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Abstract—In this paper we address the problem of motion
planning in the presence of state uncertainty, also known as
planning in belief space. The work is motivated by planning
domains involving nontrivial dynamics, spatially varying mea-
surement properties, and obstacle constraints. To make the
problem tractable, we restrict the motion plan to a nominal
trajectory stabilized with a linear estimator and controller. This
allows us to predict distributions over future states given a can-
didate nominal trajectory. Using these distributions to ensure
a bounded probability of collision, the algorithm incrementally
constructs a graph of trajectories through state space, while
efficiently searching over candidate paths through the graph at
each iteration. This process results in a search tree in belief
space that provably converges to the optimal path. We analyze
the algorithm theoretically and also provide simulation results

allows us to enumerate all possible paths through an envi-
ronment to find paths that optimally trade off information
gathering, avoiding obstacles, and quickly reaching tha.go
To ensure the plan is suitable for systems with nontrivial
dynamics, we evaluate paths with a probabilistic distrdyut
over all possible trajectories that may be realized while
following a path with a closed-loop controller. The algbnit
proceeds by incrementally constructing a graph of feedback
stabilized trajectories through state space, while effitye
searching over candidate paths through the graph as new
samples are added. We provide a pruning technique that
exploits specific properties of uncertainty propagation fo

eliminating possible paths and terminating search afteh ea
sample is added. In the limit, this process results in a tree
in belief space (the space of probability distributions rove
. INTRODUCTION states) that contains the optimal path in terms of minimum
Advances in system identification, control, and planningost with a bounded probability of collision or “chance-
algorithms increasingly make it possible for autonomous flyconstraint”.
ing vehicles to utilize the full scope of their natural dyriam Both sampling-based algorithms and linear control and
Quad-rotors capable of agile flight through tight obstaclegstimation schemes have been shown to scale well with
helicopters that perform extended aerobatic sequences, atimensionality, so the algorithm we present should extend
fixed-wing vehicles that mimic the perching behavior ofeasily to more complicated systems. Additionally, the al-
birds, have all been reported in the literature [1], [2],. [3]gorithm has the powerful property offered by incremental
Simultaneously, advances in LIDAR and computer visiosampling algorithms of quickly exploring the space and then
algorithms have made autonomous flight through obstaclgrovably converging to the optimal solution. This is partic
rich environments possible without the use of an externallarly desirable for stochastic planning problems sin@y th
sensor system [4], [5]. Currently, there is growing intéresare computationally demanding and in a real-time settieg th
in extending the highly dynamic maneuvers that have beaomputational time available could vary widely.
demonstrated when accurate state information is always
available to autonomous vehicles that operate in unstredtu Il. RELATED WORK
environments using only on-board sensors. The general motion planning problem of trying to find
Consider a fixed-wing UAV equipped with a LIDAR, a collision-free path from some starting state to some goal
navigating through the urban canyon or under the canopggion has been extensively studied. In particular, sargpli
in a forest. The ability of the vehicle to estimate its pasiti based techniques have received much attention over the
is state dependent as obstacles and environmental featuieest 15 years. The Rapidly-exploring Random Tree (RRT)
come in and out of view of the LIDAR. An aggressive bankoperates by growing a tree in state space, iteratively sagpl
angle may make localization with a planar LIDAR difficult new states and then “steering” the existing node in the tree
or impossible altogether. Motion blur and other speed &ffecthat is closest to each new sample towards that sample.
can cause similar problems for camera-based sensing if tiee RRT has many useful properties including probabilistic
vehicle executes maneuvers with high velocity or angulazompleteness and exponential decay of the probability of
rates. These problems are compounded by the severe diaidure with the number of samples [7].
and weight restrictions that are imposed on the sensors andThe Rapidly-exploring Random Graph (RRG) proposed by
on-board computer by the physics of flight. Further, failuré&karaman and Frazzoli is an extension of the RRT algorithm
to reason intelligently about the uncertainty while flying[6]. In addition to the “nearest” connection, new samples ar
around obstacles could lead to an unacceptable probabiliyso connected to every node within some ball. The result
of crashing. is a connected graph that not only rapidly explores the state
The contribution of this paper is a novel algorithm thaspace, but also is locally refined with each added sample.
extends a class of recently proposed incremental samplinghis continuing refinement ensures that in the limit of inéni
based algorithms to handle state-dependent stochasiticitysamples, the RRG contains all possible paths through the
both dynamics and measurements [6]. The key idea is environment that can be generated by the steering function
leveraging the fact that the incremental sampling approacafsed to connect samples. The RRT* algorithm exploits this

demonstrating its utility for balancing information gathering to
reduce uncertainty and finding low cost paths.



