
Rapidly-exploring Random Belief Trees for Motion Planning Under Uncertainty

Adam Bry, Nicholas Roy
Massachusetts Institute of Technology, Cambridge, MA, USA

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA 2011).

Abstract— In this paper we address the problem of motion
planning in the presence of state uncertainty, also known as
planning in belief space. The work is motivated by planning
domains involving nontrivial dynamics, spatially varying mea-
surement properties, and obstacle constraints. To make the
problem tractable, we restrict the motion plan to a nominal
trajectory stabilized with a linear estimator and controller. This
allows us to predict distributions over future states given a can-
didate nominal trajectory. Using these distributions to ensure
a bounded probability of collision, the algorithm incrementally
constructs a graph of trajectories through state space, while
efficiently searching over candidate paths through the graph at
each iteration. This process results in a search tree in belief
space that provably converges to the optimal path. We analyze
the algorithm theoretically and also provide simulation results
demonstrating its utility for balancing information gathering to
reduce uncertainty and finding low cost paths.

I. I NTRODUCTION

Advances in system identification, control, and planning
algorithms increasingly make it possible for autonomous fly-
ing vehicles to utilize the full scope of their natural dynamics.
Quad-rotors capable of agile flight through tight obstacles,
helicopters that perform extended aerobatic sequences, and
fixed-wing vehicles that mimic the perching behavior of
birds, have all been reported in the literature [1], [2], [3].
Simultaneously, advances in LIDAR and computer vision
algorithms have made autonomous flight through obstacle-
rich environments possible without the use of an external
sensor system [4], [5]. Currently, there is growing interest
in extending the highly dynamic maneuvers that have been
demonstrated when accurate state information is always
available to autonomous vehicles that operate in unstructured
environments using only on-board sensors.

Consider a fixed-wing UAV equipped with a LIDAR,
navigating through the urban canyon or under the canopy
in a forest. The ability of the vehicle to estimate its position
is state dependent as obstacles and environmental features
come in and out of view of the LIDAR. An aggressive bank
angle may make localization with a planar LIDAR difficult
or impossible altogether. Motion blur and other speed effects
can cause similar problems for camera-based sensing if the
vehicle executes maneuvers with high velocity or angular
rates. These problems are compounded by the severe size
and weight restrictions that are imposed on the sensors and
on-board computer by the physics of flight. Further, failure
to reason intelligently about the uncertainty while flying
around obstacles could lead to an unacceptable probability
of crashing.

The contribution of this paper is a novel algorithm that
extends a class of recently proposed incremental sampling-
based algorithms to handle state-dependent stochasticityin
both dynamics and measurements [6]. The key idea is in
leveraging the fact that the incremental sampling approach

allows us to enumerate all possible paths through an envi-
ronment to find paths that optimally trade off information
gathering, avoiding obstacles, and quickly reaching the goal.
To ensure the plan is suitable for systems with nontrivial
dynamics, we evaluate paths with a probabilistic distribution
over all possible trajectories that may be realized while
following a path with a closed-loop controller. The algorithm
proceeds by incrementally constructing a graph of feedback
stabilized trajectories through state space, while efficiently
searching over candidate paths through the graph as new
samples are added. We provide a pruning technique that
exploits specific properties of uncertainty propagation for
eliminating possible paths and terminating search after each
sample is added. In the limit, this process results in a tree
in belief space (the space of probability distributions over
states) that contains the optimal path in terms of minimum
cost with a bounded probability of collision or “chance-
constraint”.

Both sampling-based algorithms and linear control and
estimation schemes have been shown to scale well with
dimensionality, so the algorithm we present should extend
easily to more complicated systems. Additionally, the al-
gorithm has the powerful property offered by incremental
sampling algorithms of quickly exploring the space and then
provably converging to the optimal solution. This is partic-
ularly desirable for stochastic planning problems since they
are computationally demanding and in a real-time setting the
computational time available could vary widely.

II. RELATED WORK

The general motion planning problem of trying to find
a collision-free path from some starting state to some goal
region has been extensively studied. In particular, sampling-
based techniques have received much attention over the
last 15 years. The Rapidly-exploring Random Tree (RRT)
operates by growing a tree in state space, iteratively sampling
new states and then “steering” the existing node in the tree
that is closest to each new sample towards that sample.
The RRT has many useful properties including probabilistic
completeness and exponential decay of the probability of
failure with the number of samples [7].

The Rapidly-exploring Random Graph (RRG) proposed by
Karaman and Frazzoli is an extension of the RRT algorithm
[6]. In addition to the “nearest” connection, new samples are
also connected to every node within some ball. The result
is a connected graph that not only rapidly explores the state
space, but also is locally refined with each added sample.
This continuing refinement ensures that in the limit of infinite
samples, the RRG contains all possible paths through the
environment that can be generated by the steering function
used to connect samples. The RRT* algorithm exploits this

property to converge to the optimal path by only keeping the
edges in the graph that result in lower cost at the vertices
with in the ball. While these algorithms have many powerful
properties, they assume fully deterministic dynamics and are
thus unsuitable for stochastic problems in their proposed
form.

