
Auton Robot (2013) 35:51–76
DOI 10.1007/s10514-013-9334-3

Probabilistically safe motion planning to avoid dynamic obstacles
with uncertain motion patterns

Georges S. Aoude · Brandon D. Luders ·
Joshua M. Joseph · Nicholas Roy · Jonathan P. How

Received: 1 August 2011 / Accepted: 4 April 2013 / Published online: 3 May 2013
© Springer Science+Business Media New York 2013

Abstract This paper presents a real-time path
planning algorithm that guarantees probabilistic feasibility
for autonomous robots with uncertain dynamics operating
amidst one or more dynamic obstacles with uncertain motion
patterns. Planning safe trajectories under such conditions
requires both accurate prediction and proper integration of
future obstacle behavior within the planner. Given that avail-
able observation data is limited, the motion model must pro-
vide generalizable predictions that satisfy dynamic and envi-
ronmental constraints, a limitation of existing approaches.
This work presents a novel solution, named RR-GP, which
builds a learned motion pattern model by combining the flexi-
bility of Gaussian processes (GP) with the efficiency of RRT-

Electronic supplementary material The online version of this
article (doi:10.1007/s10514-013-9334-3) contains supplementary
material, which is available to authorized users.

G. S. Aoude (B)· B. D. Luders
Massachusetts Institute of Technology, Room 41-105,
77 Massachusetts Avenue, Cambridge, MA, USA
e-mail: gaoude@alum.mit.edu

B. D. Luders
e-mail: luders@mit.edu

J. M. Joseph
Massachusetts Institute of Technology, Room 32-331,
77 Massachusetts Avenue, Cambridge, MA, USA
e-mail: jmjoseph@mit.edu

N. Roy
Massachusetts Institute of Technology, Room 33-315,
77 Massachusetts Avenue, Cambridge, MA, USA
e-mail: nickroy@mit.edu

J. P. How
Massachusetts Institute of Technology, Room 33-326, 77 Massachusetts
Avenue, Cambridge, MA, USA
e-mail: jhow@mit.edu

Reach, a sampling-based reachability computation. Obstacle
trajectory GP predictions are conditioned on dynamically
feasible paths identified from the reachability analysis, yield-
ing more accurate predictions of future behavior. RR-GP
predictions are integrated with a robust path planner, using
chance-constrained RRT, to identify probabilistically feasi-
ble paths. Theoretical guarantees of probabilistic feasibility
are shown for linear systems under Gaussian uncertainty;
approximations for nonlinear dynamics and/or non-Gaussian
uncertainty are also presented. Simulations demonstrate that,
with this planner, an autonomous vehicle can safely navi-
gate a complex environment in real-time while significantly
reducing the risk of collisions with dynamic obstacles.

Keywords Planning under uncertainty · Trajectory
prediction · Gaussian processes

1 Introduction

To operate safely in stochastic environments, it is crucial
for agents to be able to plan in real-time in the presence
of uncertainty. However, the nature of such environments
often precludes the existence of guaranteed-safe, collision-
free paths. Therefore, this work considers probabilistically
safe planning, in which paths must be able to satisfy all con-
straints with a user-mandated minimum probability. A major
challenge in safely navigating such environments is how to
properly address the multiple sources of external uncertainty,
often classified as environment sensing (ES) and environment
predictability (EP) (Lavalle and Sharma 1997). Under this
partition, ES uncertainties might be attributable to imperfect
sensor measurements or incomplete knowledge of the envi-
ronment, while EP uncertainties address limited knowledge
of the future state of the environment. This work focuses on

123

http://dx.doi.org/10.1007/s10514-013-9334-3

52 Auton Robot (2013) 35:51–76

addressing robustness to EP uncertainty, a key challenge for
existing path planning approaches (Melchior and Simmons
2007; Fulgenzi et al. 2008; Leonard et al. 2008; Aoude et al.
2010c).

More specifically, this paper considers the problem of
probabilistically safe motion planning to avoid one or more
dynamic obstacles with uncertain motion patterns. While
existing probabilistic planning frameworks can readily admit
dynamic obstacles (Thrun et al. 2005; LaValle 2006), such
objects typically demonstrate complex motion patterns in
real-world domains, making them difficult to model and pre-
dict. For instance, to reliably traverse a busy intersection,
an autonomous vehicle would need to predict the underly-
ing intents of the surrounding vehicles (e.g. turning right vs.
going straight), in addition to estimating the possible trajecto-
ries corresponding to each intent. Even with perfect sensors,
accurately predicting possible variations in the long-term tra-
jectories of other mobile agents remains a difficult problem.

One of the main objectives of this work is to accurately
model and predict the future behavior of dynamic obstacles
in structured environments, such that an autonomous agent
can identify trajectories which safely avoid such obstacles. In
order to provide long-term trajectory predictions, this work
uses pattern-based approaches for modeling the evolution
of dynamic obstacles, including clustering of observations
(Sect. 2). Such algorithms group previously-observed trajec-
tories into clusters, with each represented by a single tra-
jectory prototype (Bennewitz et al. 2005); predictions are
then performed by comparing the partial path to each pro-
totype. While this reduces the dependence on expert knowl-
edge, selecting a model which is sufficiently representative
of the behavior without over-fitting remains a key challenge.

In previous work (Joseph et al. 2010, 2011), the authors
presented a Bayesian nonparametric approach for modeling
dynamic obstacles with unknown motion patterns. This non-
parametric model, a mixture of Gaussian processes (GP),
generalizes well from small amounts of data and allows the
model to capture complex trajectories as more data is col-
lected. However, in practice, GPs suffer from two intercon-
nected shortcomings: their high computational cost and their
inability to embed static feasibility or vehicle dynamical con-
straints. To address both problems simultaneously, this work
introduces the RR-GP algorithm, a clustering-based trajec-
tory prediction solution which uses Bayesian nonparametric
reachability trees to improve the original GP prediction. Sim-
ilar to GPs, RR-GP is a data-driven approach, using observed
past trajectories of the dynamic obstacles to learn a motion
pattern model. By conditioning the obstacle trajectory pre-
dictions obtained via GPs on a reachability-based simulation
of dynamically feasible paths (Aoude et al. 2011), RR-GP
yields a more accurate prediction of future behavior.

The other main objective of this paper is to demonstrate
that through appropriate choice of planner, an autonomous

agent can utilize RR-GP predictions to identify and execute
probabilistically feasible paths in real-time, in the presence of
uncertain dynamic obstacles. This agent is subject to limiting
dynamical constraints, such as minimum turning rates, accel-
eration bounds, and/or high speeds. This work proposes a
real-time path planning framework using chance-constrained
rapidly exploring random trees, or chance constrained RRTs
(CC-RRT) (Luders et al. 2010b), to guarantee probabilistic
feasibility with respect to the dynamic obstacles and other
constraints. CC-RRT extends previously-developed chance
constraint formulations (Blackmore et al. 2006; Calafiore
and Ghaoui 2007), which efficiently evaluate bounds on
the risk of constraint violation at each timestep, to incor-
porate an RRT-based framework. By applying RRT to solve
this risk-constrained planning problem, this planning algo-
rithm is able to rapidly identify probabilistically safe tra-
jectories online in a dynamic and constrained environment.
As a sampling-based algorithm (LaValle 2006), RRT incre-
mentally constructs trajectories which satisfy all problem
constraints, including the probabilistic feasibility guarantees,
and thus scales favorably with problem complexity.

The proposed planning algorithm tightly integrates CC-
RRT with the RR-GP algorithm, which provides a likelihood
and time-varying Gaussian state distribution for each possi-
ble behavior of a dynamic obstacle at each future timestep.
This work shows that probabilistic feasibility can be guaran-
teed for a linear system subject to such uncertainty. An alter-
native, particle-based approximation which admits the use of
nonlinear dynamics and/or non-Gaussian uncertainty is also
presented. Though this alternative can only approximate the
feasibility guarantees, it avoids the conservatism needed to
establish them theoretically. While this work focuses on inter-
section collision avoidance, the proposed algorithm can be
applied to a variety of structured domains, such as mid-air
collision avoidance and military applications.

After Sect. 2 presents related work, preliminaries are pro-
vided in Sect. 3, which establishes the problem statement, and
Sect. 4, which reviews the GP-based motion pattern modeling
approach. Section 5 presents the RR-GP algorithm, with sim-
ulation results demonstrating its effectiveness in Sect. 6. Sec-
tion 7 extends the CC-RRT framework to integrate RR-GP
trajectory predictions, allowing dynamic obstacles with mul-
tiple possible behaviors. Finally, Sect. 8 presents simulation
results, which demonstrate the ability of the fully-integrated
algorithm to significantly reduce the risk of collisions with
dynamic obstacles.

2 Related work

Modeling the evolution of dynamic obstacles can be classi-
fied into three main categories: (1) worst-case, (2) dynamic-
based, and (3) pattern-based approaches (Lachner 1997;

123

Auton Robot (2013) 35:51–76 53

Mazor et al. 2002; Vasquez et al. 2008). In the worst-case
approach, the dynamic obstacle is assumed to be actively
trying to collide with the planning agent, or “host vehicle”
(Miloh and Sharma 1976; Lachner 1997). The predicted tra-
jectory of the dynamic obstacle is the solution of a differen-
tial game, where the dynamic obstacle is modeled as a pur-
suer and the host vehicle as an evader (Aoude et al. 2010a).
Despite providing a lower bound on safety, such solutions are
inherently conservative, and thus limited to short time hori-
zons in collision warning/mitigation problems to keep the
level of false positives below a reasonable threshold (Kuchar
and Yang 2002).

The dynamic-based approach predicts an obstacle’s future
trajectory by propagating its dynamics forward in time, based
on its current state and an assumed fixed mode of opera-
tion. This prediction typically uses a continuous Bayes filter,
such as the Kalman filter or its variations (Sorenson 1985).
A popular extension in the target tracking literature is the
Interacting Multiple Model Kalman filter, which matches
the obstacle’s current mode of operation from among a
bank of continuously-updated Kalman filters (Mazor et al.
2002). Though useful for short-term prediction, dynamic-
based approaches tend to perform poorly in the long-term
prediction of trajectories, due to their inability to model future
changes in control inputs or external factors.

In the pattern-based approach, such as the one used in
this work, target obstacles are assumed to move according to
typical patterns across the environment, learned via previous
observation of the targets. There are two main techniques that
fall under this category, discrete state-space techniques and
clustering-based techniques. In the discrete state-space tech-
nique, the motion model is developed via Markov chains;
the object state evolves from one state to another accord-
ing to a learned transition probability (Zhu 2002). In the
clustering-based technique, previously-observed trajectories
are grouped into different clusters, with each represented by
a single trajectory prototype (Bennewitz et al. 2005). Given a
partial path, prediction is then performed by finding the most
likely cluster, or computing a probability distribution over the
different clusters. Both pattern-based techniques have proven
popular in solving long-term prediction problems for mobile
agents (Fulgenzi et al. 2008; Vasquez et al. 2008). How-
ever, discrete state-space techniques can often suffer from
over-fitting for discretizations of sufficient resolution, unlike
clustering-based techniques (Joseph et al. 2011).

Many existing approaches in the literature seek to emu-
late human-like navigation in crowded environments, where
obstacle density is high and interaction between agents and
obstacles can significantly influence behavior. Trautman and
Krause (2010) use GPs to model interactions between the
agent and dynamic obstacles present in the environment.
Althoff et al. (2011) use Monte Carlo sampling to estimate
inevitable collision states probabilistically, while Henry et al.

(2010) apply inverse reinforcement learning for human-like
behavior. By contrast, our algorithm considers constrained,
often non-holonomic agents operating in structured environ-
ments, where encounters with dynamic obstacles are less fre-
quent but more heavily constrained. The proposed algorithm
is similar to Fulgenzi et al. (2008), which uses GPs to model
moving obstacles in an RRT path planner; however, Fulgenzi
et al. (2008) relies solely on GPs for its modeling, which can
lead to less accurate prediction, and uses heuristics to assess
path safety.

While several approaches have been previously pro-
posed for path planning with probabilistic constraints, the
approach developed in this work does not rely on the use
of an optimization-based framework (Blackmore et al. 2006;
Calafiore and Ghaoui 2007). While such optimizations have
been demonstrated for real-time path planning, they lack the
scalability with respect to problem complexity inherent to
sampling-based algorithms, a crucial consideration in com-
plex and dynamic environments. For example, MILP-based
optimizations—NP-hard in the number of binary variables
(Garey and Johnson 1979)—tend to scale poorly in the num-
ber of obstacles and timesteps, resulting in many approaches
being proposed specifically to overcome MILP’s computa-
tional limits (Earl and D’Andrea 2005; Vitus et al. 2008; Ding
et al. 2011). Because sampling-based algorithms such as CC-
RRT perform trajectory-wise constraint checking, they avoid
these scalability concerns—feasible solutions can typically
be quickly identified even in the presence of many obsta-
cles, and observed changes in the environment. The trade-off
is that such paths do not satisfy any optimality guarantees,
though performance will improve as more sampled trajecto-
ries are made available. Extensions such as RRT� (Karaman
and Frazzoli 2009) can provide asymptotic optimality guar-
antees, with the trade-off of requiring additional per-node
computation (in particular, a steering method).

CC-RRT primarily assesses the probabilistic feasibility at
each timestep, rather than over the entire path. Because of the
dynamics, the uncertainty is correlated, and thus the probabil-
ity of path feasibility cannot be approximated by assuming
independence between timesteps. While path-wise bounds
on constraint violation can be established by evenly allocat-
ing risk margin across all obstacles and timesteps (Blackmore
2006), this allocation significantly increases planning conser-
vatism, rendering the approach intractable for most practical
scenarios. Though this allocation could also be applied to
CC-RRT by bounding the timestep horizon length, it is not
pursued further in this work.

