
Polynomial Trajectory Planning for Aggressive
Quadrotor Flight in Dense Indoor Environments

Charles Richter, Adam Bry, and Nicholas Roy

In Proceedings of the International Symposium of Robotics Research (ISRR 2013).

Abstract We explore the challenges of planning trajectories for quadrotors through
cluttered indoor environments. We extend the existing work on polynomial trajec-
tory generation by presenting a method of jointly optimizing polynomial path seg-
ments in an unconstrained quadratic program that is numerically stable for high-
order polynomials and large numbers of segments, and is easily formulated for ef-
ficient sparse computation. We also present a technique for automatically selecting
the amount of time allocated to each segment, and hence the quadrotor speeds along
the path, as a function of a single parameter determining aggressiveness, subject to
actuator constraints. The use of polynomial trajectories, coupled with the differen-
tially flat representation of the quadrotor, eliminates the need for computationally
intensive sampling and simulation in the high dimensional state space of the vehi-
cle during motion planning. Our approach generates high-quality trajectories much
faster than purely sampling-based optimal kinodynamic planning methods, but sac-
rifices the guarantee of asymptotic convergence to the global optimum that those
methods provide. We demonstrate the performance of our algorithm by efficiently
generating trajectories through challenging indoor spaces and successfully travers-
ing them at speeds up to 8 m/s. A demonstration of our algorithm and flight perfor-
mance is available at: http://groups.csail.mit.edu/rrg/quad_polynomial_
trajectory_planning.

1 Introduction

Recent advances in small unmanned aircraft have enabled highly dynamic, aerobatic
flight maneuvers [1, 9, 10, 21]. Simultaneously, advances in fast, accurate state es-
timation methods have enabled these vehicles to fly through dense, cluttered spaces
without the need for a motion capture system [4, 25]. However motion planning al-
gorithms have not yet succeeded in joining these capabilities to enable quadrotors to
navigate autonomously at high speeds using their full dynamic capabilities. This pa-

Charles Richter, Adam Bry, and Nicholas Roy
Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, e-mail:
car,abry,nickroy@mit.edu

1

http://groups.csail.mit.edu/rrg/quad_polynomial_trajectory_planning
http://groups.csail.mit.edu/rrg/quad_polynomial_trajectory_planning
car, abry, nickroy@mit.edu


2 Charles Richter, Adam Bry, and Nicholas Roy

Fig. 1: Automatically generated 3D trajectory navigating a real-world environment
with closely-spaced obstacles.

per addresses that need and provides a planning algorithm that enables autonomous,
aggressive, high-speed quadrotor flight through complex indoor environments.

While there exist advanced techniques for robotic navigation and trajectory opti-
mization, there has yet to emerge a single algorithm that can both find and optimize
a quadrotor trajectory through a complex real-world environment quickly enough to
be useful for a deployable robotic system. While algorithms such as RRT* provably
converge to the optimal solution in the limit of infinite samples, it is often impracti-
cal to rely on this limit to perform optimization for vehicles with nonlinear 12-DOF
dynamics. These algorithms have been most successful for simple Dubins vehicle
or double-integrator systems where analytical techniques can be used to steer be-
tween two points in state space [13]. For other systems, the search over dynamically
feasible trajectories often requires iterative simulation of the equations of motion.

Nonlinear programming techniques for trajectory optimization, such as direct
collocation and shooting methods, can also be used to find locally optimal paths
for systems with general dynamics. However, these methods are also computation-
ally intensive and may require accurate analytical representations of environmental
constraints in order to efficiently compute cost gradients with respect to obstacles.
These limitations make them impractical when constraints are represented in the
form of an occupancy map.

Nevertheless, explicit optimization is useful for high-speed trajectories through
cluttered environments. Minimum-snap polynomial splines have proven very effec-
tive as quadrotor trajectories, since the motor commands and attitude accelerations
of the vehicle are proportional to the snap, or fourth derivative, of the path [19].
Minimizing the snap of a trajectory quantifies a notion of gracefulness that is desir-



Polynomial Trajectory Planning for Aggressive Indoor Quadrotor Flight 3

able for maintaining the quality of onboard sensor measurements as well as avoiding
abrupt or excessive control inputs.

The differentiability of polynomial trajectories makes them a natural choice for
use in a differentially flat representation of the quadrotor dynamics. Differential flat-
ness provides an analytical mapping from a path and its derivatives to the states and
control input required to follow that path. This powerful property effectively guar-
antees feasibility of any differentiable trajectory, provided that its derivatives are
sufficiently bounded to avoid input saturation, thus eliminating the need for iterative
simulation in the search for trajectories.