property to converge to the optimal path by only keeping the Search repair after the underlying graph changes is dis-
edges in the graph that result in lower cost at the verticazissed by Koenig et al. [17], however that algorithm is used
with in the ball. While these algorithms have many powerfufor deterministic queries, and our search techniques make
properties, they assume fully deterministic dynamics amd adirect use of covariance propagation properties. Censi et
thus unsuitable for stochastic problems in their proposeal. [18] and Gonzalez and Stentz [19] use search with a
form. similar pruning technique, however both algorithms operat

Partial observability issues pose severe challenges fromP8 static graphs and do not consider dynamic constraints.
planning and control perspective. Computing globally -optiWe extend the pruning strategy for dynamic systems (i.e. a
mal policies for partially observable systems is possillly o non deterministic mean) and also use the pruning strategy in
for very narrow classes of systems. In the case of discre@e context of an incremental algorithm to terminate search
states, actions, and observations, exact Partially Oalkrv
Markov Decision Process (POMDP) algorithms exist, but are
computationally intractable for realistic problems [8]ady ~ The systems we are interested in are generally nonlinear
approximate techniques have been proposed to adapt @fed partially observable. The robot is given a discrete time
discrete POMDP framework to motion planning, but theydescription of its dynamics and sensors,

I1l. PROBLEM FORMULATION

still scale poorly with the number of states, and the prospec _ / r /
of discretizing high-dimensional continuous dynamicsas n = f(It‘ll’ U1, W), uit N(O’Q, ) @
promising [9]. 2 = h(z, vp), v~ N, R), (2

For systems with linear dynamics, quadratic cost, anglherez, € X is the state vectow, € U is the input vector,
Gaussian noise properties (LQG), the optimal policy is obgy is an random process disturbanegjs the measurement
tained in terms of a Kalman filter to maintain a Gaussian statgctor, andv, is a random component in the sensor readings.
estimate, and a linear control law that operates on the medRe state spac&’ can be decomposed int™® and A°°s

of the state estimate [10]. While global LQG assumptionghere A°> represents the states where the robot is in
are not justified for the problems we are interested in, mampllision with obstacles.
UAVS operate with IocaIIy Iinea_lr Cont.rol Iaws abqut ngminal Our approach to p|anning is built on an under|ying method
trajectories, and the Kalman filter with various lineani@at for finding dynamically feasible solutions and for stabilig
schemes has proven successful for autonomous systems fgtsystem. Thus, we assume the availability ofaNGECT()
localize using on-board sensors [4]. function for finding a nominal trajectory and stabilizing
The Belief Road Map (BRM) [11] explicitly addressescontroller between two states* andz® such that,
observability issues by simulating measurements along can

va,b rra,b praby _ b
didate paths and then choosing the path with minimal uncer- (X 1Ua , K7) = CONNECT(2", 27) @)
tainty at the goal. However, the BRM assumes the mean of XY = (29,41, 20, ..., 3T,,) 4)
the system is fully controllable at each time step, meaning T — (a0 i it - 5
that while the path is being executed, the controller is gva 3 . (ubo, o UVQ’ ' ’vuT‘”) )
capable of driving the state estimate back to the desirdd pat to =z 2" = f(ir,,, Uz, ,,0) (6)
This assumption is valid only for a vehicle flying slowly and Ty = f(Te—1,Ut—1,0) YVt € [1, Ty p], @)

conservatively such that dynamic constraints can be ighore . . . .
Platt et al. [12] assume maximum likelihood observations tg/h_ere th? traj_ectow can be stabilized with an on-line state
facilitate trajectory optimization techniques and theplae estimatez; as in

when the actual path deviates past a threshold.