This work also proposes an alternative, particle-based
approximation of the uncertainty within CC-RRT, assessing
path feasibility based on the fraction of feasible particles.
Both the approaches of Blackmore et al. (2010) and par-
ticle CC-RRT (PCC-RRT) are able to admit non-Gaussian
probability distributions and approximate path feasibility,

123

54 Auton Robot (2013) 35:51–76

without the conservatism introduced by bounding risk. The
optimization-versus-sampling considerations here are the
same as noted above; as a sampling-based algorithm, PCC-
RRT can also admit nonlinear dynamics without an apprecia-
ble increase in complexity. While the particle-based CC-RRT
algorithm is similar to the work developed in Melchior and
Simmons (2007), the former is generalizable both in the types
of probabilistic feasibility that are assessed (timestep-wise
and path-wise) and in the types of uncertainty that are mod-
eled using particles. This framework can be extended to con-
sider hybrid combinations of particle-based and distribution-
based uncertainty, though this may limit the ability to assess
path-wise infeasibility. Furthermore, by not clustering par-
ticles, a one-to-one mapping between inputs and nodes is
maintained.

3 Problem statement

Consider a discrete-time linear time-invariant system with
process noise,

xt+1 = Axt + But + wt , (1)

x0 ∼ N (x̂0, Px0), (2)

wt ∼ N (0, Pwt), (3)

where xt ∈ R
nx is the state vector, ut ∈ R

nu is the input
vector, and wt ∈ R

nx is a disturbance vector acting on the
system; N (â, Pa) represents a random variable whose prob-
ability distribution is Gaussian with mean â and covariance
Pa . The i.i.d. random variableswt are unknown at current and
future timesteps, but have the known probability distribution
Eq. (3) (Pwt ≡ Pw ∀ t). Equation (2) represents Gaussian
uncertainty in the initial state x0, corresponding to uncer-
tain localization; Eq. (3) represents a zero-mean, Gaussian
process noise, which may correspond to model uncertainty,
external disturbances, and/or other factors.

The system is subject to the state and input constraints

xt ∈ Xt ≡ X − Xt1 − · · · − Xt B, (4)

ut ∈ U , (5)

where X ,Xt1, . . . ,Xt B ⊂ R
nx are convex polyhedra, U ⊂

R
nu , and the − operator denotes set subtraction. The set X

defines a set of time-invariant convex constraints acting on the
state, while Xt1, . . . ,Xt B represent B convex, possibly time-
varying obstacles to be avoided. Observations of dynamic
obstacles are assumed to be available, such as through a
vehicle-to-vehicle or vehicle-to-infrastructure system.

For each obstacle, the shape and orientation are assumed
known, while the placement is uncertain:

Xt j = X 0
j + ct j , ∀ j ∈ Z1,B, ∀ t, (6)

ct j ∼ p(ct j) ∀ j ∈ Z1,B, ∀ t, (7)

where the + operator denotes set translation and Za,b rep-
resents the set of integers between a and b inclusive. In this
model, X 0

j ⊂ R
nx is a convex polyhedron of known, fixed

shape, while ct j ∈ R
nx is an uncertain and possibly time-

varying translation represented by the probability distribu-
tion p(ct j). This can represent both environmental sensing
uncertainty (Luders et al. 2010b) and environmental pre-
dictability uncertainty (e.g. dynamic obstacles), as long as
future state distributions are known (Sect. 7.2).

The objective of the planning problem is to reach the goal
region Xgoal ⊂ R

nx in minimum time,

tgoal = inf{t ∈ Z0,t f | xt ∈ Xgoal}, (8)

while ensuring the constraints in Eqs. (4–5) are satisfied at
each timestep t ∈ {0, . . . , tgoal} with probability of at least
psafe. In practice, due to state uncertainty, it is assumed suffi-
cient for the distribution mean to reach the goal region Xgoal.
A penalty function ψ(xt ,Xt ,U) may also be incorporated.

Problem 1 Given the initial state distribution (x̂0, Px0) and
constraint sets Xt and U , compute the input control sequence
ut , t ∈ Z0,t f , t f ∈ Z0,∞ that minimizes

J (u) = tgoal +
tgoal∑

t=0

ψ(xt ,Xt ,U) (9)

while satisfying Eq. (1) for all timesteps t ∈ {0, . . . , tgoal}
and Eqs. (4–5) at each timestep t ∈ {0, . . . , tgoal} with prob-
ability of at least psafe. �	

3.1 Motion pattern

A motion pattern is defined here as a mapping from states
to a distribution over trajectory derivatives.1 In this work,
motion patterns are used to represent dynamic obstacles, also
referred to as agents. Given an agent’s position (xt , yt) and
trajectory derivative (�xt

�t ,
�yt
�t), its predicted next position

(xt+1, yt+1) is (xt + �xt
�t �t, yt + �yt

�t �t). Thus, modeling
trajectory derivatives is sufficient for modeling trajectories.
By modeling motion patterns as flow fields rather than sin-
gle paths, the approach is independent of the lengths and
discretizations of the trajectories.

1 The choice of �t determines the time scales on which an agent’s
next position can be accurately predicted, making trajectory derivatives
more useful than instantaneous velocity.

123

Auton Robot (2013) 35:51–76 55

3.2 Mixtures of motion patterns

The finite mixture model2 defines a distribution over the i th
observed trajectory t i . This distribution is written as

p(t i) =
M∑

j=1

p(b j)p(t
i |b j), (10)

where b j is the j th motion pattern and p(b j) is its prior
probability. It is assumed the number of motion patterns, M ,
is known a priori based on prior observations, and may be
identified by the operator or through an automated clustering
process (Joseph et al. 2011).

4 Motion model

The motion model is defined as the mixture of weighted
motion patterns (10). Each motion pattern is weighted by its
probability and is modeled by a pair of Gaussian processes
mapping (x, y) locations to distributions over trajectory
derivatives �x

�t and �y
�t . This motion model has been previ-

ously presented in Aoude et al. (2011), Joseph et al. (2011);
Sects. 4.1 and 4.2 briefly review the approach.

4.1 Gaussian process motion patterns

This section describes the model for p(t i |b j) from Eq. (10),
the probability of trajectory t i given motion pattern b j . This
model is the distribution over trajectories expected for a given
mobility pattern.

There are a variety of models that can be chosen to repre-
sent these distributions. A simple example is a linear model
with Gaussian noise, but this approach cannot capture the
dynamics of the variety expected in this work. Discrete
Markov models are also commonly used, but are not well-
suited to model mobile agents in the types of real-world
domains of interest here, particularly due to challenges in
choosing the discretization (Tay and Laugier 2007; Joseph
et al. 2010, 2011). To fully represent the variety of trajectories
that might be encountered, a fine discretization is required.
However, such a model either requires a large amount of
training data, which is costly or impractical in real-world
domains, or is prone to over-fitting. A coarser discretization
can be used to prevent over-fitting, but may be unable to
accurately capture the agent’s dynamics.

This work uses GP as the model for motion patterns.
Although GPs have a significant mathematical and computa-
tional cost, they provide a natural balance between general-
ization in regions with sparse data and avoidance of overfit-

2 Throughout the paper, a t with a superscript refers to a trajectory,
while a t without a superscript refers to a time value.

ting in regions of dense data (Rasmussen and Williams 2005).
GP models are extremely robust to unaligned, noisy mea-
surements and are well-suited for modeling the continuous
paths underlying potentially non-uniform time-series sam-
ples of the agent’s locations. Trajectory observations are dis-
crete measurements from its continuous path through space;
a GP places a distribution over functions, serving as a non-
parametric form of interpolation between these discrete mea-
surements.

After observing an agent’s trajectory t i , the posterior prob-
ability of the j th motion pattern is

p(b j |t i) ∝ p(t i |b j)p(b j), (11)

where p(b j) is the prior probability of motion pattern b j

and p(t i |b j) is the probability of trajectory t i under b j . This
distribution, p(t i |b j), is computed by

p(t i |b j) =
Li∏

t=0

p

(
�xt

�t

∣∣∣∣ xi
0:t , yi

0:t , {tk : zk = j}, θG P
x, j

)

·p
(
�yt

�t

∣∣∣∣ xi
0:t , yi

0:t , {tk : zk = j}, θG P
y, j

)
,(12)

where Li is the length of trajectory t i , zk indicates the motion
pattern trajectory tk is assigned to, {tk : zk = j} is the set
of all trajectories assigned to motion pattern j , and θG P

x, j and

θG P
y, j are the hyperparameters of the Gaussian process for

motion pattern b j .
A motion pattern’s GP is specified by a set of mean

and covariance functions. The mean functions are written
as E

[
�x
�t

]
= μx (x, y) and E

[
�y
�t

]
= μy(x, y), both of

which are implicitly initialized to zero for all x and y by the
choice of parametrization of the covariance function. This
encodes the prior bias that, without any additional knowl-
edge, the target is expected to stay in the same place. The
“true” covariance function of the x-direction is denoted by
Kx (x, y, x ′, y′), which describes the correlation between tra-
jectory derivatives at two points, (x, y) and (x ′, y′). Given
locations (x1, y1, . . . , xk, yk), the corresponding trajectory

derivatives
(
�x1
�t , . . . ,

�xk
�t

)
are jointly distributed accord-

ing to a Gaussian with mean {μx (x1, y1), . . . , μx (xk, yk)}
and covariance �, where the �i j = Kx (xi , yi , x j , y j). This
work uses the squared exponential covariance function

Kx (x, y, x ′, y′) = σ 2
x exp

(
− (x − x ′)2

2wx
2 − (y − y′)2

2wy
2

)

+σ 2
n δ(x, y, x ′, y′), (13)

where δ(x, y, x ′, y′) = 1 if x = x ′ and y = y′ and zero
otherwise. The exponential term encodes that similar trajec-
tories should make similar predictions, while the length-scale
parameterswx andwy normalize for the scale of the data. The
σn-term represents within-point variation (e.g., due to noisy

123

56 Auton Robot (2013) 35:51–76

measurements); the ratio of σn and σx weights the relative
effects of noise and influences from nearby points. Here θG P

x, j
is used to refer to the set of hyperparameters σx , σn , wx , and
wy associated with motion pattern b j (each motion pattern
has a separate set of hyperparameters). While the covariance
is written above for two dimensions, it can easily be gener-
alized to higher dimensional problems.

For a GP over trajectory derivatives trained with tuples(
xk, yk,

�xk
�t

)
, the predictive distribution over the trajectory

derivative �x
�t
∗

for a new point (x∗, y∗) is given by

μ�x
�t
∗ = Kx(x

∗,y∗,X,Y)Kx(X,Y,X,Y)
−1�X

�t
,

σ 2
�x
�t
∗ = Kx(x

∗,y∗,X,Y)Kx(X,Y,X,Y)
−1 Kx(X,Y,x

∗,y∗), (14)

where the expression Kx (X,Y, X,Y) is shorthand for the
covariance matrix � with terms �i j = Kx (xi , yi , x j , y j),
with {X,Y } representing the previous trajectory points. The
equations for �y

�t
∗

are equivalent to those above, using the
covariance Ky .

In Eq. (12), the likelihood is assumed to be decoupled, and
hence independent, in each position coordinate. This enables
decoupled GPs to be used for the trajectory position in each
coordinate, dramatically reducing the required computation,
and is assumed in subsequent developments. While the algo-
rithm permits the use of correlated GPs, the resulting increase
in modeling complexity is generally intractable for real-time
operation. Simulation results (Sect. 8) demonstrate that the
decoupled GPs provide a sufficiently accurate approxima-
tion of the correlated GP to achieve meaningful predictions
of future trajectories.

4.2 Estimating future trajectories

The Gaussian process motion model can be used to cal-
culate the Gaussian distribution over trajectory derivatives(
�x
�t ,

�y
�t

)
for every location (x, y) using Eq. (14). This dis-

tribution over the agent’s next location can be used to gen-
erate longer-term predictions over future trajectories, but not
in closed form. Instead, the proposed approach is to draw
trajectory samples to be used for the future trajectory distri-
bution.

To sample a trajectory from a current starting location

(x0, y0), first a trajectory derivative
(
�x0
�t ,

�y0
�t

)
is sampled

to calculate the agent’s next location (x1, y1). Starting from

(x1, y1), the trajectory derivative
(
�x1
�t ,

�y1
�t

)
is sampled to

calculate the agent’s next location (x2, y2). This process is
repeated until the trajectory is of the desired length L . The
entire sampling procedure is then repeated from (x0, y0)mul-
tiple times to obtain a set of possible future trajectories. Given
a current location (xt , yt) and a given motion pattern b j ,
the agent’s predicted position K timesteps into the future is

computed as

p(xt+K , yt+K |xt , yt , b j)

=
K−1∏

k=0

p(xt+k+1, yt+k+1|xt+k, yt+k, b j)

=
K−1∏

k=0

p

(
�xt+k+1

�t
,
�yt+k+1

�t

∣∣∣∣ xt+k, yt+k, b j

)

=
K−1∏

k=0

p

(
�xt+k+1

�t

∣∣∣∣ xt+k, yt+k, b j

)

· p

(
�yt+k+1

�t

∣∣∣∣ xt+k, yt+k, b j

)

=
K−1∏

k=0

N
(

xt+k+1;μ j,
�xt+k+1

�t
, σ 2

j,
�xt+k+1

�t

)

·N
(

yt+k+1;μ j,
�yt+k+1

�t
, σ 2

j,
�yt+k+1

�t

)
, (15)

where the Gaussian distribution parameters are calculated
using Eq. (14). When this process is done online, the trajec-
tory’s motion pattern b j will not be known directly. Given
the past observed trajectory (x0, y0), . . . , (xt , yt), the dis-
tribution can be calculated K timesteps into the future by
combining Eqs. (10) and (15).

Formally,

p(xt+K , yt+K |x0:t , y0:t)

=
M∑

j=1

p(xt+K , yt+K |x0:t , y0:t , b j)p(b j |x0:t , y0:t) (16)

=
M∑

j=1

p(xt+K , yt+K |xt , yt , b j)p(b j |x0:t , y0:t), (17)

where p(b j |x0:t , y0:t) is the probability of motion pattern b j

given the observed portion of the trajectory. The progres-
sion from Eq. (16) to Eq. (17) is based on the assumption
that, given b j , the trajectory’s history provides no additional
information about the future location of the agent (Joseph
et al. 2010, 2011).

