
Learning Feasibility and Cost to Guide TAMP

Christopher Bradley1 and Nicholas Roy1

Massachusetts Institute of Technology, Cambridge, MA 02139, USA,
{cbrad, nickroy}@csail.mit.edu

Abstract. Recent work in Task and Motion Planning (TAMP) has en-
abled a new class of algorithms that can better take advantage of off-the-
shelf samplers and solvers to find solutions to sub-problems in a task plan,
such as motion between configurations, or inverse kinematics solutions.
However, not all sub-problems are equally valuable. Existing planners
typically rely on heuristics to determine which sub-problem to attempt
to solve next, unable to reason about the expected cost of doing so in the
broader context of the full plan. In this work, we present a novel approach
for TAMP, utilizing learned models to inform when to attempt to solve
potentially expensive sub-problems. We test our approach in two simu-
lated domains, as well as on a real Panda robot, showing improvement in
planning and execution time compared to a heuristic driven baseline.

1 INTRODUCTION

We aim to enable an autonomous agent to efficiently find low-cost plans for high-
dimensional, long-horizon TAMP problems using learned models to guide plan-
ning. Consider, for example, a mobile robot attempting to ‘cook’ multiple objects
in a kitchen environment. Solving this problem involves considering both the dis-
crete sequence of actions (e.g., ‘pick up object ‘A’, navigate within the room, then
place ‘A’ on a new platform’) and the constrained continuous and discrete pa-
rameters of those actions (a reachable grasp on ‘A’, a collision-free trajectory to
move between configurations, a platform to place on, etc). A common approach
in TAMP involves defining samplers or solvers for relevant sub-problems (e.g.,
a grasp sampler or collision-free motion planner for trajectories between robot
configurations), then combining sub-problem solutions into a complete plan [1].

One major challenge in this strategy is determining when to attempt to solve
a particular sub-problem that is a part of one action plan, versus spending com-
putation time solving a different sub-problem from a separate, potentially more
feasible, action plan. Given the stochasticity inherent in certain sub-problems (as
in a grasp sampler), and because the outcome of sub-problems may depend on
their inputs, we must also consider how the solution to one impacts another. Par-
ticularly in settings where we fail to solve certain sub-problems frequently (e.g.,
attempting to place an object on a cluttered platform), repeated failed attempts
can make planning intractable. Unfortunately, knowing ahead of time which sub-
problems have feasible (or optimal) solutions is as hard as the original planning
problem itself. There is no practical way to avoid periodically attempting to solve
sub-problems that do not actually have feasible solutions, but we would like to
be able to identify ahead of time the expected cost of doing so, and subsequently
minimize wasted computational effort.



Feasibility and Cost for TAMP 2

In this work, we propose two contributions. The first is a method to com-
pute the expected cost of attempting to solve the relevant sub-problems within
a high-level plan in a TAMP problem. Specifically, for each sub-problem (like
grasp sampling or IK), we train a model to predict outcomes (success or failure)
and costs (in both planning and execution time) for different inputs. We propose
a method by which these models can be evaluated to return the expected cost
of a full high-level plan, without having to immediately solve each sub-problem.
Second, we propose a novel planning approach which uses stochastic search tech-
niques to account for potential inaccuracies in our models, as well as the need
to potentially re-solve upstream sub-problems. We demonstrate an improvement
in planning time on two different, simulated platforms over a heuristic driven
baseline, as well as on a real robot [2].

2 BACKGROUND

The combined TAMP problem jointly considers elements of high-level task plan-
ning [3, 4] and low-level motion planning [5] in an attempt to solve hybrid dis-
crete/continuous, multi-modal planning problems [6]. Solutions for TAMP prob-
lems take the form of a sequence of parameterized actions π = [a1, a2, ..., an] that
define a plan, where parameters satisfy each action’s constraints [6]. One approach
for representing a TAMP problem —which we use in this work— is an extension
of the Planning Domain Definition Language (PDDL) called PDDLStream [1].

