associated challenge is that the number of symbols created by a scene
graph can quickly overwhelm the ability of the planner to reason efficiently due to in-
creasing branching factor, and the depth of search needed to find plans. However, we
notice that the vast majority of planning domains, and the world in general, tend to fac-
tor into sequence of navigation actions punctuated by periodic object-centric actions.
This factorization allows us to identify a subset of symbols relevant for object interac-
tion, and a subset needed to move from place to place, potentially simplifying search. We
therefore propose a planning formulation that aligns with the scene graph hierarchy and
naturally divides the planning problem into a high-level, task-relevant planning problem
such as finding a sequence of manipulation actions, mid-level coarse navigation planning
between locations, and low-level continuous trajectory planning between points.

Specifically, instead of requiring a PDDL planner to find paths through the places
in the scene graph at the discrete symbolic level, we reduce the depth of the planning
horizon at the highest level by reasoning only over places that are directly relevant for
achieving the goal. Then, a coarse navigation planner plans through the 2D places layer
to create an abstract motion plan composed of a sequence of subgoals. Finally, a fine-
grained motion planner is guided by the navigation plan subgoals through the places
layer, quickly finding motion plans over large distances. We discuss this in Sec. 3.1.

By focusing each layer of our tri-level planner hierarchy on specific types of actions,
we can prune irrelevant symbols within each layer and simplify the corresponding prob-
lems by reducing the branching factor of search (Sec. 3.2). Critical to our approach is
that the proposed factorization must not limit the types of problems that can be solved,
nor produce plans which violate intended constraints. To that end, we show a sufficient
condition for symbols to be removed from each planning problem while maintaining fea-
sibility, then show how to reason about whether the resulting motion plans adhere to the
original specification (Sec. 3.3). Finally, in Sec 3.4, we consider an additional heuristic
that enables optimistically ignoring objects that are irrelevant due to scene geometry.
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Fig. 2. Our tri-level planner in a real world environment. A scene graph of the fifth floor of building
45 at MIT was built using the Spot robot, from which we extract our planning abstraction for the
goal: (and (ObjectAtPlace O27 P909) (VisitedPlace P2700) (Safe O35)
(not (VisitedPlace P1153))), which instructs the agent to move O27 to a P909, in-
spect O35, visit P2700, all while avoiding P1153. At the highest level, the task planner is given
a very sparsified version of the scene, as highlighted above. The mid-level planner plans a path
through the places guided by the abstract plan found at the highest level, avoiding place P1153.
Feedback from this level leads to the addition of O28 to the high-level domain, as O27 would be
otherwise unreachable. The low-level planner computes full trajectories, guided by the path found
at the mid-level. The plan produced (and executed by the robot) is shown on the right.

3.1 Hierarchical Planning

Here we describe our tri-level planning approach. The highest-level of the planner must
reason about which objects to interact with, which regions to avoid, and which destina-
tions the robot should move to. The most straightforward encoding of planning motion
through a scene graph would closely mirror the connectivity of the graph, modeling the
move action as a transition between two places that share an edge in the graph. We refer
to this problem encoding as the direct encoding of the domain. However, as the scale of
the environment increases, this direct encoding results in very long horizon plans that
are expensive for the general-purpose PDDL planner to find.

Instead, we propose a more general move action: moveRelaxed. This action takes
place p1 and p2 as parameters, in addition to initial and final poses c1 and c2 and a
trajectory symbol t. The action’s effect moves the robot’s pose from c1 to c2, and marks
p1 and p2 as visited. For example, consider the task in Fig. 1B where the robot begins
in Place P0, and is tasked with visiting place P5. A motion sequence corresponding to a
plan to move from place P0 to place P1, then from P1 to P4, and finally from P4 to P5

can be equivalent to a sequence generated from a plan to move from P0 to P5 directly,
meaning the high-level planner need not explicitly plan to move through P1 and P4.
Extrapolating this pruning approach to larger scenes and more complex goals has the
potential to vastly reduce planning horizons, although it imposes certain constraints on
the lower-level planners that will be addressed at length in Section 3.3.