Partial observability issues pose severe challenges from a
planning and control perspective. Computing globally opti-
mal policies for partially observable systems is possible only
for very narrow classes of systems. In the case of discrete
states, actions, and observations, exact Partially Observable
Markov Decision Process (POMDP) algorithms exist, but are
computationally intractable for realistic problems [8]. Many
approximate techniques have been proposed to adapt the
discrete POMDP framework to motion planning, but they
still scale poorly with the number of states, and the prospect
of discretizing high-dimensional continuous dynamics is not
promising [9].

For systems with linear dynamics, quadratic cost, and
Gaussian noise properties (LQG), the optimal policy is ob-
tained in terms of a Kalman filter to maintain a Gaussian state
estimate, and a linear control law that operates on the mean
of the state estimate [10]. While global LQG assumptions
are not justified for the problems we are interested in, many
UAVs operate with locally linear control laws about nominal
trajectories, and the Kalman filter with various linearization
schemes has proven successful for autonomous systems that
localize using on-board sensors [4].

The Belief Road Map (BRM) [11] explicitly addresses
observability issues by simulating measurements along can-
didate paths and then choosing the path with minimal uncer-
tainty at the goal. However, the BRM assumes the mean of
the system is fully controllable at each time step, meaning
that while the path is being executed, the controller is always
capable of driving the state estimate back to the desired path.
This assumption is valid only for a vehicle flying slowly and
conservatively such that dynamic constraints can be ignored.
Platt et al. [12] assume maximum likelihood observations to
facilitate trajectory optimization techniques and then replan
when the actual path deviates past a threshold.

The notion of chance-constrained motion planning is not
new. A method of allocating risk for fully observable systems
is discussed by Ono et al. [13]. Evaluating a performance
metric over a predicted closed-loop distribution for partially
observable systems was described by van den Berg et al.
[14] and also derived independently by the authors [15],
while He et al. [16] use a similar technique with open-loop
action sequences. The algorithm proposed by van den Berg
et al., termed LQG-MP, picks the best trajectory in terms
of minimum cost with a bounded probability of collision
from an RRT. However, Karaman and Frazzoli show that
the RRT in essence enumerates a finite number of paths,
even in the limit of infinite samples [6]. Thus there is no
guarantee that a “good” path will be found either in terms of
cost or uncertainty properties. In fact, we provide an example
problem where an RRT fails to find a solution that satisfies
chance-constraints, even though one exists. In contrast, by
searching over an underlying graph our approach is both
complete and optimal as the graph is refined in the limit.

Search repair after the underlying graph changes is dis-
cussed by Koenig et al. [17], however that algorithm is used
for deterministic queries, and our search techniques make
direct use of covariance propagation properties. Censi et
al. [18] and Gonzalez and Stentz [19] use search with a
similar pruning technique, however both algorithms operate
on static graphs and do not consider dynamic constraints.
We extend the pruning strategy for dynamic systems (i.e. a
non deterministic mean) and also use the pruning strategy in
the context of an incremental algorithm to terminate search.

III. PROBLEM FORMULATION

The systems we are interested in are generally nonlinear
and partially observable. The robot is given a discrete time
description of its dynamics and sensors,

xt = f(xt−1, ut−1, w
′

t), w′

t ∼ N(0, Q′) (1)

zt = h(xt, v
′

t), v′

t ∼ N(0, R′), (2)

wherext ∈ X is the state vector,ut ∈ U is the input vector,
w′

t is an random process disturbance,zt is the measurement
vector, andv′

t is a random component in the sensor readings.
The state spaceX can be decomposed intoX free andX obs

where X obs represents the states where the robot is in
collision with obstacles.

Our approach to planning is built on an underlying method
for finding dynamically feasible solutions and for stabilizing
the system. Thus, we assume the availability of a CONNECT()
function for finding a nominal trajectory and stabilizing
controller between two statesxa andxb such that,

(X̌a,b, Ǔa,b, Ǩa,b) = CONNECT(xa, xb) (3)

X̌a,b = (x̌0, x̌1, x̌2, . . . , x̌Ta,b
) (4)

Ǔa,b = (ǔ0, ǔ1, ǔ2, . . . , ǔTa,b
) (5)

x̌0 = xa, xb = f(x̌Ta,b
, ǔTa,b

, 0) (6)

x̌t = f(x̌t−1, ǔt−1, 0) ∀t ∈ [1, Ta,b], (7)

where the trajectory can be stabilized with an on-line state
estimatex̂t as in

Ǩa,b = (K0,K1,K2, . . . ,KTa,b
), (8)

xt = f (xt, ǔt−1 − Kt(x̂t − x̌t), wt) . (9)

The problem of computing such trajectories and con-
trollers for various robotic vehicles has received an enormous
amount of research attention and is beyond the scope of
this paper. For general nonlinear systems, techniques such
as shooting methods, or direct collocation [20] may be
used. For flying vehicles, maneuver primitive approaches
are appealing due to their relative computational efficiency
[21]. For “Dubins” vehicle dynamics, the optimal trajectory
is easily compute in closed form [22]. Stabilizing controllers
may be designed, for example, using classical control theory
or LQR design, depending on what the system dynamics
demand.

The planning problem is specified with some uncertain
knowledge of the robot’s initial state given by the probability
distribution

x0 ∼ N(x̂0,Σ0), (10)

and a goal region in the environmentxgoal ⊂ X free to which
the robot wishes to travel.

