
The Permutable POMDP: Fast Solutions to POMDPs for
Preference Elicitation

Finale Doshi
CSAIL MIT

32 Vassar Street
Cambridge, MA 02139

finale@mit.edu

Nicholas Roy
CSAIL MIT

32 Vassar Street
Cambridge, MA 02139
nickroy@mit.edu

ABSTRACT
The ability for an agent to reason under uncertainty is crucial for
many planning applications, since an agent rarely has access to
complete, error-free information about its environment. Partially
Observable Markov Decision Processes (POMDPs) are a desirable
framework in these planning domains because the resulting poli-
cies allow the agent to reason about its own uncertainty. In domains
with hidden state and noisy observations, POMDPs optimally trade
between actions that increase an agent’s knowledge and actions that
increase an agent’s reward.

Unfortunately, for many real world problems, even approximat-
ing good POMDP solutions is computationally intractable without
leveraging structure in the problem domain. We show that the struc-
ture of many preference elicitation problems—in which the agent
must discover some hidden preference or desire from another (usu-
ally human) agent—allows the POMDP solution to be solved with
exponentially fewer belief points than standard point-based approx-
imations while retaining the quality of the solution.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Markov Processes

General Terms
preference elicitation, planning, uncertainty

Keywords
decision-making under uncertainty

1. INTRODUCTION
In almost all real-world domains, automated agents must rea-

son and plan with only incomplete, noisy information about their
environments. Partially Observable Markov Decision Processes
(POMDPs) are a desirable framework for many planning domains
because POMDP policies allow agents to reason about their own
uncertainty. In stochastic environments with hidden state and noisy
observations, POMDPs optimally trade between actions that in-
crease an agent’s knowledge and actions that increase an agent’s
immediate reward. Applied to a variety of traditional AI problems,
the POMDP framework has also found applications in cooperative
multi-agent domains such as preference elicitation and dialog man-
agement. In these applications, POMDPs allow the agent to trade
Cite as: The Permutable POMDP: Fast Solutions to POMDPs for Pref-
erence Elicitation , Finale Doshi, Nicholas Roy ,Proc. of 7th Int. Conf.
on Autonomous Agents and Multiagent Systems (AAMAS 2008),
Padgham, Parkes, Müller and Parsons (eds.), May, 12-16., 2008, Estoril,
Portugal, pp. XXX-XXX.
Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

between asking the user for information about his or her intent and
performing a useful action. Specific examples include:

• Determining a user’s desired flight number in an automated
telephone booking system (3-2000 slot values) [13].

• Determining reputations in electronic markets [7].
• Determining a user’s desired destination on a robotic wheel-

chair (10 locations) [3].

One common feature of all these scenarios is that the agent must
discover some piece of hidden information through a series of ques-
tions with potentially noisy or ambiguous answers. Once suffi-
ciently certain, the agent must “submit” its response to another sys-
tem or authority. The agent is penalized for the number of questions
it asks—effectively, the time it takes to come to a decision—and for
submitting a state estimate that does not match the true state.

A POMDP solver finds the optimal policy through a deep search
through all of the scenarios that the agent may encounter in the fu-
ture and chooses an action that maximizes the reward it expects
to receive. Unfortunately, solving POMDPs is often difficult at
best—even with approximate solution methods, POMDPs for re-
alistic problems may take hours or days to solve, if they can be
solved at all. In some senses, such time requirements may be im-
material since executing a policy is fast once the solution has been
computed [2], but long computation times inhibit the agent’s ability
to tune its policy as more data is received1.

Several works have suggested heuristics for POMDPs that have
the structure of preference elicitation and dialog management prob-
lems. For example, Boutilier [2] uses quadratic approximators and
Gaussians to approximate a complicated POMDP’s value function.
Williams and Young [13] create a mini-POMDP from the larger
POMDP that contains only two states: the most likely state and a
state corresponding to all other possible options.

The work in Williams and Young [13] alludes to common fea-
ture of preference elicitation scenarios. In many cases, the agent’s
optimal actiontypedoes not depend on the true hidden state, but
only the agent’s uncertainty in the true state. For example, if a
media-playing agent is only 60% sure of a user’s media request,
the optimal action may be to ask the user for clarification, rather
than potentially playing the wrong music. The clarification action
is also likely to be the optimal action in all scenarios in which the
system is uncertain about the media, regardless of the tune itself.
However, the summary POMDP (and other similar approximation
algorithms [8]) cannot take advantage of actions that gather spe-
cific information, such as disambiguating between pairs of similar
states.

We present a principled approach for solving POMDP models

1We focus here on planning in a known domain rather than learning
about new domains, but tractable planning is also a prerequisite for
most learning algorithms.

that have the structure typically found in preference elicitation prob-
lems. Our approach depends crucially on the fact that for certain
POMDP structures, the agent’s optimal actiontypedepends only
on its uncertainty over states and not about which particular states
the agent is confused. For example, it may not matter that the con-
fusion is between “play CD” and “play TV” or between “make a
coffee” and “make a copy”; the optimal action may be to try con-
firming the more likely request with the user. Under these con-
ditions, we can modify existing solution algorithms for comput-
ing the policy without adding approximation error. We formal-
ize these conditions in the “Permutable POMDP” and show that
near-optimal point-based value function approximations to the per-
mutable POMDP can be calculated using exponentially fewer be-
lief points than standard POMDPs.