Abstract plans produced by the high-level planner do not initially contain informa-
tion about how the robot moves from the start to end poses. Instead, they optimistically
contain trajectory symbols with continuous parameters that must be filled in by the lower-
level planners. In order to do this efficiently, we rely on the 3D scene graph to accelerate
motion planning. To find a motion plan between two configurations c1 and c2, we plan
through the places layer of the scene graph, finding a sequence of places that leads from
c1 to c2 and respects the connectivity of the scene graph. This level of abstraction can
take advantage of Euclidean distance heuristics to accelerate planning, while allowing
for the constraints of the task (e.g., avoiding a particular place) to be encoded simply.

At the lowest level of abstraction, the planner generates a kinematically-feasible path
for the robot to follow based on the reference path from the mid-level planner. This
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path can be generated efficiently by first considering an optimistic path that connects the
waypoints on the reference path and ignores obstacles. Any segments of this path that are
rendered infeasible by obstacles or violations of kinematic constraints can be re-solved
by a planner that considers obstacles, such as RRT [19]. Better alignment between which
edges are present in the scene graph and kinematic feasibility for the robot leads to better
performance of this heuristic. Fig. 2 highlights our tri-level planner in the real world.

3.2 Removing Redundant Symbols

Our relaxed encoding reduces the planning depth significantly for the high-level planner,
but it introduces a different problem of branching factor. Now the high-level planner can
consider moving between any two places as a valid action, which can make search diffi-
cult in certain problem instances. To address this concern, we can reduce the size of the
planning instance by pruning Place symbols that are not relevant to a given planning
problem. However, identifying symbols that do not impact the solution is in general as
hard as solving the problem itself, and naively removing places from a problem instance
might render the problem infeasible. In this section, we characterize a set of places that
we know can safely be removed from the problem before planning given the seman-
tics of moveRelaxed. We begin by defining a set of symbols that are redundant for a
particular goal specification.

Definition 1 (Redundant Symbol). For a set of domain actions A and specific goal G, a
symbol x is redundant if both of the following hold:

1. For every valid plan π where x parameterizes an action, there is another valid plan
π′ with equivalent motion sequence, where x is not an action parameter,

2. No action precondition or goal, expressed in negative normal form, contains a uni-
versal quantifier that can be parameterized by x.

The intuition behind this notion of redundancy is that 1) if any plan involving the sym-
bol yields a motion sequence that can be rewritten without the symbol, the symbol is
redundant, and 2) if we solve a planning instance where a redundant symbol has been
removed, we would like to know that the plan is still valid in the original problem.
Note that this definition of redundancy is general for any planning domain, although
we will use this definition specifically for place symbols that become redundant given
the moveRelaxed action. Importantly, removing redundant symbols preserves the fea-
sibility of a planning problem.

Proposition 1 (Removing Redundant Symbol Preserves Feasibility). Consider a fea-
sible planning instance R = (P,A,S,O, I0,G). For a redundant symbol x ∈ O, we
define a related instance R′ = (P,A,S,O′, I ′

0,G′) where x has been removed, i.e.,
O′ = O \ x and I ′

0 contains all facts in I0 except those parameterized by x, and simi-
larly for G′. Let ΠR denote the set of valid plans for R. Then, ΠR′ ⊆ ΠR and ΠR′ ̸= ∅.
(Proof deferred to the appendix.)

The requirements for a symbol to be redundant are quite strong (every plan that uses a
symbol must have an alternate plan that does not use the symbol and still results in the
same motion sequence), but many places in the Inspection Domain have this property
given the semantics of moveRelaxed. Removing these places from our task planner’s
domain, assuming the motion planner is still aware of them, enables the solver to more
efficiently find valid plans that are guaranteed to have also been valid in the un-pruned
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problem. Moreover, the ability to prune these elements does not restrict the type of goals
we are able to specify to our agent, preserving expressivity, while enabling planning at a
larger scale.