A PDDLStream problem (P,A, S,O, I,G) is specified as sets of predicates P ,
actions A, streams S, objects O, an initial state I, and a goal state set G. The
initial and goal states of a PDDLStream problem are sets of facts: instances of
boolean functions called predicates p(x) ∈ P , which are parameterized by tuples
of objects x ∈ O. For example, the fact that certifies if the robot is at a given
pose is an instantiation of the predicate AtPose ?p, and is either true of false for
different pose objects ?p. Actions a ∈ A are defined by two sets of predicates:
pre and post conditions, and are parameterized by object tuples x. For a given
input x, if the pre-conditions evaluate to true, the action is legal, and the post-
conditions specify which facts will change value in the subsequent state.

For certain actions, preconditions may include facts that are either cumber-
some or impossible to add to the domain. For example, it is unclear how one would
enumerate all possible configuration objects for a 20-DOF robot without creat-
ing a potentially intractably large problem. To account for this, PDDLStream
problems include object generators called streams s ∈ S, which allow the planner
to represent sub-problems relevant to the problem. Streams consist of: sets of
(1) input and (2) output objects, (3) domain predicates which must be true in
the input, (4) action predicates to be certified if the queried stream is successful,
and (5) an external function that is called when the stream is queried. When an
action has a precondition which can only be certified by a stream, that stream
can be queried in an attempt to solve the associated sub-problem, and determine
if said precondition can be certified. Note that a stream may need to be queried
many times before generating an output that jointly satisfies all constraints in a
TAMP problem. We refer the reader to [1] for a more detailed description.

There are several TAMP solvers that have been developed to use PDDLStream
to define TAMP problems. One general approach is to optimistically assume that



Feasibility and Cost for TAMP 3

Fig. 1. A) A Panda agent is tasked with grasping the block highlighted in green. B-
C) A naive abstract plan might be to grasp the green block directly, ignoring some
or all potential obstructions. When the sub-problems associated with these plans are
attempted, computation will be wasted solving for motion plans that are infeasible due
to collision. D) Instead, our learned models guide planning by taking into account the
feasibility and expected cost of sequences of sub-problems, and guide search to consider
moving the obstructions first.

any time a stream is needed to certify an action predicate, it can be queried
successfully, then generate abstract plans π, which contain actions that have
unknown parameters as a result of this assumption. Using the approach outlined
in [1], for a given abstract action plan π, we can generate the sequence of sub-
problems s that must be solved to find the unknown parameters in π: referred
to as the stream-plan ψ. If each s ∈ ψ is able to be solved for satisfying output
objects, then we can return an action plan that solves the original TAMP problem.

3 OUR APPROACH

Our objective is to find plans which solve TAMP problems efficiently, both in
terms of wall-clock time spent searching for the plan, and with respect to the
time it takes to execute the plan on a robot. We first describe how we construct
and train simple models offline to predict the outcome and costs of individual sub-
problems. Next, we demonstrate how to estimate and refine online the expected
cost of a stream plan using these predictions. Finally, we show how this cost
estimate is incorporated into a novel planner to more efficiently guide search.

3.1 Learning to Model External Functions

We train offline separate models for each sub-problem associated with a stream
s ∈ S in the domain, mapping an individual stream’s inputs to estimates of the
outcome and costs of querying for and executing the associated sub-problem.
Each model has two types of input: local information that is defined in the do-
main of the stream (e.g., the start and goal configurations passed to a motion
planner), and global information (e.g., the poses and dimensions of other objects
in the scene). Global information, derived from a scene-graph, is embedded in
a Graphical Neural Network. The GNN is composed of a node model, an edge



Feasibility and Cost for TAMP 4

Fig. 2. An example of how we decompose a scene (a) into inputs for our various learned
models. First we vectorize the local information that is relevant for a particular sub-
problem (b). Then, we embed the global information into a GNN (c). After message
passing, we concatenate the global feature vector of the graph with the local information
and pass that through an MLP to generate the properties used to compute cost (d).

model, and a global model, each of which shares the same architecture: two fully
connected layers of size 128, with leaky ReLU activation after the first layer. For
each object in our scene-graph, we pass the pose and dimension features through
two fully connected layers, outputting a node feature vector that is N x 128. We
similarly embed the edge features (the translation between two objects), draw-
ing edges according to which objects are supported by the same surface, then
perform one message passing step between the node and edge models. Next, we
pass each node through the global model, and concatenate the softmax of the
output with the vectorized local stream information. We pass this vector through
a 4 layer MLP to produce the model’s output. Training labels can be generated
by tracking the outcome and costs each time a stream is queried during search.
Figure 2 shows a representation of one such network.

