
High-Speed Autonomous Navigation of Unknown Environments using
Learned Probabilities of Collision

Charles Richter, John Ware and Nicholas Roy

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA 2014).

Abstract— We present a motion planning algorithm for dy-
namic vehicles navigating through unknown environments. We
focus on the scenario in which a fast-moving car attempts to
navigate from a start location to a set of goal coordinates in
minimum time with no prior information about the environ-
ment, building a map in real time from onboard sensor data.
Whereas existing planners for exploration confine themselves
to a conservative set of constraints to guarantee safety around
unknown regions of the environment, we instead learn a
hazard function from data, which maps the vehicle’s dynamic
state and current environment knowledge to a probability
of collision. We perform receding horizon planning in which
the objective function is evaluated in expectation over those
learned probabilities of collision. Our algorithm demonstrates
sensible emergent behaviors, like swinging wide around blind
corners, slowing down near the map frontier, and accelerating
in regions of high visibility. Our algorithm is capable of
navigating from start to goal much more quickly than the
conservative baseline planner without sacrificing safety. We
demonstrate our algorithm on a 1:8-scale high-performance
RC car equipped with a planar laser range-finder and inertial
measurement unit, reaching speeds of 4m/s in unknown, indoor
spaces. A video of experimental results is available at: http:

//groups.csail.mit.edu/rrg/nav_learned_prob_collision.

I. INTRODUCTION

In recent years, robots and autonomous vehicles have
enjoyed considerable success maneuvering quickly in envi-
ronments where a complete prior map is available. How-
ever, many important tasks that would be ideal for robotic
applications occur in areas where prior information is un-
available. These cases include search and rescue missions
in disaster zones, military operations in outdoor wilderness
environments, or personal service applications in cluttered
spaces where the layout of objects changes frequently. In
these cases, it is infeasible to obtain a complete prior map in
order to navigate quickly, and the agent must instead make
decisions using its onboard sensing capabilities in real time.

While many robots navigate without prior knowledge of
their environment, they typically constrain themselves to
plan motions within the known portion of the environment,
and move slowly enough to stop before entering unknown
space. However, for vehicles attempting to navigate quickly,
these constraints may be overly conservative. Experience can
be used to make reasonable predictions about outcomes of
actions that traverse some unmapped space based on the
dynamics of the vehicle and learned environmental structure.

In this paper, we focus on the navigation problem for
a high-speed dynamically constrained vehicle moving from
an initial state to a specified set of global coordinates in
minimum time. Our solution strategy is to learn which
scenarios should be avoided by mapping features of vehicle

Fig. 1: A fast car navigating a partially observed environment
toward a goal location (green circle). Observed walls are
shown in black and unobserved regions are gray. This car
could employ a risky strategy of driving fast toward the goal
into the unknown region, or travel slowly in order to observe
the unknown regions safely. We present a strategy learned
from data, which outperforms both of these options.

state and environment knowledge to probabilities of collision.
At runtime, these probabilities are used to select actions
that minimize cost in expectation over the experience of the
vehicle. Having learned a function representing probability
of collision, our planner exhibits driving techniques such as
swinging wide around blind corners, slowing down near the
map frontier, and accelerating in regions of high visibility.

The problem of learning to drive in unknown environments
has been studied in a wide range of previous work [10], [22],
[20]. However, most previous work has focused on learning
to drive in the parts of the environment that have already
been observed. The contribution of this paper is to show how
a model of risks associated with a partially unknown map
can be learned from data, and incorporated into a motion
planner to select trajectories that allow the robot to move
safely towards the goal faster than existing strategies. Effec-
tively, this model allows the vehicle to anticipate underlying
structure in unobserved portions of environment, overcoming
the traditional limitations of incomplete map knowledge to
enable high-speed navigation.

