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Abstract

Ships often use the coasts of continents for navi-
gation in the absence of better tools such as GPS,
since being close to the land allows sailors to deter-
mine with high accuracy where they are. Similarly
for mobile robots, in many environments global
and accurate localization is not always feasible.
Environments can lack features, and dynamic ob-
stacles such as people can confuse and block sen-
sors.
In this paper, we demonstrate a technique for
achieving better localization by generating trajec-
tories that model explicitly both the information
content of the environment, and the density of the
people in the environment. These trajectories re-
duce the average positional certainty along their
length, reducing the likelihood the robot will be-
come lost at any point.

Introduction

One essential component of any operational mobile
robot system is the ability for the robot to localize it-
self; that is, to determine its position in space consis-
tently and accurately from sensor data. Dead reckon-
ing using only odometry data does not solve this prob-
lem; small errors in odometry build up quickly, even-
tually causing dramatic errors in the robot’s belief of
its position. Over distances longer than a few meters,
the robot must use information from its environment
to track where it is. There are many successful local-
ization methods that can determine the robot’s posi-
tion (relative to a map) using sonar, laser and camera
data (MacKenzie & Dudek 1994; Dudek & Zhang 1996;
Sim & Dudek 1998; Thrun, Fox, & Burgard 1998;
Fox, Burgard, & Thrun 1998; Kaelbling, Cassandra, &
Kurien 1996).

However, most localization methods fail under com-
mon environmental conditions. Proximity sensors such
as laser or sonar range-finders have finite range, which
means that in sufficiently wide-open spaces, they cannot
see anything to use as a reference point. Such sensors
can also be fooled by unmodelled or dynamic obstacles;
people moving around the robot are a very good ex-
ample of unmodelled, dynamic obstacles. Cameras can

also fail in regions which lack sufficient visual structure,
such as blank walls or ceiling. Since these environmen-
tal conditions are relatively common, a mobile robot
navigating reliably in the real world must allow for the
potential failure of its localization methods.

The inspiration for the method discussed in this pa-
per stems from traditional navigation of ships. Ships
often use the coasts of continents for navigation in the
absence of better tools such as GPS, since being close
to the land allows sailors to determine with high accu-
racy where they are. The success of this method re-
sults from coast lines containing enough information in
their structure for accurate localization. By navigating
sufficiently close to areas of the map that have high in-
formation content, the likelihood of getting lost can be
minimized.

The coastal navigation technique consists of the fol-
lowing:

• We construct a model of the information content of
the environment. This model allows us to account
both for sensor limitations and unmodelled, dynamic
obstacles.

• We plan a trajectory by combining the information
content model of the environment and obstacle in-
formation in the map, to generate appropriate paths
through the environment that respects localization
uncertainty.

In the following sections, we first develop the coastal
navigation model of the information content of the envi-
ronment, starting with the sensor limitations and then
accounting for dynamic obstacles. Secondly, we develop
a method of combining the information content with the
path planner to generate plans with minimum localiza-
tion error. Finally we show experimental results.

The framework that we use for navigation is a prob-
abilistic one; all information is represented as probabil-
ities, such as the robot position and the environment
map. Figure 1 shows an overhead (bird’s-eye view) of
an example environment. This map is a probabilistic
occupancy grid, where each cell contains the probabil-
ity that it is occupied. The black cells are those with a
high probability of occupancy, such as cells inside walls.
The white cells are cells in free space.



The sensors used to generate this map were 2 laser
range finders which provide 360◦ field of view around
the robot at 45cm height, with an angular resolution of
1◦. The resolution of the map in figure 1 is 20cm/cell.

Figure 1: An example map of the National Museum of
American History. The white areas correspond to open
space, and the black areas are walls, or occupied space. The
size of this map is 53m by 67m

This map is the National Museum of American His-
tory (NMAH), and was learned by the robot Minerva as
part of a demonstration of robot technology (see (Bur-
gard et al. 1998) for a description of a previous demon-
stration). Figure 2 shows Minerva, a RWI B-18 base,
that was used for a two week period in the museum.

Figure 2: Minerva, the robot used for the experiments
presented in this paper.

The NMAH was considered to be a good testbed for
the idea of navigating with uncertainty, because it has
two features relevant to developing coastal navigation:
large areas with minimal environmental structure, and
dynamic obstacles. The ideas were tested on the Min-
erva robot over the two week period, encountering ap-
proximately 50,000 people and travelling 44 km total in
this environment. The area of the museum that Min-
erva operated in was 53m by 67m.