The GP motion model over trajectory derivatives in this
paper gives a Gaussian distribution over possible target loca-
tions at each timestep. While samples drawn from this pro-
cedure are an accurate representation of the posterior over
trajectories, sampling N1 trajectories N2 steps in the future
requires N1 × N2 queries to the GP. It also does not take
advantage of the unimodal, Gaussian distributions being used
to model the trajectory derivatives. By using the approach of
Girard et al. (2003) and Deisenroth et al. (2009), which pro-
vides a fast, analytic approximation of the GP output given
the input distribution, future trajectories are efficiently pre-
dicted in this work. In particular, given the inputs of a dis-
tribution on the target position at time t , and a distribution

123

Auton Robot (2013) 35:51–76 57

of trajectory derivatives, the approach yields a distribution
on the target position at time t + 1, effectively linking the
Gaussian distributions together.

By estimating the target’s future trajectories analytically,
only N2 queries to the GP are needed to predict trajectories
N2 steps into the future, and the variance introduced by sam-
pling future trajectories is avoided. This facilitates the use of
GPs for accurate and efficient trajectory prediction.

5 RR-GP trajectory prediction algorithm

Section 4 outlined the approach of using GP mixtures
to model mobility patterns and its benefits over other
approaches. However, in practice, GPs suffer from two inter-
connected shortcomings: their high computational cost and
their inability to embed static feasibility or vehicle dynamical
constraints. Since GPs are based on statistical learning, they
are unable to model prior knowledge of road boundaries, sta-
tic obstacle location, or dynamic feasibility constraints (e.g.
minimum turning radius). Very dense training data may alle-
viate this feasibility problem by capturing, in great detail,
the environment configuration and physical limitations of the
vehicle. Unfortunately, the computation time for predicting
future trajectories using the resulting GPs would suffer sig-
nificantly, rendering the motion model unusable for real-time
applications.

To handle both of these problems simultaneously, this
section introduces a novel trajectory prediction algorithm,
denoted as RR-GP (Fig. 1). RR-GP includes two main com-
ponents, rapidly-exploring random trees (RRT), and a GP-
based mobility model. For each GP-based pattern b j , j ∈
{1, . . . ,M} as defined in Sect. 4, and the current position of
the target vehicle, RR-GP uses an RRT-based technique to

Trajectory
Generation
RRT-Reach

Intent
Prediction
GP Mixture

Probabilistic
Trajectory
Predictions

Typical
Motion
Patterns

Dynamical
Model

Environment
Map

Sensor
Measurements

Trajectory
Prediction
Algorithm
(TPA)

Intent
distribution

Position
distribution
using GPj

Fig. 1 RR-GP high level architecture

grow a tree of trajectories that follows b j while guaranteeing
dynamical feasibility and collision avoidance. More specif-
ically, it is based on the closed-loop RRT (CL-RRT) algo-
rithm (Kuwata et al. 2009), successfully used by the MIT
team in the 2007 DARPA Grand Challenge (Leonard et al.
2008). CL-RRT grows a tree by randomly sampling points in
the environment and simulating dynamically feasible trajec-
tory towards them in closed-loop, allowing the generation of
smoother trajectories more efficiently than traditional RRT
algorithms.

In contrast to the original CL-RRT approach, the RR-GP
tree is used not to create paths leading to a goal location,
but instead to grow trees toward regions corresponding to
the learned mobility patterns, or intents, b j (Fig. 2). RR-
GP does not approximate the complete reachability set of
the target vehicle; instead, it generates a tree based on each
potential motion pattern, and computes the likelihood of each
based on the observed partial path. In this manner, RR-GP
conditions the original GP prediction by removing infeasi-
ble patterns and providing a finer discretization, resulting in
better trajectory prediction.

5.1 Single tree RR-GP algorithm

Algorithm 1 details the single-tree RR-GP algorithm,
which constructs a tree of dynamically feasible motion seg-
ments to generate a distribution of predicted trajectories for
a given intent b, dynamical model, and low-level controller.
Every time Algorithm 1 is called, a treeTG P is initialized with
a root node at the current target vehicle position (x(t), y(t)).
Variable tG P , which is used for time bookkeeping in the

Fig. 2 Simple RR-GP illustration (M = 1). RR-GP grows a tree (in
brown) using GP samples (orange dots) sampled at �t intervals for a
given motion pattern. The green circles represent the actual size of the
target vehicle. The resulting tree provides a distribution of predicted
trajectories of the target at δt
 �t increments (Color figure online)

123

58 Auton Robot (2013) 35:51–76

Algorithm 1 RR-GP, Single Tree Expansion
1: Initialize tree TG P with node at (x(t), y(t)); gp← GP motion pat-

tern b; tG P ← t +�t ; K ← 1; nsuccess ← 0; ninfeas ← 0
2: while tG P − t ≤ Th do
3: Take sample xsamp from gp initialized with (x(t), y(t)), K

timesteps in the future using Eq. (15), and variance heuristics if
necessary

4: Among nodes added at tG P−�t , identify N nearest to xsamp using
distance heuristics

5: for each nearest node, in the sorted order do
6: Extend TG P from nearest node using propagation function until

it reaches xsamp
7: if propagated portion is collision free then
8: Add sample to TG P and create intermediate nodes as appro-

priate
9: Increment successful connection count nsuccess
10: else
11: Increment infeasible connection count ninfeas and if limit is

reached goto line 18
12: end if
13: end for
14: if nsuccess reached desired target then
15: tG P ← tG P +�t ; K ← K + 1; nsuccess ← 0; ninfeas ← 0
16: end if
17: end while
18: return TG P

expansion mechanism of TG P , is also initialized to t + �t ,
where t is the current time, and �t is the GP sampling time
interval.

At each step, only nodes belonging to the “time bucket”
tG P −�t are eligible to be expanded, corresponding to the
nodes added at the previous timestep tG P . To grow TG P , first
a sample xsamp is taken from the environment (line 3) at time
tG P + K�t , or equivalently K timesteps in the future, using
Eq. (15). The nodes added in the previous step (i.e. belonging
to time bucket tG P − �t) are identified for tree expansion
in terms of some distance heuristics (line 4). The algorithm
attempts to connect the nearest node to the sample using an
appropriate reference path for the closed-loop system con-
sisting of the vehicle and the controller. The resulting path is
dynamically feasible (by construction) and is then checked
for collisions. Since the TG P is trying to generate typical tra-
jectories that the target vehicle might follow, only a simulated
trajectory that reaches the sample without a collision is kept,
and any corresponding nodes are added to the tree and tG P

time bucket (line 8). When the total number of successful
connections nsuccess is reached, tG P and K are incremented,
and the next timestep is sampled (line 15).

RR-GP keeps track of the total number of unsuccessful
connections ninfeas at each iteration. When ninfeas reaches
some predetermined threshold, the variance of the GP for
the current iteration is temporarily grown to capture a more
dispersed set of paths (line 3). This heuristic is typically use-
ful to generate feasible trajectories when GP samples are
close to obstacles. If ninfeas then reaches a second, larger
threshold, RR-GP “gives up” on growing the tree, and sim-

Algorithm 2 RR-GP, Multi-Tree Trajectory Prediction
1: Inputs: GP motion pattern b j ; p(b j (0)) ∀ j ∈ [1, . . . ,M]
2: t ← 0
3: while t < T do
4: Measure target vehicle position (x(t), y(t))
5: Update probability of each motion pattern p(b j (t)|x0:t , y0:t) using

Eq. (11)
6: for each motion pattern b j do

7: Grow a single T j
G P tree rooted at (x(t), y(t)) using b j (Algo-

rithm 1)
8: Using T j

G P , compute means and variances of predicted distrib-
ution (x̂ j (τ), ŷ j (τ)), ∀τ ∈ [t + δt, t + 2δt, . . . , t + Th]

9: end for
10: Adjust probability of each motion pattern using dynamic feasi-

bility check (Algorithm 3)
11: Propagate updated probabilities backwards, and recompute

p(x̂(τ), ŷ(τ))∀τ ∈ [0, δt, . . . , t] if any motion pattern probability
was updated

12: p(x̂(τ), ŷ(τ)) ← ∑
j p(x̂ j (τ), ŷ j (τ)) × p(b j (t)|x0:t , y0:t)

∀τ ∈ [t + δt, t + 2δt, . . . , t + Th] using Eq. (17)
13: t ← t + dt
14: end while

Algorithm 3 Dynamic Feasibility Adjustment

1: Inputs: GP motion pattern b j ; T j
G P trees ∀ j ∈ [1, . . . ,M]

2: for each motion pattern b j do

3: if T j
G P tree ended with infeasibility condition then

4: p̃(b j (t))← 0
5: else
6: p̃(b j (t))← p(b j (t))
7: end if
8: end for
9: for each motion pattern b j do
10: if

∑
j p̃(b j (t)) > 0 then

11: p(b j (t))← p̃(b j (t))∑
j p̃(b j (t))

12: end if
13: end for

ply returns TG P (line 11). This situation usually happens
when the mobility pattern b has a low likelihood and is gen-
erating a large number of GP samples in infeasible regions.
These heuristics, along with the time bucket logic, facilitate
efficient feasible trajectory generation in RR-GP.

The resulting tree is post-processed to produce a dense,
time-parametrized distribution of the target vehicle position
at future timesteps. Since the RR-GP tree is grown at a higher
rate compared to the original GP learning phase, the result-
ing distribution is generated at δt
 �t increments, where
δt is the low-level controller rate. The result is a significant
improvement of the accuracy of the prediction without a sig-
nificant increase in the computation times (Sect. 6).

5.2 Multi-tree RR-GP algorithm

This section introduces the Multi-Tree RR-GP (Algo-
rithm 2), which extends Algorithm 1 to consider multiple
motion patterns for a dynamic obstacle. The length of the

123

Auton Robot (2013) 35:51–76 59

prediction problem is T seconds, and the prediction time
horizon is Th seconds. The value of Th is problem-specific,
and depends on the time length of the training data. For exam-
ple, in a threat assessment problem for road intersections, Th

will typically be on the order of 3 to 6 seconds (Aoude et al.
2010b). The RR-GP algorithm updates its measurement of
the target vehicle every dt seconds, chosen such that the inner
loop (lines 6–9) of Algorithm 2 reaches completion before
the next measurement update. Finally, the time period of the
low-level controller is equal to δt , typically 0.02–0.1 s for
the problems of interest.

The input to Algorithm 2 is a set of GP motion patterns,
along with a prior probability distribution, proportional to the
number of observed trajectories belonging to each pattern. In
line 4, the position of the target vehicle is measured. Then, the
probability that the vehicle trajectory belongs to each of the
M motion patterns is updated using Eq. (11). For each motion
pattern (in parallel), line 7 grows a single-tree RR-GP rooted
at the current position of the target vehicle using Algorithm 1.
The means and variances of the predicted positions are com-
puted for each motion pattern at each timestep, using posi-
tion and time information from the single-tree output (line
8). This process can be parallelized for each motion pattern,
since there is no information sharing between the growth
operations of each RR-GP tree. Note that even if the vehi-
cle’s position has significantly deviated from the expected GP
behaviors, each GP prediction will still attempt to reconcile
the vehicle’s current position (x(t), y(t)) with the behavior.

The probability of each motion pattern is adjusted using
Algorithm 3, which removes the probability of any pattern
that ended in an infeasible region (line 4) due to surpassing
the second ninfeas threshold. By using dynamic feasibility to
recalculate the probabilities (line 11), this important mod-
ification helps the RR-GP algorithm converge to the more
likely patterns faster, yielding an earlier prediction of the
intent of the target vehicle. In the event that all RR-GP trees
end with an infeasible condition, probability values are not
adjusted (line 10). In practice, this infeasibility case should
rarely occur, since the target vehicle is assumed to follow one
of the available patterns.

If any of the motion pattern probabilities is altered, line
11 of Algorithm 2 recomputes the probability distribution of
the positions of the target vehicle (x̂(t), ŷ(t)) for times τ ∈
[0, δt, 2δt, . . . , t]. This step is called backward propagation
(BP), as it propagates the effects of the updated likelihoods
to the previously computed position distributions. Finally,
line 12 of Algorithm 2 combines the position predictions
from each single-tree RR-GP output into one distribution, by
incorporating the updated motion pattern probabilities b j .
This computation is performed for all time τ where τ ∈ [t +
δt, t+2δt, . . . , t+Th], resulting in a probability distribution
of the future trajectories of the target vehicle that is based on
a mixture of GPs.

In subsequent results, it is assumed that the target vehicle
has car-like dynamics, more specifically a bicycle dynamical
model (LaValle 2006). The target vehicle inputs are approx-
imated by the outputs of a pure-pursuit (PP) low-level con-
troller (Amidi and Thorpe 1990) that computes a sequence
of commands towards samples generated from the GP. This
path is then tracked using the propagation function of a PP
controller for steering and a proportional-integral controller
for tracking the GP-predicted velocity.

Figure 3 demonstrates the dynamic feasibility and colli-
sion avoidance features of the RR-GP approach on a simple
example consisting of two motion patterns, corresponding to
passing a single obstacle on the left or right. (Training and
testing procedures of RR-GP scenarios are explained in detail
in Sect. 6.) In this illustration, the test trajectory belongs to
the left motion pattern. At each step, Algorithm 2 updates the
likelihoods of each motion pattern using Eqs. (11) and (12),
and generates two new dynamically feasible trees.

At time t = 0 s (Fig. 3d), the target vehicle is pointing
straight at the obstacle. By t = 1 s (Fig. 3e), the vehicle has
moved forward and rotated slightly left. Due to the forward
movement and left rotation, RR-GP finds more feasible left
trajectories than right trajectories (this can be seen by com-
paring the trajectories as they pass the corners of the obsta-
cle), a behavior GP samples alone cannot capture (Fig. 3b).
At t = 2 s (Fig. 3f), the vehicle has more clearly turned to the
left; the RR-GP algorithm returns an incomplete right tree,
reflecting that all attempts to grow the tree further along the
right motion pattern failed.

Note that the GP samples for the right pattern are not all
infeasible at t = 2 s (Fig. 3c); an algorithm based on GP
samples alone would not have predicted the dynamic infea-
sibility of the right pattern. Furthermore, simple interpolation
techniques would not have been able to detect dynamic infea-
sibility, highlighting the importance of the dynamic model
embedded within the RR-GP algorithm. RR-GP also predicts
that the left-side trees are dynamically feasible and reach-
ing collision-free regions. This early detection of the correct
motion pattern is a major advantage of RR-GP compared to
GP algorithms alone.