We detail the POMDP model and point-based approximate so-
lution techniques in Section 2. Section 3 describes the specialized
structure present in many preference elicitation POMDPs. We for-
malize that structure and its implications to solve for the agent’s
optimal policy in Section 4. Section 5 presents our results on a
variety of problems. We present our conclusions in Section 6.

2. POMDP OVERVIEW
In this section, we provide background on the POMDP model

and the point-based solution techniques that we will optimize in
Section 4. A POMDP consists of the n-tuple {S,A,O,T ,Ω,R,γ}.
S, A, andO are sets of states, actions, and observations. In the
preference elicitation context, the states represent a property that is
hidden from the agent. The observations are noisy measurements
of this property—either from instruments or queries to the user. For
example, in the dialog management setting, observations may cor-
respond to noisy outputs from a voice recognition system. Actions
include queries to gather information and a final action to submit
the most likely state estimate to another system. We require that
the state, action, and observation sets are discrete and finite.

The remaining components of the POMDP tuple describe how
the world behaves. The transition functionT (s′|s, a) gives the
probability P (s′|s, a) of transitioning from states to s′ if taking
actiona. The observation functionΩ(o|s, a) gives the probability
P (o|s, a) of seeing observationo from states after taking action
a. The rewardR(s, a) specifies the immediate reward for taking
actiona in states. The reward function allows the system designer
to specify what the “right” actions are in different states and the
relatively penalties for information gathering actions. Finally, the
discount factorγ ∈ [0, 1] weighs how much the agent values future
rewards to current rewards.

Since the POMDP state is hidden, the agent cannot choose its ac-
tions based on knowing the true state. Instead, the agent must base
its actions on the sequence of interactions that it has had with the
user. Keeping an entire history of interactions can get quite cum-
bersome, but fortunately, a distribution over possible user states—
known as a belief—is a sufficient statistic for the history. Suppose
that the agent takes actiona while in belief b and observeso as a
result. It can then update its belief using Bayes rule:

bn(s) = ηΩ(o|s′, a)
X

s∈S

T (s′|s, a)bn−1(s) (1)

whereη is the normalizing constantΩ(o|b, a). The agent’s goal
is to find a policy mapping the set of beliefsB to actionsA to
maximize the expected rewardE[

P

n γnR(sn, an)].
We use a value function to represent our policy. Let the value

functionVπ(b) represent the expected reward if we start with be-
lief b and act according to policyπ. The optimal value function is
known to be piecewise-linear and convex [11], so we representV
with the vectorsΓ = {αi}; V (b) = maxi(αi · b). The optimal

value function is unique and satisfies the Bellman equation:

V (b) = max
a∈A

Q(b, a),

Q(b, a) = R(b, a) + γ
X

b′∈B

T (b′|b, a)V (b′),

= R(b, a) + γ
X

o∈O

Ω(o|b, a)V (bo
a), (2)

whereQ(b, a) represents the expected reward for starting in belief
b, performing actiona, and then acting optimally. The last line fol-
lows if we note that there are only|O| beliefs that we can transition
to after taking actiona in beliefb (one for to each observation). The
beliefbo

a is the belief that results from taking actiona and observing
o from beliefb (equation 1);Ω(o|b, a) is the probability of obser-
vationo after taking actiona in belief b (

P

s∈S Ω(o|s, a)b(s)).
The Bellman equation may be solved iteratively. Suppose that

we have a representation of the value function as a collection of
vectorsΓn = {αi}. First, we generate intermediate setsΓa,∗ and
Γa,o for all action, observation pairs:

Γa,∗={α|α(s) =R(s, a)} (3)

Γa,o={α|α(s)=γ
X

s′∈S

T (s′|s, a)Ω(o|s′, a)α′(s′)}, ∀α
′∈Γn (4)

Next, we generate the set of Q-functionsΓa which is a cross sum
that includes a vector fromΓa,∗ a vector fromΓa,o for each obser-
vationo:

Γa = Γa,∗ ⊕ Γa,o1 ⊕ Γa,o2 ... (5)

Finally, the new value function is the union of all the Q-functions:

Γn+1 =
[

a∈A

Γa (6)

Each iteration, orbackup, brings the value function closer to its
optimal value [4]. Once the value function has been computed,
it is used to choose actions. After each observation, we update
the belief using equation 1 and then choose the next action using
arg maxa∈A Q(b, a) with Q(b, a) given in equation 2.

The cross sum in the exact solution can cause the number of
α-vectors to grow exponentially in each backup iteration. The op-
timal solution may consist of an infinite number ofα-vectors, so
even if we prune awayα-vectors completely dominated by other
α-vectors, we cannot prevent the computation of an ever-growing
number of cross sums as the number of backups increases.

Several algorithms sidestep the issue of an exponentially increas-
ing number ofα-vectors by backing up the value function only at
select beliefs [6, 12, 10, 9]. Each belief can have only one associ-
atedα-vector, so the the size of the value function is capped by the
number of beliefs that we wish to consider. We will describe our
approach in the context of PBVI [6] because it is one of the simplest
point-based POMDP approximations; however, we stress that our
approach—which can be thought of as exponentially reducing the
size of the belief space—can be applied to any point-based value
function approximation technique.