Given local and global information, each network produces four outputs: PS ;
the probability of solving the sub-problem for the given inputs, RS ; the expected
cost of solving the sub-problem successfully in wallclock-time, RF ; the expected
cost of failing to solve the sub-problem, and RM ; the expected time it would
take to execute any motion plan output (if a sub-problem does not generate a
trajectory, we set this value to 0). With these four properties, we have the ability
to compute the expected cost of attempting to solve, then, if successful, executing
any trajectory generated by a given sub-problem: Q = PS(RS+RM )+(1−PS)RF

3.2 Evaluating Stream Plans using Learned Models

The above equation defines the expected cost of solving and executing a trajec-
tory generated by one sub-problem. In order to evaluate the expected cost of a
sequence of sub-problems ψ, we must consider the subsequent costs both in the
case where we solve the sub-problem (we attempt to solve the next one in ψ),
and when the attempt fails. In [7] and [8], the authors derived from the Bellman
equation a method to estimate the cost of a sequence of stochastic actions with
binary outcomes. Noting that the expected cost of execution RM must be con-
sidered only for a complete plan, we recursively represent the expected planning
cost Qp of stream plan ψ, beginning at step t until the final step T , as:

Qp(ψt:T ) = PSt
(RSt

+Qp(ψt+1:T )) + (1− PSt
)(RFt

+Qp(ψ0:t) +Qp(ψt:T )), (1)



Feasibility and Cost for TAMP 5

where Qp(ψt:T ) represents the total cost (in seconds) it would take to solve each
sub-problem st ∈ ψ (but not yet execute any generated trajectories), beginning
at step t in the plan. The cost of failing to solve a particular sub-problem must
involve re-solving the sub-problems from step 0 up to that point in the plan
to account for the fact that the different input parameters may be needed for a
successful result. Manipulating Eq. 1 algebraically, we can re-write expected cost:

Qp(ψt:T ) = (RSt
+Qp(ψt+1:T )) +

1− PSt

PSt

(RFt
+Qp(ψ0:t)). (2)

Due to the stochastic nature of some external solvers, certain sub-problem can
be queried infinitely many times, and may eventually yield a successful output,
particularly given different inputs. Eq. 2 represents this intuition, as the expected
planning cost for a particular step in the recursion is simply the cost of solving a
sub-problem, plus the number of times we expect to fail to solve st, times the ex-

pected cost of each failure. The ratio
1−PSt

PSt
represents one less than the expected

number of attempts before success in the geometric distribution parameterized by
PSt

(assuming independent samples). By rolling out the recursive steps, we can
write the expected cost of successfully solving each sub-problem in ψ as follows:

Qp(ψt:T ) =
∑
τ∈t:T

(
RSτ

+
1− PSτ

PSτ

(RFτ
+Qp(ψ0:τ ))

)
. (3)

Notably, we have not yet considered the cost of executing the plan, as this
cost is only relevant for complete plans, and so is not included in the cost of
failure. Finally, we add the planning cost Qp to the cost of executing all generated
trajectories in a plan, Qe, to recover the total cost of planning and execution Q:

Q(ψt:T ) = Qp(ψt:T ) +
∑
τ∈t:T

RMτ
(4)

Using Eq. (4), we are able to estimate the expected future cost of planning
and execution from any point in a given ψ.

3.3 Planning with our Models

Even with our learned models, we cannot be certain of the feasibility and cost
of a sequence of sub-problems without actually attempting to solve them. To
account for this uncertainty, we formulate TAMP as a stochastic search problem.
In eTAMP [2], the authors propose using Progressive Widening for Upper Con-
fidence Bounded Trees (PW-UCT) [9, 10] to search for parameters that satisfy
the constraints of an action plan. We build upon this approach for our planning
algorithm, using our models to guide search, and so outline it briefly here.