Remark (complexity) The proposed approach scales linearly
with both the number of dynamic obstacles and the num-
ber of intents for each. However, both Algorithms 1 and 2
can be run in parallel, with a separate process running for
each potential behavior of each dynamic obstacle. Assum-
ing the computational resources are available to implement
this parallelization, runtime scaling with dynamic obstacle
complexity can be effectively eliminated.

While there are no theoretical limitations with respect to
the number of dynamic obstacles or motion patterns consid-
ered, in practice few are needed at any one time for the struc-
tured environments in this work’s domain of interest. Com-

123

60 Auton Robot (2013) 35:51–76

Fig. 3 Snapshots of the GP samples (top row) and Algorithm 2 output (bottom row) on a test trajectory

plex obstacle environments can typically be broken down
into a sequence of interactions with a smaller number of
dynamic obstacles, while most of the “decisions” associated
with motion intentions can be broken down to a series of
consecutive decisions involving fewer branching paths. The
trade-off in this case is that the time horizons being consid-
ered may need to be reduced.

6 RR-GP demonstration on human-operated target

To highlight the advantages of the RR-GP algorithm, Algo-
rithm 2 is applied on an example scenario consisting of a
single target vehicle traversing past several fixed obstacles.
The purpose of this example is to compare the performance
(in terms of accuracy and computation time) of the RR-GP
approach against two baseline GP mixture algorithms, given
either sparse training data (Sparse-GP) or dense training
data (Dense-GP). The results below demonstrate that RR-GP,
given only the same data as Sparse-GP, matches or exceeds
the accuracy of Dense-GP while maintaining the runtime
benefits of sparse data.

6.1 Setup

Trajectories were manually generated by using a steering
wheel to guide a simulated robot through a virtual urban
environment described in Aoude et al. (2010c). The vehicle
uses the iRobot Create software platform (iRobot 2011) with
a skid-steered vehicle, modified in software to emulate the
standard bicycle model

ẋ = v cos (θ), ẏ = v sin (θ),

θ̇ = v

L
tan (δ), v̇ = a,

(18)

where (x, y) is the rear axle position, v is the forward
speed, θ is the heading, L is the wheelbase equal to 0.33 m,
a is the forward acceleration, and δ is the steering angle
(positive counter-clockwise). The state of the vehicle is
s = (x, y, θ, v) ∈ S, while the input is u = (δ, a) ∈ U ,
including the constraints amin ≤ a ≤ amax and |δ| ≤ δmax,
where amin = −0.7 m/s2, amax = 0.4 m/s2, and δmax = 0.6
rad. Starting from its initial location, the vehicle is either
driven to the left of the obstacle or to the right, for a total of
M = 2 motion patterns.

123

Auton Robot (2013) 35:51–76 61

Fig. 4 Training trajectories generated in the simulated road environ-
ment according to two motion patterns. The black circle (bottom) rep-
resents the target vehicle, and the arrow inside the circle represents its
heading. The orange arrows point in the direction of each pattern (left
and right) (Color figure online)

A total of 30 (15 left, 15 right) trajectories were generated
for training, with data collected at 50 Hz (Fig. 4). Each motion
pattern is learned according to Eqs. (11–14); both RR-GP and
Sparse-GP use data that were downsampled to 1 Hz, while
Dense-GP was trained with 2-Hz data. The test data consists
of 90 additional trajectories (45 left, 45 right) generated in the
same manner as the training data. In testing, the algorithms
received simulated measurements from the test trajectories
at one-second intervals, i.e. dt = 1s in Algorithm 2. For each
timestep, Sparse-GP, Dense-GP, and RR-GP are run using the
current state of the target vehicle for a time horizon Th = 8s.

In the RR-GP implementation, the control timestep is δt =
0.1 s, while the GP samples are produced at �t = 1s. The
limits of successful and infeasible connections per�t (lines
9 and 11 of Algorithm 1) are 30 and 150, respectively. The
approach of Yepes et al. (2007) is followed in calculating
prediction error as the root mean square (RMS) difference
between the true position (x, y) and mean predicted position
(x̂, ŷ). The mean is computed using Eq. (17) for the Sparse-
GP and Dense-GP techniques, and the multi-tree probability
distribution for RR-GP. Prediction errors are averaged across
all 90 test trajectories at each timestep.

6.2 Simulation results

This section presents simulation results for the RR-GP algo-
rithm which compare the prediction accuracy and computa-
tion time with both Sparse-GP and Dense-GP. Two variations
of RR-GP are implemented, one with BP (line 11 of Algo-
rithm 2) and one without.

0 1 2 3 4 5 6 7
0.5

0.6

0.7

0.8

0.9

1

Time (sec)

P
ro

ba
bi

lit
y

of

 C
or

re
ct

 M
ot

io
n

P
at

te
rn

RR−GP(w/ BP)
GP(1Hz)
GP(2Hz)

Fig. 5 Average probability (over 90 trajectories) of the correct motion
pattern for RR-GP (w/ BP), Sparse-GP (1 Hz), and Dense-GP (2 Hz)
algorithms as function of time. For example, the values at t = 1 s
represent the probability of the correct motion patterns after the target
vehicle has actually moved for 1 s on its path

Table 1 Average probability of correct motion pattern (over 90 tests)

Time (s)

Alg. 0 1 2 3

RR-GP 0.922 0.935 1.0 1.0

GP (1 Hz) 0.5 0.633 0.995 1.0

GP (2 Hz) 0.5 0.665 0.988 1.0

6.2.1 Motion pattern probabilities

Figure 5 and Table 1 show the probability of identifying the
correct motion pattern given the observed portion of path
followed by the target vehicle, computed as a function of
time. While Sparse-GP and Dense-GP only use Eq. (11) to
update these probabilities, RR-GP embeds additional logic
for dynamic feasibility (see Algorithm 3). Note that the prob-
ability corresponding to RR-GP without BP is the same as
RR-GP with BP.

At time t = 0 s, Sparse-GP and Dense-GP’s likelihoods
are based on the size of the training data of each motion
pattern. Since they are equal, the probability of the correct
motion pattern is 0.5. On the other hand, by using collision
checks and BP RR-GP is able to improve its “guess” of the
correct motion pattern from 0.5 to more than 0.92. At time t =
1 s, using observation of the previous target position, all three
algorithms improve in accuracy, though RR-GP maintains a
significant advantage. After three seconds, the probability
of the correct motion pattern has nearly reached 1.0 for all
algorithms.

6.2.2 Prediction errors

Figure 6 shows the performance of each algorithm in terms
of the RMS of the prediction error between the true value
and the predicted mean position of the target vehicle. At the
start of each test, when time t = 0 s (Fig. 6a), the four algo-
rithms are initialized with the same likelihood values for each

123

62 Auton Robot (2013) 35:51–76

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

Time Step (sec)

R
M

S
 E

rr
or

 (
m

)
RR−GP(w/ BP)
RR−GP(w/o BP)
GP(1Hz)
GP(2Hz)

(a) t = 0 s

1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

Time Step (sec)

R
M

S
 E

rr
or

 (
m

)

RR−GP(w/ BP)
RR−GP(w/o BP)
GP(1Hz)
GP(2Hz)

(b) t = 1 s

3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time Step (sec)

R
M

S
 E

rr
or

 (
m

)

RR−GP(w/ BP)
RR−GP(w/o BP)
GP(1Hz)
GP(2Hz)

(c) t = 3 s

Fig. 6 Average position prediction errors (over 90 trajectories) for Sparse-GP (1 Hz), Dense-GP (2 Hz), and the two variations of the RR-GP
algorithm at different times of the example

motion pattern. This is seen in the Sparse-GP and Dense-GP
plots, which are almost identical. RR-GP (w/o BP) also has
a similar performance from t = 0 s until t = 4 s because no
dynamic infeasibilities or collisions with obstacles happen in
this time range. However, the target first encounters the obsta-
cle around t = 5 s, at which point the prediction of RR-GP
(w/o BP) improves significantly compared to the GP algo-
rithms since the algorithm is able to detect the infeasibility of
the wrong pattern, and therefore adjust the trajectory predic-
tion. The full RR-GP algorithm, denoted as RR-GP (w/ BP)
in Fig. 6, displays the best performance. Using the BP feature,
its prediction accuracy shows significant improvement over
that of RR-GP (w/o BP), between t = 1 s and t = 5 s. This is
accomplished by back-propagating knowledge of the future
dynamic infeasibility to previous timesteps, which improves
the accuracy of the earlier portion of the prediction. This
reduces the RMS prediction errors by a factor of 2.4 over the
GP-only based algorithms at t = 8 s.

After 1 s has elapsed (Fig. 6b), the vehicle has moved
to a new position, and the likelihood values of each motion
pattern have been updated (Fig. 5). The probability of the
correct motion pattern computed using Eq. (11) has slightly
increased, leading to lower errors for all three algorithms.
But as in Fig. 6a, a trend is seen for the four algorithms; the
performance of the RR-GP (w/ BP) algorithm is consistently
and significantly better than both Sparse-GP and Dense-GP,
as well as RR-GP (w/o BP) in the time range prior to the
collision detection. Note that Dense-GP performs slightly
better than Sparse-GP between t = 5 s and t = 8 s, due
to a more accurate GP model obtained through additional
training data.

After three seconds have elapsed (Fig. 6c), the probabil-
ity of the correct motion pattern has approached 1.0 (Fig. 5),
yielding decreased prediction error across all algorithms. The
vehicle has moved to a region where dynamic feasibility and
collision checks are not significant, due to the negligible like-

lihood of the wrong motion pattern prediction. Eq. (17) then
simplifies to p(xt+K , yt+K |xt , yt , b j∗), where j∗ is the index
of the “correct” motion pattern, and thus the prediction accu-
racy is only related to the position distribution of the cor-
rect motion pattern. This explains why Sparse-GP and both
RR-GP variations show a very similar accuracy, since their
position distributions are based on the same sparse data. On
the other hand, Dense-GP, due to more dense data, is the best
performer, as expected, with RMS errors 1.5 times smaller
than the other algorithms at t = 8 s.

Figure 7 presents box-and-whisker plots of the aver-
age difference between the prediction errors of Sparse-GP
(1 Hz) and RR-GP (w/ BP), using the same data as Fig.
6. The length of the whisker (dashed black vertical line) is
W = 1.5, such that data are considered outliers if they are
either smaller than Q1 − W × (Q3 − Q1) or larger than
Q3 + W × (Q3 − Q1), where Q1 = 25th percentile and
Q3 = 75th percentile.

At t = 0 s, Fig. 7a shows the improvement of RR-GP (w/
BP) over Sparse-GP consistently increase, reaching a 2.5 m
difference at t = 8 s. The outliers in this case are the test
trajectories that are dynamically feasible at t = 0 s. Here,
either of the two motion patterns may be followed, and RR-
GP does not have an advantage over Sparse-GP, leading to no
error difference. But in the majority of tests, as shown by the
whisker lengths and box sizes, RR-GP (w/ BP) significantly
reduces prediction error.

Figure 7b presents the error difference after 1 s; a similar
trend can be seen. The median of the difference grows with
the timesteps, but its magnitude slightly decreases compared
to the previous timestep, reaching 2.1 m difference at t = 8 s.
Here the whiskers have increased in length, eliminating many
of the outliers from the prior timestep. Finally, after the target
vehicle has moved for t = 3 s (Fig. 7c), the differences
between RR-GP (w/ BP) and Sparse-GP are not statistically
significant.

123

Auton Robot (2013) 35:51–76 63

0 1 2 3 4 5 6 7 8
−3

−2.5

−2

−1.5

−1

−0.5

0

Time Step (s)

E
rr

or
 D

iff
er

en
ce

 D
is

tr
ib

ut
io

n
(m

)

(a) t = 0 s

1 2 3 4 5 6 7 8

−3

−2.5

−2

−1.5

−1

−0.5

0

Time Step (s)

E
rr

or
 D

iff
er

en
ce

 D
is

tr
ib

ut
io

n
(m

)

(b) t = 1 s

3 4 5 6 7 8
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

Time Step (s)

E
rr

or
 D

iff
er

en
ce

 D
is

tr
ib

ut
io

n
(m

)

(c) t = 3 s

Fig. 7 Box plots of the difference of prediction errors (for the 90 test trajectories) between Sparse-GP (1 Hz) and the full RR-GP algorithm at
different times of the example

6.2.3 Computation times

Table 2 summarizes the average computation times per iter-
ation of the three algorithms over the 90 testing paths. Both
RR-GP variations have identical computation times, so only
one computation time is shown for RR-GP. Note that the
implementation uses the GPML MATLAB toolbox (Ras-
mussen and Williams 2005), and these tests were run on a
2.5 GHz quad-core computer.

As expected, Sparse-GP has the lowest computation time,
while the RR-GP algorithm ranks second with times well
below 1 s, which are suitable for real-time application as
shown in Sect. 7.2. Out of the 0.69 s of RR-GP computation
time, an average 0.5 s is spent in the RR-GP tree generation
while the remaining 0.19 s is used to generate the GP samples.
On the other hand, Dense-GP had an average computation
time of 2.3 s, which is significantly worse than the other two
approaches and violates the dt = 1 s measurement cycle.
Such times render the GP mixture model useless for any
typical real-time implementation, as expected due to GP’s
matrix inversions. If dt is changed to 2.3 s for the Dense-
GP tests, the prediction accuracy decreases due to slower
and fewer updates of the probabilities of the different motion
patterns. Additional details on computation time can be found
in Aoude (2011).

In summary, this simulated environment with a human-
driven target vehicle shows that the RR-GP algorithm con-
sistently performs better than Sparse-GP and Dense-GP in the
long-term prediction of the target vehicle motion. It is impor-

Table 2 Average computation times per iteration (over 90 trajectories)

Algorithm Computation time (s)

Sparse-GP (1 Hz) 0.19

Dense-GP (2 Hz) 2.32

RR-GP 0.69

tant to highlight that RR-GP can predict trajectories at high
output frequencies, significantly higher than both Sparse-GP
(1 Hz) and Dense-GP (2 Hz). While the GP approach could
be augmented with some form of interpolation technique,
the solution approach developed in this work systematically
guarantees collision avoidance and dynamic feasibility of the
trajectory predictions at the higher rates. Another feature of
the RR-GP algorithm is its low computation time (Table 2),
which is small enough to be suitable for real-time imple-
mentation in collision warning systems or probabilistic path
planners.