The optimal path planning problem is then to minimize in
expectation a stage cost function,

argmin
(X̌,Ǔ,Ǩ)

E

[

T
∑

t=1

J(xt)

]

, (11)

subject to

x̌0 = x̂0, P (xT /∈ Xgoal) < δ, (12)

P (xt ∈ Xobs) < δ,∀t ∈ [0, T], (13)

whereδ < .5 is a user specified threshold for how much risk
to tolerate that defines the chance-constraint andJ : x 7→ R+

is the cost function. The expectation is with respect to the
process and sensor noisewt andvt, and minimization is over
concatenated paths returned by the CONNECT() function:

(X̌, Ǔ , Ǩ) = (CONNECT(x0, x1),

CONNECT(x1, x2), . . . , CONNECT(xl−1, xl)).

This formulation decouples the control design from the
path planning optimization. Practically this makes sense
for robots where the stabilizing controller is designed with
dynamic considerations rather than the specific configuration
of an operating environment.

IV. U NCERTAINTY PREDICTION

In order to evaluate a cost function and check the chance-
constraint, we need a distribution over states that may be
realized if we execute a given nominal trajectory. Taking
appropriate partial derivatives of equations 1 and 2 we obtain
the following time varying linear system

x̃t = Atx̃t−1 + Btũt−1 + wt, wt ∼ N(0, Qt) (14)

z̃t = Ctx̃t + vt, vt ∼ N(0, Rt), (15)

where x̃t, ũt, z̃t are now error quantities, representing the
deviation from the nominal path such thatxt = x̌t + x̃t,
ut = ǔt + ũt, andzt = žt + z̃t.

During executionxt will not be available to compute the
control input. Instead we must use an estimate ofxt which
we denote aŝxt. The covariance associated with the state
estimate is given byΣt. To the extent thatf andh are locally
linear functions, the Kalman filter is the optimal estimatorin
the sense of minimum expected estimation error. The filter
maintains a Gaussian state estimate,xt ∼ N(x̂t,Σt) and
operates recursively.1 A process step first predicts the next
state and associated covariance,

¯̃xt = At
ˆ̃xt−1 + Btũt−1 (16)

Σ̄t = AtΣt−1A
T
t + Qt, (17)

1We can easily convert between estimates ofx̂t and ˆ̃
xt by subtracting or

adding the deterministic nominal value ofx̌t appropriately.

(a) (b) (c)

Fig. 1. In this example a vehicle with Dubins dynamics (see section VII) is
trying to traverse past the obstacles. The green areas show the regions where
the vehicle can obtain range and bearing measurements from thecorners
of obstacles. (a) shows predicted covariance ellipses using only the Kalman
filter which collapse as soon as measurements are received and then appear
to pass safely past the obstacles. However, in (b) we see an ensemble of
closed-loop trajectories for this system in blue that clearly do not match the
expected Kalman filter distribution after measurements are received since it
takes time for the controller to pull the robot back onto the nominal path.
In (c) the solid ellipses show the closed-loop distributionwhich correctly
predicts the collision.

and a measurement update then adjusts the prediction and
incorporates the new information into the covariance,

St = CtΣ̄tC
T
t + Rt (18)

Lt = Σ̄tC
T
t S−1

t (19)
ˆ̃xt = ¯̃xt + Lt(z̃t − Ct

¯̃xt) (20)

Σt = Σ̄t − LtCtΣ̄t. (21)

where Lt is the Kalman gain. WhileΣt captures the un-
certainty that will be present on-line during path execution,
it does not represent the full uncertainty from a planning
perspective since the mean of the state estimate,x̂t, will
not lie on the nominal trajectory as assumed in [11], [12],
[18], [19] and others. Figure 1 illustrates visually why this is
important for closed loop systems with nontrivial dynamics.

From a planning perspective we need to consider all
possiblex̂t that could be realized during path execution. To
do this we can use the Kalman filter equations, but treat
the observations as random variables (since they have yet
to be observed). We will track the distribution over possible
state estimates asP (ˆ̃x) ∼ N(µ,Λ). Taking the appropriate
expectations through the prediction step of the Kalman filter
(equation 17) for the first moment of the distribution follows
as:

µ̄t = E[¯̃xt] = E[At
ˆ̃xt−1 + Btũt−1] (22)

= E[At
ˆ̃xt−1 − BtKt

ˆ̃xt−1] (23)

= (At − BtKt)µt−1. (24)

For the update step (equations 20, 21) we have

µt = E(ˆ̃xt) = E(
¯̂
x̃t + Lt(z̃t − Ct

¯̂
x̃t)) = µ̄t (25)

µt = (At − BtKt)µt−1. (26)

However, in general̃̂x0 = µ0 = 0 because the planning
problem is specified with an initial state estimate from which
the noise free trajectory is built. From equation 26 it is
obvious that if µ0 = 0 then µt = 0 ∀t. Exploiting the

fact thatµt = 0 and substitutingAK for At − BtKt, the
expectations for the second moment follow as

Λ̄t = E[(AK
ˆ̃xt−1)(AK

ˆ̃xt−1)
T] (27)

= AKΛt−1A
T
K , (28)

with the update step as

Λt = E[(ˆ̃xt
ˆ̃xT

t)] (29)

= E[(
¯̂
x̃t + Lt(z̃t − Ct

¯̂
x̃t))(

¯̂
x̃t + Lt(z̃t − Ct

¯̂
x̃t))

T] (30)

= Λ̄t + LtStL
T
t (31)

= Λ̄t + LtCtΣ̄t (32)

= (At − BtKt)Λt−1(At − BtKt)
T + LtCtΣ̄t. (33)

Equation 33 gives an expression for propagating the
distribution of possible state estimates that will be realized
during execution. The(At −BtKt)Λt−1(At −BtKt)

T term
is contractive ifKt is a stabilizing controller for our system.
The additive second term is equivalent to the uncertainty that
is subtracted from the Kalman filter covariance during the
measurement update. Intuitively, the uncertainty subtracted
from the on-line state estimate when measurements are
received, is added to uncertainty of the expected mean of
the state estimate.

