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Abstract

We present a novel method for information-theoretic ex-
ploration, leveraging recent work on mapping and lo-
calization. We describe exploration as the constrained
optimization problem of computing a trajectory to mini-
mize posterior map error, subject to the constraints of
traveling through a set of sensing locations to ensure
map coverage. This trajectory is found by reducing the
map to a skeleton graph and searching for a minimum
entropy tour through the graph. We describe how a spe-
cific factorization of the map covariance allows the re-
use of EKF updates during the optimization, giving an
efficient gradient ascent search for the maximum infor-
mation gain tour through sensing locations, where each
tour naturally incorporates revisiting well-known map
regions. By generating incrementally larger tours as the
exploration finds new regions of the environment, we
demonstrate that our approach can perform autonomous
exploration with improved accuracy.

Introduction
Computing the best trajectories for a mobile robot explor-
ing an unknown environment typically requires satisfying
the two competing objectives of completeness and accu-
racy. Firstly, the exploration trajectory must choose mea-
surements that cover the environment, ensuring that the
robot has collected measurements of the entirety of the en-
vironment in order to build a complete map. Secondly, the
exploration trajectory must choose measurements that allow
the SLAM algorithm to correctly infer relationships between
different parts of the environment. Generating the most ac-
curate map requires maximizing the mutual information be-
tween different environmental features and minimizing the
loss of of information due to the robot motion.

Different pieces of this problem have been examined in
previous work (Yamauchi 1997; Feder, Leonard, & Smith
1999; Makarenkoet al. 2002; Stachniss & Burgard 2003;
Sim & Roy 2005; Stachniss 2006), but a consistent opti-
mization process for addressing these two problems remains
an open problem. In particular, there has been little work on
performing multistep destination selection, primarily due to
the fact that computing even a standard minimum-distance
trajectory is NP-hard. The problem is further complicated
by the fact that the objective functions of information gain
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and expected error do not obey the triangle inequality, pre-
venting the use of many common optimization techniques.

In this paper, we describe an algorithm for computing an
exploration trajectory of an unknown environment by com-
bining a global optimization of a tour of environment way-
points with a local controller that optimizes the trajectory
through the selected waypoints. The primary contribution of
our paper is a local-global optimization algorithm that uses
hill climbing to optimize a coverage tour through a partially
mapped environment and a learned controller that predicts
the trajectory between waypoints that maximizes the infor-
mation gain. Our second contribution is to show that the
hill climbing can be performed efficiently using an alternate
form of standard SLAM process-measurement updates.

SLAM with the EKF
It is beyond the scope of this paper to summarize the state
of the art in robotic mapping; our overall approach to explo-
ration is not specific to the map representation or inference
algorithm, although we are able to achieve substantial gains
in efficiency by assuming Gaussian map and robot posteri-
ors. Without loss of generality, we will restrict our discus-
sion to Extended Kalman filter SLAM.

Let us denote the robot position at timet as xt =
(xt, yt, θt), and each map feature or “landmark” asmi =
(x, y). The complete map ofn landmarks is described as
m = {m1, . . . ,mn}. When the robot executes a control
action ut, its next position is given by a process model
xt+1 = g(xt,ut, wt) wherewt is some unknown random
noise that is added to the effect of the control. After each
motion, the robot receives observations according to its cur-
rent position and the landmarks. The observation of land-
mark i is given by a measurement modelzi = h(x,mi, vt)
wherevt is some unknown random noise that is added to the
received measurement. Typically a set of observationszt is
received at timet.

The goal of a SLAM algorithm is to infer the robot pose
and the map based on knowledge of the control actions and
observations. By filtering the actions and observations, a
joint distribution over the robot pose and the map can be
maintained, specifically the distributionp(xt,m|u1:t, z1:t).
If we assume this distribution is Gaussian, then the pos-
terior is parametrized by the meanµt and covarianceΣt

statistics. If the process and measurement models are lin-
ear functions and the unobservable noise terms are Gaus-
sian, then the mean of the posterior distribution computed



Algorithm 1 The Extended Kalman Filter
Require: Prior mean and covariance(µt−1,Σt−1), control

ut and observationzt.
1: Compute process mean,

µt = g(µt−1,ut, 0)
2: Compute process JacobianGt|µt−1

.
3: Compute process covariance,

Σt = GtΣt−1G
T
t + Rt.