The notion of chance-constrained motion planning is not K% = (Ko, Ky, Ko,...,Kr,,), (8)
new. A method of allocating risk for fully observable syseem _ e — K3 — i ‘ 9
is discussed by Ono et al. [13]. Evaluating a performance ot = f (@t (@ = 2e)we) ©
metric over a predicted closed-loop distribution for palyi The problem of computing such trajectories and con-

observable systems was described by van den Berg et tbllers for various robotic vehicles has received an ermarsn
[14] and also derived independently by the authors [15pmount of research attention and is beyond the scope of
while He et al. [16] use a similar technique with open-looghis paper. For general nonlinear systems, techniques such
action sequences. The algorithm proposed by van den Beag shooting methods, or direct collocation [20] may be
et al., termed LQG-MP, picks the best trajectory in termsised. For flying vehicles, maneuver primitive approaches
of minimum cost with a bounded probability of collision are appealing due to their relative computational effigienc
from an RRT. However, Karaman and Frazzoli show thg21]. For “Dubins” vehicle dynamics, the optimal trajegtor
the RRT in essence enumerates a finite number of patliseasily compute in closed form [22]. Stabilizing conteo$l
even in the limit of infinite samples [6]. Thus there is nomay be designed, for example, using classical control theor
guarantee that a “good” path will be found either in terms ofr LQR design, depending on what the system dynamics
cost or uncertainty properties. In fact, we provide an exempdemand.

problem where an RRT fails to find a solution that satisfies The planning problem is specified with some uncertain
chance-constraints, even though one exists. In contrgst, knowledge of the robot’s initial state given by the probiil
searching over an underlying graph our approach is botfistribution

complete and optimal as the graph is refined in the limit. xo ~ N(Zo,2X0), (10)



and a goal region in the environmetyoa C Xxree to which
the robot wishes to travel.

The optimal path planning problem is then to minimize i
expectation a stage cost function,

T
argmin £ Z J(azt)l , (11)
(X~U/f() t=1
subject to
o = @0, P(x7 ¢ Xgoal) < 0, (12) @ ®) ©
P(xy € Xopg) < 9,Vt € ]0,T], (13) Fig. 1. Inthis example a vehicle with Dubins dynamics (seeisedtll) is

trying to traverse past the obstacles. The green areas $leo@dions where

. - . the vehicle can obtain range and bearing measurements frorothers

whered < .5 is a user specified threshold for how much risk obstacles. (a) shows predicted covariance ellipsegusily the Kalman
to tolerate that defines the chance-constraint.and — R+ filter which collapse as soon as measurements are receivet@mappear

; ; ; ; ; pass safely past the obstacles. However, in (b) we see seméxte of
is the cost function. The expectation Is with respect to thc osed-loop trajectories for this system in blue that djedo not match the

process and sensor noigg andv,, and minimization iS OVer expected Kalman filter distribution after measurements areived since it
concatenated paths returned by theNSIECT() function: takes time for the controller to pull the robot back onto theniral path.
In (c) the solid ellipses show the closed-loop distributishich correctly
... predicts the collision.
(X,U,K) = (CoNNECT(z?, z'),

CONNECT(z!, 2?) ConnecT(z! L, 2)) and a measurement update then adjusts the prediction and
R e incorporates the new information into the covariance,
This formulation decouples the control design from the S, =5 CF + R, (18)

path planning optimization. Practically this makes sense

L . . . Ly=%,CFst 19)
for robots where the stabilizing controller is designedhwit R ~
dynamic considerations rather than the specific configurati Ty = Ty + Li(Z — Cry) (20)
of an operating environment. Y =%, — LiOyS,. (21)

where L, is the Kalman gain. Whilex, captures the un-
certainty that will be present on-line during path exeautio

In order to evaluate a cost function and check the chanct-does not represent the full uncertainty from a planning
constraint, we need a distribution over states that may Rerspective since the mean of the state estimaiewill
realized if we execute a given nominal trajectory. Takind'ot lie on the nominal trajectory as assumed in [11], [12],

appropriate partial derivatives of equations 1 and 2 weinbtal18], [19] and others. Figure 1 illustrates visually whysifs
the following time varying linear system important for closed loop systems with nontrivial dynamics

From a planning perspective we need to consider all

Ty = Ayiiy_1 + Byiig_q +we,  wy ~ N(0,Q;)  (14) possibleﬁt that could be realized dl_Jring path _execution. To
5 — Cd v v ~ N(0, Ry) (15) do this we can use the Kalmaq filter equatlons, but treat
A ¢ it the observations as random variables (since they have yet

R " . to be observed). We will track the distribution over possibl
where z,, @, Z; are now error quantities, representing the -

L : e ~ State estimates aB(xz) ~ N(u,A). Taking the appropriate
deV|aE|on [rom the nor:n|nal~ path such that = i + 3, expectations through the prediction step of the Kalmarrfilte
wp = Uy + Uy, andzy = Z; + Z;.