When using a point-based approach, theΓa,∗ andΓa,o sets are
computed as before, but we only compute the Q-function for each
belief in our belief set:

Γa
b = Γa,∗ +

X

o∈O

arg max
α∈Γa,o

(α · b) (7)

Finally, we retain only the members of theΓa
b set that are maximal

for some belief in our set:

Γn+1 = arg max
Γa

b
,∀a∈A

(Γa
b · b), ∀b ∈ B. (8)

For later comparison, Table 1 summarizes the point-based value
iteration algorithm [6]. The quality of point-based approximations
often depends on whether certain supporting beliefs are present in
the belief set or depend on how densely we sample beliefs from the
space of reachable beliefs. In some problems, we may be able to
represent near-optimal policies with only a few supporting belief
points. However, if we need a high quality approximation, or if
the problem simply has a large number of states, actions, and ob-
servations, we may require a large number of belief points to find
an adequate approximation. In these situations, even a point-based
approximation may be computationally intractable.

Table 1: Point-Based Value Iteration.

1. Sample a set of initial beliefs.

2. Begin point-based value iteration loop:

• ComputeΓa,∗ andΓa,o sets (equation 4).

• ComputeΓa
b sets (equation 7).

• Compute new value function (equation 8).

• Add beliefs to the belief set (based on various
heuristics or information criteria).

3. PREFERENCE ELICITATION POMDPS
In the context of preference elicitation—which we interpret bro-

adly to mean identifying a user’s preference, intent, or command—
POMDPs tend to have a very specific structure. The hidden state
often represents some property, such as a desired destination or
product, that does not change during the course of the interaction.
The agent’s goal is to discover this hidden state and submit it to
another system that will satisfy the user’s desire ([13], [3]).

In many cases, it may be reasonable to assume that the rewards
associated with the agent’s actions depend only on whether the
agent acts correctly with respect to the user’s desire and not on the
particular desire itself. For example, if the user wants the agent to
start to play some media, it may not matter if the true task is to start
the TV or play a CD; the user will be happy as long as the agent
starts the correct system. Likewise, it may be reasonable to assume
that the user will be just as upset if the agent starts the TV instead
of the CD as if the agent plays a CD instead of the TV.

Similarly, certain symmetries may also exist in the observational
model. We assume that there exists some system that converts user
input—be it text, voice, or visual—into a prediction of what the
user desires and a confidence score. A reasonable model for such
a recognition system is that the agent is most likely to receive an
output that matches the user’s true desire: for example, if the user
wants to hear some music, then the recognition system is most
likely to output an indicator for “CD” We can simplify further and
assume that neither (1) hearing any other goal by mistake nor (2)
the quality of the recognition depends on the goal state.

Next, we will show that if the preference elicitation POMDP has,
or can be reasonably approximated to have, the qualities described
above, then its solution can be computed with exponentially fewer
supporting belief points without any loss in the quality of the point-
based value approximation.

4. THE PERMUTABLE POMDP
The core concept exploited by the Permutable POMDP is that

preference elicitation states are often symmetric with regard to the
transition, reward, and observation functions, and therefore inter-
changeable with regard to the policy. This symmetry implies that

the POMDP model is “flat”: the correct type of action depends
not on the particular states in question, but only on the distribu-
tion over the states. For example, if the dialog manager’s goal is
to determine what media to play, then the optimal policy might be
to ask for clarification if unsure—regardless of what media is in
question—but submit the most likely location to the media player
if that request is sufficiently more likely than any other. This flat-
ness assumption is clearly a simplification, since in reality some
requests may be harder to recognize than others, and some pairs of
requests may be more likely to be confused with each other than
other pairs. The user may also be more forgiving of mistakes in
some situations than others. However, since the optimal policy is
often fairly robust to small model variations, the symmetric model
may be a reasonable approximation in many real-world situations.

The key insight of our algorithm is that in a permutable POMDP,
if some vectorα is part of the value function, then all permutations
of α must also be part of the value function. This insight follows
from the observation that only the distribution over states—and not
the particular state—matters when choosing an action. If a par-
ticularα-vector optimizes the value function for a particular belief,
then a permutation of thatα-vector will optimize the value function
for a permutation of that belief. We will therefore realize consider-
able computational savings by representing (and backing up) only
one permutation of eachα-vector.

To define the notion of a “permutation”, recall that in order to
express the value function and beliefs as vectors, an explicit order-
ing on the state spaceS always required: that is, some state is the
first field in the vector, some other state is the second field in the
vector, etc. Given an explicit ordering on the state spaceS, we de-
fine a permutation operatorπ, π : s → s′, that maps one ordering
of states to another. This permutation may be applied to the order
of probabilities in a beliefb(s) → bπ = b(π(s)) or the values in
anα-vectorα(s) → απ = α(π(s)).

In general, we cannot blindly re-order states and expect the pol-
icy to be unchanged. However, if the reward, action and obser-
vation spaces have certain properties, then the policy is in fact in-
variant to permutations, that is,V (b(s)) = V (b(π(s)))∀π, b. For
example, suppose that the actiona “Start TV” has rewardr if the
user’s desire iss1, watch TV. If we now re-order the states such that
s′1 corresponds to hear music, then we require there be some other
actiona′ (in this case, “Start CD”) with the same rewardr. Simi-
larly, if the observation “thank-you” is most likely to be seen given
(s1, a), then it should also be the most likely observation given (s′1
, a′).

Intuitively, we can see that the preference elicitation model from
section 3 has the necessary symmetries; we now formally define
a broader set of sufficient conditions for the permutable POMDP.
First, letππs,a(o) to be a permutation on the observations, param-
eterized by an actiona and a state permutationπs.