A. Motivating Example

Figure 1 illustrates a scenario in which a vehicle is
attempting to reach a goal location (green circle) that lies
around a corner in an unobserved region of the environment.
From the vehicle’s point of view, the observed walls (drawn
in black) occlude unknown space (drawn in gray), leaving

http://groups.csail.mit.edu/rrg/nav_learned_prob_collision
http://groups.csail.mit.edu/rrg/nav_learned_prob_collision

(a) (b)

(c) (d)

(e) (f)

Fig. 2: Execution of three planning strategies from the same
initial state depicted in Figure 1: Greedy (a,b), conservative
(c,d), and learned (e,f). Images (a, c, e) show their respective
planners after 0.4 seconds of navigation from the initial state,
while images (b, d, f) show the three planners after 1.0 sec-
ond. Colored lines represent the set of possible trajectories.
The chosen actions are outlined in black. Note that after 0.4
seconds, the maps of the greedy and conservative planners
are identical, but path chosen by the learned planner enables
the senor to uncover more map information.

a potentially traversable opening in the map. The vehicle
cannot determine the occupancy of those regions before
rounding the corner. Figure 2 shows three possible navigation
strategies for the car starting from this initial state.

The greedy strategy (2a, 2b) assumes that unobserved
regions are unoccupied and heads directly toward the goal
at full speed. However, upon rounding the blind corner, the
vehicle is able to take measurements of the unknown region
and discovers a wall blocking its path. Due to constraints
on its braking and steering, the car is now unable to avoid
collision with the wall. The vehicle’s possible trajectories in
this case are colored black since they all intersect the wall
and are therefore infeasible.

The conservative strategy (2c, 2d) assumes unknown re-
gions are occupied until they are measured to be free, and
limits velocity to maintain the ability to stop before the
nearest obstacle or unknown region. Following this strategy,
the car drives directly toward the goal at a slow pace, and is
able to turn away once it observes walls around the corner.

Our planner, with a learned model of expected costs (2e,

2f), selects actions that probabilistically balance the risks of
driving near obstacles and unknown regions of the map with
the benefits of moving quickly toward the goal. In order
to perform this trade-off, we need to be able to evaluate
expected costs of motions through partially unknown maps of
the environment. To do so, we estimate collision probabilities
in a manner that is distinct from prior work in that we
model the risks associated with traversing unknown regions.
In this paper, we show that using this new type of learned
probability model allows the vehicle to make much more
progress than a conservative strategy in the same amount of
time, without the risks associated with a greedy strategy.

II. PROBABILISTIC RECEDING HORIZON
PLANNING

Motion planning in partially observed environments re-
quires that uncertainty in action execution be considered,
since the cost associated with a trajectory depends on the
unknown portion of the environment. Specifically, when
planning a high-speed trajectory into an unknown region of
the environment, the success or failure of that trajectory,
and hence its true cost, depends on the occupancy of the
unobserved region. Therefore, it is impossible to evaluate
the true cost of a trajectory at runtime.

Rather than minimizing the true cost of an action J(a), we
instead choose actions that minimize cost in expectation:

a∗ = argmin
a∈A

Emap[J(a)] (1)

where a is a trajectory from the current location of the vehicle
all the way to the goal, and Emap[J(a)]1 is the expected cost
of the action with respect to the map. It is unlikely that we
could learn to predict the probability of collision all the way
to the goal, but there is some horizon over which we may
be able to learn an accurate predictor. We use a receding
horizon formulation, where we compute the expected cost
up to a finite planning horizon, and then use a heuristic to
estimate the path cost from that point to the goal:

a∗ = argmin
a∈A

Emap[J(a)]+h(xa) (2)

This function consists of two components: the expected cost
of the action to the planning horizon, and the heuristic
estimate of cost-to-go, h(xa), from the state at the end of the
action. The set A includes a subset of all possible trajectories
from the current state to the planning horizon, and is intended
to span the vehicle’s maneuvering capabilities.