Searching for Abstract Stream Plans: The first step in our approach is to
generate several abstract action plans π ∈ Π — sequences of actions which would
represent a successful plan if all preconditions are met — from a PDDLStream
problem using a top-k planner [11]. As mentioned in Sec. 2, some or all of an
action’s preconditions may be certifiable only by a stream. However, during the
search for abstract action plans, we do not explicitly attempt to solve the sub-
problems associated with those streams, as this would be prohibitively expensive.



Feasibility and Cost for TAMP 6

Fig. 3. A) The root node in our tree represents a set of sub-problem sequences Ψ ,
and each child is a sample ψ from that set. For all subsequent nodes, the available
actions consist of attempting to solve a sub-problem, in this case: G: sample grasp, Pl:
sample stable placement, IK: solve for kinematically feasible configuration, and M: solve
for collision free motion plan. B) At each node, we use learned models to predict the
feasibility and costs of attempting to solve all remaining sub-problems in the sub-tree.
C) We use these predictions to estimate the expected cost of finding satisfying solutions
for the remaining steps in ψ from each node using eq. (4), defined in Sec. 3.2.

Instead we solve for abstract plans π, and compute the associated stream-plan ψ
for each. Given a set of k stream plans ψ ∈ Ψ , we can begin to attempt to search
for these parameters.

One approach for this search would be to simply query Equation (4) for each
stream plan given the initial state of the problem, and guide search using these
estimates only. However, during search in non-trivial domains, we may need to
consider different potential solutions to the same sub-problem (e.g., sample multi-
ple different grasps on a block). Because the output of a sub-problem may depend
on its input, there can and will be different cost and feasibility estimates for the
same step in a stream-plan depending on the parameters that are passed to the
model (which depend on the solutions to upstream sub-problems). Therefore,
when a new solution to a sub-problem is found, we must update our predictions
for the remainder of a stream plan. As we progress in our search for the param-
eters of a plan, some predicted values will vary, and so too will the remaining
estimated expected cost. The differences in estimates can help us guide search,
and we account for the associated uncertainty with PW-UCT.

Searching within Stream Plans: There are four distinct steps in a PW-UCT
search problem. The first is selection, where the existing tree is navigated ac-
cording to the UCT heuristic (Eq. (5)) to find a node to expand. Next, in the
expansion phase, a child from the selected node is generated and appended to the
tree. In the simulation step, we continually add nodes from the newly expanded
child until either an expansion fails, or we successfully reach our goal. Finally, we
update the statistics (total node visits and accrued reward) of all visited nodes
via back-propagation. This process is repeated until a solution is found.

Our tree is built as follows. At the root node (level 0), the available actions
correspond to selecting one of the stream plans returned by the top-k planner.
After this choice, each level-1 subtree is associated with different evaluations
for that stream plan. Each level in a sub-tree corresponds to a specific stream,
and each node in a level to a solution of the associated sub-problem. Because
sub-problems re-solved and potentially produce novel results, there are infinitely
many actions from each node (although a tree will only get as deep as the length
of a stream plan). Refer to Figure 3 for a depiction of a growing search tree.



Feasibility and Cost for TAMP 7

Guiding Search with Learned Cost: During traversal from the root to a leaf
in the selection phase, the UCT equation (5) is used to choose the next node:

argmaxviQ(vi) + c

√
2ln(N(v))

N(vi) + 1
, (5)

where vi represents a child of node v, N(v) denotes the number of times a node
has been visited, and Q(vi) gives the online estimated value of a particular child.

The UCT equation (5) relies on an estimate of Q in order to guide search. In
eTAMP, the authors propose a heuristic based on the depth of the search tree,
and accrued reward [2]. Such heuristics, while potentially useful, require domain
knowledge, may necessitate tuning, and cannot adapt to different streams within
a plan. Instead, we use our learned models, applied to each step of the remaining
stream plan, to more efficiently estimate Q and guide search. We evaluate Eq. (4)
for each visited node in order to get an estimate for remaining expected cost.
Specifically, we use the negative of the final output from Eq. (4) as the estimate
for Q. If, in the application of Eq. (4), we encounter a stream input that has not
yet been solved for, we pass the model a zero-vector of the same shape (along with
a flag in the input) in its place to make a prediction without that information,
and remove any associated edges in the scene-graph GNN embedding.

