
Hierarchical Planning for Heterogeneous Multi-Robot Routing
Problems via Learned Subteam Performance

Jacopo Banfi1∗, Andrew Messing2∗, Christopher Kroninger3, Ethan Stump3,
Seth Hutchinson2, and Nicholas Roy1

Abstract— This paper considers a particular class of multi-
robot task allocation problems, where tasks correspond to het-
erogeneous multi-robot routing problems defined on different
areas of a given environment. We present a hierarchical planner
that breaks down the complexity of this problem into two
subproblems: the high-level problem of allocating robots to
routing tasks, and the low-level problem of computing the actual
routing paths for each subteam. The planner uses a Graph
Neural Network (GNN) as a heuristic to estimate subteam
performance for specific coalitions on specific routing tasks.
It then iteratively refines the estimates to the real subteam
performances as solutions of the low-level problems become
available. On a testbed problem of a heterogeneous multi-robot
area inspection problem as the base routing task, we empirically
show that our hierarchical planner is able to compute optimal
or near-optimal (within 7%) solutions approximately 16 times
faster (on average) than an optimal baseline that computes
plans for all the possible allocations in advance to obtain
precise routing times. Furthermore, we show that a GNN-based
estimator can provide an excellent trade-off between solution
quality and computation time compared to other baseline (non-
learned) estimators.

I. INTRODUCTION

This paper considers a particular class of multi-robot task
allocation problems, where tasks correspond to heterogen-
eous multi-robot routing problems defined on different areas
of a given environment. The goal is to minimize the time
needed to complete all of the routing tasks. This class of
problems is representative of a number of scenarios where
allocating subteams of robots to individual areas would be
beneficial. For example, in search and rescue operations
spanning very large environments, battery constraints could
prevent a single robot from being employed in more than
one area. Alternatively, in a military scenario, strategic areas
might need to be simultaneously inspected for the presence
of adversaries prior to moving a convoy through them.
As a final example, consider a communication-constrained
patrolling scenario, where assigning subteams to individual
areas can guarantee that the robots will have sufficient inter-
group networking to promptly respond to the detection of
an intruder. These types of problems inherently display a
hierarchical structure: if we knew in advance the time needed

∗Equal contribution.
1CSAIL, Massachusetts Institute of Technology (MIT), Cambridge (MA)

02139, USA. Corresponding Author Email: jbanfi@mit.edu.
2IRIM, Georgia Institute of Technology (GT), Atlanta (GA) 30332, USA.
3DEVCOM ARL, Adelphi (MD) 20783, USA.
This material is based upon work supported under the DCIST CRA

by the Army Research Laboratory under Cooperative Agreement Number
W911NF-17-2-0181.

Fig. 1: The proposed hierarchical planning framework applied to our testbed problem.
A GNN is first used to estimate the time needed by different subteams to inspect
different areas of an environment. A high-level solver uses these estimates to compute
a high-level allocation, while a low-level solver computes the actual paths with a
specialized routing algorithm. The actual task durations are then used to update the
GNN estimates for the high-level solver, which can then compute a new allocation
with an improved set of estimates.

by each possible subteam of robots to complete each possible
routing task, we could first identify the optimal allocation of
subteams to areas of interest, and then compute the actual
subteam paths only for that assignment. A straightforward
approach to addressing the first stage optimally would be
precomputing the paths for all the possible assignments of
subteams to tasks, which would give all the possibles routing
times as a by-product. Unfortunately, even leaving aside the
combinatorial nature of the assignment problem, it is often
the case that the multi-robot routing problem resulting from
the subteam assignment is NP-hard, and a good solution can
only be obtained with computationally expensive algorithmic
approaches, such as formulating the routing problem as a
Mixed-Integer Linear Program (MILP), that typically require
several seconds to minutes or hours to run. To reduce the
overall planning time, the search for a good assignment
should solve the routing tasks problems in a lazy fashion, by
starting from the most promising allocations of subteams to
tasks. However, knowing the potential utility of an allocation
typically requires knowing its routing plan, eliminating the
advantage of the lazy approach.

We note that the allocation of subteams requires only
knowing the costs of the different routing plans for a given
allocation, and not the actual plans themselves. If we can es-
timate these costs without solving the corresponding routing
problems at the same time, we can defer computing routing
plans until a tentative allocation has been decided.

Based on these observations, we present a hierarchical
planner capable of breaking down the complexity of the
original problem into two natural subproblems: the high-

level problem of allocating robots to routing tasks, and the
low-level problem of computing the actual routing paths
for only a selected subset of all the possible assignments
of subteams to areas. As multi-robot routing problems are
typically defined on graph-represented environments, the
planner uses Graph Neural Networks (GNNs) as a heuristic
to estimate the subteam performance for specific coalitions
on specific routing tasks. Iteratively the planner then refines
these estimates to the real subteam performances as solutions
of the low-level problem becomes available. We introduce
a testbed problem having a heterogeneous multi-robot area
inspection problem as basic routing task, for which we con-
sider again a solution approach based on a traditional Mixed-
Integer Linear Programming formulation. A schematic view
of the proposed planning framework is shown in Fig. 1.