Our contribution is to extend the work of Mellinger, et al. [19], and show that
their minimum-snap trajectory generation can be solved in a numerically stable un-
constrained quadratic program (QP) for long-range trajectories composed of many
segments. We show that this minimum-snap technique can be coupled with an ap-
propriate kinematic planner to generate fast, graceful flight paths in cluttered envi-
ronments, while accounting for collisions of the resulting polynomial trajectories.
This combination of search and optimization significantly outperforms pure search-
based planning methods in computational performance. Finally, we modify their
strategy of allocating time along the trajectory to allow the planner to automatically
adjust to widely varying size scales with a single user-set parameter on aggressive-
ness.

1.1 Problem Statement and Solution Outline

Given a 3D occupancy map of an environment, we wish to efficiently compute fea-
sible, minimum-snap trajectories that follow the shortest collision-free path from
start to goal utilizing the full dynamic capabilities of the quadrotor.

Our solution to this problem is to utilize the RRT* algorithm to find a collision-
free path through the environment, initially considering only the kinematics of the
vehicle and ignoring the dynamics. That path is pruned to a minimal set of way-
points, and a sequence of polynomial segments is jointly optimized to join those
waypoints into a smooth minimum-snap trajectory from start to goal. Utilizing a
differentially flat model of the quadrotor and the associated control techniques, we
can follow these paths precisely.

The paper proceeds as follows. We first discuss the differentially flat quadrotor
model and its implications for planning and polynomial trajectories. We then present
a closed-form solution to the QP used to obtain the polynomial trajectory that is
numerically stable for both high-order polynomials and large numbers of segments.
For comparison with purely sampling-based approaches, we compare our process
with an RRT* algorithm that uses polynomial segments to grow a tree of candidate
trajectories (i.e., as its steer function to connect sampled points in state space). We
show that our process returns superior paths in much shorter running time. Finally,
we highlight the performance of our QP formulation and show the results of flight
tests in real-world environments.



4 Charles Richter, Adam Bry, and Nicholas Roy

2 Quadrotor Dynamics and Control

In order to ensure that we can precisely follow the polynomial trajectories we intend
to generate, we utilize the property of differential flatness for the standard quadrotor
equations of motion:

mr̈ = mgzW − f zB (1)

ω̇ = J−1 [−ω× Jω +M] (2)

Differential flatness of this model was demonstrated in [19]. Here, r is the position
vector of the vehicle in a global coordinate frame, ω is the angular velocity vector
in the body-fixed coordinate frame and f and M are the net thrust and moments
in the body-fixed coordinate frame. J and m are the inertial tensor and mass of the
quadrotor. zB is the unit vector aligned with the axis of the four rotors and indicates
the direction of thrust, while zW is the unit vector expressing the direction of gravity.
There exists a simple mapping from f and M to the four desired motor speeds.

A polynomial trajectory segment consists of four polynomial functions of time
specifying the independent evolution of the so-called flat output variables, x, y, z,
and ψ (yaw angle) between two states in flat output space. The nonlinear controller
employed to follow differentiable trajectories was developed in [18], and consists of
independent calculations for thrust and moments:

f =(−kxex− kvev +mgzW +mr̈d) ·Rzw (3)

M =− kReR− kω eω +ω× Jω

− J(ω̂RT Rdωd−RT Rdω̇d)
(4)

where ex,ev,eR, and eω are the error vectors in position, velocity, orientation and
angular velocity, kx,kv,kR, and kω are associated control gains, and R is the rotation
matrix representing the orientation of the quadrotor.

Since the desired trajectory and its derivatives are sufficient to compute the states
and control inputs at every point along the path in closed form (equations 3-4),
these quantities serve as a simulation of the vehicle’s motion in the absence of dis-
turbances. This is the powerful capability enabled by differential flatness that elimi-
nates the need for iterated numerical integration of equations of motion, or a search
over the space of inputs during each iteration of the planning algorithm.

3 Polynomial Trajectory Optimization

We now describe an analytical method for generating minimum-snap polynomial
trajectories to be followed by a quadrotor using the control techniques outlined
above. We assume that we have obtained a sequence of waypoints in 3D space
representing the shortest piecewise-linear path through the environment, and we
wish to generate a minimum-snap polynomial path passing through each of those
waypoints. For this purpose, we use a simple RRT* algorithm to obtain the optimal
straight-line path from start to goal, and then select waypoints from that optimal path



Polynomial Trajectory Planning for Aggressive Indoor Quadrotor Flight 5

according to a line-of-sight technique. Figure 6b shows the sequence of waypoints
obtained by this method.