Proposition 2 (Redundant Places). Consider a problem instance in the Inspection Do-
main with no quantifiers that can be parameterized by a place in the goal. A place p is
redundant if no facts parameterized by p appear in the initial or goal states, or if (not
(VisitedPlace p)) appears as a clause in the conjunctive normal form (CNF) of
the goal specification. (Proof deferred to appendix.)

We have now identified a potentially large (depending on the sparsity of the goal speci-
fication) set of place symbols that can be ignored in the Inspection domain. Our explicit
method of defining our problem’s initial state is as follows:

Remark 1 (Problem Initialization). In light of Proposition 2, we only include the follow-
ing places when instantiating a problem in the Inspection domain: 1) the initial place that
the robot is in and 2) any place that appears in the goal. A place p that parameterizes a
negated fact (not (VisitedPlace p)) that appears as a clause in the CNF of the
goal specification can also be removed.

We have shown that for the Inspection domain, redundant places are very easy to identify
and that excluding them from a planning instance adds no computational overhead at
runtime. We would like to apply the same idea to similar domains, without needing to
reason from scratch about redundancy. We now characterize a sufficient condition on
the planning domain structure for places to be redundant. Let Pstatic denote the set of
predicates that do not appear as effects of any action (i.e., they can only be set in the
initial state). Let Fstatic denote the set of facts that correspond to parameterizations of
Pstatic. Intuitively, if a domain is structured such that a place can only be parameterized
by an action if certain facts hold in the initial state, then it is very easy to check whether
a specific place can be used by any actions.

Proposition 3 (Sufficient Conditions for Ignoring Places). Consider a planning instance
(P,A,S,O, I0,G), where for all actions aj ∈ A except aj = moveRelaxed, satis-
fying Pre(aj) implies that any place parameterized by aj is in Fstatic. In this case, all
places that do not parameterize any facts in Fstatic or the goal are redundant.

For example, if the Inspection domain is augmented with a “report home” action that can
only be executed at a designated set of places, then these places (and no others) need to
be added to the problem instance. Fig. 2 illustrates how we prune the planning domain.

3.3 Execution Consistency

While our decision to use moveRelaxed to model motion between distance places
enables faster planning, it creates a mismatch between the logical and continuous parts
of the problem. In the example in Fig. 1B, consider that the robot was also instructed
to avoid place P1. The ability to include a constraint on the goal states of the form
(not (VisitedPlace P1)) requires further constraints on the mid- and low-level
planners. Executing moveRelaxed from place P0 to place P6 may involve following
a trajectory that takes the robot through place P1, even if the goal specifies that P1

should not be visited. Technically this is still a valid solution to the planning problem
since place P1 never appears as a parameter to the moveRelaxed action (and therefore
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(VisitedPlace B) is not an effect), but clearly the domain with a relaxed movement
action does not fully capture the intent of the original planning domain.

To formalize the discrepancy between what happens when the robot executes a mo-
tion sequence and the constraints that we expect a planning problem to impose, we intro-
duce the concept of a verifier function. A verifier function maps motion sub-sequences to
sets of PDDL domain facts, and “verifies” which additional domain facts would be im-
plicitly true as a result of the agent executing a motion sequence, even if actually adding
these facts to the problem instance during the solving process is undesirable computa-
tionally. Given a verifier V , the facts that hold at each step when executing a motion
sequence may be different than expected in the original plan. We denote the facts that
would be added by such a verifier applied to the motion sequence associated with ai as
V (ai), and term this sequence of expanded states the V -extended state plan.

Definition 2 (V-Extended State Plan). For an action plan π = [a1, ..., an], its corre-
sponding state plan Iπ = [I0, ..., In], and verifier function V , the V-extended state plan
for state Ik is I ′

1 = I1 ∪ V (a1), and I ′
k = Ik ∪

(
I ′
k−1 \ Eff−(ak)

)
∪ V (ak).