The distribution returned by the Kalman filter,
P (xt|z0, z1, . . . , zt) = N(x̂t,Σt) can be viewed asP (x|x̂)
since x̂t encodes the information from the measurements.
Equation 33 gives an expression for updating a distribution
P (x̂t) = N(x̌t,Λt). This provides a natural way to represent
the joint belief asP (x, x̂) = P (x|x̂)P (x̂). Using common
Gaussian manipulations we get

P (xt, x̂t) = N

([

x̌t

x̌t

]

,

[

Λt + Σt Λt

Λt Λt

])

. (34)

The primary significance of this distribution is the
marginal,P (xt) = N(x̌,Λt + Σt). For planning purposes
this is what we care about. It describes the distribution
over trajectories as the sum of the on-line state estimation
error,Σt, and the uncertainty that arises from not having yet
taken observations,Λt. This distribution is used to check the
chance-constraint (13) and evaluate cost (11) for candidate
paths.

V. RAPIDLY-EXPLORING RANDOM BELIEF TREE

The Rapidly-exploring Random Belief Tree (RRBT) inter-
leaves graph construction and search over the graph to project
a tree into belief space. The algorithm operates on a set of
vertices,V , and edges,E, that define a graph in state space.
Each vertexv ∈ V has a state,v.x, and a set of associated
beliefs nodesv.N . Each belief noden ∈ v.N has a state
estimate covariancen.Σ, a distribution over state estimates
n.Λ, a costn.c, and a parent beliefn.parent. Belief nodes
correspond to a unique path through the graph that could be
followed to reach the vertexv, and the member variables
of belief nodes (n.Σ, n.Λ, and n.c) are the properties that
result from following that path. Each edgee ∈ E contains the
trajectory and control law to traverse between the associated
vertices and is defined by the CONNECT() function. A search
queue,Q, of belief nodes keeps track of paths that need
updating at each iteration of the algorithm.

(a)

(b)

Fig. 2. This figure shows two different paths that reach an intermediate
point with different covariance. In (a) the red path dips down and gets
measurements and thus has lower uncertainty at the intermediate point. This
lower uncertainty gives it a lower cost to go, shown by the dotted line, since
it can traverse closer to obstacles. Thus, at the intermediate point, neither
the red or blue paths can be pruned. In contrast, in (b) the blue path receives
measurements and thus has lower cost and uncertainty at the intermediate
point. In this scenario it dominates the red path, and the red path would be
pruned.

The covariance prediction (equations 21, 33), cost expecta-
tion evaluation (equation 11), and chance-constraint checking
(equation 13) is implemented by a PROPAGATE(e, nstart)
function that takes as arguments an edge and a belief node
at the starting vertex for that edge, and returns a belief node
at the ending vertex for that edge. If the chance-constraint
is violated by the uncertainty obtained in propagating the
covariances the function returns no belief.

Additionally, we require the following functions:
SAMPLE() returns i.i.d. uniform samples fromX free,
NEAREST(V, vnew) takes the current set of vertices as an
argument and returnsvnearest, the vertex inV that minimizes
some distance function tovnew, and NEAR(V, vnew) returns
every vertex within some ball centered atvnew of radius
ρ ∝ (log(n)/n)(1/d) wheren is the number of state vertices
and d is the state dimension. For a thorough discussion on
the importance of the ball size see [6].

A. Comparing Partial Paths

At this point we observe that any graph of nominal
trajectories through state space implies an infinite set of
possible paths through that graph. Search algorithms like
Dijkstra’s algorithm and A* impose a total ordering on paths
to each vertex in the graph based on cost, thus finding a
single optimal path to each node. This total ordering is also
the property that the RRT* algorithm exploits to “rewire” and
maintain a tree in the state space. This works because the
optimal cost to the goal from any vertex is not a function of
the path taken to that vertex. However, as illustrated in figure
2, for our chance-constrained framework, this is generallynot

the case. As we demonstrate in section VI, we can impose
a partial ordering of the form:

na < nb ⇔ (na.Σ < nb.Σ)∧

(na.Λ < nb.Λ) ∧ (na.c < nb.c) (35)

wherena andnb represent different partial paths to the same
vertex, while being guaranteed not to prune an optimal path.

However, we still have a problem in that infinite loops
in the graph may exist within this partial ordering. The
covariance update equations make it possible for uncertainty
to monotonically decrease while cost must monotonically
increase. Physically, this may correspond to a robot circling
in an information-rich part of the environment to improve
the state estimate. We can rule out this infinite looping by
introducing a parameter,ǫ, into the comparison which allows
na to dominatenb if the covariances associated withna are
larger than those associated withnb by a tolerance factor:

na . nb ⇔ (na.Σ < (nb.Σ + ǫI))∧

(na.Λ < (nb.Λ + ǫI)) ∧ (na.c < nb.c). (36)

In practiceǫ can be set quite small, and provides a remark-
ably simple and efficient method for pruning useless paths.