. X X . (equation 17) for the first moment of the distribution follow
During executionz; will not be available to compute the .

control input. Instead we must use an estimate: 0fvhich
we denote ast;. The covariance associated with the state i = E[Z;] = E| ATy 1+ Byiiy_1] (22)
estimate is given by;. To the extent thaf andh are locall 2 2

linear functi%ns, theEKaIman filter is the optimal estimaitgr = BlAizi - Bi K] (23)
the sense of minimum expected estimation error. The filter = (At — BeK¢)pe—1- (24)
maintains a Gaussian state estimate,~ N(Z;,%;) and
operates recursivelyA process step first predicts the next

IV. UNCERTAINTY PREDICTION

For the update step (equations 20, 21) we have

state and associated covariance, [y = E(:fct) _ E(:fst 4 LG — Ct:fct)) _ (25)
‘%t = Ata::t_l + Bitis_1 (16) He = (At - Bth),utfl- (26)
S = ASi 1 A + Qy, (17) However, in generak, = uy = 0 because the planning

problem is specified with an initial state estimate from viahic

1we can easily convert between estimates:pnd; by subtracting or the_nOise fre? trajectory is built. From equatiP_” 26 it is
adding the deterministic nominal value @f appropriately. obvious that ifuy = 0 then u;, = 0 Vt. Exploiting the



fact thaty, = 0 and substitutingd, for A, — B K, the Intermediate
expectations for the second moment follow as Point

Ry = Bl(Axd1)(Axie 1)) 27)

.
71

7/

Goal

=

= A A1 AL, (28)
with the update step as
Ay = B[(z,27)) (29) e—— Measurement Region
= B[(& + Ly (G — Cyi)) (@ + Ly(3 — Che))T] (30)
= Ay + LS LT (31)
= Ay + L,C, 3, (32)

= (A; — BiK) A1 (A — BiKy)T + 1,0:%,. (33)

Equation 33 gives an expression for propagating the
distribution of possible state estimates that will be m=di
during execution. ThéA; — B K)A;_1(A; — B K;)T term
is contractive ifK; is a stabilizing controller for our system.
The additive second term is equivalent to the uncertairdy th
is subtracted from the Kalman filter covariance during the (b)
measurement update. Intuitively, the uncertainty subdthc

from the on-line state estimate when measurements dﬂg 2. This figure shows two different paths that reach aarinediate
nt with different covariance. In (a) the red path dips doand gets

. . . i
received, is _added to uncertainty of the expected mean Eﬁaasurements and thus has lower uncertainty at the intermeutiatt. This
the state estimate. lower uncertainty gives it a lower cost to go, shown by theetbtine, since

ictribiiti i it can traverse closer to obstacles. Thus, at the intermegiaint, neither
The  distribution  returned by the Kalman filter, the red or blue paths can be pruned. In contrast, in (b) the fth receives

P(x¢|20, 21, .., 2t) = N(&, %) can be viewed a$’(z|Z)  measurements and thus has lower cost and uncertainty at érenéttiate
since z; encodes the information from the measurementgoint. In this scenario it dominates the red path, and the ad would be

Equation 33 gives an expression for updating a distributioffuned.
P(#;) = N(&, A¢). This provides a natural way to represent
the joint belief asP(z,#) = P(z|%)P(&). Using common , - ,
Gaussian manipulations we get ~ The covariance prediction (equations 21, 33), cost expecta
5 tion evaluation (equation 11), and chance-constraintldhgc
P(zy,8;) = N <[ Ly } ’ [ Ap+3 Ay D . (34) (equation 13) is implemented by arRBPAGATHe, nstar)
Lt Ay Ay function that takes as arguments an edge and a belief node
The primary significance of this distribution is theat the start_ing vertex for that edge, and returns a belieéno.d
marginal, P(z;) = N (&, A, + %,). For planning purposes at the ending vertex for that edge. If the chance-constraint
this is what we care about. It describes the distributiofs Violated by the uncertainty obtained in propagating the
over trajectories as the sum of the on-line state estimatig®variances the function returns no belief. .
error,¥,, and the uncertainty that arises from not having yet Additionally, we require the following functions:
taken observations),. This distribution is used to check the SAMPLE() returns ii.d. uniform samples fromxee,
chance-constraint (13) and evaluate cost (11) for canelidaNEAREST(V, vnew) takes the current set of vertices as an