In routing task allocation problems containing up to 45
robots and 20 areas to inspect, we empirically show that
our approach is always able to compute optimal or near-
optimal (within 7%) solutions 16 times faster (on average)
than an an optimal baseline that computes plans for all
the possible allocations in advance to obtain precise routing
times. We also show that a GNN-based estimator provides an
excellent trade-off between solution quality and computation
time compared to other baseline (non-learned) estimators.

II. RELATED WORK

This paper lies at the intersection of two traditional ro-
botics research avenues — Multi-Robot Task Allocation and
Multi-Robot Routing — and a more recent machine learning
one — Graph Neural Networks. They are briefly discussed
below relatively to the concepts that appear in this paper.

A. Multi-Robot Task Allocation

In this work, we consider a bi-level task allocation problem
whose first level can be thought of as a task assignment prob-
lem, and framed into the ST-MR-IA (Single-Task Robots,
Multi-Robot Tasks, Instantaneous Assignment) category of
the multi-robot task allocation taxonomy introduced by Ger-
key and Matarić [1], a problem often referred to as coalition
formation. Classical ST-MR-IA problems can be formalized
and solved by casting them as Set Partitioning Problems
(SPPs) [2]. Two main differences set our problem apart
from classical coalition formation, preventing it from being
formalized as a SPP: the optimization goal (we minimize the
maximum cost, instead of the sum), and the fact that in our
problem the actual coalition costs of the multi-robot routing
tasks are not provided as part of the problem. Multi-robot
routing problems, instead, cannot be easily framed in the
Gerkey and Matarić taxonomy, as noted by Korsah et al. [3].
These latter authors propose a more general taxonomy, where
the routing problem we consider in the second level of this
work can be classified as an ST-MR-TA (Single-Task Robots,
Multi-Robot Tasks, Time-Extended Assignment) problem
with in-schedule dependencies (ID). As a result, the overall
problem solved by our framework is ST-MR-TA-ID.

B. Multi-Robot Routing Problems

Vehicle routing problems (VRPs) are a family of com-
binatorial optimization problems that generalize the famous
Traveling Salesman Problem (TSP)1 in different ways, like
the presence of “time windows” for visiting locations or the
availability of multiple vehicles [4]. VRPs are typically NP-
hard, and have traditionally been a subject of study of the
operations research community. The last decade witnessed a
growing interest in this field from the robotics community as
well, under flavors that more closely match the application
scenarios of multi-robot systems. Examples can be found in
applications like search [5], monitoring [6], coverage [7],
agriculture [8], package delivery [9], [10], and, more gen-
erally, the execution of spatially distributed “tasks” [11],
[12]. Oberlin et al. [11] and Prasad et al. [12] study routing
problems that are similar to the basic routing task considered
in our testbed problem, but with modeling assumptions that
might not be applicable to many robotic scenarios. Solving
routing problems by formulating them as MILPs is one of the
most pupular solution approaches [5], [6], [9]–[11], and for
this reason the one we use for our experimental campaign.
We remark that the proposed planning framework is not
designed around the specific application used as a testbed in
this paper. Instead, it could be used with any of the routing
problems mentioned above as base routing tasks.

C. Graph Neural Networks

Graph neural networks (GNNs) are a class of neural
network architectures specifically designed to learn on graph
data. A complete overview of this rapidly growing subfield
of machine learning is out of the scope of this paper; the
reader is referred to Wu et al. [13] for a survey, and to
Dwivedi et al. [14] for a recent GNN benchmarking paper.
Recently, a number of works used GNNs to learn policies
for solving task allocation and scheduling problems; see [15]
and the references therein. In this paper, we proceed along
an orthogonal direction: allocations (our policies) are derived
via a traditional planning method — Mixed-Integer Linear
Programming — and GNNs are employed as a heuristic
to estimate the parameters of our planning problem, i.e.,
the costs of executing routing tasks that involve coalitions
of robots. Our proposed GNN-based estimation method is
usable in conjunction with any multi-robot routing problem
and associated solution algorithm, which allows our proposed
framework to be very general.

III. PROBLEM DESCRIPTION

Let T be a set of tasks consisting of multi-robot routing
problems defined on separate areas of a given environment.
Here, a heterogeneous team of robots has to be deployed
in order to perform these tasks. In this paper, we assume
we have at our disposal n unmanned aerial vehicles (UAVs)
and m unmanned ground vehicles (UGVs). We assume that
robots belonging to the same set are homogeneous, but our

1Informally, the TSP can be stated as: “Given a set of cities and pairwise
distances between them, what is the shortest tour that visits each city exactly
once?”

approach is easily generalizable to account for more types
of robots. We assume that each task t ∈ T can be assigned
to at most a given number of robots in total. For simplicity,
in this paper it is assumed that all tasks can be assigned
to at most B robots. Although the proposed approach is
very general, in this paper we focus on the particular class
of multi-robot inspection tasks formalized in Section V, in
which some tasks Tg ⊆ T can only be carried out by teams
containing at least one ground vehicle.2 We formally define
a subteam to be a pair (i, j), with i, j ∈ N0

3 and such that
0 ≤ i ≤ n, 0 ≤ j ≤ m, and 1 ≤ i + j ≤ B. The set
containing all the possible subteams is denoted by S.