Although we are operating in an unknown environment,
we assume a SLAM process is inferring a map from sensor
data. Most SLAM processes do not provide a single map
estimate but provide a probability distribution over the map,
with greater uncertainty in the parts of the map with less
sensor data. Because the map is not known exactly, we
cannot compute the cost of a trajectory J(a) exactly but need
to compute the expected cost with respect to the map distri-
bution p(map). There are several ways to model Emap[J(a)],

1To avoid confusion: The map distribution is over maps, not the maximum
a posteriori distribution that is often referred to as pMAP in machine learning.

depending on our assumptions. We could make the naı̈ve
assumption that unobserved regions of the map are free and
traversable, or the conservative assumption that unobserved
regions are occupied. Both of these assumptions are likely
to be incorrect. Unfortunately, computing the expected cost
exactly is equally difficult, because the map distributions
are typically very high dimensional, and hence difficult to
integrate, and also usually contain independence assumptions
that allow efficient inference of the lower moments of
the distribution but do not capture the entire distribution
accurately enough to use for expected cost calculations.

An alternative approach is possible, since computing the
expectation with respect to the full map distribution is actu-
ally unnecessary. In our planning problem, costs are due to
either successfully completing the trajectory or experiencing
a collision. The expectation can then be computed over the
total probability of collision along the trajectory, ptotal(a):

Emap[J(a)] = ptotal(a) ·Jcollision+(1− ptotal(a)) ·J f ree(a) (3)

The expected value of a trajectory in equation (2) is a
weighted sum of the free-space cost of a trajectory J f ree(a)
and the penalty we assign to a collision Jcollision. The
weighting applied to these two terms is a function of the total
probability that the vehicle will collide along the trajectory.

For the minimum-time problem, J f ree is simply the time
duration of the action. To compute ptotal for any given
trajectory, we use the quantity pcollision(xt ,mt), which repre-
sents the probability that the vehicle will enter an inevitable
collision state (ICS) between the current time t and the
subsequent planning iteration at t +∆t. This quantity is a
function of the vehicle state, xt , and the state of the vehicle’s
map of the environment, mt , at that time. We consider the
vehicle to be in an ICS if, on its next planning iteration, all
of the possible trajectories the vehicle could execute collide
with known walls or obstacles in the environment.

If we know pcollision(xt ,mt) at every discrete time incre-
ment t along a trajectory, then we can estimate the probability
that the vehicle will enter an ICS along that trajectory:

ptotal = 1−
T

∏
t=0

1− pcollision(xt ,mt) (4)

where T is the trajectory duration. Intuitively, the probability
of collision approaches one as its duration increases for any
given value of pcollision > 0. Therefore, it is important to
compare trajectories of equal duration or otherwise correct
for differing lengths. Equation (4) is an instance of the
geometric distribution, used to estimate the cumulative effect
of discrete risks represented by the discrete hazard function
pcollision. This type of model representing risk over the
lifetime of an agent is common in reliability engineering.

III. LEARNING PROBABILITIES OF COLLISION

Even with the expectation computed over the simpler
binary probability distribution, it is still typically not possible
to evaluate pcollision from a map. The probabilities of envi-
ronmental structure inside the unknown regions are typically
very poor predictors of collision probability. Nevertheless,

there are features of the environment and vehicle state that
suggest how safe or how dangerous any given trajectory
is likely to be. For instance, the vehicle is likely to be
safe traveling down a straight, empty hallway with high
visibility in its direction of travel. However, when it nears
the turn at the end of the hallway, it will be unable to take
a measurement of the environment ahead until it rounds
the corner. In this scenario, the vehicle may risk a high
probability of collision if it rounds the corner too quickly.

We estimate these probabilities of collision using a learned
function, which maps features φ(xt ,mt) of the state and
environment map to a scalar probability of collision:

fcollision(φ(xt ,mt))≈ pcollision(xt ,mt) (5)

We learn the function fcollision from simulation data by
repeatedly simulating the car starting from random points in
space and allowing it to navigate toward the goal by greedily
selecting the action that descends the heuristic function most
rapidly. We record the features encountered by the vehicle at
every time step, and associate an outcome (collision or
non-collision) with each feature record. If the vehicle
succeeds in reaching the goal, then the feature history
associated with that trial is labeled non-collision. If
a collision occurs during simulation, then the feature values
preceding the collision are labeled as collision.