The extended state I ′
k is the state at step k as experienced by the verifier. I ′

k is composed
of the facts Ik in the initial plan, plus any extra facts that were present in the previous
extended state I ′

k−1 other than those removed by action ak, plus any facts that would be
returned by a verifier applied to action ak. As discussed in Sec. 2.1, any state plan found
by a search algorithm is valid by construction. However, a state plan that is augmented
with the extra facts that would be produced by a verifier might not be valid.

Consider a verifier Vplace that takes a motion sub-sequence µ, and returns a Visited-
Place fact for each place that intersects with the agent’s position while executing µ. For
a place p and a trajectory t to be followed by the motion primitive FollowPath(t), we
denote p ∩ t the section of t that intersects with p. We can then define a verifier as

Vplace(µ) = {(VisitedPlace p) | p ∩ ti ̸= ∅ for FollowPath(ti) ∈ µ}. (1)

If the motion sequence associated with the action plan would result in the agent visit-
ing a place that we do not expect, then the Vplace-extended state plan would include a
VisitedPlace fact that may conflict with the goal. If we care about the robot’s motion re-
specting the problem’s constraints on visiting certain places, then we need to prove that
the Vplace-extended state plan is a valid solution to the planning problem for any instance
of the planning domain.

From this idea, we define the concept of execution consistency, which requires that
solutions to the planning problem are still valid after considering the facts from a verifier.

Definition 3 (Execution consistent). A domain is execution consistent with respect to
verifier V if, for every valid plan π, the V-extended state plan is valid.

A domain is trivially execution consistent for the empty verifier V (·) = ∅, as the ex-
tended state plan is equal to the original plan. A domain is also execution consistent if
the range of V applied to each motion subsequence µi corresponding to action ai is lim-
ited to facts in Eff(ai). In other cases, a domain can still be execution consistent for a
verifier that would introduce new facts if the domain is carefully crafted. In defining a
planning domain for any task, we seek to have it execution consistent with respect to any
defined verifiers. If a domain is not execution consistent, then any properties related to
predicates in the verifier cannot be guaranteed to hold when executing a plan.

In our example, we want to prevent the agent from entering places that it should
not, and so we should show that the Inspection domain is execution consistent with
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respect to the verifier Vplace. Recall that Vplace can only introduce new VisitedPlace
facts. As VisitedPlace does not appear in any action preconditions, the only way
for a VisitedPlace fact to render a valid state plan invalid is to conflict with the
goal specification. Consider the set of places that must be avoided to satisfy some goal
state: Pavoid = {p | (not (VisitedPlace p)) ∈ G}. If a place in Pavoid can
only be visited by an action that explicitly lists it in the action effects, then the domain
will be execution consistent with respect to Vplace. This can easily be guaranteed by
preventing the motion planner from generating plans that enter places Pavoid \ Pparam,
where Pparam is the set of places that appear as parameters to the action. Our mid- and
low-level motion planners are constrained not to enter a place which we might want to
avoid, unless that place is given as the parameter to the moveRelaxed action, ensuring
execution consistency. Note that the verifier need not be actually implemented, but the
concept can be used to prove execution consistency.

3.4 Ignoring Irrelevant Objects

We have demonstrated the ability to identify and ignore elements of a planning instance
that are redundant when searching for a plan. However, many symbols are not redundant
according to our definition, but might still be safely ignored. Objects which might ob-
struct motion, for example, are not redundant because an “inspect” motion primitive will
never be generated for an object that has been removed from the planning instance. Nev-
ertheless, there are clearly cases when an agent can ignore objects when planning, such
as an object that is not part of an agent’s goal and is far from the agent’s path to the goal.
As with the places, ignoring objects can accelerate planning by reducing the branching
factor at the highest level of search. In contrast to places however, the objects that should
be ignored cannot be identified from the logical structure of the planning instance alone;
the problem geometry must also be considered.