We also require a routing algorithm that, given a subteam
and a routing task, computes a routing plan for that subteam
and the routing task. In this paper, the chosen routing
algorithm corresponds to a MILP-based solution approach,
in which the solver is allowed to run for a given number
of seconds. More details will be given in Section V; for the
moment, we will simply refer to this MILP as the routing
MILP. Let ω : S×T → Q+ be the function associating each
subteam-task pair with the corresponding routing time, when
the plan is computed with the routing MILP. For infeasible
assignments (subteams with no ground vehicle assigned to
tasks in Tg), ω can return an arbitrary value.

Informally, our goal is to create a set of subteams and
allocate them to the routing tasks so that (a) all tasks t ∈
Tg are assigned to subteams containing at least one ground
vehicle, and (b) the time needed to complete the longest task,
known as the makespan, is minimized. More formally, let A
be the set of all the feasible allocations, and let M(A) be
the makespan induced by allocation A ∈ A. The goal is to
compute the allocation A∗ with minimum makespan:

A∗ ∈ argmin
A∈A

M(A). (1)

As discussed in the introduction, computing the function
ω for all the possible input pairs might be extremely time-
consuming in general. Therefore, we assume that we also
have access to an estimator of ω, namely, a function ω̂ :
S × T → Q+ that attempts to describe the same relation,
and whose values can be retrieved very quickly for all the
possible input pairs. We can leverage this estimator to reduce
the number of actual routing problems that need to be solved,
as shown in the next section.

IV. HIERARCHICAL PLANNING ALGORITHM

We start by providing a formal definition of the problem
in terms of a MILP model, which we call the task allocation
MILP, assuming that we have access to the function ω. We
define the following sets of variables:
• αt, integer: UAVs allocated to routing task t;
• βt, integer: UGVs allocated to routing task t;

2Our approach can easily handle the presence of a similar set of tasks
Ta ⊆ T requiring at least one aerial vehicle, but these will not be present
in our testbed problem.

3In this paper, we use N0 to denote the set of nonnegative integers, and
Q+ to denote the set of positive rational numbers.

• γt
i , binary with 0 ≤ i ≤ min(n,B), i ∈ N0: 1 iff i

UAVs are allocated to task t;
• δtj , binary with 0 ≤ j ≤ min(m,B), j ∈ N0: 1 iff j

UGVs are allocated to task t;
• ϵtij , binary with (i, j) ∈ S: 1 iff i UAVs and j UGVs

are allocated to task t;
• ζ, continuous: the makespan value.
The model can be expressed compactly, with the help of

some logical and non-linear constraints, as follows:

min ζ s.t. (2)∑
t∈T

αt ≤ n (3)∑
t∈T

βt ≤ m (4)

1 ≤ αt + βt ≤ B ∀t ∈ T (5)

βt ≥ 1 ∀t ∈ Tg (6)

γt
i = 1 ⇐⇒ αt = i 0 ≤ i ≤ min(n,B),

i ∈ N0, ∀t ∈ T (7)

δtj = 1 ⇐⇒ βt = j 0 ≤ j ≤ min(m,B),

j ∈ N0, ∀t ∈ T (8)

ϵtij = γt
iδ

t
j ∀(i, j) ∈ S,∀t ∈ T (9)

ζ ≥ ω
(
(i, j), t

)
ϵtij ∀(i, j) ∈ S,∀t ∈ T . (10)

In this model, constraints (3)-(4) make sure that the number
of UAVs-UGVs allocated across the different tasks is con-
sistent with their availability; constraint (5) expresses the fact
that we have to allocate at least one robot to each task and
at most B; constraint (6) enforces the special requirement of
allocating at least one ground robot to tasks in Tg; constraints
(7)-(8) are used to set the value of the γt

i and δtj variables
according to their definition; constraints (9) use the γt

i and
δtj variables to set the value of the ϵtij to 1 if and only if
both γt

i and δtj are equal to 1, representing the selection of a
subteam with i UAVs and j UGVs for the execution of task
t. Finally, constraints (10) are used to define the makespan
value. The linear version of constraints (7)-(9) can be found
in the appendix.