If the node selected by our learned UCT estimation is a leaf node (meaning it
has no children), the associated sub-problem is attempted, and, if solved, a new
node is added to the tree. Then, we re-query our learned models for the remaining
sequence of streams in ψ, using any new output generated by solving the previous
sub-problem, and compute the learned Q-value for the new node given those new
inputs. From there, the simulation and back-propagation steps are taken, and
selection begins again. By growing the tree in this way, we are biased to evaluate
sub-problems that are determined by our learned cost to be the most likely to
lead to a satisfying plan in the shortest amount of time, balancing exploiting high
value branches, and exploring new solutions to account for potential inaccuracies
in the learning. We are also able to consider the act of sampling a new node as
another action in Eq. (5). If the UCT heuristic for re-solving a particular sub-
problem —according to the estimated cost from Eq. (4)— is higher than that of
any the available children, we do so, and add a new child to the current node.
Once a full sequence of sub-problems has been successfully solved, we have solved
the original TAMP problem, and can return the full action-plan.

4 Experimental Results

To highlight the capabilities of our learned planner, we implement our approach in
two simulated scenarios, as well as on a real robot. To make comparison straight-
forward, the simulated experiments use two platforms/environments tested in
eTAMP ; specifically, their ‘kitchen’ and ‘unpack’ domains [2]. We compare our
planner against the heuristic-driven planner defined in eTAMP, using the hand-
defined parameters, tuned for each environment as specified by the authors. In
each instance, we demonstrate that our planner is able to out-perform the baseline
[2] in both planning time and the number of search nodes expanded, while finding
plans of equivalent motion cost as shown in Table 1.



Feasibility and Cost for TAMP 8

Table 1. Experimental Results: All units in seconds (% cost reduction)

Kitchen Domain Unpack Domain Real Domain
Metric ↓ (↑) Baseline Ours Baseline Ours Baseline Ours

Planning Cost 98.3 39.5 (60%) 105.8 54.3 (49%) 66.7 26.2 (61%)
Motion Cost 86.4 82.1 (5%) 46.7 46.0 (1%) 21.3 20.9 (1%)
Total Cost 184.6 121.7 (34%) 152.6 100.4 (34%) 88.0 47.1 (46%)

Node Expansions 149.8 55.2 (63%) 707.2 125.9 (82%) 91.2 11.0 (88%)

4.1 Kitchen Domain

In the ‘kitchen’ domain, the robot is a simulated PR2, shown in figure 4 with
five available actions: pick up an object, place an object on a platform, move
between configurations, cook an object, and clean an object. An object is cleaned
when placed on the sink and cooked when placed on the stove. The agent is
then tasked to first ‘clean’, then ‘cook’ all blocks initially placed on a table,
being careful to avoid overcrowding any platform. We consider four distinct sub-
problems, specifically a grasp sampler, a stable placement sampler, an inverse
kinematics solver, and an RRT motion-planner between configurations. We refer
the reader to [2] for a more detailed description of the domain.

For this task, most action plans considered by the planner are feasible, though
deciding which sub-tree to explore in search is difficult. Notably, the order in
which blocks are moved is generally irrelevant to the feasibility and cost of the
problem. Therefore, at the root node, our learned models predict approximately
the same cost for each possible sequence of sub-problems ψ. However, as the
search tree grows in depth, and blocks are added to the final platform, we are
able to improve upon naive search by considering how cluttered the surface is,
and if a particular sampled pose is feasible.

In this domain, we ran 1600 trials for both the baseline planner [2] and our
learned planner (trained on 100 trials worth of data collected by running the
baseline planner), initializing each trial with a new random seed. We recorded
both the planning and execution time, and plotted these values for the individ-
ual trials (along with their sum) in Fig. 4 and Table 1. As shown in the table,
we demonstrate a mean reduction in total time of approximately 63 seconds (a
34% improvement). We demonstrate that our approach can find plans of similar
execution time to the baseline with fewer average node expansions (150 vs 55).