The partially ordered sets of nodes at each vertex are
maintained by an APPENDBELIEF(v, nnew) function that
takes as arguments a state vertex, and a new belief node. This
function first checks to see if the new belief is dominated by
any existing beliefs atv using equation 36. If it is dominated,
the function returns failure. If it is not, the function then
appends the new node and checks to see if it dominates any
existing nodes using equation 35, pruning when necessary.

B. Algorithm Description

Algorithm 1 depicts the RRBT algorithm. The graph is
initialized with a single vertex and single belief correspond-
ing to the initial state estimate as specified in equation 10
on lines 1-3. This belief will form the root of the belief tree.

At each iteration of the main loop, the state graph is
updated by sampling a new state and then adding edges to the
nearest and near vertices as in the RRG algorithm. Whenever
an existing vertex has an outgoing edge added, all the belief
nodes at that vertex are added to the queue. It should be noted
that the new vertex is only added to the graph (along with the
appropriate edges) if the chance-constraint can be satisfied
by propagating an existing belief at the nearest vertex to the
new sampled vertex as shown by the check on line 8. This
is analogous to “collision-free” checks in a standard RRT.

After all the edges have been added, the queue is ex-
haustively searched using uniform cost search from lines
19-27, using the the pruning criteria discussed above and
implemented by APPENDBELIEF(). The choice of uniform
cost search is important because it guarantees that within
an iteration of the algorithm (adding a new sample), no
new belief will be appended at a state vertex and then
pruned. This is a direct consequence of the partial ordering
in equation 35 including cost, and the fact that with uniform
cost search and a positive cost function, the cost of nodes
being examined must monotonically increase.

Algorithm 1 RRBT Algorithm
1: n.Σ := Σ0; n.Λ := 0; n.c := 0; n.parent:= NULL;
2: v.x := xinit ; v.N := {n};
3: V := {v}; E := {}
4: while i < M do
5: xrand :=SAMPLE()
6: vnearest:= NEAREST(V, xrand)
7: enearest=CONNECT(vnearest.x, xrand)
8: if ∃vnearest.n :PROPAGATE(enearest, n) then
9: V := V ∪ v(xrand)

10: E := E ∪ enearest

11: E := E ∪ CONNECT(xrand, vnearest.x)
12: Q := Q ∪ vnearest.N
13: Vnear := NEAR(V, vrand)
14: for all vnear∈ Vnear do
15: E := E ∪ CONNECT(vnear.x, xrand)
16: E := E ∪ CONNECT(xrand, vnear.x)
17: Q := Q ∪ vnear.N
18: end for
19: while Q 6= ∅ do
20: n :=POP(Q)
21: for all vneighbor of v(n) do
22: nnew :=PROPAGATE(eneighbor, n)
23: if APPENDBELIEF(vneighbor, nnew) then
24: Q := Q ∪ nnew

25: end if
26: end for
27: end while
28: end if
29: i := i + 1
30: end while

VI. CONVERGENCEANALYSIS

In this section we show, given some reasonable assump-
tions about the environment and the system dynamics, that
the RRBT algorithm converges to the optimal path in the
limit of infinite samples. We begin by stating necessary
assumptions.

Assumption 1:Let e1 = CONNECT(xa, xc), e2 =
CONNECT(xa, xb), and e3 =CONNECT(xb, xc). If xb ∈ e1,
then the concatenation[e2, e3] must be equal toe1 and as a
consequence have equal expected cost for any initial belief.

This assumption states that the CONNECT() function must
be consistent for intermediate points and that the cost func-
tion must also be consistent. It further states that our CON-
NECT() function must correctly and consistently interpolate
the LQG properties. This is necessary since our algorithm
relies on refining through infinite sampling which implies
that samples will be infinitely close together. Since for most
robots the discrete dynamics equations will be derived from
a continuous system description, this implies that we must
be able to compute a “partial” step by rediscretizing the
continuous system with the appropriate time step.

Assumption 2:There exists a ball of radiusγ ∈ R+

at every pointx ∈ X such that (i) for all x′ ∈ X γ ,
∫

Xobs
P (x′)dx′ < δ, where P (x′) is a reachable belief at

x′, and(ii) x ∈ X γ

This assumption is a stochastic-chance-constrained paral-
lel to assumption 14 in [6]. It states that the obstacles in the
environment are spaced such that it is possible to move the
mean of a distribution within some ball and not violate the
chance-constraint. This is necessary to give the graph a finite
sample volume to converge in.

Assumption 3:The structure ofXobs and is such that if
xa ∼ N(x̂,Σa), xb ∼ N(x̂,Σb), andΣa < Σb thenP (xa ∈
X obs) ≤ P (xb ∈ X obs) for all x̂ ∈ Xfree

This assumption simply states that decreasing the covari-
ance can’t increase the probability of collision at a given state
estimate. This may be violated for very sparse environments
with small obstacles and large uncertainty, but is practically
very reasonable.