THEOREM 1. If, for every state permutationπs(s) and action
a, there exists an actionaπs and observation permutationππs,a(o)
such that

• R(s, a) = R(πs(s), aπs)
• Ω(o|s, a) = Ω(ππs,a(o)|πs(s), aπs)
• T (s′|s, a) = T (πs(s

′)|πs(s), aπs),

then for every vectorα in the value function, all permutations ofα
are also part of the value function.2

PROOF. Recall that for the exact POMDP solution, the value
function is the union over actions of theα vectors inΓa. Given a

2We note that while similar, the requirements for the action classes
developed here are more restrictive than in first-order MDPs[1].

set of vectorsΓi−1, each vector in the new setΓa
i is equal to

αi(s) = R(s, a) + γT (·|s, a)[
X

o∈O

Ω(o|s, a)αi−1,o] (9)

for some set of vectorsαi−1 from Γi−1. (Indeed,Γa
i consists of all

vectorsαi that can be produced by various combinations of vectors
from the value function, given actiona.)

If we apply our sufficient conditions above to equation 9, it fol-
lows that

αi(πs(s)) = R(πs(s), aπs) + γT (·|πs(s), aπs) · (10)

[
X

o∈O

Ω(ππs,a(o1)|πs(s), aπs)αi−1,o]

for a given state permutationπs(s). Since our conditions must be
true for every state permutation, it follows that ifα is part of the
value function, then all permutations ofα are also part of the value
function.

We can now formally demonstrate how the preference elicita-
tion POMDP from section 3 satisfies the considtions above. First,
consider a single “general query” action,aq, e.g., “How can I help
you?”. In this case, letaq = aπs for all π. The cost of asking
a general query usually does not depend on the user’s desire, so
R(s, aq) = R(πs(s), aq) = Rask satisfies the reward condition
of Theorem 1. Furthermore, let there be one observationog that
uniquely describes each task (i.e., “Turn on the TV.”). If we per-
mute the state, we can also permuteog such thatππs,a = πs. We
satisfy the observation condition by lettingΩ(og|s, a) equalp1 if
og = s andp2 if og 6= s, p1 > p2. Finally, we can satisfy the
transition condition by settingT (s′|s, a) = δ(s′ − s), whereδ()
is the Dirac delta function. These conditions essentially say that
general queries does not change the user’s desire are most likely to
result in an input that reflects the desired task.

Secondly, let us consider a “submit” action, in which the dialog
system sends a task to the media system. Let the action to submit
tunes to the system beag(s). We assume that there is one submit
action for each task. Then we can letR(s, a) equalr1 if a = ag(s),
that is, if the agent submits the correct tune, andr2 otherwise;r1 >
r2. For the observation condition, let there be two observations,
o+ ando− that represent positive (the agent submitted the action
correctly) and negative (the agent submitted an incorrect action)
feedback from the user. Ifa = ag(s), then we expect to get some
positive feedback:Ω(o|s, a(s)) = p3 if o = o+ andp4 otherwise,
p3 > p4. If a 6= ag(s), we expect to get some negative feedback:
Ω(o|s, a(s)) = p5 if o = o− andp6 otherwise,p5 > p6. To satisfy
the transition condition, letT (s′|s, a) be uniform ifa = ag(s) and
the identity otherwise. Finally, for some state permutationπs, set
aπs = πs(a) andππs,a(o) = o and note that these settings will
ensure the symmetry conditions are met.

We are not restricted to these two classes of actions above. For
example, many dialog management systems will have a “confirm”
type of action, in which the system will ask a question of the form
“Did you want to play a CD?” These actions will have a similar
form to the “submit” action. More complex actions, such as those
that attempt to disambiguate frequently confused terms (e.g., “Did
you want watch TV or play a CD?”) are also possible as long as
every actiona has, for every permutationπ, a corresponding action
aπ satisfying the reward, transition and observation conditions.

4.1 Solving the Permutable POMDP
We now show how to efficiently solve a permutable POMDP.

Recall that point-based POMDP solvers generally have two parts:
belief set selection and value iteration. We modify the first part
with an additional step to reduce the sampled beliefs to a set of

representative beliefs. Since any permutation is valid, without loss
of generality, let us require the representative beliefb to have values
sorted in descending order. We then slightly modify value iteration
to ensure that the updated step will behave as if we had the full set
of beliefs represented by our small set.

To generate the belief set, either initially or online, one should
use any belief sampling or expansion technique [6, 12, 10, 9], sort
all the beliefs in the belief set in descending order, and remove
similar beliefs (we used an L1 metric, but again, one should choose
a similarity measure appropriate for the problem).3 Regardless of
how the beliefs are chosen, the point is that we only need consider
one canonical ordering of the values in the belief. Once we have the
representative belief set, we are ready to compute the value func-
tion. We show below how to adapt the PBVI [6] algorithm to our
approach; however, the steps are nearly equivalent for any other
point-based approximation.