We use multivariate logistic regression to fit a sigmoid
(logistic) function to approximate the binomial distribution
of outcomes throughout the feature space. The probability of
collision for a point in feature space is given by the logistic
function of features φi and associated weights wi:

fcollision(φ) =
1

1+ exp(−w0−∑
N
i=1 wiφi)

(6)

Logistic regression is used to find weights wi such that
fcollision most closely fits the observed ratio of collision
to non-collision throughout feature space.

Five features were used to predict collision probabilities,
denoted φ1 . . .φ5. Let docc. and dunk. denote the distances to
the nearest obstacle and frontier, and let rocc. and runk. denote
the vectors between the vehicle position and the nearest
obstacle and frontier, respectively. Let v denote the vehicle’s
velocity vector. The features are:
• Distance to obstacle: φ1 = docc.
• Distance to frontier: φ2 = dunk.
• Velocity toward obstacle: φ3 = v · rocc./‖rocc.‖
• Velocity toward frontier: φ4 = v · runk./‖runk.‖
• Scalar vehicle speed: φ5 = ‖v‖

These features were selected to enable basic reasoning about
the vehicle’s motion with respect to the geometry of the
known environment structure as well as the unknown regions.
While many more features could be added to this list, feature
selection lies outside the scope of this work.

IV. HEURISTIC COST-TO-GO FUNCTION

The second term in equation (2), h(xa), is a heuristic
function returning the estimated cost-to-go from the state
xa at the end of each possible trajectory to the goal. The

Fig. 3: Numerical potential field heuristic computed over a
2D graph representing x,y-locations in the map. Cost-to-go
distance increases from blue to red.

heuristic function is a numerical potential field [1] computed
over a two-dimensional graph representing x,y-positions, and
assumes that the unobserved space is free. Thus, the heuristic
function provides high-level guidance, respecting the walls
and obstacles that are currently known, which would not
be captured by using Euclidean distance to the goal as a
heuristic. Figure 3 illustrates the heuristic function at two
different stages in the navigation of an unknown space,
showing the changes in estimated cost-to-go as the map
structure is revealed.

V. RESULTS

We first describe simulation results, with all training and
testing being performed on a ground robot model with a laser
range-finder and input-constrained kinematic car dynamics
(discussed in Section VI). The data used to learn fcollision
were generated from 250 simulation runs (5125 data points
in feature space) on the map shown in Figure 4. This
training set was generated in approximately 15 minutes,
while logistic regression was completed in 0.03 seconds,
highlighting the computational efficiency of our procedure.
The learned collision probability model was then provided
to the planner for testing simulations to measure time-to-
goal and success rate after learning. Finally, we discuss
experimental results for the actual RC car carrying a laser
range-finder, using the model of collision probability that
was learned and tested in our simulation results.

A. Learned Probabilities of Collision

Figures 5 shows one characteristic slice of the 5-
dimensional function fcollision, displaying φ2 (distance to
nearest frontier) and φ5 (speed), with the other features held
constant. The shape of this function indicates that traveling
at high speed near the frontier carries a high probability
of collision, but either slowing down or moving away from
the frontier can substantially reduce that risk. These features
capture the danger in the example depicted in Figure 1, and
illustrate why the learned planner in that example kept a safe
distance from the frontier while maintaining a high speed.

The actual data points used to perform regression
are illustrated as a histogram in Figure 5. Red circles
indicate collision points and blue circles indicate

non-collision points. The area of each circle is pro-
portional to the number of data points landing in that region
of feature space. Since this plot illustrates only two of the
five dimensions of the logistic function, the data points
themselves need not actually match the shape of the sigmoid
shown here. However, the data points serve to illustrate the
region of feature space where collisions are most likely,
and the results agree with the intuitive result that driving at
high speed near unknown regions carries a greater risk than
driving more slowly or at a safer distance from the frontier.