Now, suppose we only have access to the estimator of
ω, i.e. ω̂. We can use this estimator to precompute all the
assignment costs appearing in constraints (10). Then, we can
obtain a potential allocation by solving such modification
of the original task allocation MILP. Given this potential

Algorithm 1: Hierarchical Planner Main Function.
1 function plan(T , n,m,B, ω̂)
2 best sol← ∅
3 best paths← ∅
4 while not converged and not timed out do
5 solve task allocation MILP with ω̂
6 retrieve assignments (αt, βt) for all t ∈ T
7 for t ∈ T do
8 if (αt, βt) is a new assignment then
9 use routing MILP to obtain ω

(
(αt, βt), t

)
, paths

10 ω̂
(
(αt, βt), t

)
← ω

(
(αt, βt), t

)
11 update best sol and best paths, if needed

12 return best sol, best paths

allocation, we can then compute the actual times needed
to complete these tasks by solving the associated routing
problems with the routing MILP on each task t ∈ T and the
corresponding assignment (αt, βt). This information can be
used to update our duration estimates, recompute a set of can-
didate assignments, and so on, until we obtain a solution for
which the corresponding actual routing times have all been
computed in previous iterations. This termination condition
ensures that the makespan computed by the task allocation
MILP is consistent with that of the actual solution, and also
that subsequent iterations will not be able to improve the
current solution when using a deterministic MILP solver.
This procedure constitutes the basic building block of the
proposed planning algorithm: we leverage the task allocation
MILP as a first level solver to compute abstract solutions,
ground them by computing the actual plans with the routing
MILP, and repeat until convergence. Algorithm 1 summarizes
this procedure. Note, in Lines 8-10, that we can avoid
needing to recompute plans and actual routing times for task-
subteam pairs already encountered in previous iterations of
the algorithm. Algorithm 1 might in general converge to a
local minimum. However, it is possible to bound the quality
of the solution with that of the estimator. The following result
is easy to prove:

Proposition 1. Let κ be the largest estimation error given by
ω̂, i.e. |ω(s, t)− ω̂(s, t)| ≤ κ for all the feasible assignments
(s, t) with s ∈ S, t ∈ T , and let AALG be the allocation
returned by Algorithm 1. Then, if at least one task allocation
MILP was solved to optimality, M(AALG) ≤ M(A∗) + 2κ.

In order to escape from a local minimum once Algorithm 1
has converged, it is sufficient to compute additional accurate
routing times by solving the routing MILP for assignments
not yet explored during the search, update the corresponding
original estimates, and run again Algorithm 1 with the
updated estimates. This simple addition makes the planner
anytime, guaranteeing convergence to the optimal solution
when having a sufficient time budget at disposal. Different
heuristics can be used to select these additional assignments.
In our current implementation, the precise routing time of
a single additional subteam is computed for each task by
solving the corresponding routing MILP. The subteam for
task t is selected as the one inducing the smallest change
in terms of number of added or removed robots w.r.t. the
subteam assigned to task t in the current best solution.4

V. ROUTING TASK EXAMPLE: HETEROGENEOUS
MULTI-ROBOT AREA INSPECTION

We now proceed to the definition of the routing task used
in our experimental evaluation (Section VI). A set of robots
R has been allocated to the inspection of an area. Robots can
be of two types: UAVs and UGVs; robots of the same type
are assumed to be identical. The area is represented as an

4Other heuristics could also be used. A detailed analysis of the impact
of the heuristic is out of the scope of the present paper.

Fig. 2: Example paths for 1 UAV and 1 UGV in Area 1 in the example of Fig. 1,
which is modeled as a 4-connected grid graph. “Plains” and “Sand” locations are both
unforested, and the UGV takes more time to inspect the latter type. The “Entry” cell
represents the vertex adjacent to the entrance. More details about the generation of
this type of environment are given in Section VI-A.

undirected, connected, simple graph G = (V,E). Vertices
represent locations that need to be inspected, while edges
represent the existence of a route connecting two locations.
Vertices are partitioned into two sets, F and U , denoting
forested and unforested locations, respectively. Vertices in F
can only be inspected by ground vehicles, while vertices in
U can be inspected by both types of robots. We use cir(v) to
denote the time needed to inspect vertex v ∈ V with robot
r, and cr(i, j) to denote the travel time of robot r along
an edge (i, j) ∈ E. With a little abuse of notation, we also
use cr(i, j) to denote the time needed to travel between two
generic vertices i, j ∈ V when following the shortest path
computed on the graph having the original travel times as
weights. The presence of two types of robots, coupled with
the assumption of homogeneity among robots of the same
type, implies that only two sets of travel and inspection times
need to be defined in order to fully specify the problem.

The robots are initially placed at the entrance of the area
to be inspected, which is denoted by a special entry vertex
(not to be inspected) s ∈ V .5 An inspection path πr for a
robot r ∈ R is defined as a sequence of inspected vertices
starting at the entry vertex: πr = [v1 = s, v2, . . . , vk]. The
time needed to execute such path is given by

c(πr) =

k−1∑
j=1

cr(vj , vj+1) +

k∑
j=2

cir(vj). (11)

A feasible solution to this routing problem corresponds to
a path set P , containing one path for each robot, in which
each vertex v ∈ V \ {s} is inspected exactly once. Note
that the paths are completely independent, and robots are
not required to share any information with their teammates
at execution time. An example instance and corresponding
feasible solution are shown in Fig. 2. The goal is to compute
the path set P with minimum makespan b defined as

b = max
r∈R

c(πr). (12)

A. Routing MILP

The routing problem defined above can be formulated as
a MILP. Due to space constraints, the full model is not

5For simplicity, it is assumed in this paper that the time needed by the
robots to reach the entry location s once the final allocations have been
computed is negligible compared to the time needed by the robots to inspect
the whole area.

shown. We simply note that our formulation is inspired by
the three-index, flow-based formulation for the multiple TSP
discussed by Bektas [16], and adds the necessary changes to
accommodate for (a) the presence of two types of agents,
(b) the addition of vertices inspection times, and (c) the
minimization of the makespan defined in Eq. (12) instead
of the sum of the travel costs.