Recall that the first step in point-based value iteration is comput-
ing theΓa,∗ andΓa,o sets as described in equation 4:

Γa,∗={α|α(s) =R(s, a)} (11)

Γa,o={α|α(s)=γ
X

s′∈S

T (s′|s, a)Ω(o|s′, a)α′(s′)}, ∀α
′∈Γn(12)

These equations depend only on the previousα-vectors and are un-
changed if we only use our sorted set of belief points. We note that
our initial set ofα-vectorsΓn only contains vectors corresponding
to the sorted beliefs in our belief set. The number ofα-vectors is
bounded by the number of supporting beliefs, so the sizes ofΓa,∗

andΓa,o will be relatively small and fast to compute.
The next step in the standard point-based value iteration algo-

rithm combines theΓa,∗ andΓa,o sets into aΓa
b set for each belief:

Γa
b = Γa,∗ +

X

o∈O

arg max
α∈Γa,o

(α · b) (13)

We must now recall that if a specificα-vector is explicitly inΓn, all
permutations ofα are also inΓn. However, the vectors in ourΓa,∗

andΓa,o sets were created with only theα-vectors corresponding
to our sorted beliefs. Thus, they represent only a small fraction of
the vectors that should be present in theΓa,∗ andΓa,o sets if we
had a full representation ofΓn with all permutations ofα-vectors
explicitly represented. We must consider all permutations, implicit
and explicit, when choosing the bestα-vectors for each belief.

Since the members of theΓa,o set are made of linear combina-
tions ofα-vectors inΓn, we can apply the observation and transi-
tion conditions from Section 4 to argue that if a vectorα is explic-
itly represented inΓa,o, then we could have constructed all permu-
tations ofα by using other (not explicitly represented) permutations
of vectors inΓn. Similarly, from the reward conditions, if a vector
r is in theΓa,∗ set, all permutations ofr will also be in the set.
Thus, equation 13 should read:

Γa
b = Γa,∗ +

X

o∈O

arg max
α∈perm(Γa,o)

(α · b), (14)

whereperm(Γa,o) is the set containing all permutations of the vec-
tors explicitly represented inΓa,o.

Equation 14 may at first seem disheartening, because although
we have a very small number of supporting belief points, the set
perm(Γa,o) is exponentially larger than our smallΓa,o set. How-
ever, recall that we are seeking vectors to maximize the dot product

3Sampling and removing similar beliefs was the slowest part of our
approach; depending on the designer’s knowledge of the problem,
much time could be saved by “seeding” the initial belief set with
beliefs that we know will be important, reducing the number of
trajectories required to ensure good coverage of the belief space.

Table 2: Point-Based Value Iteration for Permuted POMDPs.

1. Sample a set of beliefs.

2. Sort beliefs in descending order and remove
nearby beliefs.

3. Begin point-based value iteration loop:

• ComputeΓa,∗ andΓa,o sets (equation 4).

• Sort vectors inΓa,o sets in descending order.

• ComputeΓa
b sets (equation 15).

• Compute new value function (equation 8).

α·b, and our sorted beliefs are in descending order. Ifα is a member
of Γa,o, the maximally-rewarding permutation ofα is the permu-
tation that sorts in the values ofα in descending order. Thus, we
do not need to consider all the permutations ofα, only the “best”
permutation that has its values in descending order. Our equation
to computeΓa

b becomes:

Γa
b = Γa,∗ +

X

o∈O

arg max
α∈sort(Γa,o)

(α · b), (15)

wheresort(Γa,o) is a set of the same (small) size asΓa,o in which
eachα-vector has been sorted to have its values in descending or-
der. Sorting the vectors in theΓa,o set can be done efficiently with
available numerical tools.

The final step in the standard point based value iteration algo-
rithm involves retaining only the members of theΓa

b set that are
maximal for some belief in our set:

Γn+1 = arg max
Γa

b
,∀a∈A

(Γa
b · b), ∀b ∈ sort(B). (16)

We produced the best possible vector in theΓa
b set by using the

sortedα-vectors from theΓa,o sets. Thus no more changes are re-
quired to the standard algorithm to compute the new value function.

Table 2 summarizes how one should apply point-based value it-
eration to these special POMDPS; those steps specific to our solu-
tion technique are highlighted in bold. The algorithm requires only
small changes to an already implemented point-based value iter-
ation scheme, yet the computational benefits are substantial since
exponentially fewer belief points are needed.

4.2 Using the Permutable POMDP solution
Given a normal value functionV of vectorsΓ and a current belief

b, the standard way to determine the next action to take is to find
the α-vector fromΓ that maximizes the dot productα · b. From
equation 16, each vector has the action associated with theΓa

b from
which it came; this action is the best action for the agent to take.

If we use only sorted beliefs to build our value function, then our
value function will explicitly only contain sortedα-vectors (since
the sorted permutation of theα-vectors will be the one that maxi-
mizes the dot productα ·b). Given some arbitrary belief, we cannot
simply multiply our current belief with theα vectors explicitly in
our value function—we must identify which permutation of theα
vectors maximizes the expected reward of the beliefb. To do so,
we permute the belief into the representative belief set, identify
the bestα-vector (and corresponding action equivalence class) and
then reverse the permutation to identify the true action.

To efficiently choose an action, we first sort our current belief

Table 3: Action Selection for Permuted POMDPs.

1. Sort current beliefb to bs; let πs be the permutation
that takesbs → b.

2. Determine the optimal actionas for bs using theα-
vectors explicitly inΓn.

3. Perform the actionap that corresponds to permutation
πs and actionas.

and determine which action would have been appropriate to the
sorted version of the belief. Formally, the sort implies that we ap-
plied a permutation to sort the current belief in descending order.
Let actionas be the action with the highest expected value for the
sorted belief, and letπs be the permutation that takes thesortedbe-
lief to our current belief (note that sorting the current belief is the
reverse ofπs). Recall from our symmetry conditions, for each state
permutationπs and actionas, there existed some permuted action
ap for which the conditions held. Now we have aπs and anas for
our sorted belief; the correct action to take in our current belief is
the correspondingap. Table 3 summarizes this procedure.