4: Compute measurement JacobianHt|µ
t−1

.
5: Compute Kalman gain,

Kt = ΣtH
T
t

(

HtΣtH
T
t + Qt

)−1
.

6: Compute new mean,
µt = µt + Kt(h(µt, 0) − zt).

7: Compute new covariance,
ΣT = (I − KT HT )ΣT .

by the Kalman filter can be shown to minimize the least-
squares error. When the models are non-linear, the extended
Kalman filter can be used to repeatedly linearize the process
and measurement models. The Jacobians of the process and
measurement modelsg andh used to linearize these models
areG andH respectively, andR andQ are the covariances
of the Gaussian noise distributions for the process and mea-
surement updates. The complete Extended Kalman Filter
algorithm is shown in figure 1.

Exploration

Given sufficient data, the mean estimate of the map provided
by the EKF will usually converge to the true map1. Unfortu-
nately, few if any guarantees are given for the rate at which
the map converges; the quality of the map is highly depen-
dent on the robot trajectory as well as a variety of other fea-
tures such as sensor model, feature distinctiveness for data
association, etc..

The goal in this paper is to choose trajectories that lead
to sensor data that results in the best map, maximizing both
the map coverage and the map accuracy. There are different
ways to reconcile these objectives, such as optimizing the
robot trajectory with respect to an overall objective that is a
weighted sum of individual terms (Makarenkoet al. 2002),
but such approaches raise additional questions such as how
to choose the individual weights. Our approach is to define
the coverage problem as choosing the best sensing locations
that maximize the likelihood the complete environment will
be observed. If these sensing locations serve as constraints
on a trajectory planner, and we compute a trajectory that
maximizes the map accuracy subject to these constraints,
then we have a principled way to optimize both coverage
and accuracy. The trajectory constraints based on coverage
can be calculated first, and then the constrained trajectory
can be calculated to maximize map accuracy.

1Although, convergence guarantees only hold for the standard
Kalman filter, not the extended form.

Map Coverage
Let us first consider the problem of coverage. We define a
“visibility” function δ(mi, z0:T ),

δ(mi, z0:T )=











1
if map featuremi appears at
least once in the observations
z0:T ,

0 otherwise.

(1)

The goal of a coverage planner is to search for the trajectory
that maximizes the number of sensed features,

argmax
z0:T

|m|
∑

i=1

δ(mi, z0:T ). (2)

We cannot control or predicta priori what observationszt

will be received. We can control the robot posesx0:T , but
the observations are generated stochastically according to
the map and the robot pose,p(z0:T |x0:T ,m). We do not
know the mapm, so equation (2) must be computed in ex-
pectation over the map prior distributionp(m) and observa-
tion likelihoods, such that

argmax
x0:T

Ep(m)Ep(z0:T |x0:T ,m)





|m|
∑

i=1

δ(mi, z0:T )



. (3)

The distributionp(m) is actually conditioned on the mea-
surements up to the current time, which have been left out
for brevity.

Computing the double expectation exactly over both map
prior and observations is computationally infeasible, butthe
distribution over maps has only limited impact on the opti-
mization. At the beginning of the mapping process, the map
prior will be very uncertain, which will cause all trajectories
to have approximately the same expected performance, as
all maps are equally likely. As more observations are made,
the map distribution will begin to converge to the true map,
and the mean map estimatêm will become an increasingly
good approximation to the complete distribution. When the
map prior is informative, Monte Carlo methods may be used
to estimate the outer expectation directly. Thus, we can ap-
proximate equation (3) as:

argmax
x0:T

Ep(z0:T |x0:T ,m̂)





|m|
∑

i=1

δ(mi, z0:T )



. (4)

While equation (4) is an approximation to our true cover-
age objective, in practice a robot coverage algorithm that
chooses a set of destination points to maximize the likeli-
hood of completing the map based on the current estimate,
and then follows a tour through these points will have perfor-
mance comparable to any other sequential decision making
algorithm.

We can gain additional computational tractability in solv-
ing equation (4) by considering only a subset of possible
locations of the robot, that is, a retraction of the map free
space. Map features are constrained (by definition) to lie
on the boundary of free space, so our retraction must be
a subset of map locations that guarantee that every bound-
ary point can be observed from some point in this subset.