When solving this MILP model in our experiments, we
initialize the solver with the solution obtained by a simple
greedy algorithm which iteratively adds to one of the ro-
bots’ paths the vertex inducing the smallest increase in the
objective function. This greedy algorithm can therefore also
be used as a baseline estimator for the solution provided by
the routing MILP, as it consistently provides upper bounds.
Similarly, the routing MILP can be relaxed to a linear
program, and the solution to the LP can also be used as
an estimator, as it consistently provides lower bounds.

B. GNN Estimator

We now present a more sophisticated estimator based on
the usage of a neural network. This is composed of three
main building blocks, as shown in Fig. 3.

The GNN block replicates the Gated Graph Convolutional
Network (GCN) architecture in the version proposed by
Bresson and Laurent [17]. This network is chosen as the
basic building block for our architecture since it was recently
shown by Dwivedi et al. [14] to outperform several other
architectures at both graph regression and TSP solution
generation. Gated GCNs belong to the family of “message
passing” GNNs, whose general update rule for the features
of node i between layers l and l + 1 can be written as

hl+1
i = f(hl

i, {hl
j : j ∈ N (i)}, {elij : j ∈ N (i)}),

where hl
i (hl

j) denotes the feature vector of node i (j) at layer
l, N (i) is the set of neighbors of i in the graph, elij is the
feature vector of edge (i, j) at layer l, and f is the network-
specific layer mapping. A similar general update rule can be
defined for edge features as well.

In this block, the original vertex and edge features are
initially embedded into d-dimensional features h0

i , e0ij via
a simple linear projection. In this paper, we choose d =
78 as done by Dwivedi et al. [14]. Graph convolutions are
then applied for L layers, without changing the features’
dimension. After the last layer, a standard mean readout layer
is used after the last layer to obtain an output of size d.

In the particular area inspection problem considered in this
work, the vertex features initially given as input to the GNN
block are 3-dimensional: the first two dimensions encode
the UGV and UAV inspection times (with UAV inspection
time set to 0 in case the vertex belongs to the set F), while
the remaining dimension describes whether a vertex is the
one adjacent to the depot or not with a binary encoding.
Input edge features are instead 2-dimensional and encode
UAV and UGV travel times. However, note that an area
admits two alternative representations: one based on the
original graph G, and one based on the associated complete
(fully-connected) graph where travel times between any two

Fig. 3: GNN for predicting the makespan of multi-robot routing tasks. GNN layers
image taken from [18].

vertices are obtained by computing shortest paths on the
original graph with UAVs and UGVs travel times as weights.
The latter encoding results in more memory occupancy and
longer training times, but avoids the GNN block the need to
recover some of the numerical inputs provided to the routing
MILP, i.e. the travel costs for pairs of vertices not directly
connected by an edge. Therefore, when the environment is
represented as a complete graph, UAV travel times are set
to 0 if any of the adjacent vertices belongs to the set F .
A standard mean readout layer is used after the last layer
to obtain an output of fixed size d. In the remainder of the
paper, we will use “GNN” to denote the estimator obtained
by training the proposed architecture on the original graphs,
and “GNN-C” to denote the estimator obtained by training
on the associated complete graphs.

The Team Encoding block is a simple linear layer with
input size 2, encoding the number of UAVs and UGVs at
disposal.

The MLP block is a Multilayer Perceptron fed with the
concatenation of the outputs of the GNN and Team Encoding
blocks, i.e. an input of size 80. Our current architecture
consists of 2 more hidden layers with size 41 and 20. The
output is 1-dimensional and represents the makespan.

VI. NUMERICAL EXPERIMENTS

We evaluate the proposed hierarchical planning frame-
work via numerical experiments on problems where routing
tasks are defined on two different types of environments.
Regardless of the environment type, we assume that each
task can be assigned to a team of up to five robots. The
experimental campaign consists of two parts. The first part
aims at assessing the performance of different variants of the
network architecture presented in Section V-B. The second
part evaluates the planning framework in its entirety. In all
the experiments, we use the GUROBI MILP solver [19] with
default parameters. The hierarchical planner is run with a
30 minutes timeout, with a deadline of 30 seconds given to
GUROBI to solve the routing MILP. (In all the considered
planning instances, GUROBI was always able to obtain the
optimal solution to the task allocation MILP in less than one
second.) All experiments are run on a computer equipped
with an Intel i7-7740X CPU, an Nvidia GeForce GTX 1080
Ti GPU, and 32 GB of RAM.