While the action selection step may at first appear complicated,
its application in the simple preference elicitation context is quite
intuitive. We use the action associated with the sorted belief to
determine what type of action to perform (a general query, a con-
firmation, or a submission). If the action is of a confirm or submit
type, we use the distribution of the current (unsorted) belief to de-
termine what state should be confirmed or submitted. For example,
suppose there are two possible tasks, “play CD” and “play TV,” and
the current belief is (.1, .9). If the value function states for the sorted
belief (.9 , .1), the correct action is to confirm that the user wants
the music turned on, then we take the action type—confirm—and
attach it to the most likely state in our actual belief—the TV—to
determine that the correct action to take on our belief is to confirm
if the user wants to watch TV.

4.3 Extensions to more complex models
We describe extensions to more complex models.

Filling Multiple Slots.
In many dialog management scenarios, the goal of the system

may be to fill a number of “slots” in a knowledge base. For exam-
ple, if an agent is managing a user’s personal calendar, it may need
to discover the intended date and location for a meeting. Slot fill-
ing dialogs are also common in automated booking systems [13], in
which the agent must determine the caller’s origin, desired destina-
tion, and travel date. In these cases, the agent usually proceeds by
filling one slot at a time; in the personal calendar example, the agent
might first determine the date of the user’s meeting and then the lo-
cation. This approach can be shown to be optimal if the agent’s
actions provide information about only one slot. While not often
true—the user might also mention the meeting location when asked
for the meeting time—it can be a useful approximation.

The state space in a slot-filling dialog is usually expressed by a
vector of factors, such as~s = {sd, sl}, wheresd might represent a
meeting date andsl represents a meeting location. If the slots are
independent—that is, each action and observation only affects the
belief about one slot—and the symmetry conditions hold for each
slot, we can get significant computational gains by noting that the

belief may be expressed as

b = kron(bd, bl) (17)

wherekron is the Kronecker tensor product andbd andbl can be
updated independently. We compute permuted solutions for each
slot separately. If all the slots’ actions are “submit,” then the agent
should submit the information in its slots. Otherwise, it should
perform a non-submit action from any slots (to not annoy the user,
it makes sense to fill one slot before continuing to the next one).

Partially Permutable POMDPs.
In other scenarios, there may be parts of the model that cannot be

completely expressed in the symmetric form we described. For ex-
ample, suppose that there exist two different observation error rates,
depending on whether the agent is in a noisy or quiet area. We can
still express the state as a vector of state features~s = {sg, sn},
wheresg is the user’s goal state andsn is the noise state. Here, we
may not be able to treat the noise and goal state independently: the
value of the noise directly affects our state update, and depending
on its value, the optimal policy may require greater or fewer con-
firmation questions before submitting a state. Instead, we note that
for a particular value of the noise, the ordering of the goal states
does not matter (since we posited that the user model satisfies the
symmetry conditions). Thus, our value function will be symmetric
in blocks. Let there bek noise states andm goal states, and we
write the belief in the following form:

b = [pn1,g1, pn1,g2, ...pn1,gm, pn2,g1, ...pnk,gm]. (18)

Let the vector

α = [an1,g1, an1,g2, ...an1,gm, an2,g1, ...ank,gm] (19)

be part of the value function; then all vectors

αp = [perm(an1,g1...an1,gm), perm(an2,g1...an2,gm), ...

, perm(ank,g1, ...ank,gm)] (20)

will also be part of the value function. Such a value function can be
solved for by considering beliefs that have been sorted by blocks:

bs = [sort(pn1,g1...pn1,gm), sort(pn2,g1...pn2,gm), ...

, sort(pnk,g1, ...pnk,gm)] (21)

and the only change required in the standard point-based value it-
eration algorithm is to sort theΓa,o sets also by blocks. Apply-
ing this approach to the scenario of trying to simultaneously learn
a user’s preference (reward) model and goal, we found we could
find reasonable approximate solutions in situations where using the
standard algorithm was computationally intractable.

Approximately Permutable POMDPs.
Finally, in some cases, the true model may not be symmetric.

Since similar models have similar policy returns ([5], Lemma 2),
approximating the true model by a symmetric model may be rea-
sonable in certain situations. In other cases, depending type of
point-based value iteration used, one can speed up computation
time by first computing the solution as symmetric model and using
the resulting vectors to initialize value iteration for the true model
(the solution will converge to the solution for the true model with
sufficient backups [4]).

5. RESULTS
We present simulation results on an abstract preference elicita-

tion POMDP to demonstrate the computational savings from our
approach. In this POMDP, the state space consisted ofn possible

user goal states{s1, ..., sn}. The observation space consisted of
n observations{o1, ..., on} associated with each of then states as
well as observationso+ ando− for positive and negative confirma-
tions, respectively. Finally, the agent could choose from three types
of actions. A general query asked the user to state his goal. A con-
firmation question confirmed a specific goal with the user. Lastly,
the agent could choose to submit a particular goal state.

For general queries and confirmation questions, the transition
model was mostly static: with probability 0.99, the user’s goal state
did not change. With probability 0.01, the user changed his goal to
another state chosen uniformly. If the agent submitted the correct
goal state, the goal state was reset uniformly. The agent received
a small negative reward for making various queries, with higher
penalties for confirming an incorrect goal state and lower penalties
for confirming the true goal state. It received a large negative re-
ward for submitting an incorrect goal and a large positive reward
for submitting the correct goal (table 4).