We propose an incremental approach to identifying relevant symbols. We begin by
including some subset of all symbols OS in the domain of the high-level planner, and
attempt to solve the planning problem. If this limited problem has a valid solution which
is also a valid solution to the original problem, then we have found a plan. Otherwise, we
incrementally add symbols to the planning problem, and repeat (Algorithm 1). The inner
loop (Line 7) corresponds to solving a TAMP instance with symbols OI . The outer loop
(Line 5) corresponds to adding more symbols to OI when we fail to find a solution.

The performance of this incremental planning approach depends on three key choices:
which initial symbols are chosen in OS , when new symbols are added to the planning in-
stance, and how the new symbols Onew are chosen. As long as all symbols are eventually
added to the planning instance, this planning approach will maintain the completeness
properties guaranteed by the chosen PDDLStream solution algorithm [9].
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Algorithm 1 Incremental Object Solver
1: procedure INCOBJSOLVER(A,S,O, I, G)
2: OS ← GetRelevantObjects(O)
3: OI ← OS

4: OR ← O \OS

5: while |OI | < |O| do
6: SkelInfo = [ ]
7: for k ∈ Skeletons(A,S,OI , G) do
8: T ← SolveSubProblems(k)
9: Feedback ← Check(T,OR)

10: SkelInfo.append(Feedback)
11: end for
12: if π ∈ SkelInfo is valid then
13: return π
14: else
15: Onew = NewObj(SkelInfo)
16: OI = OI ∪ Onew

17: OR = OR \ Onew

18:
19: end if
20: end while
21: return INFEASIBLE
22: end procedure

The initial set OS should be as small as possible while still including the symbols
necessary to find a plan. In particular, we can begin by including symbols based on the
problem’s logical structure. For the Inspection domain, we include the non-redundant
places identified in Remark 1 and any objects that appear in the goal. In general, there is a
large body of literature dedicated to identifying object relevance, such as by reachability
analysis [5, 8] or learning to predict importance [24], which may identify more symbols
to add to the initial set.

We must decide how many task plan skeletons will be checked by Skeletons and
how much time will be spent attempting to solve the continuous subproblems before
adding new symbols to the planning instance. In the Inspection domain, the full problem
only has a solution if the pruned problem has a solution, so we choose to stop iterating
through plan skeletons once we find a solution to the reduced problem. In general, a
maximum time must be set for iterating through plan skeletons (we do so according to
the Adaptive approach [9]). Finally, the choice of symbols to add to the planning instance
can be informed by feedback (Check, Line 9) from failed solutions to subproblems. In
our domain, we add objects which block the robot’s motion on an otherwise-feasible
trajectory.

4 Evaluation

We characterize how our method’s performance depends on goal complexity, environ-
ment scale, and scene geometry. We compare our encoding of the Inspection domain
to the dense, direct encoding in a variety of different settings. We test on four map
archetypes (Fig. 3) – a synthetic small constrained alleyway, a synthetic 10x10 grid-
world, a scene graph built from real data in an office environment comprising 557 Places
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Fig. 3. Three of the maps used for evaluation (not shown is the KITTI or building 45 environments).
A narrow alley map, a simple 10x10 grid world map, and a scene graph built from real data
collected by a robot in an office environment.

and 28 Objects, and a much larger scene graph built from the KITTI dataset composed
of 17861 Places and 1315 Objects (Figs. 1 and 3). For each environment, we report plan-
ning times for several different goal clauses across different variations in robot and object
initial conditions. The planning time includes the incremental detection of relevant ob-
jects and the PDDL solver’s preprocessing of the planning problem. The time to convert
a scene graph into the planning problem is insignificant compared to the planning time.
Finally, we also implement and test our planner on a Spot robot.