paths. argument and returngearest the vertex inV that minimizes
some distance function toney, and NEAR(V, vnew) returns
V. RAPIDLY-EXPLORING RANDOM BELIEF TREE every vertex within some ball centered afe, of radius

The Rapidly-exploring Random Belief Tree (RRBT) inter-p o (log(n)/n)(/9 wheren is the number of state vertices
leaves graph construction and search over the graph tacprojand d is the state dimension. For a thorough discussion on
a tree into belief space. The algorithm operates on a set thfe importance of the ball size see [6].
vertices,V, and edgesF, that define a graph in state space. ) .

Each vertexo € V has a statey.z, and a set of associated A~ Comparing Partial Paths

beliefs nodesv.N. Each belief noden € v.N has a state At this point we observe that any graph of nominal
estimate covariance.X, a distribution over state estimatestrajectories through state space implies an infinite set of
n.A, a costn.c, and a parent beliefi.parent. Belief nodes possible paths through that graph. Search algorithms like
correspond to a unique path through the graph that could gjkstra’s algorithm and A* impose a total ordering on paths
followed to reach the vertex, and the member variables to each vertex in the graph based on cost, thus finding a
of belief nodes #.%, n.A, andn.c) are the properties that single optimal path to each node. This total ordering is also
result from following that path. Each edgec E contains the the property that the RRT* algorithm exploits to “rewire”dan
trajectory and control law to traverse between the assmtiatmaintain a tree in the state space. This works because the
vertices and is defined by theo®NECT() function. A search optimal cost to the goal from any vertex is not a function of
gueue, @, of belief nodes keeps track of paths that neethe path taken to that vertex. However, as illustrated inrigu
updating at each iteration of the algorithm. 2, for our chance-constrained framework, this is generaity



the case. As we demonstrate in section VI, we can impog¥gorithm 1 RRBT Algorithm

a partial ordering of the form: 1 n.X = ¥g; n.A = 0; n.c:=0; n.parent= NULL;
2: 0.2 := Tinip; v.N = {n};
Ng < Np & (Ng. X < np.X)A 3 Vi={vh E:={}

oA <ng.A) A (ng.c < ng. 35 4: while i < M do
(n np-A) A (ng.c <np.c) (35) e SAMPLEQ

wheren, andn, represent different partial paths to the same 6:  vnearest = NEAREST(V, Zrand)
vertex, while being guaranteed not to prune an optimal path7: {inearestZCONNECT(vneares{x, Trand)
However, we still have a problem in that infinite loops 8  if Jvnearest? :PROPAGATHenearestn) then

in the graph may exist within this partial ordering. The 9 V :=V Uv(¥rand)
covariance update equations make it possible for uncéytainlo: E := E'U enearest
to monotonically decrease while cost must monotonically.l: E := E U CONNECT(Zrand, UnearestT)
increase. Physically, this may correspond to a robot aigcli 12: Q == Q U vnearest!V
in an information-rich part of the environment to improve 13: Viear:= NEAR(V, vrang)
the state estimate. We can rule out this infinite looping by4: for all vnear € Viheardo
introducing a parametet, into the comparison which allows 15: E := E'U CONNECT(UnearZ, Zrand)
n, to dominaten, if the covariances associated with are  16: E := E U CONNECT(Zrand, VnearT)
larger than those associated with by a tolerance factor:  17: Q= Q Uupear N
18: end for
Ng Snp & (ng.2 < (np.X + €l))A 19: while CIZD#P([DQ?O
20: n :=PO0
(ng.A < (np. A+ €el)) A (ng.c < mnp.c). (36) o1 for all spegnyor Of v(n) do
In practicee can be set quite small, and provides a remark22: Nnew :=PROPAGATE(€neighbos 1)
ably simple and efficient method for pruning useless paths23: if APPENDBELIEF(vneighbos 7inew) then
The partially ordered sets of nodes at each vertex aré: Q= QUnnew
maintained by an APENDBELIEF(v, nney) function that 25 end if
takes as arguments a state vertex, and a new belief node. TAfS end for
function first checks to see if the new belief is dominated by7: ~ €nd while