B. Learned Planner Performance

Figure 4a shows the execution results of a planning
problem without the use of learned weights. This case
corresponds to a greedy policy of simply choosing the action
that descends the global cost-to-go function as rapidly as
possible. In this case, only several simulations succeeded in
finding the goal. Collision states are illustrated with red dots,
and the anticipated trajectory beyond each collision state is
shown in gray. These gray trajectories appeared to be feasible
until an unknown portion of the environment was observed
to be occupied, rendering the trajectory infeasible. Collision
states often occur near corners where the vehicle attempts to
round the corner as tightly as possible, but is going too fast
to steer away to avoid collision once it observes the structure
of the environment around the corner.

A second, conservative planner was implemented for com-
parison. This conservative planner drives in the direction
that most directly descends the heuristic function, but it is
constrained to plan paths entirely within the known free
portion of the environment. Moreover, it is constrained to
limit its velocity such that its stopping distance is less
than both the distance to the nearest occupied cell and the
distance to the nearest unknown cell in the environment.
These constraints guarantee that the planner can come to
a stop if necessary. Figure 4b shows the execution of the
conservative planner. This planner approximately follows the
shortest route from start to goal that is kinematically feasible.

Fig. 5: Regression results for the pair of features φ2 (distance
to nearest frontier) and φ5 (speed).

(a) Greedy planner. (b) Conservative planner. (c) Planner after learning.

Fig. 4: Comparison between 20 simulations of the greedy (a), conservative (b), and learned (c) planning algorithms, initialized
randomly within the blue box. The goal is indicated by the green circle. The greedy planner descends the heuristic function
as rapidly as possible, often entering ICSs with yet-unseen obstacles. ICSs are indicated with red dots. Intended future
trajectories are drawn in gray. The conservative planner travels a shorter distance around the environment than the learned
planning algorithm, but must maintain a lower speed to guarantee safety with respect to observed and unobserved obstacles.

Greedy Planner Conservative Planner Learned Planner
Environment Time (s) Distance (m) Success Time (s) Distance (m) Success2 Time (s) Distance (m) Success
Training Map 7.1±0.8 24.2±3.6 20% 14.9±0.7 20.7±1.1 100% 9.1±0.4 26.0±1.3 100%
Testing Map 1 6.5±0.7 27.7±1.2 32% 18.6±0.7 27.6±1.5 96% 13.7±0.8 33.1±1.5 94%
Testing Map 2 3.3±0.5 12.8±2.0 46% 8.4±0.3 12.3±0.5 100% 6.8±0.4 13.9±0.4 100%
Testing Map 3 6.1±3.0 24.0±12.9 12% 10.0±0.6 13.3±1.0 92% 7.9±0.5 17.6±1.1 100%

TABLE I: Results for greedy, conservative and learned planners on the training map and three test maps that were not used
for training. Data represent 50 trials per experiment. In each scenario, the learned planner reached the goal considerably faster
than conservative planner without compromising safety. Times and distances are reported with their standard deviations.

Finally, our planning strategy using learned probabilities
of collision was simulated in the training environment as well
as a set of testing environments. Simulation results from the
learned planner are shown in Figure 4c. The major qualitative
difference in behavior is that the learned planner follows a
much longer path from start to goal, whereas the greedy and
conservative planners both move along the shortest route.
The other major difference is in the vehicle speeds chosen
by the planner. Generally, the greedy strategy applies full
throttle and steers along the heuristic gradient direction.
Conversely, the conservative planner usually travels slowly
due to satisfy its stopping distance constraint. The learned
planner, however, modulates its speed significantly, slowing
down near frontiers and obstacles.

Results were collected from 50 trials of each planner in
the training environment as well as three different maps that
were not used for training. The greedy planner succeeded
rarely, but reached the goal in very little time when it did.
The conservative planner traveled shorter paths from start
to goal than the learned planner, but did so at a lower
speed. Finally, the learned planner had the greatest success
percentage overall among the three planners. Furthermore, it
navigated considerably faster than the conservative planner
despite its longer distance traveled.