The success of this work will first be seen to be that

the paths generated on a real robot, in a large, open and
extremely dynamic environment (the museum) were
generated as expected, and successfully followed. We
have begun an in-depth evaluation of the data gathered
over these trajectories, which is incomplete but promis-
ing. The main result presented in this paper is that
of the successful operation of the coastal navigator in
the adverse conditions, over a long-term period of two
weeks.

Previous Work

Developing motion planning algorithms based on po-
sitional uncertainty is not a new idea. Considerable
work in in the field of partially observable Markov de-
cision processes (POMDPs) (Cassandra, Kaelbling, &
Littman 1994; Koenig & Simmons 1996; Kaelbling, Cas-
sandra, & Kurien 1996; Koenig & Simmons 1998) has
allowed many mobile robots to model positional uncer-
tainty explicitly. However, one drawback to the use of
traditional POMDPs is that they can become compu-
tationally intractable with a large number of states.

Work has also been done on trajectory genera-
tion with respect to positional uncertainty; Takeda et
al. (Takeda, Facchinetti, & Latombe 1994) do not use
the localization process to generate the positional un-
certainty across space, but generate probability distri-
butions based on an explicit model of the sensor. Fur-
thermore, the environment is assumed to be static, so
the effect of dynamic obstacles on localization is not
modelled.

Modelling Information Content

The motivation for coastal navigation is generating tra-
jectories for the mobile robot that reduce the likelihood
of localization error. An example of a trajectory where
localization error is high, is a path through wide-open
space, where all reference points are outside the range of
the sensors – the likelihood of the robot becoming lost
as it moves through the open space is high. We there-
fore need to identify how good regions of space are for
localization, and alter the path planning accordingly.
To do so, we build maps of the environment, where each
cell in the map contains a notion of information content
available at that point in the map, which corresponds to
the ability of the robot to localize itself. The higher the
information content, the better the localization ability.

The framework for determining the information con-
tent that we have used stems from the probabilistic
model used by our localization method, which is a grid-
based implementation of Markov localization (Burgard
et al. 1996). This localization methods is able to rep-
resent the position of the robot using arbitrary dis-
crete probability distributions. The probability of the
robot having a particular pose (x, y, θ) has a probability
P (x, y, θ).

Given a set of data (for example a set of range data
from a laser sensor) our localization program returns
a new probability distribution over the space of poses



of the robot. The new probability function reflects
whether or not the sensor data agrees or disagrees with
the previous position estimate, and whether or not the
sensor data increases or decreases the certainty of the
robot’s location.

We can determine with how much certainty the robot
is localized by examining the entropy of the resulting
probability function. The entropy of a probability dis-
tribution, P , is defined as:

Entropy(P ) =−
∑

P

pi log(pi) (1)

⇒ Entropy(P ) =−
∑

X,Y,Θ

p(x, y, θ) log(p(x, y, θ)) (2)

We sum over the space of all possible poses (x, y, θ),
where the probability that the robot is at pose (x, y) is
p(x, y, θ), a value provided by the localize module.

We can ignore the rotational component of the
robot’s pose, because we are assuming the use of Min-
erva, a robot with 360◦ field of view. Therefore, the sen-
sor scan is rotationally invariant, and thus the θ term
to the localization has been ignored to reduce the com-
putational complexity of the approach.

This entropy quantity is defined for both the prior
position estimate, and the posterior estimate provided
by the localization module. The entropy can be con-
sidered as the “purity” of the probability distribution.
If the distribution is highly focussed at a single point,
(x, y) then the entropy will be low. If the distribution is
spread over a wide space, then the entropy will be high.
By examining the change in entropy, ∆(Entropy), we
can determine whether or not the sensor data helped
the robot in finding its position or not.

The change in entropy from the sensor reading can
therefore be considered as the utility, or information
content, of that sensor reading. By examining the sen-
sor data that can be acquired at each point in space, we
can determine the information available at each point
in space and plan trajectories to maximize information
available to the sensors, in the manner described below.