(a) Original (b) Median Filtered

(c) Skeleton (d) Sensing Waypoints

Figure 1: The map skeletonization process. (a) The binarized map. (b) The smoothed map using median filtering to eliminate high-frequency
noise. (c) The piece-wise linear graph of the medial-axis skeleton. (d) The graph nodes that constitute sensing location constraints for the
trajectory optimization.

This property of boundary visibility is known as “reliabil-
ity” (Cornea, Silver, & Min 2005); using the medial-axis
transform (Blum 1967) to reduce the free-space to a min-
imal “skeleton” allows us to approximate the map with a
minimal set of points while guaranteeing reliability neces-
sary for equation (4). Efficient algorithms for computing a
medial axis representation that guarantee reliability gener-
ally lead to near-optimal reductions in terms of minimizing
the resulting skeleton; computing the true minimum medial
axis representation is NP-hard (Coeurjolly, Hulin, & Sivi-
gnon 2007).

In order to select a set of sensing locations that provide a
guarantee of coverage, we retract the map to its medial axis.
We then further reduce the skeleton to a graph by converting
the resulting map skeleton to a piece-wise linear representa-
tion, retaining only the end-points of the resulting lines.We
can then use graph search algorithms to identify a tour of
the skeleton that maximizes the predicted map accuracy. By
generating a graph with guaranteed boundary visibility and
constraining our exploration trajectory to traverse the graph
nodes, the exploration trajectory is constrained to have full
map coverage.

The complete skeletonization algorithm is given by Al-
gorithm 2. Although the map free space is given by an oc-
cupancy grid, this grid is binarized before skeletonization.
Note also that high frequency objects in the map such as
discretization artifacts or small mapping errors can create an
overabundance of end-points and junction points. To reduce
the effect of high-frequency areas to have less influence on
the end-points and junction points, we first median filter the
image, as shown in figure 1(b).

Map Accuracy
Given a graph through the environment that maximizes the
expected coverage of map features, we wish to compute a
tour through these points, that is, an ordering on the graph
points, to maximize the resulting map accuracy. We can-
not measure the map accuracy without ground truth, but the
covariance of the posterior distribution provides an estimate
of the expected squared error. Minimizing the determinant

Algorithm 2 Map Skeletonization
Require: Mapm.
1: Median filter the binarized map.
2: Skeletonize the map using the medial-axis transform.
3: Reduce the skeleton to a piece-wise linear graph.
4: Return the end-points of lines (junctions and graph

leaves).

of the covariance of the posterior Gaussian is equivalent to
minimizing the differential entropy described by Darbellay
& Vajda (2000) as

H(p(x)) =
1

2
ln[(2πe)n|Σ| ]

As a result, computing a tour that minimizes the posterior
map entropy is equivalent to an information-theoretic trav-
eling salesman problem where the objective function is in-
formation maximization rather than distance minimization.
Unfortunately, as with most traveling salesmen problems,
this optimization is again NP-hard (Garey & Johnson 1979).
Furthermore, the marginal gains for computing the glob-
ally optimal trajectory are likely to be low. On the other
hand, local optimization will allow the planner to take ad-
vantage of some information gathering actions such as revis-
iting known-locations that a greedy strategy will not always
use.

As a result, we use local optimization similar to the
gradient-ascent heuristics used for solving shortest-path TSP
problems, such as the edge-swapping heuristic. A basic tour
is generated from a simple greedy nearest-neighbor heuris-
tic. At each iteration two edges are swapped and the infor-
mation gain is calculated. If the posterior map entropy is
improved, then this edge move is retained. Edge-swaps are
continued until no more edges are available to reduce the
tour cost, and the best (lowest predicted posterior entropy)
tour is used.

Note that for the conventional shortest-path TSP, this ap-
proach is referred to as the 2-opt heuristic and is known to be
better than aO(log(n)) approximation to the true distance-



(a) Shortest Path Optimization (b) Information-Theoretic Optimization

Figure 2: Optimized tours. (a) For the graph in figure 1, the ordering of points thatminimizes the total path length. (H(p(m)) = −6.93)
((b) For the same graph, the ordering of points found by minimizing the posterior map entropy. (H(p(m)) = −7.23). (Note that the red
lines only show connectivity for clarity of presentation. The path lengths are calculated through free space, but the paths tend to overlap and
obscure the resulting connectivity.)