A. Grid Graphs

We start by considering routing tasks defined on areas
represented as a grid graphs, an abstraction widely used in

Fig. 4: Grid graphs – Relative errors given by the different estimators on the GNNs test
set. GNN-C denotes the GNN trained on complete graphs. For each team size, from
left to right: GNN, GNN-C, Relaxation, Greedy. The test set makespan distribution is
also shown for reference.

the multi-robot routing literature [5], [6], [10]. In particular,
each area is represented as a 9x9 square grid graph with
holes modeling untraversable locations. In order to generate
environments with a realistic spatial correlation, each area
vertex is associated with a location type by applying random
rectangular “patches” on a 9x9 image representing the 9x9
grid graph, which are then used to denote the presence
of untraversable locations, forested locations, and unfores-
ted locations. Unforested locations can, in turn, represent
“plains” locations or “sandy” locations, with UGVs taking
more time to cover the latter type. Example grid areas are
shown in the leftmost block of the diagram in Fig. 1 and
in Fig. 2. For each area, travel and inspection times are
randomly generated as follows (assuming a generic “time
unit” as unit of measurements):
• UAVs travel time (between two cells): integer randomly

chosen between 5 and 10;
• UGVs travel time: integer randomly chosen between

10 and 20;
• UAVs clear time (one cell): three times its travel time;
• UGVs clear time – plains: four times its travel time;
• UGVs clear time – sand: UGVs clear time – plains

with a random increase between 30 and 50%;
• UGVs clear time – forest: UGVs clear time – plains

with a random increase between 60 and 80%.
1) Grid Graphs – GNN Validation: We curate a dataset

of composed of 6k samples with a 4200 train – 900 valid-
ation – 900 test split, obtained as follows. First, 1000 grid
graphs are generated as discussed above, with a 700 train
– 100 validation – 100 test split; then, for each graph, we
choose randomly 6 subteam configurations for a subteam of
maximum size 5. This is done in order to make sure that the
network will be exposed to the impact on performance given
by different subteams operating on the same graph.

We train different variants of the architecture outlined in
Section V-B following the procedure outline by Diwedi et
al. [14] —with the Mean Absolute Error (MAE) as the
loss function— by considering different combinations of:
number of GNN layers (L = 6 or L = 12), graph type
(original graph or complete version), and types of features
(vertex only or with edge features). In general we observe,
as expected, that increasing the number of layers and the
use of edge features always results in better performance
for a given architecture. We also observe better performance

when training on complete graphs, which however comes
at the expenses of longer training times (3 hours vs. 30
minutes). We select the two GNNs that obtain the best test
MAEs across all those trained on the original graphs and the
complete graphs for the actual planning experiments. These
both have L = 12 GNN layers and use edge features.6

Fig. 4 shows how the chosen network architectures greatly
outperform our two baselines, the MILP relaxation and the
greedy heuristic, on the test set. Note that the greedy error
can also be interpreted as the improvement on the solution
quality obtained by solving the MILP model with the greedy
solution as initial guess, which is quite significant in spite of
the small deadline given to the solver (MIP gaps typically
lie in the range 0-15% and increase with the team size).

2) Grid Graphs – Planner Results: We consider planning
instances where the number of aerial vehicles is set to the
number of areas minus one. This creates challenging prob-
lems, in which the planner has to decide which area(s) should
be left without aerial vehicles, which can cover unforested
areas very efficiently, and which areas should receive extra
ground vehicles. The planner is evaluated with different
estimators: the GNN and GNN-C estimators, the greedy
heuristic estimator, and the MILP relaxation estimator. The
quality of the solutions is compared against the ones of an
optimal baseline that solves the task allocation MILP with
the actual ω function. However, obtaining this function for a
single instance of the experiments reported below could take
more than 2hrs, while the GNN-based estimator, the greedy
estimator, and the MILP relaxation estimator never took more
than 35 seconds, 2 seconds, and 2 minutes, respectively, to
compute ω̂. When summing these times to the time needed
by the anytime hierarchical planner to produce a solution
within 7% of the optimal one, we observed speed-ups of
approximately 16x and 15x on average when the solution was
obtained with the GNN and GNN-C estimators, respectively.

In the first set of experiments, we fix the number of
areas to 10, and study the planner performance for 20, 30,
and 40 robots on 25 randomly generated instances. Fig. 5
shows the optimality loss of the hierarchical planner run with
different estimators at different times, until the 30 minutes
timeout is reached. Looking at the initial optimality loss, i.e.
the optimality loss obtained for the first allocation returned
when Algorithm 1 is run for the first time, we observe
generally better performance for the GNN, GNN-C, and
MILP relaxation estimators compared to the greedy one.
All these estimators already provide near-optimal solutions
for teams of 20 robots, and GNN-C also provides them for
teams of 30 robots. Interestingly, the relaxation estimator
provides better results than the GNN-based ones initially for
teams of 40 robots — a perhaps surprising result since GNNs
are able to better approximate ω (see again Fig. 4). This

6We also trained architectures with L = 12 on smaller training sets
containing 500 and 600 graphs. Increasing the number of graphs from 500
to 600 had a very limited impact on the networks performance. Instead,
when moving from 600 to 700 graphs, we observed in all cases but one
(vertex only features) a significant improvement in performance (between
10% and 25%, averaged across 4 different random seeds).