To construct the map of entropy, or information con-
tent of each position, we simulate sensor data for each
(x, y) point in the map. This simulated sensor data is
then used to localize the robot, which gives a probabil-
ity distribution of the robot’s pose. That is, given an
initial position (x, y) of the robot, and a set of sensor
data ~s, the localization generates a probability distri-
bution P (x′, y′|x, y, ~s), which we use to compute the a
posteriori entropy as follows:

E(x, y) =−
∑

X′,Y ′

p(x′, y′|x, y, ~s) log(p(x′, y′|x, y, ~s)) (3)

The entropy, E(x, y), of the probability distribution
that results from localization over sensor data, ~s, sim-
ulated at (x, y) is computed. By assuming a Gaussian
prior probability distribution centered at the assumed

location of the robot, the entropy of the posterior proba-
bility distribution is equivalent to the change in entropy
between the two.

Figure 3 shows an example map of the entropy, or
information content of the same museum. The darker
an area is, the less information it contains. Notice that
the darkest area is the center of the large open space in
the middle, and that the lightest areas, with the lowest
entropy are close to the walls.

Figure 3: An example map of the entropy, or information
content, of the National Museum of American History. The
darker an area is, the less information content it contains.
The blackest areas of the map are the walls.

It is important to note that in general, if the robot
does not have rotationally-invariant perceptions, then
this term cannot be ignored; indeed, coastal navigation
is not very helpful if the ship is always pointed out to
sea.

Modelling People

The entropy maps are useful for determining the infor-
mation content of a particular point in the environment.
However, the model used to compute the entropy as-
sumes a static environment; in a dynamic environment,
the data gathered by the sensors can be corrupted, for
example by people blocking the proximity sensors. We
therefore must also account for the likelihood that in-
formation can be corrupted.

We have two methodologies for accounting for cor-
rupted data. The first is a brute-force simulation of
people; the environment is assumed to have a certain
number of people, uniformly distributed throughout the
space, and this distribution of people is used to simulate
corrupted data.

In the example of the laser range sensors, the prob-
ability that a given laser range measurement will be
corrupted by a person is modelled as a geometric dis-
tribution along the length of the beam; the longer the
beam, the more likely it will be corrupted.

Along each beam, the distance to the nearest person
is generated randomly according to this distribution. If



the person is closer along this direction than the near-
est obstacle, the beam is corrupted. This simulated
data is used to localize the robot in the map, as before.
However, since the sensor data is not likely to exactly
match any pose in the environment but only approx-
imately, the certainty of the robot’s belief is likely to
be lower, and thus the entropy higher, than the uncor-
rupted sensor data generated for the same position.
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Figure 4: Probability of corruption of laser measurement,
as a function of measured distance, given 2000 people in the
museum.

Figure 4 shows an example distribution for the prob-
ability of a measurement’s corruption, as a function
of the measured distance. This distribution assumes
that there are 2000 people, evenly distributed through
a space the size of the NMAH. One effect of the model
of people as discussed above is that, continuing the ex-
ample of the laser range sensor, since longer beams are
more likely to become corrupted than shorter beams,
the entropy of a probability distribution generated by
a set of data is likely to be higher if the laser beams
are in general longer, rather than shorter. Thus, there
is a trade-off between positions in the map that con-
tain complete, but highly-corruptible information, com-
pared with positions in the map that contain incom-
plete, but more reliable information.

One problem with the technique of simulating people
to corrupt laser scans is that it relies on a randomly-
generated simulation. This implies computing statis-
tics over several trials to make any kind of substantial
claims about the effect of people on the entropy, which
is expensive in terms of computation time. Therefore,
an alternative strategy has also been explored.

In this alternative strategy, again using the example
of the laser range finder, each laser measurement is used
to compute the entropy, and weighted by the probabil-
ity that it is corrupted, which is a function of its length.
Specifically, rather than localizing the robot over the en-
tire laser data set, each single laser measurement is used
to localize the robot, generating (for 360 laser measure-
ments), 360 probability distributions. The entropy of
each distribution is computed, weighted by the proba-

bility of the beam being uncorrupted – short beams get
higher weight. The average of these weighted entropies
is then computed, to give an overall measure for the
(x, y, θ) location, as given in equation 4:

Eav(x, y) =
1

|Θ|
∑

Θ

(E(x, y, θ) · pcorrupt(x, y, θ)) (4)

In equation 4, Eav(x, y) represents the entropy av-
eraged over n different measurements (i.e., 360 laser
measurements), whereas E(x, y, θ) is the entropy of
the probability distribution given using only the single
laser measurement at angle θ, and pcorrupt(x, y, θ) is
the probability that the laser measurement taken along
angle θ from position (x, y) is corrupted.