The choice of polynomial trajectories is natural for highly dynamic vehicles and
robots since these trajectories can be obtained efficiently as the solution to a QP
that minimizes a cost function of the path derivatives. This optimization framework
allows the endpoints of path segments to be optionally fixed to desired values or left
free, and the polynomials can be jointly optimized while maintaining continuity of
the derivatives up to arbitrary order. Maintaining continuity of derivatives ensures
smooth motions and can be used to generate trajectories that do not require step
inputs to the vehicle’s actuators.

Polynomial trajectories allow for a analytical solution via elimination as a con-
strained QP [2]. While this method is acceptable for joint optimization of a few
segments, it involves the inversion of matrices that may be very close to singular,
along with high sensitivity to coefficients on the order of 10−20 or smaller, leading
to inaccurate results. We present this constrained QP solution next and then use it
in a following section as the basis for an unconstrained QP reformulation, which is
robust to numerical instability.

For the following derivations, we require that the vector of segment times is fixed.
That is, we require an a priori selection of the amount of time required to traverse
between one waypoint and the next. These times can be selected approximately
based on a desired average speed of the vehicle, however in general an arbitrary
selection of times will not yield the lowest-cost solution. Therefore, we relax this
assumption in a subsequent section where we iteratively refine the vector of times.

3.1 Cost Function for Minimizing Derivatives

For quadrotors, a single trajectory segment between two points in flat output space
is composed of independent polynomials, P(t), for the flat output variables x, y, z
and yaw angle. The cost function penalizing the squares of the derivatives of P(t)
can be written as:

J(T ) =
∫ T

0
c0P(t)2+c1P′(t)2+c2P′′(t)2+. . .+cNP(N)(t)2dt = pT Q(T )p (5)

In this expression, p is a vector of the N coefficients of a single polynomial. In order
to minimize snap, all derivative penalties in the cost function except for c4 would
be set to zero. The construction of the Hessian matrix Q is omitted for brevity,
but follows from differentiation of the square of the polynomial with respect to
each of its coefficients. Since the cost of a given polynomial is a function of its
duration T , we must fix T prior to optimization. M polynomial segments can be
jointly optimized by concatenating their cost matrices in a block-diagonal fashion:

Jtotal =

p1
...

pM


T Q1(T1)

. . .
QM(TM)


p1

...
pM


T

(6)



6 Charles Richter, Adam Bry, and Nicholas Roy

3.2 Constraints

Constraints in the polynomial optimization are imposed on the endpoints of each
segment. These constraints allow the endpoints to be pinned to known locations in
space, or assigned specific values of velocity, acceleration, jerk or snap. Such con-
straints are useful to enforce, for example, that the quadrotor start from rest at the
beginning of a trajectory. Constraints on the ith segment in a trajectory are formu-
lated using a mapping matrix (A) between coefficients and endpoint derivatives of a
polynomial:

Aipi = di, Ai =

[
A0
AT

]
i
, di =

[
d0
dT

]
i

(7)

where di is a vector containing the derivative values for the beginning (d0) and end
(dT ) of the ith segment. If specific derivatives are not known, then continuity con-
straints must be imposed to ensure that the derivatives at the end of the ith segment
match the derivatives at the beginning of the (i+1)th segment:

AT,ipi = A0,i+1pi+1 (8)

These constraints can be compiled into a single set of linear equality constraints for
the joint optimization problem:

Atotal

p1
...

pM

=

d1
...

dM

 (9)

Standard methods can be used to solve the resulting constrained QP.

3.3 Reformulation as an Unconstrained QP

While the method above works well for single segments and small joint optimization
problems as in [19], this formulation becomes ill-conditioned for more than several
segments, polynomials of high order, and when widely varying segment times are
involved. Hence, it is only useful for short trajectories and must be improved to be
practical for optimizing long range paths requiring many waypoints and segments.

We improve upon the solution above using a technique of substitution to convert
the problem into an unconstrained QP, and solve directly for endpoint derivatives
as decision variables, rather than solving for polynomial coefficients. In practice,
our reformulation is substantially more stable than the method above, allowing the
joint optimization of more than 50 polynomial segments in a single matrix operation
without encountering numerical issues. Once the optimal waypoint derivatives are
found, the minimum-order polynomial connecting each pair of waypoints can be
obtained by inverting the appropriate constraint matrix.