Assumption 4:The cost function is convex in the sense
that if xa ∼ N(x̂,Σa), xb ∼ N(x̂,Σb), andΣa < Σb then
E [J(xa)] ≤ E

[

J(xb)
]

for all x̂ ∈ Xfree.
While this is a restrictive assumption, we note that it

includes a uniform cost function over the state, resulting
in shortest path behavior. Additionally, the environmental
obstacles need not be convex since the cost function is
decoupled from the obstacle constraints. Further, even if
the actual cost function is not globally convex, it may still
be locally convex along the optimal path and the above
assumption can still be met forΣa and Σb below a certain
threshold.

Assumption 5:The partial derivatives that lead to equa-
tions 14 and 15 are exact.

This is the most restrictive assumption. It states that our
system must be perfectly locally linear and further, that the
LQG properties (R, Q, A, B, and C) must be the same
during the planning phase and execution phase. While this
is certainly not generally true, for many systems this is a
reasonable approximation, and it is justified since we are
using a feedback control law to stay close to the nominal
trajectory. This is also more realistic than assuming maxi-
mum likelihood observations. Instead we are assuming that
we can predict the properties of the measurements, without
assuming we know the actual values of the measurements.

Lemma 1:Let Pcc denote the set of all finite length
paths throughX such that for everyxt ∈ p for every
p ∈ Pcc P (xt ∈ X obs) < δ. Let Pcc

Vi,Ei
denote a similar set

contained in the graph of the RRBT algorithm at iterationi.
limi→∞ Pcc

Vi,Ei
= Pcc.

Proof: (Sketch) This follows from assumptions 1 and
2 along with results presented in [6]. The idea is that if the
obstacles in the environment are spaced such that there is
some reachable belief that will permit a distribution to be
shifted within a ball, then in the limit of infinite samples,
there will be an infinitely dense connected graph in the
ball. Since this property is assumed to hold for allx, the
environment will be covered by an infinitely dense connected
graph.

Lemma 1 states that in the limit of infinite samples, the
underlying graph built by the RRBT algorithm contains all
finite length paths that respect the chance-constraint. We
must therefore show that the search tree of beliefs that we
maintain on top of this graph contains all possible paths in
the graph thatcouldbe optimal. Our pruning strategy exploits

the fact that LQG belief propagation is invariant with respect
to inequality in initial beliefs. To demonstrate this, we use
the general Binomial Matrix Inversion Lemma,

(A + B)−1=A−1 − A−1B(B + BA−1B)−1BA−1. (37)

We make use of the general Lemma as it relates to positive
definite covariance manipulations with the following Lemma.

Lemma 2:For two covariance matricesA and B, there
exists another symmetric positive definite matrixC such that
A−1 = (A + B)−1 + C.

Proof: This follows immediately from equation 37 and
the observation that ifA and B are symmetric-positive-
definite, then the quantityA−1B(B + BA−1B)−1BA−1

must also be symmetric positive-definite.
This property extends to the covariance of the Kalman filter
with the following Theorem.

Theorem 1:For two covariance matrices,Σ1
0 and Σ2

0,
where there exists some positive-definite matrixD0 such
that Σ1

x0
+ D0 = Σ2

x0
, there will always be another positive

definite matrixDt such thatΣ1
xt

+ Dt = Σ2
xt
∀t ∈ [0,∞).

Proof: We begin by noting that the Kalman filter relies
upon a two step recursion. Thus if the property holds through
each step of the recursion it holds for allt < ∞.

For the process step we have

Σ̄2
t = AΣ2

t−1A
T + Q = A(Σ1

t−1 + D)AT + Q

= AΣ1
t−1A

T + ADAT + Q

Σ̄1
t = AΣ1

t−1A
T + Q

Σ̄2
t − Σ̄1

t = ADAT = D′.

For the measurement update we turn to the information form
of the Kalman update,

Σ2
t = (Σ̄2

t

−1
+ R1)−1 = ((Σ̄1

t + D′)−1 + R1)−1.

by Lemma 2 we can write

Σ2
xt

= (Σ̄1
xt

−1
− D′′ + R1)−1,

and again

Σ2
xt

= (Σ̄1
xt

−1
+ R1)−1 + D′′′.

Thus we haveΣ2
xt

= Σ1
xt

+ D′′′ where D′′′ is positive-
definite.

The following Theorem states that a similar property holds
for the mean uncertainty.

Theorem 2:For two state covariance matrices,Σ1
0 andΣ2

0,
where there exists some positive-definite matrixD0 such that
Σ1

t + D0 = Σ2
t , and two corresponding mean covariance

matrices,Λ1
0 and Λ2

0, with the same propertyΛ1
0 + E0 =

Λ2
0, there will be some positive-definite matrixEt such that

Λ1
t + Et = Λ2

t always holds.
The proof follows in a similar manner to Theorem 1, by

plugging into the belief propagation equations and applying
Lemma 2.

Theorem 3:For two beliefsna andnb at the same state,
let pa andpb be the nominal trajectories to the beliefs, and
let pg

a and pg
a be the optimal nominal trajectories fromna

andnb to the goal. Ifna . nb thenE
[

∑

pg
a
J(xt)

]

+na.c ≤

E
[

∑

pg

b
J(xt)

]

+ nb.c + cǫ, and limǫ→0 cǫ = 0.