The qualitative differences between Figures 4b and 4c
are significant. While the conservative planner drove to
the inside of every curve, the learned planner exhibited a
strong preference for swinging wide around blind corners in
order to distance itself from the map frontier. This behavior
effectively allows the vehicle to project its sensor horizon
much farther forward, allowing it to plan higher speed paths
with confidence due to the increased map knowledge. A
second benefit of this behavior is that by swinging wide,
the vehicle allows itself maximal room to make a turn,
which may be necessary depending on the structure of the
environment beyond the frontier.

As shown in Table I, our learned planner was equally
successful in a series of testing environments that differed
from the training environment as it was in the training
environment. These results suggest that our features and
learned probability function are not specific to the training
environment and capture essential driving strategies that are
useful across many environments.

2We constrain all planners to move forward on every planning step.
Therefore, while the conservative planner could safely come to a stop
to avoid collision, it may still enter collision states in some confined
environments due to kinematic constraints given that it must keep moving.

1 1.5 2 2.5 3 3.5 4 4.5 5

10

15

20

25
T

im
e
 t
o
 G

o
a
l
(s

)

Speed Limit (m/s)

Learned

Conservative

1 1.5 2 2.5 3 3.5 4 4.5 5

18

20

22

24

26

28

30

D
is

ta
n
c
e
 T

ra
v
e
le

d
 t
o
 G

o
a
l
(m

)

Speed Limit (m/s)

Fig. 6: Time (top) and distance (bottom) required to navigate
from start to goal as a function of maximum allowed velocity
in the environment pictured in Figure 4. Error bars indicate
±1 standard deviation. The results of the conservative plan-
ner are shown in red and the learned planner in blue. The
differences in distance traveled can be observed visually in
Figures 4b, 4c.

C. Performance as a Function of Speed Limit

To highlight the differences between the learned and
conservative planners, we ran simulation trials using both
planners in which we increased the maximum allowable
speed from 1m/s to 5m/s. The results are illustrated in
Figure 6. When limited to low speed, both planners travel ap-
proximately at the speed limit, so the conservative planner’s
preference for traveling the shortest path within the known
map allows it to reach the goal sooner. However, as the speed
limit is increased, the conservative planner becomes limited
by the stopping distance constraint rather than the speed limit
while the learned planner continues to utilize the additional
speed. Above 4m/s the improvement plateaus, indicating that
the learned planner has reached the maximum average speed
at which it is confident navigating safely in this particular
environment even though it is allowed to travel faster.

D. Learning Weights with Different Dynamics Models

The dynamics of the vehicle have a strong effect on its
ability to evasively maneuver to avoid collision. In addition to
the minimum turning radius, the curvature rate, acceleration,
and braking constraints strongly impact the available actions
from a given state. Therefore, while our results generalize
across environments, it is important to perform learning
on the vehicle model that will be used during execution.
Figure 8 shows the set of available actions from a particular
state for four different dynamics models that differ only
in their acceleration and turning constraints. This figure
shows that a more tightly constrained vehicle has a narrower
range of actions available to avoid collision, whereas a less
constrained vehicle can slow down or swerve easily.

We performed learning trials using dynamics models sub-
ject to these four sets of constraints. Figure 7 shows that op-

0 50 100
−10

−5

0

5

w
0

0 50 100
−5

0

5

w
1

0 50 100
−4

−2

0

2

w
2

0 50 100
−2

−1

0

1

Number of Trials

w
3

0 50 100
−4

−2

0

2

Number of Trials

w
4

0 50 100
−4

−2

0

2

Number of Trials

w
5

Fig. 7: Convergence of weights w0, . . . ,w5 in fcollision for the
different dynamics models depicted in Figure 8: less con-
strained (black), nominal (blue), more constrained (magenta)
and most constrained (red). Error bars indicate standard error
estimates returned by the regression algorithm.

timal weights in the probability function fcollision converge to
significantly different values for different dynamics models,
indicating that the modes and frequencies of collision differ
between the dynamics models and that the learning process
identifies these non-trivial differences.