We begin by substituting the constraints into the original cost function:



Polynomial Trajectory Planning for Aggressive Indoor Quadrotor Flight 7

J =

d1
...

dM


T A1

. . .
AM


−T Q1

. . .
QM


A1

. . .
AM


−1d1

...
dM

 (10)

Now the decision variables in this new quadratic cost function are the endpoint
derivatives of the segments. We re-order these variables such that fixed/specified
derivatives are grouped together (dF ) and the free/unspecified derivatives are grouped
together (dP). A permutation matrix assembled of ones and zeros (C) is used to ac-
complish this re-ordering. Now we have:

J =

[
dF
dP

]T

CA−T QA−1CT︸ ︷︷ ︸
R

[
dF
dP

]
=

[
dF
dP

]T [RFF RFP
RPF RPP

][
dF
dP

]
(11)

where we have written the block-diagonal matrices as A and Q for simplicity of no-
tation. We group the new augmented cost matrix into a single matrix R and partition
it according to the indices of the fixed and free derivatives. Partitioning allows us to
write out the expression for total cost as:

J = dT
F RFF dF +dT

F RFPdP +dT
PRPF dF +dT

PRPPdP (12)

Differentiating J and equating to zero yields the vector of optimal values for the free
derivatives in terms of the fixed/specified derivatives and the cost matrix:

d∗P =−R−1
PPRT

FPdF (13)

The polynomials can now be recovered from individual evaluations of the appropri-
ate constraint equations mapping derivatives back into the space of coefficients.

3.4 Time Allocation

Until this point in the optimization, we have fixed an arbitrary amount of time asso-
ciated with each segment, since these times factor into the construction of the cost
matrix. These segment times constrain the solution quality, but can be allowed to
vary to improve the overall solution with respect to a cost function. We therefore
begin with an initial guess of segment times and then iteratively refine those times
using gradient descent. Several cost functions may be suitable candidates: [5] min-
imizes total time subject to constraints, while [19] fixes the total time by hand and
minimizes snap (the original cost function) with the remaining degrees of freedom.
In the planning context, we do not know the total trajectory time a priori, so we
allow it to vary in the optimization to perform a trade-off between minimizing snap
and total trajectory time. We attempt to minimize:

JT =

p1
...

pM


T Q1(T1)

. . .
QM(TM)


p1

...
pM


T

+ kT

M

∑
i=1

Ti (14)



8 Charles Richter, Adam Bry, and Nicholas Roy

where kT is a user-specified penalty on time. The first term in this cost function is
simply the original cost function for polynomial optimization. When penalizing only
acceleration, jerk or snap, this original cost can be driven arbitrarily close to zero
by increasing the total time, but equation (14) has a definite minimum value that
varies with kT . Figure 2 shows several iterations of gradient descent in which the
total trajectory time is decreased from a large initial guess (red) to smaller optimal
value (blue), while the ratio of times between segments also shifts to minimize the
modified cost.

Fig. 2: Illustration of the iterative refinement of segment times, color-coded by total
traversal time. The initial guess of total time is 10.5s (red) and the final optimized
total time is 7s (blue).

Rather than selecting total times arbitrarily, this cost function allows our algo-
rithm to automatically adjust for environments of widely varying scales, or where
the vehicle must slow down to navigate tightly spaced obstacles without incurring
excessive snap. Furthermore, our procedure produces trajectories of comparable ag-
gressiveness in a wide range of scenarios for a given fixed value of the single scale-
independent parameter, kT .

Fig. 3: Segment time optimization with the penalty on time kT set at 500 (top) and
50000 (bottom). The optimal total trajectory times are 9.1s and 5.1s respectively.
Vectors for waypoint velocity (red) and acceleration (green) are shown.



Polynomial Trajectory Planning for Aggressive Indoor Quadrotor Flight 9

Figure 3 shows optimized trajectories for the same set of waypoints using two
different kT values. The red arrows indicate waypoint velocities while the green
arrows indicate accelerations. These quantities are greater in the bottom trajectory
due to the higher time penalty. The quadrotor axes are plotted at 0.1s increments
along the path. One emergent property resulting from time allocation is that the
quadrotor moves very slowly around the sharp corner and then smoothly accelerates
up to a higher speed in the straightaway where it does not incur a severe penalty on
snap. Furthermore, the geometric shape of the optimal trajectory remains the same
regardless of the value of kT , indicating that the minimum-snap ratios of segment
times are independent of kT .

3.5 Ensuring the Trajectory is Collision-Free

If a particular trajectory segment is found to intersect an obstacle after optimization,
an additional waypoint is simply added halfway between its two ends, splitting this
segment into two. This midpoint is known to be collision-free because it lies on the
optimal piecewise-linear path returned by the search algorithm. The polynomial is
re-optimized with the additional waypoint, and the process is repeated if necessary
until the polynomial trajectory is collision free. A similar technique is used in [23].
Figure 4 illustrates this process successfully resolving a collision.

(a) Polynomial trajectory (blue) intersects an
obstacle even though the underlying straight
line between waypoints is collision-free.