Fig. 5: Grid graphs – planner results: varying the team size (20, 30, 40 robots) for a fixed number of areas (10). Results are shown as traditional box plots (circles represent
outliers). For each team size, from left to right: GNN, GNN-C, Relaxation, Greedy.

happens because the MILP relaxation estimates are still able
to capture well the impact of the addition/removal of robots
to the team across different areas in spite of a consistent (and
often significant) underestimation of the makespan. At 10
minutes, both GNN-based estimators now provide optimal or
near-optimal solutions in the majority of cases, and in general
slightly better results than the MILP relaxation estimator for
40 robots. Letting the planner run for 20 and 30 minutes
leads to more and more instances solved to optimality by
the GNN, GNN-C, and MILP relaxation estimators, as well
as to an increase in the quality of the solutions provided by
the greedy estimator.

In the second set of experiments, we fix the number of
robots to 40, and study the planner performance for problems
containing 10, 15, and 20 areas, again on 25 randomly
generated instances. Due to space constraints, plots are not
shown. We observe results consistent with the ones above.
The GNN and MILP relaxation estimators still provide a
significantly better performance than the greedy one. We
observe that increasing the number of areas does not seem
to have a significant impact on the ability to produce quality
solutions and to converge to the optimal ones for the GNN-
based and MILP relaxation estimators.

B. Polypixel Environment

We also consider planning instances built as an abstrac-
tion of a complex simulated environment dubbed Polypixel,
shown in Figure 6. In this case, we assume that a map of the
environment is given in advance, with a number of potential
locations in each area where inspections will be carried out.
The actual inspection locations (top left area: between 20 and
40; top right area: between 30 and 50; bottom area: between
20 and 40) will however be revealed only at planning time.
In this case, areas are directly represented with the associated
complete graphs, with travel times obtained by assuming that
UGVs move at a speed of 5 m/s, while UAVs at 10 m/s.
Inspections always take UAVs 5 seconds, while UGVs take
10 seconds to inspect an unforested location and 20 or 30
seconds to inspect a forested one.

1) Polypixel – GNN Validation: We curate a dataset com-
posed of 6300 samples with a 4140 train - 1080 validation -
1080 test split, obtained by randomly sampling 350 graphs
from each area and 6 subteams configurations for a subteam
of maximum size 5 for each graph. We train different

Fig. 6: The Polypixel environment (2.5 × 3.3 Km2), which has been divided into three
areas of interest (yellow). Blue squares: forested locations, pink circles: unforested
locations. Red star: entry point (unforested).

Fig. 7: Polypixel – relative errors given by the different estimators on the GNNs test
set. For each team size, from left to right: GNN-C, Relaxation, Greedy. The test set
makespan distribution is also shown for reference.

GNN variants (on complete graphs only) as discussed in
Section VI-A.1. More layers and the usage of edge features
have a moderate impact due to the uniformity of the instances
obtained from the same area. The best network overall is
one with L = 12 and edge features, whose error on the
test set is shown in Fig. 7. This is used for the planning
experiments below. Interestingly, this network was also able
to provide reasonable estimates on graphs drawn from a
different distribution obtained by arranging a new set of
vertices in a triangle shape in the same three areas: the
average estimation error never exceeded 16%.

2) Polypixel – Planner Results: We create a set of 25
instances containing 12 areas in total, obtained by randomly
drawing 4 different sets of locations for each area. The initial
optimality loss and the one obtained at 15 minutes for teams
of 25, 35, and 45 robots, with a number of UAVs fixed to 11
(number of areas minus one, as above), are shown in Fig. 8.
This time, the GNN-C estimator provides significantly better
results than both the MILP relaxation and greedy ones for

Fig. 8: Polypixel – planner results: varying the team size (25, 35, 45) for a fixed number
of areas (12). For each team size, from left to right: GNN-C, Relaxation, Greedy.

the first computed allocation. Differently from the results
obtained on grid instances, for teams of 35 and 45 robots the
greedy estimator is now showing better performance than the
MILP relaxation one. At 15 minutes, both the GNN-C and
MILP relaxation estimators provide optimal or near-optimal
solutions for teams of 25 and 35 robots. However, for teams
of 45 robots, the MILP relaxation estimator still provides
solutions whose objectives are more typically more than 10%
far from the optimal one, while all the solutions provided
by the GNN-C estimator are within 7% of the optimal one.
Contrarily to the MILP relaxation and greedy estimators,
the GNN-C estimator is able to offer strong performance in
both the considered classes of environments. In the Polypixel
instances, the GNN-C estimator was also able to provide a
solution with an objective within 7% of the optimal one with
an approximately 18x speed-up on average w.r.t. the optimal,
non-hierarchical baseline.