(a) (b)

Fig. 3. In this environment the robot can only receive measurements in the
bottom green region. Ignoring uncertainty and moving straight to the orange
goal region (a) results in a high probability of collision, while growing an
RRT while checking the chance-constraint (b) will not find a solution. The
purple lines in (b) depict nominal paths through the environment none of
which reach the upper region since any sample drawn from the that region
will be connected to a path that hasn’t visited the green region, and thus
cannot safely pass the obstacles.

(a) (b) (c)

Fig. 4. (a) shows the RRBT algorithm after 100 iterations, (b) after 500
iterations, and (c) after 10000 iterations. The algorithm quickly finds a
feasible solution that goes down to the information region tolocalize and
then pass safely between the obstacles. As more samples are added, this
path is refined. Note that the solution is slightly conservative in that the
path goes far enough into the green region to ensure the probability mass
within the chance-constraint actually receives measurements.

Proof: This result follows directly from assumptions 3
and 4 combined with Theorems 1 and 2. Ifna . nb, then
the optimal cost to go forna must be within some constant
factor of that fornb. Since the limit yieldsna < nb the
constant factor has to approach 0. The accumulated cost is
strictly less than that ofnb and thus the total cost is also
strictly less than that fornb.

Theorems 1 through 3 prove that the pruning strategy is
conservative in that it only removes suboptimal paths; since
by Theorem 1 the original graph contains all paths achievable
with the CONNECT() function, in the limit of infinite samples
and ǫ → 0, the belief tree will contain the optimal path.

VII. E XPERIMENTAL RESULTS

We first implemented the algorithm on a 2D system with
dynamics:

xt = xt−1 + ut−1 + wt), wt ∼ N(0, 0.01I) (38)

zt = xt + v′

t, vt ∼ N(0, R), (39)

whereR = ∞I or R = 0.01I depending on the location
in the environment. Figure 3 shows a specific configuration

0 0.5 1 1.5 2 2.5 3

x 10
4

40

42

44

46

48

50

52
RRBT Cost vs. Iterations

Number of Iterations

C
os

t o
f O

pt
im

al
 P

at
h

(a)

0 0.5 1 1.5 2 2.5 3

x 10
4

0

50

100
RRBT Run Time

T
im

e

0 0.5 1 1.5 2 2.5 3

x 10
4

0

2

4
x 10

−3

T
im

e/
Ite

ra
tio

ns

Number of Iterations

(b)

Fig. 5. This figure shows the cost of the best path in the tree (a), the run
time (b - top), and the run time per iteration (b - bottom) as a function of
the number of samples for the environment in figure 4, averaged over 20
runs.

of an environment that forces trade-offs between information
gathering and finding short paths, where the robot can only
receive measurements in a small region away from the goal.
In this scenario, moving straight to the goal will not satisfy
the chance-constraint.

To evaluate the probability of collision on each step, we
used the conservative approximation of checking the ellipse
defined by the covariance matrix and a desired chance bound
for collisions with obstacles. This is computationally faster
than integrating the distribution overX obs, and since the
problem formulation states that the specification is an upper
bound, this is a reasonable approximation to make. For more
aggressive (but still conservative) approaches see [13].

For the example in figure 3, simply growing an RRT and
checking the chance-constraint along the paths, as proposed
in [14], fails to find a feasible solution since the Voronoi-bias
will prevent expansion of the paths that have passed through
the measurement region. In contrast, the RRBT algorithm,
not only find a feasible path, it refines towards the optimal
path as shown in figure 4. The cost and runtime statistics
averaged over 20 runs in this environment are shown in figure
5. As our theoretical predict, we can see the cost converging
as a function of the number of samples. Additionally, the
computational complexity per iteration is sub-linear.

It is important to note that the algorithm is dependent on
being able to predict the properties of the measurements
that will be received. Since, for the problems we are in-
terested in, the measurements are a function of state, the
actual measurement properties may vary from the predicted
covariance. In our implementation we handle this by only
predicting a measurement if only probability mass below the
chance-constrained level is outside of a measurement region.
This can be seen in figure 4 where the solution goes far
enough into the measurement region to ensure that every state
element inside the covariance ellipse receives measurements.

In addition to the 2D system we also tested the algorithm
in a domain with Dubins vehicle dynamics and range and
bearing beacon measurements from the corners of obstacles
which serves as an approximate model for a fixed-wing
vehicle that uses a corner detector with a LIDAR. The

Fig. 6. This figure shows the algorithm running in a more complicated
environment with Dubins dynamics and beacon measurements. We see that
the algorithm finds a path that turns parallel to the obstacles so as to localize
and stabilize onto the nominal trajectory before going past the obstacles to
the goal.

continuous Dubins vehicle dynamics are described by:




ẋ1

ẋ2

θ̇



 =





V cos(θ)
V sin(θ)

ω



 , (40)

where,

x =





x1

x2

θ



 , u =

[

V
ω

]

. (41)

Due to space constraints, we refer the reader to [23] for
details on discretizing and implementing this model, and for
the specifics of the measurement model. A path returned by
the RRBT algorithm for a sample environment is shown in
figure 6. This is a challenging environment where uncertainty
accumulates as the vehicle heads towards obstacles. When
the vehicle reaches the obstacles it receives measurements
and uncertainty collapses. However, as shown in figure 1,
proceeding directly past the obstacles is not possible since
it takes time for the actual path to stabilize down onto the
nominal path. Instead, the algorithm returns a solution that
turns parallel to the obstacles, gets measurements, stabilizes
onto the nominal path, and then safely goes to the goal.