(b) After bisecting the underlying straight line
twice with two additional waypoints, the poly-
nomial trajectory is collision-free.

Fig. 4: (a) The polynomial (blue) intersects an obstacle even though the line between
waypoints is collision free (magenta). These scenarios are resolved by iteratively
adding waypoints along the collision-free path returned by the search algorithm (b).

In very dense environments, trajectories may need many additional waypoints
to repair collisions, thus requiring the optimization problem to be re-solved many
times to find a feasible solution. Furthermore, additional waypoints increase the
computational complexity of the QP being solved in each iteration. However, in our
experience with indoor environments, the number of additional waypoints required
to repair collisions was usually less than half of the original number of waypoints in
the trajectory, representing only a modest increase in computational complexity.



10 Charles Richter, Adam Bry, and Nicholas Roy

0 2 4 6
3

4

5

6

7

8

9

Time (s)

M
o
to

r 
T

h
ru

s
t 

(N
)

 

 

0 2 4 6
0

5

10

15

Time (s)

V
e

lo
c
it
y
 (

m
/s

)

5 10 15 20
2

4

6

X−position (m)

Y
−

p
o

s
it
io

n
 (

m
)

Motor 1

Motor 2

Motor 3

Motor 4

(a) Motor commands for a conservative time al-
location, barely exceeding the 3.8 N per motor
required for hover (top). Velocity along the tra-
jectory is low (middle). Trajectory with veloc-
ity vectors is shown for reference, with black
dots indicating waypoints (bottom).

0 1 2 3 4
3

4

5

6

7

8

9

Time (s)

M
o
to

r 
T

h
ru

s
t 

(N
)

0 1 2 3 4
0

5

10

15

Time (s)

V
e

lo
c
it
y
 (

m
/s

)
5 10 15 20

2

4

6

X−position (m)

Y
−

p
o

s
it
io

n
 (

m
)

(b) Motor commands for aggressive time al-
location, with one motor command reaching
the maximum available thrust, indicated by the
‘X’ (top). Velocity along the trajectory is high
(middle). Trajectory with larger velocity vec-
tors is shown for reference(bottom).

Fig. 5: Comparison between two time allocations during the gradient descent proce-
dure. The first time allocation (a) is conservative in that it is a slower trajectory than
the second one (b), which reaches one of the actuator constraints during the final
deceleration.

3.6 Actuator Constraints

The second major factor contributing to feasibility is to ensure that the input con-
straints of the quadrotor are satisfied such that no portion of the commanded tra-
jectory requires a thrust outside the range that the motors are capable of providing.
Formally, solving a trajectory optimization problem in the flat output space of a
differentially-flat model requires mapping the constraints into the flat output space
as well as the dynamics. Some work has focused on computationally estimating
the feasible set in flat output space [6], however this set is generally a non-convex
function of nonlinear inequalities and is a hard optimization problem unto itself.

Instead, we address this challenge during the time-allocation step of trajectory
optimization, since the distribution of time along the trajectory largely determines
the required accelerations and therefore the peaks in required thrust. First, we ob-
serve that in the limit as T → ∞, the quadrotor states along the trajectory converge



Polynomial Trajectory Planning for Aggressive Indoor Quadrotor Flight 11

to hover, which is known to be feasible. Therefore, we initialize our time-allocation
optimization step with a conservatively large guess for initial segment times. Then,
as the modified cost function is minimized, we compute the actuator commands al-
gebraically during each iteration to verify that we remain within the feasible set.
Optimization is terminated when either a local minimum is obtained or an actuator
constraint becomes active. Figure 5 illustrates two different time allocations dur-
ing the optimization of a sample trajectory. One of these time allocations is safely
within the feasible set, since it commands thrusts barely above the nominal thrust
required for hover, whereas the other time allocation is very aggressive and activates
an actuator constraint.

Due to the non-convexity of the feasible set in flat output space, the optimization
algorithm may encounter an actuator limit and terminate before converging to the
optimal ratio of segment times (for example, one of the red or orange lines in Fig-
ure 2). To avoid this scenario, one strategy is to first optimize the ratio of segment
times via gradient descent while ignoring actuator constraints, taking advantage of
the fact that the optimal ratio of times is invariant to the total time as noted in sec-
tion 3.4. Then once the optimal ratio of times is achieved, scale the total trajectory
time in a separate univariate optimization, preserving the optimal ratio, until the
modified cost function is minimized or an actuator constraint becomes active.