To randomize tasks across trials, we define a mechanism for sampling goal specifica-
tions according to an increasing number of clauses in Disjunctive Normal Form (DNF).
A goal with complexity (N, K) is a formula in DNF with N clauses, where each clause
has K conjunctions. For example, for complexity (2, 3), the goal has the form (Or (C1,
C2)), where Ci is a clause consisting of three facts e.g., (And ((Visited P1),
(Safe O4), (Not (Visited P9)))).
Scene Graph Size: First, we investigate the effect of scene graph size on our ability to
plan. For this set of trials, the goal complexity is (N, K) = (3, 3), and we compare planning
time for the direct encoding to the planning time for our planner, shown in Fig. 4A. Each
point on the scatter plot corresponds to a single trial and different colors correspond to
different environment types. Any samples above the black line indicate that our planner
outperforms the dense baseline. In the small Alley environment, our planner performs
about as well as the dense encoding, as there is not much advantage to sparsification
in such a small environment. As we scale up however, the relative performance of our
planner improves. In the 10x10 grid, we see modest improvement as shown by the red
points in Fig. 4A. As we scale up even further, with the small-scale scene graph, we see
the baseline planner taking hundreds of seconds to plan, while our planner averages in the
tens of seconds. This experiment only considers goals that involve visiting or not visiting
certain places in the scene graph. When we attempted to introduce object inspection, the
dense baseline planner timed out before finding a plan in almost all instances. Similarly,
when testing the baseline in the KITTI scene graphs, it was also unable to find solutions
for goals of any complexity. Our proposed planner experienced only a modest increase
in planning time as the size of the map scaled.
Goal Complexity: Next, we consider the effect of increasing goal complexity on plan-
ning time. To do this, we investigate a series of different goal constructions in the Grid
World environment. Specifically, we run experiments with goal complexity (N, K), for
K = 5 and K = 10, and N from 1 to 5. Goal facts are chosen to be either visiting or not
visiting specific places. Fig. 4B presents a plot comparing the complexity of the goal
in terms of total unique symbol referenced vs planning time. For less complex goals in
this environment, our planner outperforms the dense planner, up to a crossover point at
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Fig. 4. A) Comparison of the time to solve tasks of comparable complexity across different envi-
ronmental scales for the dense formulation and the proposed sparse formulation. B) The scaling of
our approach with the complexity of the goal specification in the simple 10x10 grid world. As we
increase the number of unique PDDL objects in the goal specification, the problem is no longer
sparse, and so it no longer benefits from our approach.

around 20 unique objects. Advantages from the additional structure in the dense formu-
lation outweigh the gains of our sparser method when a large percentage of the place
symbols are relevant to the goal. The direct encoding never successfully completes a
trial in the KITTI dataset due to timing out.
Object Obstruction: Next, we investigate the performance of the incremental object
solver algorithm in task instances where objects not directly listed in the goal must be
inspected in order to solve the task. In this experiment, we give a robot one of two goal
types in a scene graph built from the KITTI dataset (Figs. 1 and 5): either (Visited
Pi) or (Safe Oj). Given the size of the map, satisfying these goals may require the
agent to traverse a large distance, but more importantly, if there are obstructing objects
in the way, it may be forced to inspect and neutralize them to find a safe path to the goal.
As a baseline, we sample 20 goals in the map shown in Fig. 5 using our planner without
any of the objects being labeled as suspicious. In this case, they do not obstruct the
agent’s path, and we find plans in 19 of 20 trials.

Next, we “activate” 13 objects in the scene by labeling them as suspicious. A
suspicious object has an inflated radius that is only safe for the robot to enter after
it has been inspected and neutralized (in the KITTI scene, this radius is large enough
to block an entire road as shown by the blue objects in Fig 5). For the agent to inspect
the object, it has to find a pose that is traversable and within range of the object. Then,
by taking the inspect action, the object becomes safe, and can be passed. To highlight
the importance of object pruning, we attempt to solve these same tasks without using
our incremental feedback approach for object pruning (Sec. 3.4). Instead, we add all 13
suspicious objects to the scene directly. Using this encoding, the planner only succeeds
in finding a plan in 4 out of 20 trials. Inspecting these solutions further reveals that in
all 4 of these successful cases, there was a direct path to the goal without inspecting any
objects. This result makes sense, as the odds of sampling the correct object to inspect is
low without the benefit of geometric information.