(a) A tour using a shortest-path controller (b) The same tour using the learned controller

Figure 3: Comparison of a path executed by a conventional shortest-path controller that uses point turns (a) with a path executed by the
learned controller. The tour of the graph in both cases was fixed.

optimal solution. This performance guarantee does not hold
for the exploration problem because information gain vio-
lates the triangle inequality property (Rosenkrantz, Stearns,
& Lewis 1977), but performs well in practice.

Figure 2 shows the results of using the 2-opt heuristic with
the shortest path objective (figure 2a) and the information-
theoretic objective (figure 2b). The principal difference be-
tween the planned tours is the order of points at the top of
the free space; by first taking a straight trajectory into the
room, the information-theoretic optimization improves the
map of the room and then revisits the remaining locations,
using the improved map to stay well-localized. Addition-
ally, the information-theoretic optimization uses waypoints
in previously-visited locations to relocalize. In contrast, the
shortest-path trajectory visits the early waypoints first and
cannot deliberately revisit a location to re-localize, resulting
in a lower-quality map. The information-theoretic optimiza-
tion significantly reduces the map entropy, and as expected
also reduces the squared error of the resulting map (table 1).

One-step update
In order to evaluate the posterior map entropy of a particu-
lar exploration trajectory, we can use the EKF algorithm to
predict the posterior map estimate after the trajectory. This
prediction requires computing the expected motion updates,
simulating measurements from the current map estimate and
updating the EKF at each time step. As a result, the predic-
tion process can be computationally demanding and the cost
is intensified by the fact that every modification of the explo-
ration trajectory requires the EKF to recalculate the map for
the entire trajectory following the modification. Even if the
trajectory modification is relatively minor, the non-linearity
of the covariance update in Algorithm 1 means that the EKF
updates from one trajectory cannot easily be re-used in the
overlapping section of another trajectory. Note that the sim-
ulated motions and measurements can be re-used if the same
graph edge appears in two potential trajectories; it is onlythe
EKF updates along that must be recalculated.

In previous work (Prentice & Roy 2007) we have shown

that multiple updates to a Gaussian filter can be combined
into a single transfer function by re-factoring the covariance,
allowing multiple process and measurement updates to oc-
cur with a constant number of operations. If the covariance
is factored asΣt−1 = Bt−1C

−1
t , then the individual factors

can be updated as
[

B
C

]

t

=

[

W X
Y Z

]

t

[

B
C

]

t−1

(5)

=

[

0 I
I M

]

t

[

0 G−T

G RG−T

]

t

[

B
C

]

t−1

, (6)

and Σt recovered asΣt = BtC
−1
t . (Note thatM =

HT
t Q−1Ht, the measurement information.) Assuming we

have known measurements and motions, we recursively ap-
ply the measurement JacobianH, the measurement noiseQ,
the motion JacobianG, and the motion noiseR in the form
of the transfer functionζt =

[

W X
Y Z

]

t
to the original

[

B
C

]

0
.

We can initialize the process asB0 = Σ0 andC0 = I, where
Σ0 is the initial covariance matrix andI, the identity matrix.
Note that each of these terms can be seen in the original for-
mulation of the EKF (Algorithm 1).

Using this one-step EKF update, we can collect simulated
motions and measurements along each edge in the graph,
compute the relevant Jacobians for each time step and collect
terms into a single transfer function for that edge that can be
reused for the map posterior prediction of future exploration
trajectories. In particular, we compute a tour by creating
one-step transfer functions between the interest points. If
we have already created a transfer function to within some
thresholdǫ of the original orientation, we will use the pre-
generated transfer function to obtain the one-step update.
Thus, we will cache the transfer functions for any already-
visited edges and use this to drastically speed up the search
process.

Motion Control Optimization
The coverage exploration optimization assumes a specific
model of robot motion along each edge in the graph but



does not have direct control of the robot motion between
sensing locations. However, the trajectory between sensor
measurements can have a significant effect on the accuracy
of the map. When the robot motion is noisy, substantial un-
certainty is introduced into the robot pose; when few or no
observations are expected (e.g., because of sensor range lim-
its or environmental sparsity), this uncertainty is propagated
throughout the SLAM filter into future measurements, in-
creasing the expected error of the posterior.