4 Results

We have tested our trajectory generation process in a variety of environments. Fig-
ures 1 and 6 show solutions to challenging 2D and 3D problems. The use of a min-
imal set of waypoints and the joint polynomial optimization described above yields
paths that are typically composed of natural high-speed arcs in unconstrained re-
gions of the environment while slowing in tight spaces to minimize snap around
sharp corners. Our process sacrifices the guarantee of asymptotic convergence to a
globally optimal solution provided by sampling-based approaches, but returns su-
perior paths in much shorter running times than a purely sampling-based approach.

4.1 Comparison with RRT* using Polynomial Steer Function

For comparison to a strictly sampling-based planning approach, we implemented an
RRT* algorithm using polynomial segments as the steer function to grow a search
tree. Figure 6a shows the resulting solution. Sampling was performed in position and
velocity space. We use the distance metric described by [11] of Euclidean distance
divided by average velocity. One major difficulty with this approach is that segment
times must be fixed when generating polynomials to extend the tree, however as
discussed above, the selection of segment time can have a dramatic impact on the
quality of a path, so an appropriate guess must be made a priori for each segment,
or the segment time must be included in the sampling space. In our implementation,
the segment times were chosen as the Euclidean distance between vertices divided
by the desired average velocity along the segment.



12 Charles Richter, Adam Bry, and Nicholas Roy

(a) RRT* with polynomial
steer function terminated after
120s returns high-cost path.

(b) Pruned waypoints from
straight-line RRT* become
waypoints in 6c.

(c) Solution by our algorithm
after 3s running time, finds
much lower cost than 6a.

Fig. 6: Using polynomial segments directly as a RRT* steer function (a) is compu-
tationally slow. Therefore, we run a straight-line RRT* and select waypoints from
the optimal path (b). However, the straight-line RRT* ignores dynamics and returns
a path that does not match our objective function. We therefore jointly optimize a
set of polynomials through those waypoints to obtain a minimum-snap path (c).

Table 1: Comparison of our method with RRT* using the polynomial steer function
for the 2D problem in figure 6.

Method Runtime Jpoly. Tpath Lpath
RRT* with Polynomial Steer Function 120s 5.72×108 21.94s 40.35m

Low-Dim. Search + Unconstrained QP Optimization 3s 1.07×105 19.66s 35.51m

Table 1 shows several statistics on the performance of the RRT* with a polyno-
mial steer function compared to our algorithm. The RRT* runs much longer and
fails to find a path as smooth or with a cost as low as our algorithm. When sampling
in the full state space of the system, the RRT* with a polynomial steer function
would converge to a globally optimal solution in the limit of infinite samples, how-
ever as shown here, the paths returned prior to convergence are of lower quality than
those returned by our algorithm in a much shorter running time.

4.2 Performance of Polynomial Optimization

A key to the success of this trajectory planning process is the speed and numeri-
cal stability of the joint polynomial optimization method. We performed benchmark
tests on an example problem consisting of four waypoints (3 polynomial segments)



Polynomial Trajectory Planning for Aggressive Indoor Quadrotor Flight 13

chosen to represent distance and time scales consistent with common environments
for quadrotor flight. The results are given in Table 2 and reflect MATLAB as well
as C++/Eigen implementations [7]. This computational efficiency makes it feasi-
ble to use this planning framework in online applications and to use iterative path
refinement methods with polynomial optimization in the loop.

Table 2: Comparison of Polynomial Optimization Times.

Benchmark Problem: 3-Segment Joint Optimization
Method Solution Time (ms)
MATLAB quadprog.m 9.5
MATLAB Constrained 1.7
MATLAB Unconstrained (Dense) 2.7
C++/Eigen Constrained 0.18
C++/Eigen Unconstrained (Dense) 0.34

While the unconstrained formulation is slightly slower than the constrained for-
mulation, its primary benefit lies in its stability. The constrained formulation en-
counters matrices very close to singular for joint optimizations consisting of more
than three 9th order polynomials, and therefore may return inaccurate results de-
pending on the quality of the linear algebra solver. In contrast, the unconstrained
formulation is robust to numerical issues, as shown in Table 3, which lists the re-
sults of 20 polynomial optimization problems in which the locations of intermedi-
ate waypoints and the segment times were randomly generated in the range [1,3].
Clearly, the unconstrained optimization is much more robust to numerical insta-
bility, enabling this method to be used as a reliable, efficient long-range trajectory
optimization tool for navigation outside of small motion-capture environments.

Table 3: Numerical stability of optimization techniques for high-order polynomials
and various numbers of segments.