4.2 Unpack Domain

In our second environment, we consider a table-top manipulator with the abil-
ity to pick and place objects on different platforms. As before, to pick or place
an object our agent must sample grasps or placement poses, find collision-free
configurations, and compute safe trajectories between these configurations. In
this domain, our goal is simply to move a specified object from one platform to
the other. However, depending on the configuration of the other objects in the
scene, this may not be immediately feasible. Whereas in the ‘kitchen’ domain,
nearly every high-level plan could be valid depending on the object groundings,
in the ‘unpack’ domain, many of the abstract action plans returned by the top-k
planner are infeasible depending on the orientation of the blocks in the scene.
For example, if the taller blue block sits beside the green block, the planner will



Feasibility and Cost for TAMP 9

Fig. 4. A comparison between the total cost of planning and execution of the baseline
planner [2] and our learned TAMP planner for 1600 trials in the ‘kitchen’ domain. Each
point in the scatter-plot represents the outcome of a single trial. The images on the right
demonstrate potential failure modes in this domain. If the first few blocks are placed
poorly on the stove, it may be impossible to safely place all four blocks there without
risking collision. Our approach allows us to predict when a block placement will lead to
failure later in a plan, reducing the time spent planning in these sub-trees.

be unable to find a configuration to grasp the green block without coming into
collision with the blue one. As such, any calls to our IK solver will fail, and the
ability to reason about which queries to to an external planner will or will not
succeed can be very impactful in terms of accelerating planning. We highlight a
few examples of this in Fig. 5.

During training, over 200 trials, we considered instances with either one, two,
or three blocks in the scene, with the initial poses of the blocks randomly selected
(but closely clustered). We evaluated our planner for the case of three blocks,
running 400 trials for both the baseline planner [2] and our learned planner.
Once again, we recorded both the planning and execution time, and plotted these
values for the individual trials in Fig. 5 and Table 1.

We further compare our approach to one (not included in the table) which
uses predicted feasibility as a threshold to prevent the planner from exploring
low-probability actions [12]. In that work, the authors report an improvement of
63% over the same baseline in terms of motion planning time only in the ‘unpack’
domain, which does not include time querying the top-k solver for Ψ . Using our
approach, we found a savings of approximately 67% in this metric. Moreover,
because this approach thresholds certain sub-trees from ever being considered,
the planner fails to find any plan ∼ 8% of the time, whereas we found no failures
over 400 trials. We do note that we did not re-implement and test this approach
in this work, and are relying on the reported values.

4.3 Real World Experiments

Finally, we implement our planner on a real Panda manipulator (see Fig. 1),
testing a modified version of the ‘unpack’ problem, where the robot is tasked with
grasping a particular block in a crowded grouping, potentially having to remove
obstructions before it can. The Panda arm is equipped with a parallel gripper,
and a RealSense camera, which it uses to identify objects, their positions, and
their shapes. We define grasp and placement samplers, as well as an RRT motion



Feasibility and Cost for TAMP 10

Fig. 5. Comparing the total cost of planning and execution for 400 trials in the ‘unpack’
domain, where once again each point in the scatter-plot represents the outcome of
a single trial. We also highlight some example scenes, where we show the feasibility
predictions given by our IK model for attempting to grasp each block on the first
platform. As more blocks are cleared, the predicted likelihood that we can successful
find a collision-free configuration to grasp the green block increases.

planner, and an IK solver as the relevant sub-problems. We train our models for
each sub-problem on data from 100 simulated trials, then test on the real robot.

Over 10 real world trials, we compare our planner to the baseline approach
for identical initial conditions. For each trial, first the robot identifies the blocks
in the scene and their poses. Then, we search for a plan to grasp the selected
block using our approach. Finally the agent executes this plan, using the mounted
camera to account for perception errors during execution as needed. In each trial,
our planner outperforms the baseline with respect to planning time and nodes
expanded, while producing plans that are of equivalent quality in terms of motion
cost. An example of this scenario is shown in Fig. 1, and we report the results of
the trials in Table 1.