To learn good control policies, we use Policy Search Dy-
namic Programming (Bagnellet al. 2003; Kollar & Roy
2008), a form of reinforcement learning that decomposes
into a series of one-step learning algorithms, essentially
turning the learning of sequential decision making into dy-
namic programming. The algorithm operates by first learn-
ing a one-step policy at timeT (e.g., the end time). Training
data is generated by sampling a robot pose and map distribu-
tion p(x,m), and using all possible control trajectoriesa to
propagate each sampled prior distribution forward to a pos-
terior distribution according to the EKF using a physically
realistic vehicle and sensor simulator. Each distribution-
action pair is labeled with the resulting information gain,
and the distribution-action pair that minimizes the map en-
tropy is kept as a training instance for a supervised learning
problem at timet. The result is a classifier that provides an
actiona for any distributionp(s) that minimizes the map en-
tropy. A one-step policy for the previous time stepT − 1 is
then learned by sampling distributions and actions as before,
but propagating each distribution according to each actiona
followed by the timeT one-step policy previously obtained.
A two-step entropy is obtained for each distribution and ac-
tion atT − 1 from the resulting distribution-action pair: the
entropy associated with each distribution and action is accu-
mulated from the motion and observations associated with
the control at timeT − 1 and the motion and observations
received by running the learned policy for timeT . A new
policy is learned for timeT −1, and the learner then iterates
at each timet through to timeT using the policiesπi for
i ∈ {t . . . T}, resulting in a motion controller that minimizes
the entropy over the length of the trajectoryt = 0 . . . T .

Figure 3 compares a standard shortest-path motion con-
troller with the learned controller for the same tour of sens-
ing locations. As expected, the map entropy is significantly
reduced for the learned controller (H(m) = −7.23) com-
pared to the shortest-path controller (H(m) = −6.93).

Incremental Exploration
To summarize, our goal has been to optimally explore un-
known environments by solving a local-global optimization
problem, maximizing both map coverage and map accuracy.
The coverage requirement has led us to take the partial map,
skeletonize it, and extract sensing locations from it, as seen
in Algorithm 2. The map accuracy requirement has led us
to a hill-climbing algorithm that optimizes the visitationof
sensing locations while at the same time minimizing the re-
sulting entropy of the map. The initial tour is optimized with
respect to distance, the 2-opt heuristic modifies the tour and
the best tours are kept, as seen in Algorithm 3. Computing
the EKF updates for previously visited tour edges is inef-
ficient and can be optimized by storing a transfer function
for each edge. Additional improvement can be achieved by
using a local learned controller to plan local trajectoriesbe-

Algorithm 3 Information-theoretic tour optimization
Require: Approximate shortest-path TSP tourtbest through

sensing locations derived from skeletonized map
1: while not convergeddo
2: Use the 2-opt heuristic to create a new tourtcurr, ini-

tializeΣ0.
3: for each edgeeij in tcurr do
4: if Edgeeij was previously executed starting from

orientationθk then
5: Use the cached transfer functionζijk to update

Σt to Σt+n.
6: else ifeij has not been executed beforethen
7: Execute it using the learned controller and store

ζijk for that edge and initial orientation.
8: end if
9: end for

10: Compute the entropyHcurr = entropy(ΣT ) after exe-
cuting tourtcurr.

11: if Hcurr < Hbest then
12: tbest = tcurr.
13: end if
14: end while
15: return tbest

tween sensing locations. Once the optimal tour is computed
and then executed by the robot, the partial map of the envi-
ronment will grow. When a complete tour is accomplished,
a new tour will be computed for the new partial map and
the next round of exploration will begin. In this section,
we have presented a complete algorithm for information-
theoretic exploration and have elaborated a number of ways
that it can be made more efficient.

Results
To demonstrate the effectiveness of the approach, we tested
the exploration algorithm on scenarios from the Radish
dataset using a simulation with uncertain robot motion and
uncertain landmark measurements. Treating both the WEAN
and LONGWOODmaps as partial maps, we ran the optimiza-
tion with the shortest path controller and with the learned
controller. Overall, it is clear that the map entropy after ex-
ploration has been reduced, and in all but the one instance
(the WEAN map with the information-theoretic objective
and the learned controller), the squared error is also reduced
for the optimized trajectory. In the larger LONGWOOD ex-
ample (Figure 4), it appears clear that the tour stays in sight
of as many map features (red squares) as possible.