Success Rates on Randomized Polynomial Optimization Problems
Formulation Polynomial Order Number of Segments Success

Constrained
9 3 100%
9 4 55%
9 ≥5 0%

Unconstrained
9 50+ 100%
15 50+ 100%

Finally, since A−1 and Q are sparse block-diagonal and C is sparse, these prob-
lems can be easily implemented using a sparse solver which is roughly an order of
magnitude faster than the dense computation for 10-segment joint optimizations.



14 Charles Richter, Adam Bry, and Nicholas Roy

Fig. 7: Automatically generated trajectory through a map of a laboratory environ-
ment in the Stata Center, MIT.

4.3 Experimental Flight Tests

We demonstrate the performance of our algorithm on a challenging real-world
planning problem by generating and flying a trajectory through a complex indoor
lab space in the Stata Center (MIT). The environment used for these tests was a
lab space with curved, non-vertical walls, interior columns and barriers aligned at
oblique angles. An OctoMap representation of the lab was generated using a pair of
planar laser range finders and each occupied cell was dilated with a radius of 0.65m
to leave room for the 0.35m radius of the vehicle and a minimal allowance for error
in estimation and control. Estimation and control were performed completely on-
board the AscTec Pelican aircraft, using a Hokuyo LIDAR, a Microstrain IMU and
an Intel Atom processor.

The trajectories returned by our algorithm are shown in Figures 1 and 7, and
were generated in several seconds. These trajectories exhibit roughly 2m of altitude
variation in order to fly through doorways and navigate over tall shelves and dividing
walls. Figure 8 shows onboard video frames taken while executing these trajectories
at speeds up to 8 m/s. Video of these trajectories and flights is available at: http:
//groups.csail.mit.edu/rrg/quad_polynomial_trajectory_planning.

5 Related Work

The literature on motion planning for robots and vehicles is extensive, considering
both simple holonomic systems as well as those with differential constraints. Ran-
domized algorithms such as PRM, RRT and RRT* have enjoyed success due to their
simplicity and performance in high-dimensional spaces [14, 17, 12].

Sampling-based algorithms have also been demonstrated for motion planning un-
der differential constraints, which often perform very well when there exist simple
analytical techniques for obtaining a steer function from one vertex in state space
to the next [16, 13]. However, for general dynamical systems, steering between two
states may require iteratively simulating the vehicle dynamics at a significant com-

http://groups.csail.mit.edu/rrg/quad_polynomial_trajectory_planning
http://groups.csail.mit.edu/rrg/quad_polynomial_trajectory_planning


Polynomial Trajectory Planning for Aggressive Indoor Quadrotor Flight 15

putational cost [11]. Furthermore, the nearest vertex according to a Euclidean dis-
tance metric is not, in general, the vertex that will yield an optimal (or even feasible)
path to a new sample in state space [26]. Nevertheless, sampling-based methods
have proven successful in real-world applications to motion planning of vehicles
with non-trivial dynamics [15].

Many methods exist for optimizing trajectories between two states of a dynam-
ical system [3], and have been successfully applied to quadrotor control [24]. B-
splines [23] and Legendre polynomials [20] have been used to avoid ill-conditioning
in trajectory optimization problems, however these options preclude the efficient
method presented here. Finally, our method is not limited to quadrotor control, as
there exist simple differentially flat representations of fixed-wing aircraft [8] and
cars [22] among many other systems.

Fig. 8: Onboard video frames from aggressive quadrotor flight up to 8m/s.

6 Conclusion

We have presented an algorithm for generating trajectories for the differentially flat
quadrotor model through complex real-world environments that is computationally
much faster than solving the same problems using a pure sampling approach, though
at the expense of global optimality. We observe that in this domain it is infeasible
to rely on the limit of infinite sampling to perform optimization, and instead we
perform low-dimensional search for route-finding followed by analytical optimiza-
tion in which the shortest path is translated into a dynamically feasible polynomial
trajectory. We then iteratively refine the polynomial trajectory by a time allocation
procedure that trades off between time and snap of the path.

Acknowledgements The support of the ARO MAST CTA, the ONR under MURI N00014-09-1-
1052, and the NDSEG fellowship is gratefully acknowledged.



16 Charles Richter, Adam Bry, and Nicholas Roy

References

1. P. Abbeel, A. Coates, and A. Ng. Autonomous helicopter aerobatics through apprenticeship
learning. Int. Journal of Robotics Research, 29(13):1608–1639, 2010.

2. D. P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, MA, 1999.
3. J. T. Betts. Survey of numerical methods for trajectory optimization. Journal of Guidance,

Control and Dynamics, 21(2):193–207, 1998.
4. A. Bry, A. Bachrach, and N. Roy. State estimation for aggressive flight in GPS-denied envi-

ronments using onboard sensing. In Proc. Int. Conf. on Robotics and Automation, 2012.
5. Cutler, M. and How, J. Actuator constrained trajectory generation and control for variable-

pitch quadrotors. In Proc. AIAA Guidance, Navigation, and Control Conf., 2012.
6. N. Faiz, S. Agrawal, and R. Murray. Differentially flat systems with inequality constraints:

An approach to real-time feasible trajectory generation. Journal of Guidance, Control and
Dynamics, 24(2):219–227, 2001.