VI. ACTUATOR-CONSTRAINED CAR MODEL

For the simulation and experimental results given in this
paper, we employed a predictive motion model of a car
with constraints on curvature, curvature rate, acceleration and
braking. This model assumes zero slip between the wheels
and the driving surface, and is intended to capture the types
of actions that the car may take. States in the model are x,
y, ψ , k, v, denoting the x,y-position, heading, curvature and
velocity of the vehicle, respectively. The dynamics evolve
according to:

ẋ = v · cos(ψ) (7)
ẏ = v · sin(ψ) (8)

ψ̇ = k · v (9)

k̇ = (kcmd− k)/dt, s.t. |k| ≤ kmax, |k̇| ≤ k̇max (10)
v̇ = (vcmd− v)/dt, s.t. bmax ≤ v̇≤ amax (11)

where the inputs to the system are the desired curvature
(kcmd) and desired velocity (vcmd). This model differs from
a Dubins car in that inputs are limited. While we are free
to command a curvature value arbitrarily, which corresponds
to an angle of the two front steering wheels, the curvature
rate constraint (k̇max) will limit the rate of change of steering
angle so that time must elapse before the wheels reach their
desired angle. We set the maximum curvature rate to enforce
a lock-to-lock steering time of 2 seconds. Limits are also
placed on the acceleration (amax) and braking (bmax).

In order to compute the action sets illustrated in Figure 8,
a uniform sampling of terminal states was selected in an arc
around the vehicle, with a variety of headings and curvatures
to produce a rich set of curved trajectories. Then, a Newton
method root finding routine was performed to solve for the

(a) Less Constrained (b) Nominal

(c) More Constrained (d) Most Constrained

Fig. 8: Trajectories from an initial state with 3m/s velocity
and 0.5m−1 curvature (left-hand turn) using four dynamics
models. Models used in (a)-(d) differ in kmax, k̇max, amax
and bmax. To enhance visibility, these images show only a
portion of the hundreds of trajectories precomputed for any
given state.

sequence of vehicle control inputs that would take the vehicle
from its initial state to each of the terminal states. This
procedure is outlined in [9] and represents the notion of a
body-centered graph of nodes that are reachable from a given
initial state. Using the body-centered approach allows the
pre-computed set of actions to be transposed to any position
and heading in the map, eliminating the burden of optimizing
trajectories in each planning step.

VII. RC CAR EXPERIMENTS

We performed experiments on an autonomous 1:8 scale
radio-controlled car equipped with an onboard computer with
a dual-core Intel Core i7 processor, a Microstrain inertial
measurement unit and Hokuyo planar laser range-finder.
State estimation was performed onboard the vehicle using
an IMU-driven extended Kalman filter with the filter formu-
lation presented in [3], using a scan-matching algorithm on
the laser data to provide relative odometry measurements.
The laser data were also used to populate a grid cell map
of the environment in real time, and this map was used for
planning. Figure 9 shows the car used in the experiments,
with the laser, IMU and computer onboard.

Figure 10 shows the partial map produced by the car on
an experimental run through an indoor space, along with
the set of available actions from the states depicted. In this
environment, the car reached a velocities up to 4m/s. A video
of experimental results is available at: http://groups.csail.

mit.edu/rrg/nav_learned_prob_collision.

Fig. 9: 1:8 scale RC car used in experiments, with Hokuyo
laser range-finder, Microstrain IMU and computer.