5 Related Work

Viewing TAMP as a hybrid constraint satisfaction problem [6], most TAMP ap-
proaches can be categorized as solving the constraints jointly or individually.
In the first approach, the problem is written as one large constrained optimiza-
tion problem (typically a Mixed Integer Program), where discrete components
such as which block to pick up are represented by integers, and the trajectory
optimization is real-valued [6, 13, 14]. These joint optimization strategies can be
appealing, as satisfying a single optimization solves the entire problem. However,
such approaches are often limited in that certain aspects of the problem may not
be easily differentiable, efficiently re-using computation can be difficult, and it
might not always be straight-forward to incorporate off-the-shelf samplers/solvers
[6]. The primary alternative approach is to consider solving for sets of parameters
that satisfy small groups of constraints, and combine the solutions into actions
and plans. For example, we can sample a block placement on a platform that is
free of collisions, then confirm it is positioned so that there exists a kinematically
feasible configuration to execute such a placement. Approaches that break up the
problem in this way can take advantage of external tools that are optimized for
specific sub-problems (e.g, Fast Downward for the discrete task problem, efficient
inverse-kinematics solvers, or neural networks for grasp sampling) [1, 2, 6]. In this
work, we build upon this second approach.



Feasibility and Cost for TAMP 11

There has been significant recent progress in improving planning for TAMP
problems using learned models. Most relevant to this work are those contributions
which attempt to accelerate search from experience [12, 15–21]. Some learn ex-
plicitly which components of a given domain are relevant for a particular TAMP
problem, though do not further guide search within their reduced domain [17, 18].
Kim et al., learn an action sampling distribution for geometric motion planning
problems, but do not take advantage of off-the-shelf samplers/solvers [19]. Kim
and Shimanuki learn a Q-function as a heuristic to use in search for a geometric
TAMP problems [16], however do not learn to bind the continuous parameters of
its actions. Closely related, Khodeir et al., [21] specifically scores the relevance
of streams within the PDDLStream framework, and improve search for stream-
plans. However, they do not consider the search for an action’s parameters. An
interesting direction for future work would be to combine the two approaches to
improve both the search for stream plans, and the parameters thereof. Finally,
the work in [12] learns a feasibility predictor from images to accelerate eTAMP
[2]. However, this work does not predict costs, and thresholds the predicted fea-
sibility to bound branches in search. As mentioned in section 4, this can lead to
planning failure if a feasible branch is below the defined threshold.

Outside of TAMP, there has been work in planning with learned outcomes.
Specifically, Stein et al., learn models to predict the success/failure and costs of
actions for planning in long-horizon, partially observable domains, however are
limited to navigation tasks [7, 8]. We build upon the intuition of this work in
sec. 3.2. Xu et al., propose simultaneously learning outcomes and action dynam-
ics, and plan in a learned latent space [22]. However, they cannot utilize optimized
off-the-shelf planners to solve TAMP problems with their learned representation.

6 Discussion

In this work, we demonstrated that our strategy for learning models to predict
the feasibility and costs of relevant sub-problems to guide TAMP is effective
in various problem domains. We achieved improved performance with respect to
planning time across three domains, including one on a real Panda robot. Further-
more, our approach has the potential to be widely applicable, as it is compatible
with different learning methods, whether the inputs are simple vectorized object
properties (as they are here), visual information, or even language.

One possible application of our approach is in domains where there is noise
or partial observability in the world model. In such environments, it may not be
efficient to query streams during initial planning. For example, if the pose of a
far away object is uncertain, attempting to solve for the exact configuration for
a grasp is likely a waste of computation. If instead we can predict that we will
be able to find such a configuration once the pose is more certain, we can wait to
query an IK solver until the robot is near the object. This is left for future work.

References

1. C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling, “Pddlstream: Integrating sym-
bolic planners and blackbox samplers via optimistic adaptive planning,” in Proceed-
ings of the International Conference on Automated Planning and Scheduling, 2020.