Finally, note that RR-GP was also validated in Aoude
(2011) on intersection traffic data collected through the
Cooperative Intersection Collision Avoidance System for
Violations (CICAS-V) project (Maile et al. 2008). The
obtained results demonstrated that RR-GP reduced predic-
tion errors by almost a factor of 2 when compared to two
standard GP-based algorithms, while maintaining computa-
tion times that are suitable for real-time implementation.

7 CC-RRT path planning with RR-GP predictions

As noted in Sect. 1, one of the main objectives of this work
is to demonstrate that through appropriate choice of planner,
an autonomous agent can utilize RR-GP predictions to iden-
tify and execute probabilistically feasible paths in real-time,
in the presence of uncertain dynamic obstacles. This section
introduces a path planning algorithm which extends the CC-
RRT framework (Fig. 8) of Luders et al. (2010b); Luders
and How (2011) to guarantee probabilistic robustness with
respect to dynamic obstacles with uncertain motion patterns.
These guarantees are obtained through direct use of RR-GP
trajectory predictions (Sect. 5). As these predictions are pro-
vided in the form of Gaussian uncertainty distributions at
each timestep for each intent, they are well-suited for the
CC-RRT framework. After the chance constraint formula-

123

64 Auton Robot (2013) 35:51–76

Fig. 8 Diagram of the chance constrained RRT algorithm. Given an
initial state distribution at the tree root (blue) and constraints (gray), the
algorithm grows a tree of state distributions to find a probabilistically
feasible path to the goal (yellow star). The uncertainty in the state at
each node is represented as an uncertainty ellipse. If the probability of
collision is too high, the node is discarded (red); otherwise the node is
kept (green) and may be used to grow future trajectories (Color figure
online)

tion of Blackmore et al. (2006) is reviewed, the CC-RRT
framework is presented, then extended to consider dynamic
obstacles with uncertain motion patterns. Finally, an alterna-
tive particle-based approximation of CC-RRT for nonlinear
dynamics and/or non-Gaussian uncertainty is also presented.

7.1 Extension of CC-RRT chance constraint formulation

Recall the LTI system Eqs. (1–3); for now, assume that the
uncertainty of each obstacle, Eqs. (6–7), can be represented
by a single Gaussian distribution:

c jt ∼ N (ĉ j t , Pc jt) ∀ j ∈ Z1,B, ∀ t. (19)

In the context of RR-GP, this implies that the dynamic obsta-
cle is following a single, known behavior, though its future
state is uncertain.

Given a sequence of inputs u0, . . . , uN−1 and the dynam-
ics of Eq. (1), the distribution of the state xt (represented as
the random variable Xt) can be shown to be Gaussian (Black-
more et al. 2006):

P(Xt |u0, . . . , uN−1) ∼ N (x̂t , Pxt) ∀ t ∈ Z0,N ,

where N is some timestep horizon. The mean x̂t and covari-
ance Pxt can be updated implicitly using the relations

x̂t+1 = Ax̂t + But ∀ t ∈ Z0,N−1, (20)

Pxt+1 = APxt AT + Pw ∀ t ∈ Z0,N−1. (21)

Note that by using Eqs. (20–21), CC-RRT can simulate state
distributions within an RRT framework in much the same
way that a nominal (e.g. disturbance-free) trajectory would
be simulated. Instead of propagating the nominal state, the
distribution mean is propagated via Eq. (20); Eq. (21) can be
used to compute the covariance offline.

As presented in Blackmore et al. (2006), to ensure that the
probability of collision with any obstacle on a given timestep
does not exceed � ≡ 1 − psafe, it is sufficient to show that
the probability of collision with each of the B obstacles at
that timestep does not exceed �/B. The j th obstacle is rep-
resented through the conjunction of linear inequalities

n j∧

i=1

aT
i j xt < aT

i j ci j t ∀ t ∈ Z0,t f , (22)

where n j is the number of constraints defining the j th obsta-
cle, and ci j t is a point nominally (i.e. c jt = ĉ j t) on the i th
constraint at timestep t ; note that ai j is not dependent on t ,
since the obstacle shape and orientation are fixed.

It is shown in Blackmore et al. (2006) (for optimization-
based frameworks) and Luders et al. (2010b) (for sampling-
based frameworks) that to ensure the probability of con-
straint satisfaction exceeds psafe, the system must satisfy a
set of deterministic but tightened constraints for each obsta-
cle, where the degree of tightening is a function of the degree
of uncertainty, number of obstacles, and psafe. These tight-
ened constraints can be applied offline to assure probabilistic
guarantees; however, this requires applying a fixed probabil-
ity bound�/B across all obstacles, regardless of how likely
they are to cause infeasibility, leading to conservative behav-
ior (Blackmore et al. 2006).

Alternatively, the CC-RRT algorithm leverages a key
property of the RRT algorithm—trajectory-wise constraint
checking—by explicitly computing a bound on the proba-
bility of collision at each node, rather than simply satisfying
tightened constraints for a fixed bound (Luders et al. 2010b).
In doing so, CC-RRT can compute bounds on the risk of
constraint violation online, based on the most recent RR-GP
trajectory prediction data.

As shown in Luders et al. (2010b), the upper bound on the
probability of collision with any obstacle at timestep t is

�t (x̂t , Pxt) ≡
B∑

j=1

min
i=1,...,n j

�i j t (x̂t , Pxt),

�i j t (x̂t , Pxt) ≡
1

2

⎛

⎝1− erf

⎡

⎣ aT
i j x̂t − aT

i j ci j t
√

2aT
i j (Pxt + Pc jt)ai j

⎤

⎦

⎞

⎠ ,

(23)

where erf(·) denotes the standard error function. Thus, for a
node/timestep with state distribution N (x̂t , Pxt) to be proba-

123

Auton Robot (2013) 35:51–76 65

bilistically feasible, it is sufficient to check that�t (x̂t , Pxt) ≤
1− psafe.

Now, suppose the j th obstacle is one of the dynamic obsta-
cles modeled using RR-GP (Sect. 5) and that it may follow
one of k = 1, . . . ,M possible behaviors. At each timestep
t , and for each behavior k, the RR-GP algorithm provides a
likelihood δk

j and Gaussian distribution N (ĉk
j t , Pk

c jt
). Thus,

the overall state distribution for this obstacle at timestep t is
given by

c jt ∼
M∑

k=1

δk
j N (ĉk

j t , Pk
c jt
). (24)

At each timestep, the probability of collision with dynamic
obstacle j can be written as a weighted sum of the proba-
bilities of collision for the dynamic obstacle j under each
behavior. With this modification, it can be shown that all
existing probabilistic guarantees (Luders et al. 2010b) are
maintained by treating each behavior’s state distribution as a
separate obstacle with the resulting risk scaled by δk

j :

P(collision) ≤
B∑

j=1

P(col. w/ obstacle j) (25)

=
B∑

j=1

M∑

k=1

δk
j P(col. with obstacle j, behavior k)

≤
B∑

j=1

M∑

k=1

δk
j min

i=1,...,n j
P(aT

i j Xt < aT
i j C

k
i j t)

=
B∑

j=1

M∑

k=1

δk
j min

i=1,...,n j
�k

i j t (x̂t , Pxt),

where Ck
i j t is a random variable representing the translation

of the j th obstacle under the kth behavior, and �k
i j t is used

as in Eq. (23) for the kth behavior. By comparison with Eq.
(23), the desired result is obtained.

7.2 CC-RRT with integrated RR-GP

To perform robust planning this work uses CC-RRT, an
extension of the traditional RRT algorithm that allows for
probabilistic constraints. Whereas the traditional RRT algo-
rithm (LaValle 1998) grows a tree of states that are known to
be feasible, the chance constrained RRT algorithm grows a
tree of state distributions that are known to satisfy an upper
bound on probability of collision (Fig. 8), using the formu-
lation developed in Sect. 7.1.

The fundamental operation in the standard RRT algorithm
is the incremental growth of a tree of dynamically feasible
trajectories, rooted at the system’s current state xt . To grow
a tree of dynamically feasible trajectories, it is necessary for
the RRT to have an accurate model of the (linear) vehicle

Algorithm 4 CC-RRT with RR-GP, Tree Expansion
1: Inputs: tree T , current timestep t
2: Take a sample xsamp from the environment
3: Identify the
 nearest nodes using heuristics
4: for m ≤
 nearest nodes, in sorted order do
5: Nnear ← current node
6: (x̂t+k|t , Pt+k|t)← final state distribution of Nnear
7: while�t+k(x̂t+k|t , Pt+k|t) ≤ 1− psafe and x̂t+k|t has not reached

xsamp do
8: Select input ut+k|t ∈ U
9: Simulate (x̂t+k+1|t , Pt+k+1|t) using Eqs. (26)-(27)
10: Create intermediate nodes as appropriate
11: k ← k + 1
12: end while
13: for each probabilistically feasible node N do
14: Update cost estimates for N
15: Add N to T
16: end for
17: end for

dynamics, Eq. (1), for simulation. Since the CC-RRT algo-
rithm grows a tree of Gaussian state distributions, in this
case the model is assumed to be the propagation of the state
conditional mean and covariance, Eqs. (20–21). These are
rewritten here as

x̂t+k+1|t = Ax̂t+k|t + But+k|t , (26)

Pt+k+1|t = APt+k|t AT + Pw, (27)

where t is the current system timestep and (·)t+k|t denotes
the predicted value of the variable at timestep t + k.

The CC-RRT tree expansion step, used to incrementally
grow the tree, is given in Algorithm 4. Each time the algo-
rithm is called, a sample state is taken from the environment
(line 2), and the nodes nearest to this sample, in terms of some
heuristic(s), are identified as candidates for tree expansion
(line 3). An attempt is made to form a connection from the
nearest node to the sample by generating a probabilistically
feasible trajectory between them (lines 7–12). This trajectory
is incrementally simulated by selecting some feasible input
(line 8), then applying Eqs. (26–27) to yield the state dis-
tribution at the next timestep. This input may be selected at
the user’s discretion, such as through random sampling or a
closed-loop controller, but should guide the state distribution
toward the sample. Probabilistic feasibility is then checked
using RR-GP trajectory predictions with Eqs. (23) and (25);
trajectory simulation continues until either the state is no
longer probabilistically feasible, or the distribution mean has
reached the sample (line 7). Even if the latter case does not
occur, it is useful and efficient to keep probabilistically fea-
sible portions of this trajectory for future expansion (Kuwata
et al. 2009), via intermediate nodes (line 10). As a result, one
or more probabilistically feasible nodes may be added to the
tree (lines 13–16).

A number of heuristics are also utilized to facilitate tree
growth, identify probabilistically feasible trajectories to the

123

66 Auton Robot (2013) 35:51–76

Algorithm 5 CC-RRT with RR-GP, Execution Loop
1: Initialize tree T with node at (x̂0, Px0), t = 0
2: while x̂t �∈ Xgoal do
3: Retrieve most recent observations and RR-GP predictions
4: while time remaining for this timestep do
5: Expand the tree by adding nodes (Algorithm 4)
6: end while
7: Use cost estimates to identify best path {Nroot, . . . , Ntarget}
8: Repropagate the path state distributions using Eqs. (26)-(27)
9: if repropagated best path is probabilistically feasible then
10: Apply best path
11: else
12: Remove infeasible portion of best path and goto line 7
13: end if
14: t ← t +�τ
15: end while

goal, and identify “better” paths (in terms of Eq. (9)) once
at least one probabilistically feasible path has been found.
Samples are identified (line 2) by probabilistically choosing
between a variety of global and local sampling strategies,
some of which may be used to efficiently generate complex
maneuvers (Kuwata et al. 2009). The nearest node selec-
tion (lines 3–4) strategically alternates between several dis-
tance metrics for sorting the nodes, including an exploration
metric based on cost-to-go and a path optimization metric
based on estimated total path length (Frazzoli et al. (2002)).
Each time a sample is generated, m ≥ 1 attempts are made
to connect a node to this sample before being discarded.
Additional heuristics include attempting direct connections
to the goal anytime a new node is added, and maintaining
bounds on the cost-to-go to enable a branch-and-bound prun-
ing scheme (Frazzoli et al. 2002).

For the real-time applications considered in this work, the
CC-RRT tree should grow continuously during the execution
cycle to account for changes in the situational awareness,
such as updated RR-GP predictions. Algorithm 5 shows how
the algorithm executes some portion of the tree while con-
tinuing to grow it. The planner updates the current path to
be executed by the system every�τ seconds, using the most
recent RR-GP predictions for any dynamic obstacles as they
become available (line 3). During each cycle, for the dura-
tion of the timestep, the tree is repeatedly expanded using
Algorithm 4 (lines 4–6). Following this growth, some cost
metric is used to select the “best” path in the tree (line 7).
Once a path is chosen, a “lazy check” (Kuwata et al. 2009) is
performed in which the path is repropagated from the current
state distribution using the same model dynamics, Eqs. (26–
27), and tested for probabilistic feasibility (line 8). Due to the
presence of dynamic obstacles, it is crucial to re-check prob-
abilistic feasibility at every iteration, even if the agent itself
is deterministic. If this path is still probabilistically feasible,
it is chosen as the current path to execute (line 10); other-
wise the infeasible portion of the path is removed and the
process is repeated (line 12) until a probabilistically feasible

path is found. In the event that no probabilistically feasible
path can be found, mitigation strategies can be implemented
to maximize safety, e.g. Wu and How (2012).

7.3 PCC-RRT

In the case of nonlinear dynamics and/or non-Gaussian noise,
an alternative particle-based framework (Fig. 9) can be used
to statistically represent uncertainty at a resolution which
can be dictated by the user (Luders and How 2011). Though
the generation of particles increases the per-node complex-
ity, the algorithm maintains the benefits of sampling-based
approaches for rapid replanning. The PCC-RRT framework
of Luders and How (2011) is generalizable both in the types
of probabilistic feasibility that are assessed (timestep-wise
and path-wise) and in the types of uncertainty that are mod-
eled using particles. This framework can be extended to con-
sider hybrid combinations of particle-based and distribution-
based uncertainty; for example, an agent’s dynamics/process
noise can be represented via particles, while interactions with
dynamic obstacles are modeled using traditional Gaussian
distributions. However, this may limit the ability to assess
path-wise infeasibility.