VIII. C ONCLUSION

For robots with continuous dynamics that operate in
partially observable, stochastic domains, motion planning
presents significant challenges. In this paper we present
an algorithm, the Rapidly-exploring Random Belief Tree,
that leverages a local LQG control solution to predict a
distribution over trajectories for candidate nominal paths, and
then uses incremental sampling refinement to optimize over
the space of nominal trajectories. While we have demon-
strated the utility of the algorithm for simulation examples,
significant future work remains.

Further theoretical work is necessary in investigating the
computational complexity. Our experimental results suggest
that the complexity is sub-linear per iteration, but more
analysis is necessary to confirm this. A key question is how
the number of belief nodes scales relative to the number of
state vertices.

We also plan to implement the algorithm on an actual
fixed-wing platform. In making the algorithm feasible for
use in real-time, there are a number of possibilities for
introducing heuristics for speed. An A* heuristic could be
used in the search to focus towards the goal. Once the goal
is found, the same heuristic could be used to bound the tree
and graph growth and eliminate suboptimal regions. Further,
by introducing an “expected value of information” it would
be possible to reduce the number of belief nodes that must
be maintained at each state vertex.

IX. A CKNOWLEDGEMENTS

This work was supported by ONR under MURI N00014-
09-1-1052.

REFERENCES

[1] A. Coates, P. Abbeel, and A. Ng. Learning for control frommultiple
demonstrations. InProc. ICML, 2008.

[2] R. Cory and R. Tedrake. Experiments in fixedwing UAV perching. In
Proc AIAA Guidance, Navigation, and Control Conference, 2008.

[3] D. Mellinger, N. Michael, and V. Kumar. Trajectory generation and
control for precise aggressive maneuvers with quadrotors. In Int.
Symposium on Experimental Robotics, 2010.

[4] A. Bachrach, R. He, and N. Roy. Autonomous flight in unknown
indoor environments. InInter. Jour. Micro Air Vehicles, 2009.

[5] M. Achtelik, A. Bachrach, R. He, S. Prentice, and N. Roy. Stereo
vision and laser odometry for autonomous helicopters in GPS-denied
indoor environments. InSPIE Unmanned Systems Tech. XI, 2009.

[6] S. Karaman and E. Frazzoli. Incremental sampling-based optimal
motion planning. InRobotics: Science and Systems, 2010.

[7] S. LaValle and J. Kuffner. Randomized kinodynamic planning. IJRR,
20(3), 2001.

[8] L. Kaelbling, M. Littman, and A. Cassandra. Planning and acting
in partially observable stochastic domains.Artificial Intelligence,
101:99–134, 1998.

[9] N. Roy and S. Thrun. Coastal navigation with mobile robots. In Proc
NIPS, 1999.

[10] Dimitri P. Bertsekas.Dynamic Programming and Optimal Control.
Athena Scientific, 2nd edition, 2000.

[11] S. Prentice and N. Roy. The belief roadmap: Efficient planning in
linear POMDPs by factoring the covariance. InProc. ISRR, 2007.

[12] R. Platt, R. Tedrake, L. Kaelbling, and T. Lozano-Perez. Belief space
planning assuming maximum likelihood observations. InProceedings
of Robotics: Science and Systems, 2010.

[13] M. Ono and B. Williams. An efficient motion planning algorithm for
stochastic dynamic systems with constraints on probability of failure.
In Proc. AAAI, 2008.

[14] J. V. D. Berg, P. Abbeel, and K. Goldberg. LQG-MP: Optimized
path planning for robots with motion uncertainty and imperfect state
information. InProc. RSS, 2010.

[15] A. Bry and N. Roy. Exact belief state computation for piecewise LQG
planning. Technical report, Massachusetts Institute of Technology,
2010.

[16] R. He and N. Roy. Efficient POMDP forward search by predicting the
posterior belief distribution. Technical report, Massachusetts Institute
of Technology, September 2009.

[17] S. Koenig, M. Likhachev, and D. Furcy. Lifelong planning A*.
Artificial Intelligence, 155(1-2), 2004.

[18] Andrea Censi, Daniele Calisi, Alessandro De Luca, and Giuseppe
Oriolo. A Bayesian framework for optimal motion planning with
uncertainty. InICRA, Pasadena, CA, May 2008.

[19] Juan P. Gonzalez and Anthony Stentz. Using linear landmarks for path
planning with uncertainty in outdoor environments. InProc IROS,
pages 1203–1210, Piscataway, NJ, USA, 2009. IEEE Press.

[20] O. von Stryk. Numerical solution of optimal control problems by
direct collocation. InOptimal Control, pages 129–143, 1993.

[21] E. Frazzoli. Robust Hybrid Control for Autonomous Vehicle Motion
Planning. Department of aeronautics and astronautics, Massachusetts
Institute of Technology, Cambridge, MA, June 2001.

[22] S. M. LaValle. Planning Algorithms. Cambridge University Press,
Cambridge, U.K., 2006. Available at http://planning.cs.uiuc.edu/.

[23] Sebastian Thrun, Wolfram Burgard, and Dieter Fox.Probabilistic
Robotics (Intelligent Robotics and Autonomous Agents). The MIT
Press, 2005.