This particular method makes a strong independence
assumption about the sensor data; it assumes that each
laser measurement is completely independent of all oth-
ers. This, in reality, is not the case. However, we
can make reasonable conclusions about the information
content of each position in the map nevertheless, and
this method has the advantage of being computation-
ally much faster than the previous method of modelling
the effect of people on the sensors.

We in fact now have two different methods for com-
puting the effect of dynamic obstacles, such as people,
on the ability of the robot to localize itself. The first
method is statistical in nature, and is more correct in
representing the actual localization mechanism, how-
ever it is computationally slow. The second method
makes a strong independence assumption about differ-
ent sensor measurements taken at the same place, but
yields equivalent results, and is an order of magnitude
faster.

Path planning
Having computed the information content, or entropy,
for each position in the map, the path planner must use
the secondary map to generate trajectories with greater
positional certainty. Traditional non-topological path
planners choose a trajectory by optimizing some cri-
terion such as minimizing distance, time, or power
consumption, or maximizing distance to obstacles (for
safety). The quantity minimized in the conventional
planner is the following sum (Thrun 1999), along the
path given by the list of cells (xi, yi) from start to goal:

CostTotal =
∑

x,y

c(x, y) (5)

The cost c(x, y) is the cost of crossing cell (x, y),
which increases with the probability that the cell is oc-
cupied, from some minimum cost associated with travel.
An example trajectory is shown in figure 5. The tra-
jectory of the robot is the line through the large open
space, where the start position is the left end of the line,
and the goal is the right end. People are not depicted in
this image, but typically, visitors to the museum would



occupy the space on either side of the robot, effectively
blinding it on its two sides, reducing substantially the
main sources of localization information.

Figure 5: An example trajectory using the conventional
planner, in the National Museum of American History.

The coastal planner, however, minimizes a sum of the
conventional cost and the entropy:

CostTotal =
∑

x,y

λ1c(x, y) · λ2E(x, y) (6)

The exponents λ1 and λ2 are weights, and were cho-
sen experimentally.

Figure 6 shows a coastal plan for the same start and
goal as figure 5, where the robot does not travel directly
through the open space, but instead hugs the wall, in-
creasing travel distance, but preserving the ability to
gather sensor data down its right side (travelling left to
right again).

Figure 6: An example trajectory using the coastal planner,
in the National Museum of American History. Note that the
robot now hugs the wall.

Experimental Results

Over the course of two weeks, the robot gave tours
of various exhibits scattered about the hall shown in
figure 1, using the coastal planner to generate trajec-
tories between exhibits. The sensor and localization

data was recorded during this time, and some statis-
tics were gathered to compare the performance of the
coastal planner to the conventional planner.

The most useful statistic is the average entropy of the
probability distribution of the robot’s pose, as it trav-
elled along the trajectories. In the best case, the robot
followed trajectories that had a measurably lower aver-
age entropy, which indicates the success of the coastal
navigation.

Coastal Conventional
3.3 ± .1 4.4 ± .25

Table 1: Comparison of average entropy over the trajecto-
ries given by the conventional and coastal planners

Surprisingly, the largest impact of the coastal planner
on positional uncertainty was seen in situations without
the dynamic obstacles of surrounding people. People
following the robot had a tendency to drive the robot off
planned trajectories, making reasonable comparisons of
the two planners very difficult. In the worst case, no
difference in the average entropy was seen at all.

Conclusion
In this paper, we have presented a method of generat-
ing trajectories even through environments where po-
sitional uncertainty is likely to accrue. The method
draws on ship-based navigation, where ships lacking re-
liable global position estimation stay close to known
landmarks along shores. We first generate a map of the
environment that contains the information content of
each position in the environment. This representation
also includes the likelihood of the sensor data to be cor-
rupted. Using this map, the path planner generates tra-
jectories that optimize over both distance and change
in positional certainty. This path planner was used for
navigating in a highly dynamic environment with large
open spaces in the National Museum of American His-
tory successfully for 2 weeks.

One strength of the framework of coastal navigation
is that it generalizes to any sensor; indeed, using a
probabilistic localization module based on ceiling im-
ages generated by a camera, the path planner gener-
ated trajectories that did not stay close to obstacles.
Instead, the path planner generated trajectories that
took the robot under as much visual structure on the
ceiling as possible, most notably the ceiling lights.

One avenue for future research lies with the path
planner. The dynamic programming technique cur-
rently used for finding the minimum-cost trajecto-
ries demands a monotonic integration of the entropy.
Therefore, there is no way to model actions that reduce
uncertainty, only actions that increase uncertainty more
or less.
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