Algorithm 6 presents the tree expansion step for the
particle-based extension of CC-RRT, PCC-RRT. A set of
Pmax particles are maintained at each node, each with a posi-
tion x and a weight w (

∑
w = 1 across all particles at

each timestep). There are two parameters the user can spec-
ify to indicate the degree of probabilistic constraint violation

Fig. 9 Diagram of the PCC-RRT algorithm for a single, forward sim-
ulation step. Each green circle/path represents a simulated particle that
terminates in a feasible state, while each red circle/path represents a
simulated particle that terminates in an infeasible state (Color figure
online)

123

Auton Robot (2013) 35:51–76 67

Algorithm 6 PCC-RRT, Tree Expansion
1: Inputs: tree T , current timestep t
2: Take a sample xsamp from the environment
3: Identify the M nearest nodes using heuristics
4: for m ≤ M nearest nodes, in the sorted order do
5: Nnear ← current node
6: {x (p)t+k|t , w

(p)
t+k|t } ← set of feasible particles at Nnear, with weights

7: while
∑

p w
(p)
t+k|t ≥ pnode

safe and Ppath
k ≥ ppath

safe and x̂t+k|t has not
reached xsamp do

8: Resample particles up to count of Pmax, using weights w(p)t+k|t
9: Select input ut+k|t ∈ U
10: for each particle p do
11: Simulate x (p)t+k+1|t using Eq. (1) and sampled disturbancewt+k

12: Assign weight w(p)t+k+1|t to particle
13: end for
14: Remove infeasible particles
15: Ppath

k+1 ← Ppath
k ·∑p w

(p)
t+k|t

16: k ← k + 1
17: end while
18: for each probabilistically feasible node N do
19: Update cost estimates for N
20: Add N to T
21: Try connecting N to Xgoal (lines 5-13)
22: if connection to Xgoal probabilistically feasible then
23: Update upper-bound cost-to-go of N and ancestors
24: end if
25: end for
26: end for

allowed: the average likelihood of feasibility at each node
cannot exceed pnode

safe , while the average likelihood of fea-

sibility over an entire path cannot exceed ppath
safe . The latter

bound is a key advantage of this particle-based approach,
as it is quite difficult to approximate analytically in real-
time without introducing significant conservatism. The for-
mer likelihood is computed by summing the weights of all
feasible nodes,

∑
p w

(p)
t+k|t (line 7), while the latter is com-

puted iteratively over a path by multiplying the prior node’s
path probability by the weight of existing nodes that are still
feasible (line 15).

One of several resampling schemes may be used for
identifying new particles as older ones become infeasible
(line 8). In the uniform resampling scheme, all particles are
assigned an identical weight at line 12, w(p)

t+k+1|t = 1/Pmax.
When this is the case, every particle has an equal likeli-
hood of being resampled. In the probabilistic resampling
scheme, each particle is assigned a weight based on the
likelihood of that particle actually existing; this is a func-
tion of the likelihood of each portion of the uncertainty
that is sampled. This can be computed iteratively by node,
as

w
(p)
t+k+1|tαw

(p)
t+k|t · P(Xt+k+1|t = xt+k+1|t). (28)

This requires additional computation, especially as the com-
plexity of the uncertainty environment increases; however, it

can provide a better overall approximation of the state distri-
bution at each timestep, for the same number of particles.

8 Results

This section presents simulation results which demonstrate
the effectiveness of the RR-GP algorithm in predicting the
future behavior of an unknown, dynamic vehicle, allowing
the CC-RRT planner to design paths which can safely avoid
it. Examples are provided for three scenarios of varying com-
plexity, in terms of dynamics, environment, and possible
behaviors. In the first two examples, planning is performed
on a vehicle with linear dynamics, such that the extended
theoretical framework of Sect. 7 is valid. The final exam-
ple considers a vehicle with car-like dynamics, using the
PCC-RRT algorithm of Sect. 7.3 to approximate path-wise
feasibility. Though a single dynamic, uncertain obstacle (in
these examples, a “target vehicle”) is present in each case,
the approach can be extended to multiple dynamic, uncer-
tain obstacles without further modification, and in fact will
scale well under such conditions if parallelization is uti-
lized.

8.1 Infrastructure

Algorithms 2–5 have been implemented using a multi-
threaded, real-time Java application, modular with respect
to all aspects of the problem definition. All simulations
were run on a 2.53 GHz quad-core laptop with 3.48 GB of
RAM.

The software implementation consists of three primary
modules, each in a separate thread. The Vehicle thread
manages the overall simulation, including all simulation
objects; it is run in real-time at 10–50 Hz, and operates
continuously until a collision has occurred or the vehi-
cle has safely reached the goal. The RRT thread imple-
ments Algorithms 4 and 5, growing the CC-RRT tree while
periodically sending the current best path in the tree to
the Vehicle thread. Finally, the RRGP thread maintains
predictions on the likelihoods and future state distribu-
tions of possible behaviors for each dynamic obstacle by
incorporating Algorithm 2, embedded as a MATLAB pro-
gram.

To ensure the RR-GP algorithm is tested on realistic
driving behavior, the target vehicle’s motion is chosen from
among a set of simulated trajectories, pre-generated for each
behavior by having a human operator manually drive the
vehicle in simulation. As in Sect. 6.1, the target vehicle
dynamics are based on the iRobot Create platform; the sim-
ulated vehicle was driven via a wireless steering apparatus,
tuned to emulate traditional, nonlinear control of an auto-

123

68 Auton Robot (2013) 35:51–76

mobile. During each trial, one of these paths is randomly
selected as the trajectory for the target vehicle.

8.2 Intersection scenario

Consider a ground vehicle operating in a constrained, two-
dimensional environment (Fig. 10). This environment is a
representative road network designed to emulate a real-world
driving environment within the RAVEN testbed (How et al.
2008). The road network is 11.2 × 5.5 m2 in size, and is
capable of accommodating multiple intersection types.

In this scenario, the objective of the host vehicle is to go
straight through the intersection at bottom-center of Fig. 10a,
reaching a goal location on the opposite side. However, to
get there, the host vehicle must successfully avoid an errant
(rule-violating) driver which is traveling through the inter-
section in the perpendicular direction, and is likely to cross
the intersection at the same time as the host vehicle. There
are three possible behaviors for the target vehicle as it enters
the intersection: (a) left turn, (b) right turn, and (c) straight.
The host vehicle is assumed to have a radius of 0.2 m, while
the target vehicle has a radius of 0.14 m; both start at zero
velocity.

The host vehicle is modeled as a double integrator,
⎡

⎢⎢⎣

xt+1

yt+1

vx
t+1
v

y
t+1

⎤

⎥⎥⎦=

⎡

⎢⎢⎣

1 0 dt 0
0 1 0 dt
0 0 1 0
0 0 0 1

⎤

⎥⎥⎦

⎡

⎢⎢⎣

xt

yt

vx
t
v

y
t

⎤

⎥⎥⎦+

⎡

⎢⎢⎢⎣

dt2

2 0

0 dt2

2
1 0
0 1

⎤

⎥⎥⎥⎦

[
ux

t + wx
t

uy
t + wy

t

]
,

where dt = 0.1s, subject to avoidance constraints X (includ-
ing velocity bounds) and input constraints

U = {(ux , uy) | |ux | ≤ 4, |uy | ≤ 4}.
To emphasize the impact of the dynamic obstacle’s uncer-
tainty, the host vehicle’s own dynamics are assumed deter-
ministic: wx

t ≡ wy
t ≡ 0. Trajectories are simulated and exe-

cuted in closed-loop via the controller

ux
t = −1.5(xt − r x

t)− 3(vx
t − rvx

t),

uy
t = −1.5(yt − r y

t)− 3(vy
t − r

vy
t),

where (r x
t , r

y
t) is the reference position and (rvx

t , r
vy
t) is the

reference velocity; the reference rt is moved continuously
between waypoints at a fixed speed of 0.35 m/s. The speed
of the target vehicle is capped at 0.4 m/s.

In Algorithms 4–5, the tree capacity is limited to 1,000
nodes, with a replan time interval (line 14, Algorithm 5) of
0.5 s. In Algorithms 1-2, Th = 8 s and �t = 1 s, though
the vehicle dynamics are simulated at 10 Hz. The limits of
successful and infeasible connections per�t (lines 9 and 11,
Algorithm 1) are 20 and 100, respectively. The RR-GP algo-
rithm is called once every 1.0 s, each time giving Algorithm
2 a total of 0.3 s to grow its trees. If the time limit is reached,

the algorithm is terminated without reaching the time horizon
Th .

A total of 400 trials were performed, consisting of 50 trials
each for eight different algorithms:

– Naive RRT: Nominal RRT (no chance constraints) in
which target vehicle is ignored; this sets a baseline for
the minimum expected likelihood of safety

– Nominal RRT: Nominal RRT in which target vehicle is
treated as a static obstacle at its most recent location

– Velocity-Avoidance RRT: Nominal RRT in which the
future position of the target vehicle is predicted by prop-
agating its current position based on its current velocity
and heading

– CC-RRT (5 cases): Algorithms 4-5 with psafe = 0.5, 0.8,
0.9, 0.99, or 0.999. Note that since psafe is a bound on
feasibility at each timestep, rather than over an entire
path, it does not act as a bound on the percentage of
paths which safely reach the goal.

Each trial differs only in the path followed by the target vehi-
cle and the random sampling used in the RR-GP and CC-RRT
algorithms; the sequence of target vehicle paths is consistent
across all sets of 50 trials. Four quantities were measured
and averaged across these trials: the percentage of trials in
which the vehicle safely reaches the goal; the average dura-
tion of such paths; the average time to generate an RRT/CC-
RRT tree node; and the average time per execution of
Algorithm 2.

Table 3 presents the averaged results over the 50 trials
for each case. Note that in all five cases using CC-RRT, the
host vehicle safely navigates the intersection with a much
higher likelihood than any of the cases not using chance
constraints. Furthermore, the CC-RRT results demonstrate
the clear trade-off between overall path safety (in terms of
percentage of trials which reach the goal) and average path
duration when using CC-RRT. As psafe is increased from
0.5 to 0.999, the percentage of safe trajectories generally
increases (the exception of psafe = 0.5 is not statistically sig-
nificant), culminating with the host vehicle using CC-RRT
with psafe = 0.999 reaching the goal safely in all fifty tri-
als. On the other hand, as psafe is increased and the planner
becomes more conservative, the average time duration of the
safe trajectories increases.

Figure 10 sheds some light on how different values of
psafe affect the types of paths chosen by the planner. In this
particular trial, the target vehicle ultimately makes a left turn
through the intersection, and would collide with the host vehi-
cle if it did not deviate from an initial straight-path trajectory.
The RR-GP algorithm is initially undecided whether the tar-
get vehicle is going straight or turning left (as indicated by
the shading on the predicted trajectories in Fig. 10a, b); by
t = 6 s RR-GP is very confident that the vehicle is turn-

123

Auton Robot (2013) 35:51–76 69

Fig. 10 Representative screenshots of the RR-GP and CC-RRT algo-
rithms during trial #25 of the intersection scenario, for two different
values of psafe. The host vehicle’s path history and current path are
in orange. The objective of the host vehicle (large orange circle) is to
reach the goal position (green circle) while avoiding all static obstacles
(black) and the dynamic target vehicle (magenta diamond). The blue

paths indicate the paths predicted by the RR-GP algorithm for each pos-
sible behavior, including 2 − σ uncertainty ellipses; more likely paths
are indicated with a brighter shade of blue. All objects are shown at true
size; the gray lines are lane markings, which do not serve as constraints
(Color figure online)

Table 3 Simulation results, intersection scenario

Algorithm psafe % to goala Path duration (s)b Time per node (ms)c Time per RR-GP (s)d

Naive RRT - 38 10.01 (0.11 %) 0.611 -

Nominal RRT - 46 10.90 (8.96 %) 0.662 -

Velocity-Avoidance RRT - 74 11.14 (11.4 %) 0.948 -

CC-RRT 0.5 92 11.52 (15.2 %) 1.610 0.598

CC-RRT 0.8 88 11.65 (16.5 %) 1.620 0.598

CC-RRT 0.9 92 11.69 (16.9 %) 1.620 0.590

CC-RRT 0.99 96 12.51 (25.1 %) 1.537 0.592

CC-RRT 0.999 100 12.84 (28.4 %) 1.492 0.587

a Percentage of trials where system executed a path to goal without colliding with any obstacles. (recall that psafe refers to feasibility for a single
timestep, whereas this entry corresponds to feasibility across the entire path)
b Percentage is average increase in path duration relative to minimal-time (obstacle-free) path, 10.0 s. Only paths which reach goal are included
c Cumulative time in Algorithm 4 divided by number of nodes generated
d Time spent in Algorithm 2

123

70 Auton Robot (2013) 35:51–76

ing left (Fig. 10c, d). When psafe = 0.8, the planner selects
a path with the minimum perturbation needed to avoid the
target vehicle’s most likely trajectories (Fig. 10a). As the tar-
get vehicle closes in on the intersection (Fig. 10c), the host
vehicle continues to hedge that it can cross the intersection
safely and avoid the target vehicle’s approach in either direc-
tion, and thus does not modify its plan. In contrast, when
psafe = 0.999, the planner selects a larger initial perturba-
tion to maintain the host vehicle’s distance from the target
vehicle (Fig. 10b). After several RR-GP updates, the host
vehicle demonstrates a much more risk-averse behavior, by
loitering outside the intersection (Fig. 10d) for several sec-
onds before making its approach. Ultimately, the host vehicle
using psafe = 0.8 reaches the goal (Fig. 10e) before the host
vehicle using psafe = 0.999 (Fig. 10f). In realistic driving
scenarios, the most desirable behavior is likely somewhere
between these two extremes.