VII. CONCLUSIONS

We have presented a hierarchical planner for multi-robot
task allocation problems, where tasks are defined as routing
problems that have to be solved with subteams of robots.
We have proposed a GNN architecture able to compute
reasonably accurate estimates of allocation costs given by a
MILP solution approach applied to a multi-robot heterogen-
eous area inspection problem. The proposed planner enables
the efficient computation of quality plans in routing task
allocation problems with up to 45 robots and 20 areas. Our
planner can effectively deal with static allocation problems,
but is not capable of reasoning about possible temporal
constraints between routing tasks. The ability to leverage
the same kind of high-level actions in this context remains
a promising avenue for future research.

APPENDIX
TASK ALLOCATION MILP DETAILS

Constraints (7)-(8) can be expressed by a combination of
three linear constraints with the help of two auxiliary binary
variables as follows. Let η, θ be the auxiliary variables, and
let c be a constant such that 0 < c ≤ 1. Taking constraint
(7) as an example:

αt ≥ iγt
i + (i+ c)η (13)

αt ≤ iγt
i +min(n,B)η + (i− c)θ (14)

γt
i + η + θ = 1. (15)

The product enforced by constraint (9) can also be ex-
pressed with three linear constraints:

ϵtij ≤ γt
i (16)

ϵtij ≤ δtj (17)

ϵtij ≥ γt
i + δtj − 1. (18)

REFERENCES

[1] B. P. Gerkey and M. J. Matarić, “A formal analysis and taxonomy of
task allocation in multi-robot systems,” Int J Robot Res, vol. 23, no. 9,
pp. 939–954, 2004.

[2] E. Balas and M. W. Padberg, “Set partitioning: A survey,” SIAM
Review, vol. 18, no. 4, pp. 710–760, 1976.

[3] G. A. Korsah, A. Stentz, and M. B. Dias, “A comprehensive taxonomy
for multi-robot task allocation,” Int J Robot Res, vol. 32, no. 12, pp.
1495–1512, 2013.

[4] P. Toth and D. Vigo, The vehicle routing problem. SIAM, 2002.
[5] E. Feo-Flushing, L. M. Gambardella, and G. A. Di Caro, “Spatially-

distributed missions with heterogeneous multi-robot teams,” IEEE
Access, vol. 9, 2021.

[6] J. Yu, M. Schwager, and D. Rus, “Correlated orienteering problem and
its application to persistent monitoring tasks,” IEEE T Robot, vol. 32,
no. 5, pp. 1106–1118, 2016.

[7] B. Gilhuly and S. L. Smith, “Robotic coverage for continuous mapping
ahead of a moving vehicle,” in Proc. CDC, 2019, pp. 8224–8229.

[8] T. C. Thayer, S. Vougioukas, K. Goldberg, and S. Carpin, “Multi-robot
routing algorithms for robots operating in vineyards,” in Proc. CASE,
2018, pp. 14–21.

[9] N. Kamra and N. Ayanian, “A mixed integer programming model for
timed deliveries in multirobot systems,” in Proc. CASE, 2015, pp.
612–617.

[10] J. Yu and S. M. LaValle, “Optimal multirobot path planning on graphs:
Complete algorithms and effective heuristics,” IEEE T Robot, vol. 32,
no. 5, pp. 1163–1177, 2016.

[11] P. Oberlin, S. Rathinam, and S. Darbha, “A transformation for a
heterogeneous, multiple depot, multiple traveling salesman problem,”
in Proc. ACC, 2009, pp. 1292–1297.

[12] A. Prasad, S. Sundaram, and H.-L. Choi, “Min-max tours for task
allocation to heterogeneous agents,” in Proc. CDC, 2018, pp. 1706–
1711.

[13] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A
comprehensive survey on graph neural networks,” IEEE T Neur Net
Lear, vol. 32, no. 1, pp. 4–24, 2021.

[14] V. P. Dwivedi, C. K. Joshi, T. Laurent, Y. Bengio, and
X. Bresson, “Benchmarking graph neural networks,” arXiv preprint
arXiv:2003.00982, 2020.

[15] Z. Wang and M. Gombolay, “Learning scheduling policies for multi-
robot coordination with graph attention networks,” IEEE Robotics and
Automation Letters, vol. 5, no. 3, pp. 4509–4516, 2020.

[16] T. Bektas, “The multiple traveling salesman problem: an overview
of formulations and solution procedures,” Omega, vol. 34, no. 3, pp.
209–219, 2006.

[17] X. Bresson and T. Laurent, “An experimental study of neural networks
for variable graphs,” in ICLR Workshop Track, 2018.

[18] C. K. Joshi, T. Laurent, and X. Bresson, “An efficient graph convolu-
tional network technique for the travelling salesman problem,” arXiv
preprint arXiv:1906.01227, 2019.

[19] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,”
2021. [Online]. Available: https://www.gurobi.com