Finally, we test our proposed approach of incrementally adding objects to the plan-
ning instance (Sec. 3.4). Our planner solves 12 of the 20 trials, including 9 cases wherein
the agent inspected one or more obstructing objects on the way to its goal. Failure to find
plans is caused by PDDLStream not successfully finding sequences of inspection poses
on the correct side of obstructing objects when several such objects needs to be inspected
to find a plan. These experiments further demonstrate the importance of our proposed



TAMP in Hierarchical 3D Scene Graphs 14

Fig. 5. An example plan from the KITTI environment. The robot begins in the top left, and is
tasked with inspecting one object (denoted by the red triangle at the end of the trajectory). Along
the way, there are numerous objects potentially blocking the path, so we must add at least one to
its planning domain. After inspecting and neutralizing this object, the robot can reach its goal.

approach to sparsifying otherwise dense, long-horizon planning problems. An example
plan, where the agent investigates two objects on the way to its goal is shown in Fig. 5.
Real-World Manipulation: Finally, we demonstrate our planner in a real-world setting
(Fig. 2), using a Boston Dynamics Spot quadruped to build a 3D scene graph in real-time
in a university building. In order to demonstrate that our approach is effective on domains
different from “Inspect”, we implement a “Retrieval” domain, which adds additional
Pick and Place actions to the Inspection domain, enabling the robot to move objects
around the environment. The VisitedPlace predicate is evaluated from the robot’s
body position, so that the manipulator’s swept volume does not need to be considered
when reasoning about places to avoid. The goal specifies which place an object should
be in (e.g., (ObjectAtPlace O1 P3), denoting a goal state where object O1 is in
place P3). For each trial we run, we structure the environment such that there is an
obstruction preventing the robot from reaching its target object. To solve the task, the
robot must move this obstruction out of the way, before retrieving the specified object.
We encoded pick, place, inspect, and move skills for the robot.

Like the KITTI domain, we rely on our incremental object adding approach to only
add the obstructing object to our high-level planner. Scattered throughout the environ-
ment are a number of different objects (Fig. 2), which would lead to an intractable prob-
lem if we were to consider them all. We ran ten trials, each time finding plans, and
highlight several successful executions in the video supplement2. While the planner reli-
ably finds feasible plans, execution often requires several attempts due to failures when
executing the Pick skill and Spot’s local planner failing in certain constrained passages.

5 Related Work

There has been substantial recent work enabling construction of information-rich 3D
scene graphs, initially introduced by Armeni et al. [2]. Following works have focused
on constructing 3D scene graphs from real-world sensor data [23], real-time perfor-
mance [15, 4], and improving the higher-level abstractions [30, 26]. The strong per-
formance of foundation models on open-vocabulary tasks has led to a series of works

2 https://youtu.be/v8fkwLjBn58

https://youtu.be/v8fkwLjBn58
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on combining open-vocabulary language embeddings with 3D scene graphs [12, 21, 29].
These open-vocabulary works all feature object navigation or retrieval tasks executed on
real robots, although the task structure is simple and the focus is on mapping natural
language to an object grounded in the scene graph.

There has also been recent work focused on applying structured planning domains
to 3D scene graphs. Agia et al. [1] derive a PDDL representation for task planning from
scene graphs, with a focus on using the hierarchical nature of scene graphs to sparsify
the representation in order to make planning tractable. Their approach is only guaranteed
to produce valid solutions for very specific planning domains, where only constraints
between symbols with a clear “ancestor” relationships are expressible, and it is unclear
how to extend this to a more general set of planning tasks. Dai et al. [7] present a method
for grounding natural language commands in LTL formula, leveraging the hierarchy of
the scene graphs to accelerate planning. Unfortunately the scene graph abstraction may
not satisfy the property of downward-refinement [3], breaking many of the assumptions
in symbolic task planning. The existence of low-level geometric constraints requires
going beyond task planning approaches, and into the realm of TAMP.