any existing beliefs at using equation 36. If it is dominated, 28:  end if
the function returns failure. If it is not, the function then2%: @:=i+1
appends the new node and checks to see if it dominates aff end while
existing nodes using equation 35, pruning when necessary.

B. Algorithm Description VI. CONVERGENCEANALYSIS
Algorithm 1 depicts the RRBT algorithm. The graph is ) ) )
initialized with a single vertex and single belief corresgde In this section we show, given some reasonable assump-

ing to the initial state estimate as specified in equation 1PnS about the environment and the system dynamics, that

on lines 1-3. This belief will form the root of the belief tree theé RRBT algorithm converges to the optimal path in the
At each iteration of the main loop, the state graph idimit of [nf|n|te samples. We begin by stating necessary

updated by sampling a new state and then adding edges to #RSUMptions.

nearest and near vertices as in the RRG algorithm. WheneveAssumption 1:Let e; = CONNECT(z?,2¢), €2 =

an existing vertex has an outgoing edge added, all the belf@PNNECT(z®,2"), and e® =CONNECT(z", 2°). If 2® € ey,

nodes at that vertex are added to the queue. It should be note@n the concatenatioi,, e;] must be equal te; and as a

that the new vertex is only added to the graph (along with théonsequence have equal expected cost for any initial belief

appropriate edges) if the chance-constraint can be sdtisfie This assumption states that th@ NECT() function must

by propagating an existing belief at the nearest vertex o ttbe consistent for intermediate points and that the cost-func

new sampled vertex as shown by the check on line 8. Thiion must also be consistent. It further states that oanC

is analogous to “collision-free” checks in a standard RRT. NECT() function must correctly and consistently interpolate
After all the edges have been added, the queue is efhe LQG properties. This is necessary since our algorithm

haustively searched using uniform cost search from ling€lies on refining through infinite sampling which implies

19-27, using the the pruning criteria discussed above afiat samples will be infinitely close together. Since for mos

implemented by APENDBELIEF(). The choice of uniform robots the discrete dynamics equations will be derived from

cost search is important because it guarantees that witfincontinuous system description, this implies that we must

an iteration of the algorithm (adding a new sample), nde able to compute a “partial” step by rediscretizing the

new belief will be appended at a state vertex and thegPntinuous system with the appropriate time step.

pruned. This is a direct consequence of the partial ordering Assumption 2:There exists a ball of radiuy € R,

in equation 35 including cost, and the fact that with unifornat every pointz € X such that(i) for all 2’ € &7,

cost search and a positive cost function, the cost of nod§§obSP(x’)dx’ < 4, where P(z') is a reachable belief at

being examined must monotonically increase. 2, and (i) x € X7



This assumption is a stochastic-chance-constrained-partiie fact that LQG belief propagation is invariant with respe
lel to assumption 14 in [6]. It states that the obstacles & thto inequality in initial beliefs. To demonstrate this, weeus
environment are spaced such that it is possible to move thige general Binomial Matrix Inversion Lemma,
mean of a distribution within some ball and not violate the 1 -1 1 1 A1
chance-constraint. This is necessary to give the graphte fini (A+B)"=A" -~ A7 B(B+BA™ B)" BA™. (37)
sample volume to converge in. We make use of the general Lemma as it relates to positive

Assumption 3:The structure ofX,ps and is such that if definite covariance manipulations with the following Lemma
% ~ N(#,%%), 2% ~ N(£,%°), and¥, < X then P(z¢ € Lemma 2:For two covariance matriced and B, there
X0s) < P(xb € x°) for all & € Xyree exists another symmetric positive definite matrhxsuch that

This assumption simply states that decreasing the covark ' = (A+ B)~' + C.
ance can’t increase the probability of collision at a givetes Proof: This follows immediately from equation 37 and
estimate. This may be violated for very sparse environmentde observation that ifA and B are symmetric-positive-
with small obstacles and large uncertainty, but is praliyica definite, then the quantityd'B(B + BA™'B)"'BA™!
very reasonable. must also be symmetric positive-definite. [ ]

Assumption 4:The cost function is convex in the sensel his property extends to the covariance of the Kalman filter
that if z* ~ N(z,%%), 2’ ~ N(z,%), and¥, < %, then With the following Theorem. .