Table 3 shows that with Naive RRT, by ignoring the tar-
get vehicle, the time-optimal path is almost always achieved,
but a collision takes place in a majority of trials, with colli-
sions occurring in most instances of the target vehicle going
straight or left. In some instances, the Nominal RRT algo-
rithm maintains safety by selecting an alternative trajectory
when the target vehicle’s current position renders the host
vehicle’s current trajectory infeasible; however, the overall
likelihood of safety is still low. In many cases, the target
vehicle collides with the host vehicle from the side, such that
a replan is not possible. Of the Nominal RRT algorithms,
the Velocity-Avoidance RRT algorithm performs the most
competitively with CC-RRT, with 74 % of trials yielding
a safe trajectory. Since the target vehicle always starts by
driving straight toward the intersection (right to left in the fig-
ures), the host vehicle responds in nearly all trials by imme-
diately perturbing its own path, based on the assumption that
the target vehicle will go straight through the intersection.
This contributes to the larger average path duration obtained
by Velocity-Avoidance RRT compared to the other nominal
algorithms in Table 3. However, in many instances, Velocity-

Avoidance RRT is still unable to respond to rapid changes
in the target vehicle’s heading, such as if the target vehicle
makes a rapid, left turn inside the intersection.

Finally, note that the average time to either generate an
RRT node or call RR-GP is largely independent of psafe

for CC-RRT. There is a modest increase in average time
per node when moving from Naive or Nominal RRT to
Velocity-Avoidance RRT (scales by a factor of 1.5) or CC-
RRT (scales by a factor of 2.5), though previous work has
demonstrated that these factors scale well with environment
complexity (Luders et al. 2010b).

8.3 Complex scenario

In this scenario, the problem complexity is increased, with
more obstacles and more possible behaviors for the target
vehicle (Fig. 11). This environment is the same size as the
previous one, with rearranged obstacles; as the target vehicle
moves from one side of the environment to the other, it may
display as many as six possible behaviors, corresponding to
whether each of the four obstacles is passed by the target
vehicle on its left or right. Furthermore, by design the target
vehicle has a higher maximum speed than the host vehicle,
meaning that the host vehicle is at risk of being overtaken
from behind if its path is not planned carefully.

Figure 11b shows the trajectories generated by RR-GP for
the six behaviors in this scenario. This demonstrates the RR-
GP algorithm’s ability to model complex behaviors for long
time horizons, building off available training data in the form
of synthetic training trajectories (Fig. 11a).

The same double integrator dynamics and controller are
used as in Sect. 8.2, but in this case the reference move-
ment speed is increased from 0.35 to 0.6 m/s. Due to the
increased number of behaviors and more complex environ-
ment, the Gaussian process formulation is more challenging;
as a result, several of the parameters in Algorithms 1 and 2
have been tuned to improve performance. Here, the limits of
successful and infeasible connections per�t (lines 9 and 11,

Fig. 11 Environment used in the complex scenario, including possible behaviors for the target vehicle (at right)

123

Auton Robot (2013) 35:51–76 71

Algorithm 1) are 10 and 100, respectively. The RR-GP algo-
rithm is called once every 1.25 s, each time giving Algorithm
2 up to a full second to grow trees for each behavior, with
the time horizon Th increased from 8 to 12 s. Both vehicles
have a radius of 0.2 m and start at zero velocity.

The objective of this scenario is to demonstrate the abil-
ity of the CC-RRT algorithm, using RR-GP dynamic obstacle
predictions, to exhibit safe driving behavior for long-duration
missions. The same eight algorithms used in Sect. 8.2 are
again used here; however, rather than performing 50 trials,
each algorithm is used to guide the host vehicle through a
continuous sequence of 50 waypoints. The host vehicle starts
on the left side of the room, and each subsequent waypoint
is among a set of four, located near each of the room’s cor-
ners. The host vehicle is given the next waypoint as soon as
the current waypoint is reached; consecutive waypoints are
required to be on opposite sides of the room, with respect to
the room’s long axis. While the host vehicle completes this
sequence, the target vehicle moves continuously back and
forth between the left and right ends of the room, each time
selecting one of the six possible behaviors and one of the four
pre-generated trajectories for that behavior (Fig. 11).3 Note
that the sequences of waypoints and target vehicle behaviors
are both consistent across all algorithms.

If the host vehicle collides with either the target vehicle or
an element of the environment, the mission continues; how-
ever, the target vehicle is penalized for this collision by being
re-set back to its last reached waypoint. This allows the trial
for each algorithm to be performed as a single, continuous
simulation, while also providing a figure of merit which fac-
tors in both path duration/length and collision risk.

Four quantities were measured and averaged for each
algorithm: the total time required to reach all 50 waypoints,
including collision time penalties; the number of collisions
which take place; the average time to generate an RRT/CC-
RRT tree node; and the average time per execution of Algo-
rithm 2.

Table 4 presents the results for each algorithm. The most
desirable behavior is achieved using CC-RRT with psafe =
0.9, with only 2 collisions taking place over a sequence of
50 waypoints. Two aspects of this scenario tend to increase
the likelihood of collision across all algorithms, such that
100 % safety becomes unreasonable for this scenario. First,
when the target vehicle changes direction, the RR-GP predic-
tion environment changes rapidly, and the host vehicle may
not be able to react quickly enough if nearby. Second, the
host vehicle may find itself in a corridor being pursued by
the target vehicle; since the target vehicle has a larger maxi-
mum speed, a collision may become inevitable. Regardless,
CC-RRT outperforms both Naive RRT and Nominal RRT for

3 When the target vehicle moves from left to right, the trajectories
shown in Fig. 11 are reflected across the room’s short axis.

all values of psafe tested, as well as Velocity-Avoidance RRT
when psafe = 0.9.

Observing the Nominal RRT results in Table 4, it is clear
that neither Naive RRT nor Nominal RRT can provide a suf-
ficient level of safety for the host vehicle, with a double-digit
number of collisions occurring in each case. On the other
hand, Velocity-Avoidance RRT is quite competitive with CC-
RRT. Though it does not achieve the minimum number of
collisions obtained by CC-RRT for psafe = 0.9, Velocity-
Avoidance RRT still only has 4 collisions, as well as a mis-
sion duration significantly shorter than any of the CC-RRT
trials. Since the trajectories executed by the target vehicle are
relatively straight, with few sharp turns (especially compared
to Sect. 8.2), the forward propagation done in this case actu-
ally tends to be a good prediction, allowing the host vehicle
to make a rapid response when needed.

A notable trend in these results is that as psafe increases,
both the number of collisions and mission duration tend to
decrease, reach minimum values at psafe = 0.9, then actu-
ally increase beyond that value. As psafe is increased, the
minimum required probability of feasibility at each timestep
is increased, effectively reducing the set of probabilistically
feasible paths that may be identified and selected by the CC-
RRT algorithm. Thus, assuming the algorithm continues to
identify probabilistically feasible paths satisfying the psafe

requirement, the performance (in terms of percentage of safe
trials) is expected to increase, with a trade-off of additional
path conservatism. However, if this assumption is broken, the
agent may be unable to find a path at all, and will come to
a stop. This “frozen robot” behavior (Trautman and Krause
2010) actually puts the agent at added risk in a dynamic
environment. This is particularly likely to occur in heavily
constrained environments for large values of psafe, as is the
case here. Many of the collisions in this scenario are caused
by the agent being unable to find any safe paths at all to exe-
cute. In such cases, it is important for the operator to tune
psafe to best meet the needs of the problem being considered.

Figure 12 demonstrates how CC-RRT can exhibit com-
plex, robust avoidance behavior for large values of psafe in
order to remain risk-averse. In each trial, the agent’s first
task (shown in the figure) is to move from the left side of
the room to the waypoint at bottom-right; the shortest path is
to move along the bottom of the room. The target vehicle’s
trajectory takes it to the left of the first and last obstacles, and
down the central corridor. When the first RR-GP update is
performed, there is little data available to infer which way the
target vehicle is going, and thus all six behaviors are equally
likely. For psafe = 0.8, the planner selects a complete tra-
jectory which reaches the goal (Fig. 12a). Even though this
would lead to a head-on collision for one of the behaviors,
the likelihood of that behavior being active is roughly 1 in
6, an acceptable risk for psafe = 0.8 (< 5/6). On the other
hand, when psafe = 0.999, the planner is not willing to select

123

72 Auton Robot (2013) 35:51–76

Table 4 Simulation results, complex scenario

Algorithm psafe # Collisionsa Mission duration (s)b Time per node (ms) Time per RR-GP (s)

Naive RRT − 13 737.1 0.731 -

Nominal RRT − 20 819.5 0.812 -

Velocity-Avoidance RRT − 4 766.3 1.421 -

CC-RRT 0.5 6 821.2 5.112 0.665

CC-RRT 0.8 8 818.9 5.596 0.654

CC-RRT 0.9 2 811.7 4.343 0.635

CC-RRT 0.99 4 820.5 5.142 0.643

CC-RRT 0.999 6 834.1 4.693 0.639

a Number of collisions which took place over a single trial. Collisions which take place within 0.5 s of each other are not counted as separate
collisions
b Total time required for host vehicle to reach 50 waypoints; note that the vehicle is reset to its last reached waypoint each time a collision takes
place

Fig. 12 Representative screenshots of the RR-GP and CC-RRT algorithms as the host vehicle approaches the first waypoint in the complex scenario,
for two different values of psafe

123

Auton Robot (2013) 35:51–76 73

a trajectory with crosses the target vehicle’s path for any pos-
sible behavior. Instead, it selects a partial path behind one of
the central obstacles, the location which brings it closest to
the goal without being in any of the target vehicle’s possible
paths (Fig. 12b).

As the mission progresses, the target vehicle’s path is
revealed to go through the central corridor. For psafe = 0.8,
this was not the behavior that risked a head-on collision, so
it continues on its initial trajectory (Fig. 12c, e), reaching the
goal state quickly. On the other hand, when psafe = 0.999,
the agent holds its position behind the obstacle until the tar-
get vehicle has passed through the central corridor (Fig. 12d);
once the target vehicle has passed by, the agent identifies a
new trajectory which reaches the goal (Fig. 12f), though it
arrives at the goal significantly later than if a lower value of
psafe were used.

The average runtime needed to generate a tree node using
CC-RRT is larger than the average runtime for Nominal RRT,
by a factor which is larger than the one observed in Sect. 8.2.
Nonetheless, the runtime per node averages only 5 ms, mean-
ing many hundreds of nodes can be generated every second.
Coupled with the fact that the RR-GP update averages a frac-
tion of a second (about 0.65 s), the CC-RRT algorithm with
RR-GP is still amenable to real-time implementation for this
more complex example. To better demonstrate the operation
of this example, a video showing a representative simulation
is available at http://acl.mit.edu/rrgp.mp4.

8.4 Nonlinear dynamics example

In this final example, the same environment and behaviors
are used as in the previous example (Fig. 11); however, the
host vehicle is now modeled as nonlinear car dynamics

xt+1 = xt + (dt)v cos θt + wx
t ,

yt+1 = yt + (dt)v sin θt + wy
t ,

θt+1 = θt + (dt)
v

Lw
tan δt + wθt ,

where v = 0.4 m/s, dt = 0.1s, (x, y) is the vehicle position,
θ is the heading, Lw = 0.2 m, and δt ∈ [−π/4,+π/4]
is the steering angle input. As in Sect. 5, a PP low-level
controller is applied for steering control. In each trial, the
agent’s objective is to cross the environment from top-left to
bottom-right, while avoiding the dynamic obstacle moving
from right to left (as in the previous example).

However, the agent is subject to a non-Gaussian uncer-
tainty: the steering control is subject to an unknown, fixed
bias

δt = δ̄t + δ̂t ,

where δ̄t is the control input and δ̂t is a fixed, unknown off-
set uniformly sampled on the interval [−π/10,+π/10]. This
bias does not change over the course of the mission; however,

the agent does not receive observations of its own state, and
thus cannot ascertain the value of δ̂t . By using closed-loop
RRT, this poor mapping will only result in a bounded error
(Luders et al. 2010a), making it still possible to control safely
through the environment. Nonetheless, PCC-RRT is appro-
priate here to address the non-Gaussian uncertainty, as well
as the nonlinear dynamics.

The PCC-RRT algorithm, given in Algorithm 6, is struc-
tured in this case by generating 20 particles for each trajectory
state. Each particle samples on a joint distribution for both δ̂t

and the dynamic obstacle placement, which is itself distrib-
uted according to the likelihoods generated by the RR-GP
prediction. The dynamic obstacle state is assumed to be cor-
related along each trajectory, modeled as a fixed white noise
sample that is transformed relative to each state distribution.
A path is deemed probabilistically feasible if ppath

safe ≥ 0.8 is
satisfied.

In this scenario, 24 trials are performed (one for each tra-
jectory in the training data); the same algorithms are com-
pared, but this time only using ppath

safe = 0.8 for comparison.
Three quantities were measured and averaged across these
trials: the percentage of trials in which the vehicle safely
reaches the goal; the average duration of such paths; and
the average time to generate an RRT/PCC-RRT tree node.
Table 5 shows the results for the trials performed. Not only
does PCC-RRT successfully guide the uncertain agent to the
goal in more trials than the Nominal RRT algorithms, but it
also exceeds the desired probabilistic bound of 0.8 across the
path. As expected, though, there is a significant trade-off in
per-node computational complexity.

Figure 13 shows a typical execution of the PCC-RRT algo-
rithm for this example, as well as a demonstration of typical
CC-RRT trees generated in this work (RR-GP output is sup-
pressed for clarity), showing the nonlinearity of the dynam-
ics. The agent initially plans a path above all obstacles to
the goal (Fig. 13a); however, this path becomes infeasible as
the planner assesses that the likely trajectory of the dynamic
obstacle (magenta) will cause a sufficient number of particles
to become infeasible (Fig. 13b). On the subsequent step, the
planner selects an alternative, incomplete path which suc-
cessfully avoids the obstacle (Fig. 13c). Within several sec-
onds, a new path to the goal has been found (Fig. 13d).