Feasibility and Cost for TAMP 12

2. T. Ren, G. Chalvatzaki, and J. Peters, “Extended tree search for robot task and
motion planning,” arXiv preprint arXiv:2103.05456, 2021.

3. M. Ghallab, D. Nau, and P. Traverso, Automated planning and acting. Cambridge
University Press, 2016.

4. E. Karpas and D. Magazzeni, “Automated planning for robotics,” Annual Review
of Control, Robotics, and Autonomous Systems, 2020.

5. S. M. LaValle, Planning algorithms. Cambridge university press, 2006.
6. C. R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver, L. P. Kaelbling, and

T. Lozano-Pérez, “Integrated task and motion planning,” Annual review of control,
robotics, and autonomous systems, 2021.

7. G. J. Stein, C. Bradley, and N. Roy, “Learning over subgoals for efficient navigation
of structured, unknown environments,” in CoRL. PMLR, 2018.

8. C. Bradley, A. Pacheck, G. J. Stein, S. Castro, H. Kress-Gazit, and N. Roy, “Learn-
ing and planning for temporally extended tasks in unknown environments,” in 2021
IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2021.

9. G. M. J. Chaslot, M. H. Winands, H. J. v. d. Herik, J. W. Uiterwijk, and B. Bouzy,
“Progressive strategies for monte-carlo tree search,” New Mathematics and Natural
Computation, 2008.

10. R. Coulom, “Computing “elo ratings” of move patterns in the game of go,” ICGA
journal, 2007.

11. D. Speck, R. Mattmüller, and B. Nebel, “Symbolic top-k planning,” in Proceedings
of the AAAI Conference on Artificial Intelligence, 2020.

12. L. Xu, T. Ren, G. Chalvatzaki, and J. Peters, “Accelerating integrated task and
motion planning with neural feasibility checking,” arXiv preprint arXiv:2203.10568,
2022.

13. M. A. Toussaint, K. R. Allen, K. A. Smith, and J. B. Tenenbaum, “Differentiable
physics and stable modes for tool-use and manipulation planning,” 2018.

14. E. Fernandez-Gonzalez, E. Karpas, and B. Williams, “Mixed discrete-continuous
planning with convex optimization,” in Proceedings of the AAAI Conference on
Artificial Intelligence, 2017.

15. D. Driess, J.-S. Ha, R. Tedrake, and M. Toussaint, “Learning geometric reasoning
and control for long-horizon tasks from visual input,” in 2021 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2021.

16. B. Kim and L. Shimanuki, “Learning value functions with relational state repre-
sentations for guiding task-and-motion planning,” in CoRL. PMLR, 2020.

17. T. Silver, R. Chitnis, A. Curtis, J. B. Tenenbaum, T. Lozano-Perez, and L. P.
Kaelbling, “Planning with learned object importance in large problem instances
using graph neural networks,” in Proceedings of the AAAI conference on artificial
intelligence, 2021.

18. C. Agia, K. M. Jatavallabhula, M. Khodeir, O. Miksik, V. Vineet, M. Mukadam,
L. Paull, and F. Shkurti, “Taskography: Evaluating robot task planning over large
3d scene graphs,” in CoRL. PMLR, 2022.

19. B. Kim, L. Kaelbling, and T. Lozano-Pérez, “Guiding search in continuous state-
action spaces by learning an action sampler from off-target search experience,” in
Proceedings of the AAAI Conference on Artificial Intelligence, 2018.

20. T. Pan, A. M. Wells, R. Shome, and L. E. Kavraki, “Failure is an option: Task
and motion planning with failing executions,” in 2022 International Conference on
Robotics and Automation (ICRA). IEEE, 2022.

21. M. Khodeir, B. Agro, and F. Shkurti, “Learning to search in task and motion
planning with streams,” IEEE Robotics and Automation Letters, 2023.

22. D. Xu, A. Mandlekar, R. Mart́ın-Mart́ın, Y. Zhu, S. Savarese, and L. Fei-Fei, “Deep
affordance foresight: Planning through what can be done in the future,” in 2021
IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2021.