E[J(x%)] < E [J(z")] for all & € Xiree. Theorem 1:For two covariance ma'tn'ce&ié and %2,

While this is a restrictive assumption, we note that iyvherel there eX'5t2S some positive-definite matfl such
includes a uniform cost function over the state, resultinagj""_t ¥y, + Do = X3, there will always be another positive
in shortest path behavior. Additionally, the environméntadefinite matrixD, such thats; + D, = X2 vt € [0,00).
obstacles need not be convex since the cost function is Proof: We begin by noting that the Kalman filter relies
decoupled from the obstacle constraints. Further, even {PON & two step recursion. Thus if the property holds through
the actual cost function is not globally convex, it may still€@ch step of the recursion it holds for &k oo.
be locally convex along the optimal path and the above FOr the process step we have
assumption can still be met fa¢ and %* below a certain 52 =A% AT +Q=A!_,+D)AT +Q

threshold. iwl 4T T
Assumption 5:The partial derivatives that lead to equa- - o Azi—lAT +ADAT +Q
tions 14 and 15 are exact. Yy =AY ,A +Q

This is the most restrictive assumption. It states that our if — 2} = ADAT = D'.
system must be perfectly locally linear and further, that th ) )
LQG properties R, Q, A, B, and C) must be the same For the measurement update we turn to the information form
during the planning phase and execution phase. While tHf§ the Kalman update,
is certainly not generally true, for many systems this is a = y2 _ (iz—l L RY 1= ((il + D)Ly RY
reasonable approximation, and it is justified since we are ~‘ K ¢ '
using a feedback control law to stay close to the nomindly Lemma 2 we can write
trajectory. This is also more realistic than assuming maxi- $2 _(yii ~}_ pry piyt
mum likelihood observations. Instead we are assuming that = = (2, +R)T
we can predict the properties of the measurements, withoaihd again
assuming we know the actual values of the measurements.

2 _ q 1 1\—1 "
Lemma 1:Let P denote the set of all finite length Y= (&, +R)T DT

Tt

paths throughX such that for everyz; € p for every Thus we havex? = Y. + D" where D" is positive-

p € P P(x, € X% < 4. Let P{f ;, denote a similar set definite. ' ' -
contained in the graph of the RRBT algorithm at iteration  The following Theorem states that a similar property holds
lim; 0o Pyf g, = P for the mean uncertainty.

Proof: (Sketch) This follows from assumptions 1 and Theorem 2:For two state covariance matricéy, and>:2,
2 along with results presented in [6]. The idea is that if thgvhere there exists some positive-definite mafvixsuch that
obstacles in the environment are spaced such that there3s + D, = ¥?, and two corresponding mean covariance
some reachable belief that will permit a distribution to benatrices,A} and A2, with the same properth\} + Ey =
shifted within a ball, then in the limit of infinite samples,Ag, there will be some positive-definite matri, such that
there will be an infinitely dense connected graph in the\} + E, = A? always holds.
ball. Since this property is assumed to hold for allthe The proof follows in a similar manner to Theorem 1, by
environment will be covered by an infinitely dense connecteglugging into the belief propagation equations and appglyin
graph. B lLemma 2.

Lemma 1 states that in the limit of infinite samples, the Theorem 3:For two beliefsn, andn,; at the same state,
underlying graph built by the RRBT algorithm contains alllet p, and p, be the nominal trajectories to the beliefs, and
finite length paths that respect the chance-constraint. Vet p¢ and p? be the optimal nominal trajectories from,
must therefore show that the search tree of beliefs that v dn, to the goal. Ifn, < n, thenE [Z ’ J(xt):| +ng.c <
maintain on top of this graph contains all possible paths in ba
the graph thatould be optimal. Our pruning strategy exploits £ [Zpg J(xt)} + np.c + ¢, andlime g cc = 0.