7. G. Guennebaud, B. Jacob, et al. Eigen v3. http://eigen.tuxfamily.org, 2010.
8. J. Hauser and R. Hindman. Aggressive flight maneuvers. In Proc. Conf. on Decision and

Control, December 1997.
9. M. Hehn and R. D’Andrea. Quadrocopter trajectory generation and control. In Int. Federation

of Automatic Control, World Congress, 2011.
10. J.P. How, B. Bethke, A. Frank, D. Dale, and J. Vian. Real-time indoor autonomous vehicle

test environment. Control Systems, IEEE, 28(2):51–64, 2008.
11. J.H. Jeon, S. Karaman, and E. Frazzoli. Anytime computation of time-optimal off-road vehicle

maneuvers using the RRT*. In Conf. on Decision and Control, 2011.
12. S. Karaman and E. Frazzoli. Incremental sampling-based algorithms for optimal motion plan-

ning. In Proc. Robotics: Science and Systems, 2010.
13. S. Karaman and E. Frazzoli. Optimal kinodynamic motion planning using incremental

sampling-based methods. In Conf. on Decision and Control, 2010.
14. L.E. Kavraki, et al. Probabilistic roadmaps for path planning in high-dimensional configura-

tion spaces. Robotics and Automation, IEEE Transactions on, 12(4):566–580, 1996.
15. Y. Kuwata, et al. Real-time motion planning with applications to autonomous urban driving.

Control Systems Technology, IEEE Transactions on, 17(5):1105–1118, 2009.
16. S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning. Int. Journal of Robotics

Research, 20(5):378–400, 2001.
17. S. M. LaValle and J. J. Kuffner. Rapidly-exploring random trees: Progress and prospects. In

Workshop on Algorithmic Foundations of Robotics, 2000.
18. T. Lee, M. Leoky, and N.H. McClamroch. Geometric tracking control of a quadrotor uav on

se(3). In Conf. on Decision and Control, 2010.
19. D. Mellinger and V. Kumar. Minimum snap trajectory generation and control for quadrotors.

In Proc. Int. Conf. on Robotics and Automation, 2011.
20. D. Mellinger, A. Kushleyev, and V. Kumar. Mixed-integer quadratic program trajectory gen-

eration for heterogeneous quadrotor teams. In Proc. Int. Conf. on Robotics and Automation,
2012.

21. D. Mellinger, N. Michael, and V. Kumar. Trajectory generation and control for precise aggres-
sive maneuvers with quadrotors. In Proc. Int. Symposium on Experimental Robotics, 2010.

22. R. M. Murray, M. Rathinam, and W. Sluis. Differential flatness of mechanical control systems:
A catalog of prototype systems. In Proc. ASME Int. Congress and Exposition, 1995.

23. J. Pan, L. Zhang, and D. Manocha. Collision-free and smooth trajectory computation in clut-
tered environments. Int. Journal of Robotics Research, 31(10):1155–1175, 2012.

24. R. Ritz, M. Hehn, S. Lupashin, and R. D’Andrea. Quadrocopter performance benchmarking
using optimal control. In Proc. Int. Conf. on Intelligent Robots and Systems, 2011.

25. S. Shen, Y. Mulgaonkar, N. Michael, and V. Kumar. Vision-based state estimation and tra-
jectory control towards aggressive flight with a quadrotor. In Proc. Robotics: Science and
Systems, 2013.

26. A. Shkolnik, M. Walter, and R. Tedrake. Reachability-guided sampling for planning under
differential constraints. In Proc. Int. Conf. on Robotics and Automation, 2009.


	Polynomial Trajectory Planning for Aggressive Quadrotor Flight in Dense Indoor Environments
	Charles Richter, Adam Bry, and Nicholas Roy
	Introduction
	Problem Statement and Solution Outline

	Quadrotor Dynamics and Control
	Polynomial Trajectory Optimization
	Cost Function for Minimizing Derivatives
	Constraints
	Reformulation as an Unconstrained QP
	Time Allocation
	Ensuring the Trajectory is Collision-Free
	Actuator Constraints

	Results
	Comparison with RRT* using Polynomial Steer Function
	Performance of Polynomial Optimization
	Experimental Flight Tests

	Related Work
	Conclusion
	References