9 Conclusion

This paper has developed a real-time path planning frame-
work which allows autonomous agents to safely navigate
environments while avoiding dynamic obstacles with uncer-
tain motion patterns. A key contribution of the algorithm is
the RR-GP learned motion model, which efficiently identi-
fies predicted trajectories for a dynamic obstacle with mul-
tiple behaviors by combining Gaussian processes with a

123

http://acl.mit.edu/rrgp.mp4

74 Auton Robot (2013) 35:51–76

Table 5 Simulation results,
nonlinear dynamics scenario Algorithm ppath

safe % to goal Path duration (s) Time per node (ms)

Naive RRT - 54 26.91 0.529

Nominal RRT - 46 27.46 0.536

Velocity-Avoidance RRT - 67 29.29 0.736

PCC-RRT 0.8 83 32.12 9.422

Fig. 13 Representative screenshots of the PCC-RRT algorithm for ppath
safe = 0.8 for the nonlinear dynamics scenario. Agent’s PCC-RRT tree is

shown in green; the executed path is shown in orange (RR-GP output is suppressed for clarity) (Color figure online)

sampling-based reachability computation. As demonstrated,
this motion model is capable of developing motion predic-
tions conditioned on dynamic feasibility with runtimes suit-
able for real-time operation. Further, by integrating these
RR-GP predictions within an appropriately modified CC-
RRT planning framework, an autonomous agent can iden-
tify probabilistically safe trajectories in the presence of these
dynamic obstacles. Real-time simulation results have demon-
strated the effectiveness of the integrated approach in improv-
ing overall vehicle safety for a variety of dynamics, environ-
ments, and behaviors.

Future work will focus on ways to potentially increase
the complexity of the GP modeling while maintaining real-
time suitability. By increasing the GP model complexity, a
wide variety of potentially relevant behaviors can be rep-
resented, such as correlated position GPs, dynamic obsta-
cles with more complex dynamics, and interaction terms
between the agent and dynamic obstacles. However, any such
increase in the model complexity can significantly affect real-
time performance, requiring a careful trade-off and contin-

ued improvements to algorithmic performance. Other future
work includes demonstration of RRT� integration (Karaman
and Frazzoli 2009) and simultaneous interaction with multi-
ple dynamic obstacles.

References

Althoff, D., Wollherr, D., & Buss, M. (2011). Safety assessment
of trajectories for navigation in uncertain and dynamic environ-
ments. InIEEE international conference on robotics and automation
(ICRA).

Amidi, O., & Thorpe, C. (1990). Integrated mobile robot control. In
SPIE mobile robots V (pp. 504–523).

Aoude, G., Joseph, J., Roy, N., & How, J. (2011). Mobile agent trajectory
prediction using Bayesian nonparametric reachability trees. In AIAA
Infotech@Aerospace conference.

Aoude, G. S. (2011). Threat assessment for safe navigation in environ-
ments with uncertainty in predictability. PhD thesis, Massachusetts
Institute of Technology, Department of Aeronautics and Astronau-
tics, Cambridge, MA.

Aoude, G. S., Luders, B. D., & How, J. P. (2010a). Sampling-based
threat assessment algorithms for intersection collisions involving

123

Auton Robot (2013) 35:51–76 75

errant drivers. In IFAC symposium on intelligent autonomous vehi-
cles, Lecce, Italy.

Aoude, G. S., Luders, B. D., Lee, K. K. H., Levine, D. S., & How, J.
P. (2010b). Threat assessment design for driver assistance system
at intersections. In IEEE conference on intelligent transportation
systems, Maderia, Portugal.

Aoude, G. S., Luders, B. D., Levine, D. S., & How, J. P. (2010c). Threat-
aware path planning in uncertain urban environments.In IEEE/RSJ
international conference on intelligent robots and systems (IROS),
Taipei, Taiwan (pp. 6058–6063).

Bennewitz, M., Burgard, W., Cielniak, G., & Thrun, S. (2005). Learning
motion patterns of people for compliant robot motion. International
Journal of Robotics Research, 24, 31–48.

Blackmore, L. (2006). A probabilistic particle control approach to opti-
mal, robust predictive control. In AIAA guidance, navigation, and,
control conference (GNC).

Blackmore, L., Li, H., & Williams, B. (2006). A probabilistic approach
to optimal robust path planning with obstacles. In American control
conference (ACC).

Blackmore, L., Ono, M., Bektassov, A., & Williams, B. C. (2010). A
probabilistic particle-control approximation of chance-constrained
stochastic predictive control. IEEE Transactions on Robotics, 26(3),
502–517.

Calafiore, G. C., & Ghaoui, L. E. (2007). Linear programming with
probability constraints—part 1.In American control conference
(ACC).

Deisenroth, M. P., Huber, M. F., & Hanebeck, U. D. (2009). Analytic
moment-based Gaussian process filtering.In International confer-
ence on machine learning (ICML), Montreal, Canada (pp. 225–232).

Ding, H., Reißig, G., Groß, D., & Stursberg, O. (2011). Mixed-integer
programming for optimal path planning of robotic manipulators. In
IEEE international conference on automation science and engineer-
ing.

Earl, M., & D’Andrea, R. (2005). Iterative MILP methods for vehicle
control problems. The IEEE Transactions on Robotics, 21, 1158–
1167.

Frazzoli, E., Dahleh, M. A., & Feron, E. (2002). Real-time motion
planning for agile autonomous vehicles. AIAA Journal of Guidance,
Control, and Dynamics, 25(1), 116–129.

Fulgenzi, C., Tay, C., Spalanzani, A., & Laugier, C. (2008). Probabilistic
navigation in dynamic environment using rapidly-exploring random
trees and gaussian processes. In IEEE/RSJ international conference
on intelligent robots and systems (IROS), Nice, France.

Garey, M. R., & Johnson, D. S. (1979). Computers and intractability:
A guide to the theory of NP-completeness. San Francisco, CA, USA:
Freeman.

Girard, A., Rasmussen, C. E., Quintero-Candela, J., & Murray-smith, R.
(2003). Gaussian process priors with uncertain inputs—application
to multiple-step ahead time series forecasting. In Advances in neural
information processing systems (pp. 529–536). Cambridge: MIT
Press.

Henry, P., Vollmer, C., Ferris, B., & Fox, D. (2010). Learning to navigate
through crowded environments.In IEEE international conference on
robotics and automation (ICRA).

How, J. P., Bethke, B., Frank, A., Dale, D., & Vian, J. (2008). Real-time
indoor autonomous vehicle test environment. IEEE Control Systems
Magazine, 28(2), 51–64.

iRobot. (2011). iRobot: Education & research robots. http://store.irobot.
com/shop/index.jsp?categoryId=3311368. Accessed 31 July 2011.

Joseph, J., Doshi-Velez, F., & Roy, N. (2010). A Bayesian nonparametric
approach to modeling mobility patterns.In AAAI

Joseph, J., Doshi-Velez, F., Huang, A. S., & Roy, N. (2011). A Bayesian
nonparametric approach to modeling motion patterns. Autonomous
Robots, 31(4), 383–400.

Karaman, S., & Frazzoli, E. (2009). Sampling-based motion planning
with deterministic μ-calculus specifications. In IEEE conference on
decision and control (CDC).

Kuchar, J. K., & Yang, L. C. (2002). A review of conflict detection
and resolution modeling methods. IEEE Transactions on Intelligent
Transportation Systems, 1(4), 179–189.

Kuwata, Y., Teo, J., Fiore, G., Karaman, S., Frazzoli, E., & How, J. P.
(2009). Real-time motion planning with applications to autonomous
urban driving. IEEE Transactions on Control Systems Technology,
17(5), 1105–1118.

Lachner, R. (1997). Collision avoidance as a differential game: Real-
time approximation of optimal strategies using higher derivatives
of the value function. In IEEE international conference on systems.
Man, and cybernetics (Vol. 3, pp. 2308–2313).

LaValle, S. M., (1998). Rapidly-exploring random trees: A new tool for
path planning. Tech. Rep. 98–11, Iowa State University.

LaValle, S. M. (2006). Planning algorithms. Cambridge: Cambridge
University Press.

Lavalle, S. M., & Sharma, R. (1997). On motion planning in changing,
partially-predictable environments. International Journal of Robot-
ics Research, 16, 775–805.

Leonard, J., How, J. P., Teller, S., Berger, M., Campbell, S., Fiore, G., et
al. (2008). A perception-driven autonomous urban vehicle. Journal
of Field Robotics, 25(10), 727–774.

Luders, B., & How, J. P. (2011). Probabilistic feasibility for nonlin-
ear systems with non-Gaussian uncertainty using RRT. In AIAA
Infotech@Aerospace conference, St. Louis, MO.

Luders, B., Karaman, S., Frazzoli, E., & How, J. P. (2010a). Bounds
on tracking error using closed-loop rapidly-exploring random trees.
In American control conference (ACC), Baltimore, MD (pp. 5406–
5412).

Luders, B., Kothari, M., & How, J. P. (2010b). Chance constrained
RRT for probabilistic robustness to environmental uncertainty. In
AIAA guidance, navigation, and control conference (GNC), Toronto,
Canada.

Maile, M., Zaid, F. A., Caminiti, L., Lundberg, J., Mudalige, P. (2008).
Cooperative intersection collision avoidance system limited to stop
sign and traffic signal violations. Tech. rep., midterm Phase 1
Report.

Mazor, E., Averbuch, A., Bar-Shalom, Y., & Dayan, J. (2002). Inter-
acting multiple model methods in target tracking: A survey. IEEE
Transactions on Aerospace and Electronic Systems, 34(1), 103–123.

Melchior, N. A., & Simmons, R. (2007). Particle RRT for path planning
with uncertainty.In IEEE international conference on robotics and
automation (ICRA)

Miloh, T., & Sharma, S. (1976). Maritime collision avoidance as a
differential game. Institut fur Schiffbau der Universitat Hamburg.

Rasmussen, C. E., & Williams, C. K. I. (2005). Gaussian processes for
machine learning. Cambridge: The MIT Press.

Sorenson, H. (1985). Kalman filtering: Theory and application. In IEEE.
Tay, C., & Laugier, C. (2007). Modelling smooth paths using Gaussian

processes. In International conference on field and service robotics.
Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic robotics. Cam-

bridge, MA: MIT Press.
Trautman, P., & Krause, A. (2010). Unfreezing the robot: Navigation

in dense, interacting crowds.In IEEE/RSJ international conference
on intelligent robots and systems (IROS).

Vasquez, D., Fraichard, T., Aycard, O., & Laugier, C. (2008). Inten-
tional motion on-line learning and prediction. Machine Vision and
Applications, 19(5), 411–425.

Vitus, M. P., Pradeep, V., Hoffmann, G. M., Waslander, S. L., & Tomlin,
C. J. (2008). Tunnel-MILP: Path planning with sequential convex
polytopes. In AIAA guidance, navigation, and control conference
(GNC), Honolulu, HI.

123

http://store.irobot.com/shop/index.jsp?categoryId=3311368
http://store.irobot.com/shop/index.jsp?categoryId=3311368

76 Auton Robot (2013) 35:51–76

Wu, A., & How, J. (2012). Guaranteed infinite horizon avoidance of
unpredictable, dynamically constrained obstacles. In Autonomous
robots (pp. 1–16).

Yepes, J., Hwang, I., & Rotea, M. (2007). New algorithms for aircraft
intent inference and trajectory prediction. AIAA Journal on Guid-
ance, Control, and Dynamics, 30(2), 370–382.

Zhu, Q. (2002). Hidden Markov model for dynamic obstacle avoid-
ance of mobile robot navigation. IEEE Transactions on Robotics
and Automation, 7(3), 390–397.

Georges S. Aoude is a con-
sultant at the Dallas office of
the Boston Consulting Group.
He received the B.Eng. degree
in Computer Engineering from
McGill University in 2005 and
the S.M. and Ph.D. in Aeronau-
tics and Astronautics from MIT
in 2007 and 2011, respectively.
On the MIT SPHERES team,
he designed spacecraft recon-
figuration maneuvers performed
onboard the ISS. Research inter-
ests include intent prediction,
threat assessment, and path plan-
ning under uncertainty.

Brandon D. Luders is a
Ph.D. candidate in the Depart-
ment of Aeronautics and Astro-
nautics at MIT, is a member of
the Aerospace Controls Labora-
tory, and participated in the Agile
Robotics for Logistics program
at MIT from 2008-2010. He
received his B.S. in Aerospace
Engineering at Georgia Tech in
2006, and his S.M. in Aeronau-
tics and Astronautics at MIT in
2008. Research interests include
path planning under uncertainty
for autonomous vehicles.

Joshua M. Joseph is a grad-
uate student in the Department
of Aeronautics & Astronautics at
MIT and is currently a member of
the Computer Science and Artifi-
cial Intelligence Laboratory. He
received a B.S. in Mechanical
Engineering and Applied Math-
ematics from Rochester Institute
of Technology and a S.M. from
MIT. He is interested in decision-
making under uncertainty in
data-limited, unknown environ-
ments using reduced-order mod-
els and Bayesian nonparamet-
rics.

Nicholas Roy is an Associate
Professor in the Department of
Aeronautics & Astronautics at
the Massachusetts Institute of
Technology and a member of the
Computer Science and Artificial
Intelligence Laboratory (CSAIL)
at MIT. He received his Ph.D. in
Robotics from Carnegie Mellon
University in 2003. His research
interests include mobile robotics,
decision-making under uncer-
tainty, human–computer interac-
tion, and machine learning.

Jonathan P. How is the Richard
Maclaurin Professor of Aeronau-
tics and Astronautics at MIT.
He received a B.A.Sc. from the
U. of Toronto in 1987 and his
S.M. and Ph.D. in Aeronautics
and Astronautics from MIT in
1990 and 1993. Prior to joining
MIT in 2000, he was an Assistant
Professor at Stanford Univer-
sity. Research interests include
robust coordination and control
of autonomous vehicles. He is an
Associate Fellow of AIAA, and
a senior member of IEEE.

123

	Probabilistically safe motion planning to avoid dynamic obstacles with uncertain motion patterns
	Abstract
	1 Introduction
	2 Related work
	3 Problem statement
	3.1 Motion pattern
	3.2 Mixtures of motion patterns

	4 Motion model
	4.1 Gaussian process motion patterns
	4.2 Estimating future trajectories

	5 RR-GP trajectory prediction algorithm
	5.1 Single tree RR-GP algorithm
	5.2 Multi-tree RR-GP algorithm

	6 RR-GP demonstration on human-operated target
	6.1 Setup
	6.2 Simulation results
	6.2.1 Motion pattern probabilities
	6.2.2 Prediction errors
	6.2.3 Computation times

	7 CC-RRT path planning with RR-GP predictions
	7.1 Extension of CC-RRT chance constraint formulation
	7.2 CC-RRT with integrated RR-GP
	7.3 PCC-RRT

	8 Results
	8.1 Infrastructure
	8.2 Intersection scenario
	8.3 Complex scenario
	8.4 Nonlinear dynamics example

	9 Conclusion
	References