Having shown that we can successfully reduce the map
entropy and improve map accuracy, we next demonstrate
an incremental exploration of the environment in Figure 5.
Here the robot has a partial map of the environment, skele-
tonizes this map to find sensing locations, computes an
information-theoretic tour, and then executes that tour. Af-
ter the execution of the tour in (d), the robot then computes a
new tour, which it then executes in (e), exploring this partial
map as well until the entire environment has been observed
(f). Table 2 gives a comparison of the entropy and map accu-
racies for the maps in Figure 5 corresponding to the distance
optimal and information-theoretic exploration algorithms.

Noting that each pair of maps (a-d, b-e, c-f) may be di-



(a) Distance Optimal Tour (b) Distance Optimal Path

(c) Information-theoretic Tour (d) Information-theoretic Path

Figure 4: Tours for the Longwood map. (a) The shortest path ordering of the skeleton map graph. (b) The resulting path using the shortest-
path controller. (c) The minimum-entropy path ordering of the skeleton map graph. (d) The resulting path using the learned controller.

MAP OPT. TYPE CONT. ENT. SE DIST.
W Path Lgth. Dist. Opt -6.93 0.041 107.8m
W Info Dist. Opt -7.23 0.033 112.5m
W Info Learned -7.9 0.13 125.3m
L Path Lgth. Learned -5.33 2.01 238.3m
L Info Learned -6.99 0.45 302.7m

Table 1: Algorithm Performance for a Single Tour. MAP is the
map that the experiment was performed in, W is the WEAN map
and L is the LONGWOOD map. OPT. TYPE corresponds to graph
tour optimization, either “shortest path” or “information-theoretic
optimization”. CONT. corresponds to the motion controller, either
“shortest path” or “learned”. ENT. and SE correspond to the met-
rics of map entropy and map squared error compared to the known
ground truth respectively. DIST. corresponds to the distance the
robot traveled over the entire tour.

rectly compared, we found that the squared error and the en-
tropy were both significantly reduced by the optimized pol-
icy. Further, by using one-step transfer functions, we were
able to reduce the total number of edge prediction steps by
50%, for a similar time savings of 50%. We expect this sav-
ings will grow for larger problem sizes.

Conclusion
We have presented a novel method that frames exploration as
a constrained optimization problem. The algorithm reduces

OPT. CONT. ENT. SE DIST
(a) Dist Learned -1.82 0.043 70.7m
(b) Dist Learned -3.33 2.16 95.5m
(c) Dist Learned -4.08 0.358 139.0m
(d) Info Learned -2.54 0.040 77.9m
(e) Info Learned -2.95 0.03 136.2m
(f) Info Learned -5.09 0.028 177.7m

Table 2: Algorithm for a sequence of tours during online explo-
ration. OPT. corresponds to graph tour optimization, either “short-
est path” or “information-theoretic optimization”. The controller
CONT. in every case was the learned controller . ENT. and SE
correspond to the metrics of map entropy and map squared error
respectively. DIST. corresponds to the distance the robot traveled
over the entire tour. The information-theoretic tour optimization
results in both a reduced map entropy and reduced map error com-
pared to the known ground truth.

the current environmental map to a graph of the map skele-
ton, placing sensing constraints at the graph nodes which
naturally include boundaries and frontiers. Information-
theoretic tours are then generated through the sensing con-
straints using a gradient-ascent with a heuristic; we can per-
form the optimization efficiently by using one-step trans-
fer functions on the covariance to re-use previously com-
puted EKF updates. To our knowledge this is one of
few information-theoretic approaches to exploration and the
only one to consider multisteptours of an environment.



(a) (b) (c)

(a-c) Map exploration using shortest path optimization of exploration trajectory

(d) (e) (f)

(d-f) Map exploration using information-theoretic optimization of exploration trajectory

Figure 5: Example exploration trajectories, comparing a shortest-path coveragetrajectory with an information-theoretic coverage trajectory.
In panels (a) and (d), the algorithm has only a limited view of the environment, and plans a tour through the visible free space. In doing so,
the map is expanded (b and e), and the robot can plan a second tour through the larger space. The process iterates again through a yet larger
map in (c and f).

Finally, a learner is employed to optimize the local tra-
jectory of the robot between sensing constraints, to obtain
global information-theoretic exploration that can quickly
find information-theoretic trajectories through an environ-
ment, resulting in a high quality map.
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