Table 4 also lists the key parameters of the observation model.
If the agent made a general query when the user’s goal state was
si, then it observed the associated observationoi with probability
0.5; otherwise it received a noisy observation uniformly at random
from the remaining observations. For confirmation questions, if
the agent confirmed the true user goal state, it received a positive
responseo+ with probability 0.8 and an arbitrary response with
probability 0.2. Similarly, if the agent confirmed an incorrect state,
then it received a negative responseo− with probability 0.8 and an
arbitrary response with probability 0.2.

Table 4: Parameters for Preference Elicitation POMDP.
Pr[hear correct state] from a general query0.50
Pr[hear correct confirmation] from a confir-
mation

0.80

Reward for a general query -2
Reward for a correct confirmation - 1
Reward for an incorrect confirmation -5
Reward for a correct submission 100
Reward for an incorrect submission -200

In our experiments, we varied the number of goal states from
5 to 50 and measured the empirical simulation performance, the
total computation time, and the total number ofα-vectors for our
technique as well as an optimized version of PBVI [6]. Initially, the
agent believed that all possible goal states were equally likely to be
the user’s true goal state. Each simulated trial was run until the
agent submitted the true user goal state; then the user’s goal state
was resampled and the agent’s belief reset. Both implementations
were run in Matlab on a 1.6GHz computer with 2GB RAM.

Variable Number of Belief Vectors.
In the first set of experiments, we let the number of sampled be-

lief points grow linearly with the size of state space; the number of
beliefs was equal to fifty times the number of hidden states. To be
strictly fair, this approach provided the Permutable POMDP with
an advantage in that it could represent an exponentially growing set
of beliefs for each linear growth in the standard PBVI implementa-
tion. However, including an exponentially growing belief set would
have been computationally intractable, even for the relatively small
numbers of states in question. To speed up convergence (each ap-
proach performed 10 backups), we included “corner beliefs,” that
is, beliefs corresponding to each user goal, in the initial belief set.
Since all corner beliefs are permutations of each other, we note that
adding corner beliefs added|S| beliefs to the standard belief set

and one belief to the permuted belief set.

5 10 15 20 25 30 35 40 45 50
−2

0

2

4

6

8

10

Number of States

Lo
g

co
m

pu
ta

tio
n

tim
e,

 s
ec

on
ds

Computation Time, Variable Belief Set Size

Standard
Permuted

Figure 1: Computation time for solutions with beliefs growing
linearly with the number of states. Note the (natural) log scale
in the time axis of the figure.

Figure 1 shows that computation time required compute the PO-
MDP solution as the state space grew. Note the (natural) log scale
on the time axis of the plot—the Permutable POMDP was orders
of magnitude faster than standard PBVI. The computation time for
our approach included the time required to sort and remove nearby
beliefs from the belief set used for the permuted solution.4

Figure 2 showed that the time required to remove nearby beliefs
almost doubled the total time required to compute the permuted
solution. We used a naïve algorithm that computed the distance
between all pairs of beliefs to remove near-duplicates; a more so-
phisticated algorithm would additionally speed up our approach.

5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

Number of States

C
om

pu
ta

tio
n

T
im

e,
 s

ec
on

ds

Time Required for Permuted Backups and Belief Processing

Permuted Backups
Total Time

Figure 2: Total computation time for the permuted solution and
the permuted backups. Processing the beliefs almost doubles
computation time.

Figure 3 shows the median reward from 500 trials with upper and
lower quartiles. Although there were small fluctuations in the me-
dian performance, PBVI and the Permutable POMDP were within
4If we did not remove nearby beliefs, our sorted belief set would
be the same size as the original belief set, and we would see no
gains in computational time. However, we would see a much more
accurate policy, since computing the permuted POMDP solution
on n beliefs is equivalent to computing the full solution onn|S|!
beliefs). Simulations results demonstrating this effect were omitted
for lack of space.

each other’s region of variation.5 Even though the permuted so-
lution required much less computation, it had essentially the same
performance as the standard solution. Also, both approaches main-
tained their level of performance as the number of states increased
(we note that this level is near-optimal).

0 5 10 15 20 25 30 35 40 45 50 55
50

55

60

65

70

75

80

85

90

95

100

Number of States

M
ed

ia
n

R
ew

ar
d

w
ith

 IQ
R

Simulation Performance, Variable Belief Set Size

Standard
Permuted

Figure 3: Performance of solutions with beliefs growing lin-
early with the number of states.

Finally, figure 4 shows the number ofα vectors in each solution.
Note that the permuted solution required many fewer vectors than
the standard solution, and did not grow appreciably as the num-
ber of states increased. This effect fits our intuition that in this
goal-discovery task, the complexity of the task should not increase
greatly as additional states are added: the optimal policy essentially
needs to determine when to make a general query, when to con-
firm the most likely state, and when to submit the most likely state.
These thresholds depend largely on the reward values; however,
the standard approach was blind to the problem symmetry and thus
required beliefs for each option to determine an appropriate policy.

5 10 15 20 25 30 35 40 45 50
0

500

1000

1500

2000

2500

Number of States

N
um

be
r

of
 A

lp
ha

 V
ec

to
rs

Number of Alpha Vectors, Variable Belief Set Size

Standard
Permuted

Figure 4: Number of α-vectors in solutions with beliefs growing
linearly with the number of states.