There has been additional work in pruning superfluous elements of scenes to accel-
erate TAMP. Silver et al. [24] learn to predict which symbols are relevant to a particular
TAMP problem. Khodeir et al. [18] and Vu et al. [28] both address PDDLStream’s poor
scaling as the number of objects grows, with [18] proposing an algorithm that guides
the search through task skeletons based on failures by the motion planner and [28] in-
troducing a more intelligent method for instantiating streams. Meanwhile, [17] and [6]
learn to guide search through predictions of relevance or feasibility. These approaches
are complimentary to our own, though learning in large scene graphs suffers from issues
of generalization. Outside of learning based approaches, Srivastava et al. [25] attempt to
guide TAMP from failed motion plans (much like we do in Sec 3.4) by adding additional
goal conditions, an approach that struggles with large initial object sets.

6 CONCLUSIONS

In this work we proposed an approach for enabling and accelerating TAMP in large
scene graphs. We defined characteristics of planning domains that permit the pruning
of certain symbols. We then proposed a method for deriving a domain from a Hydra
scene graph which has these characteristics, and demonstrate how we prune Places and
Objects from the domain. We also proved how the plans we produce from this pruned
scene graph are valid and conform to the constraints of the full planning domain. Finally,
we demonstrated experimentally how our approach scales with scene graph size, goal
complexity, and geometric constraints in several environments, including a scene graph
built from the KITTI dataset and real-world execution on a Spot quadraped.

In future work, we hope to demonstrate under what conditions we can extend our
pruning method to other domains derived from large-scale scene graphs. Furthermore,
augmenting our approach with learned methods for object pruning is a natural extension.
The metric-semantic information in the scene graph is potentially a strong signal for a
learner to identify further irrelevant symbols in a planning domain.
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Appendix

Proof of Prop 1. Consider π ∈ ΠR. If π does not contain any actions parameterized by
x, then the same plan π is also a valid solution for R′. Consider the alternative, where
π does contain an action parameterized by x. By Def. 1, there is another plan π′ with
equivalent motion sequence not parameterized by x, which is a valid solution for R′.

Now that we have shown that ΠR′ is not empty, we need to show that any valid plan
for R′ is valid for R. Consider plan π = [a1, ..., aN ] ∈ ΠR′ with corresponding state
plan Iπ = [I0, ..., IN ]. If the addition of facts F parameterized by x make π invalid,
then there must exist a state Ik such that Ik ∪ F /∈ Pre(ak+1), which means that ak+1

is parameterized by a symbol that did not exist in R′. Only a universal or existential
quantifier in Pre(ak+1) can cause ak+1 to be parameterized by an additional symbol.
Adding additional facts cannot turn an existentially quantified formula from true to false.
By Definition 1, ak+1 does not have any universal quantifiers that can be parameterized
by x in its precondition. Thus π must be valid for R.
Proof of Prop 2. First note that no actions in this domain have universal quantifiers, so
we only need to check Definition 1.1 to show that a symbol is redundant. Consider a
place p such that (not (VisitedPlace p)) appears in the CNF of the goal. If p
parameterizes moveRelaxed, then (VisitedPlace p) is in the effects, violating
the goal. Since moveRelaxed is the only action that can be parameterized by a place,
no plan can parameterize p and Definition 1.1 is trivially satisfied.

Next, consider a place p that does not parameterize any initial or goal facts. For any
plan π with an action parameterized by p, let aPk denote an action parameterized by
places P , including p. Plan π′ where aPk is replaced by a

P\p
k is also valid, since state

plans Iπ and Iπ′ only differ by a (VisitedPlace p) fact, and no action precondi-
tions or goals involve this fact. As a result the command sub-sequence corresponding to
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aPk is also valid for aP\p
k . So, for any π parameterized by p, we can construct π′ that has

an equivalent motion sequence but does not parameterize p; thus p is redundant.
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