@) (b)

Fig. 3. In this environment the robot can only receive measungsrie the
bottom green region. Ignoring uncertainty and moving skraig the orange
goal region (a) results in a high probability of collisionhile growing an
RRT while checking the chance-constraint (b) will not findcduson. The
purple lines in (b) depict nominal paths through the envirommene of
which reach the upper region since any sample drawn from titeréigion
will be connected to a path that hasn't visited the greenoregand thus
cannot safely pass the obstacles.

@) (b) (c)

Fig. 4. (a) shows the RRBT algorithm after 100 iterationg, dfter 500
iterations, and (c) after 10000 iterations. The algorithaiciy finds a
feasible solution that goes down to the information regiorotalize and
then pass safely between the obstacles. As more samples ad, dlis
path is refined. Note that the solution is slightly conseveatn that the
path goes far enough into the green region to ensure the Iglitypanass
within the chance-constraint actually receives measuresnent
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Fig. 5. This figure shows the cost of the best path in the trgett{a run
time (b - top), and the run time per iteration (b - bottom) as a tioncof
the number of samples for the environment in figure 4, averaged 20
runs.

of an environment that forces trade-offs between inforomati
gathering and finding short paths, where the robot can only
receive measurements in a small region away from the goal.
In this scenario, moving straight to the goal will not satisf
the chance-constraint.

To evaluate the probability of collision on each step, we
used the conservative approximation of checking the elips
defined by the covariance matrix and a desired chance bound
for collisions with obstacles. This is computationally téxs
than integrating the distribution ovet°Ps, and since the
problem formulation states that the specification is an uppe
bound, this is a reasonable approximation to make. For more
aggressive (but still conservative) approaches see [13].

For the example in figure 3, simply growing an RRT and
checking the chance-constraint along the paths, as prdpose
in [14], fails to find a feasible solution since the Vorondéid
will prevent expansion of the paths that have passed through
the measurement region. In contrast, the RRBT algorithm,
not only find a feasible path, it refines towards the optimal

and 4 combined with Theorems 1 and 2.nlf < n;, then

averaged over 20 runs in this environment are shown in figure

the optimal cost to go fon, must be within some constant 5- As our theoretical predict, we can see the cost converging

factor of that forn,. Since the limit yieldsn, < n; the

as a function of the number of samples. Additionally, the

constant factor has to approach 0. The accumulated costc@Mputational complexity per iteration is sub-linear.

strictly less than that ofi, and thus the total cost is also

strictly less than that fon,,.

Theorems 1 through 3 prove that the pruning strategy
conservative in that it only removes suboptimal paths;esin
by Theorem 1 the original graph contains all paths achievab
with the GoONNECT() function, in the limit of infinite samples

ande — 0, the belief tree will contain the optimal path.

VIlI. EXPERIMENTAL RESULTS
We first implemented the algorithm on a 2D system wit
dynamics:
T = Tp—1 + Up—1 + wt), wg ~ ]V(O7 0011) (38)
2t = T + vy, vy~ N(O,R), (39)

It is important to note that the algorithm is dependent on
being able to predict the properties of the measurements
fhat will be received. Since, for the problems we are in-
erested in, the measurements are a function of state, the
ctual measurement properties may vary from the predicted
covariance. In our implementation we handle this by only
predicting a measurement if only probability mass below the
chance-constrained level is outside of a measurementrregio

prhis can be seen in figure 4 where the solution goes far

enough into the measurement region to ensure that eveey stat
element inside the covariance ellipse receives measutemen

In addition to the 2D system we also tested the algorithm
in a domain with Dubins vehicle dynamics and range and
bearing beacon measurements from the corners of obstacles

where R = ool or R = 0.017 depending on the location which serves as an approximate model for a fixed-wing
in the environment. Figure 3 shows a specific configuratiomehicle that uses a corner detector with a LIDAR. The



We also plan to implement the algorithm on an actual
fixed-wing platform. In making the algorithm feasible for
use in real-time, there are a number of possibilities for
introducing heuristics for speed. An A* heuristic could be
used in the search to focus towards the goal. Once the goal
is found, the same heuristic could be used to bound the tree
and graph growth and eliminate suboptimal regions. Further
by introducing an “expected value of information” it would
be possible to reduce the number of belief nodes that must

be maintained at each state vertex.
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