Fixed Number of Belief Vectors.
In the second set of experiments, we capped the number of be-

liefs to 100 points, regardless of the size of the state space, and
computed 15 backups for each technique. Figure 5 shows the amo-
unt of computation time spent on the solution as the size of the state
5The solution techniques optimized the mean reward, as is standard
in POMDPs, but the median and the inter-quartile ranges are shown
to more accurately reflect the asymmetric spread in the data.

space increased. Since the number of beliefs was fixed, the increase
in time came only from handling larger matrices as the state space
size increased. For larger state spaces, having fewer operations
with large transition and observation matrices led to a significant
reduction in the computation time for the Permutable POMDP, yet
another practical reason for using our approach.

5 10 15 20 25 30 35 40 45 50
−3

−2

−1

0

1

2

3

4

5

Number of States

Lo
g

co
m

pu
ta

tio
n

tim
e,

 s
ec

on
ds

Computation Time, Fixed Belief Set Size

Standard
Permuted

Figure 5: Computation time for solutions with 100 belief cap.

Figure 6 compares the performance of the resulting policies. As
expected, the performance of the PBVI policy declined as the num-
ber of states increased. The standard approach suffered from the
belief cap because as the number of states increased, the standard
solver required beliefs that reflected confusion between all possible
states. The high variance in performance reflects the fact that in-
sufficient belief sampling led to policies that were effective in some
parts of the belief space and not others.

Our approach was shown to be more robust to the limited num-
ber of beliefs since the actual policies were relatively simple and
the small belief set that we used actually represented an exponen-
tial number of beliefs. The performance of the permuted solution
remained near-optimal for all the state space sizes. We note that the
permuted approach required only 11 supporting belief points, even
with 100 possible goal states to achieve this policy performance.

0 5 10 15 20 25 30 35 40 45 50 55

−100

−80

−60

−40

−20

0

20

40

60

80

100

Number of States

M
ed

ia
n

R
ew

ar
d

w
ith

 IQ
R

Simulation Performance, Fixed Belief Set Size

Standard
Permuted

Figure 6: Performance of solutions with 100 belief cap.

6. DISCUSSION AND CONCLUSION
We presented the Permutable POMDP, an approach for quickly

and accurately solving POMDPs that commonly arise in prefer-
ence elicitation frameworks. In some ways, our approach is simi-
lar to that of Williams and Young [13], which creates a summary

POMDP that determines what type of action to take based on the
probability of the most likely state. In [13], the action type is com-
bined with the most likely state to determine the complete action;
the dynamics of the summary POMDP must be determined through
sample trajectories in the larger POMDP. Our approach differs from
the summary POMDP method in that we do not approximate the
true POMDP with a smaller POMDP; we show that if a POMDP
has a particular structure, it can be solved efficiently directly. Al-
though we presented the permutable POMDP in a preference elic-
itation context, we also note that it may apply in many settings
where an agent must identify a particular target.

Our approach is easily incorporated into most point-based PO-
MDP solvers: the solver will then require exponentially fewer be-
lief points for a given desired solution quality. In empirical tests,
we showed that we can speed up computations by several orders of
magnitude, allowing us to consider preference elicitation POMDPs
for state spaces that might otherwise be too large for POMDP tech-
niques. The technique requires specific symmetries in the POMDP
structure, but in many preference elicitation problems, it may be
reasonable to approximate the model as having such a structure.
Extensions would include developing principled approximation pro-
cedures based on the permutable POMDP, as well as finding more
compact encoding schemes for models that satisfy the permutable
POMDP constraints.

7. REFERENCES
[1] C. Boutilier. Planning and programming with first-order

markov decision processes: insights and challenges. Morgan
Kaufmann, 2001.

[2] C. Boutilier. A pomdp formulation of preference elicitation
problems.Proceedings of the Eighteenth National
Conference on Artificial Intelligence, 2002.

[3] F. Doshi and N. Roy. Efficient model learning for dialog
management. InProceedings of Human-Robot Interaction
(HRI 2007), Washington, DC, March 2007.

[4] G. J. Gordon. Stable function approximation in dynamic
programming. InProceedings of the Twelfth International
Conference on Machine Learning, San Francisco, CA, 1995.
Morgan Kaufmann.

[5] M. Kearns and S. Singh. Near-optimal reinforcement
learning in polynomial time.ICML, 1998.

[6] J. Pineau, G. Gordon, and S. Thrun. Point-based value
iteration: An anytime algorithm for pomdps.IJCAI, 2003.

[7] K. Regan, R. Cohen, and P. Poupart. The advisor-pomdp: A
principled approach to trust through reputation in electronic
markets.Conference on Privacy Security and Trust, 2005.

[8] N. Roy, J. Pineau, and S. Thrun. Spoken dialogue
management using probabilistic reasoning. InProceedings of
the 38th Annual Meeting of the ACL, Hong Kong, 2000.

[9] G. Shani, R. Brafman, and S. Shimony. Forward search value
iteration for pomdps.IJCAI, 2007.

[10] T. Smith and R. Simmons. Heuristic search value iteration
for pomdps. InProc. of UAI 2004, Banff, Alberta, 2004.

[11] E. Sondik.The Optimal Control of Partially Observable
Markov Decision Processes. PhD thesis, Stanford University,
Stanford, California, 1971.

[12] M. T. J. Spaan and N. Vlassis. Perseus: Randomized
point-based value iteration for POMDPs.Journal of Artificial
Intelligence Research, 24:195–220, 2005.

[13] J. Williams and S. Young. Scaling up pomdps for dialogue
management: The "summary pomdp" method. In
Proceedings of the IEEE ASRU Workshop, 2005.