VIII. RELATED WORK

Autonomous driving capabilities for full-sized vehicles
have reached the point of safe driving in off-road and urban
driving scenarios [23], [15], [17], [22], [20], using a vari-
ety of planning techniques including graph search, model-
predictive control, and sampling-based methods [14], [6].
However, unlike our scenario, these examples rely heavily on
prior knowledge of the map and leverage the road structure
for perception and planning. Full-sized autonomous vehicles
have also navigated unstructured environments such as park-
ing lots, where the structure of roadways does not apply [12],
[5], [4], though driving in these scenarios was not designed
to be dynamic or to reason about unobserved regions of the
environment, as was our objective. Similarly, planetary rovers
now perform some mapping using onboard sensors and
computation, though their trajectories are typically restricted
to the mapped parts of the environment [7], [24]. In [2],
a sampling-based planner was developed for kinodynamic
systems in unknown environments, which guaranteed safety
without reasoning about the unknown regions of the envi-
ronment, similar to our conservative planner.

Learning has been applied to autonomous driving in a
variety of cases that focus on perception, including Learning
Applied to Ground Robots (LAGR) [10], [8], [13], which fo-
cused on extending the perception horizon for planning rather
than planning with respect to occluded space, as in our work.
The ALVINN driving system demonstrated steering using a
neural network [19], while supervised learning has been used
to select driving speed in desert terrain to trade shock on
the system vs. speed [21], and non-parametric learning has
been applied to aid path planning on sloped off-road terrain
[11]. However, none of these cases explicitly reason about
the outcomes of actions with respect to unobserved regions
of the map. In the domain of RC cars, neural networks
and monocular depth estimation coupled with policy search
have been used for high-speed collision avoidance [16], [18],
but neither system formed a comprehensive solution for
navigation and control like the one we describe in this paper.

http://groups.csail.mit.edu/rrg/nav_learned_prob_collision
http://groups.csail.mit.edu/rrg/nav_learned_prob_collision

Fig. 10: Experimental trial driving up to approximately 4m/s through a lab space in the Stata Center (MIT) covering 60m
of unknown, unstructured space. The goal (green circle) was not visible until nearly the end of the experimental run.

IX. CONCLUSIONS AND FUTURE WORK
We have demonstrated a motion planning algorithm for

high-speed vehicles navigating in unknown environments.
Our algorithm minimizes the expected cost of each trajectory
over the experience of the vehicle, leading to high speed
motions in situations where it is safe to move at high speed,
while slowing down and selecting longer paths in situations
where it is safer to do so. In this sense, our algorithm
performs a principled probabilistic trade-off between risk and
reward. The behaviors that emerge from our algorithm and
learning process are very natural, intelligent behaviors that
are characteristic of experienced drivers, and these behaviors
arise naturally from relatively little of data.

Since our approach is agnostic to the the vehicle model
and sensing modality, future work will involve extensions to
quadrotors and fixed wing aircraft, which may necessitate
lighter sensors such as cameras. It is unclear whether the
same features will be effective across platforms, and the
general problem of selecting the most effective set of features
remains an unsolved challenge. Learning features themselves
is one area of future work. Another extension will be to
investigate the types of training strategies that result in the
most accurate models for collision probability.

REFERENCES

[1] J. Barraquand, et. al. Numerical potential field techniques for robot
path planning. Systems, Man and Cybernetics, IEEE Transactions on,
22(2):224–241, 1992.

[2] K. E. Bekris and L. E. Kavraki Greedy but safe replanning under
kinodynamic constraints. In Proc. ICRA, 2007.

[3] A. Bry, et. al. State estimation for aggressive flight in GPS-denied
environments using onboard sensing. In Proc. ICRA, 2012.

[4] D. Dolgov and S. Thrun. Autonomous driving in semi-structured
environments: Mapping and planning. In Proc. ICRA, 2009.

[5] D. Dolgov, et. al. Path planning for autonomous vehicles in unknown
semi-structured environments. IJRR, 29(5):485–501, 2010.

[6] D. Ferguson, et. al. Motion planning in urban environments: Part I.
In Proc. IROS, 2008.

[7] S.B. Goldberg, et. al. Stereo vision and rover navigation software for
planetary exploration. In Aerospace Conf. Proceedings, IEEE, 2002.

[8] A. Howard. Real-time stereo visual odometry for autonomous ground
vehicles. In Proc. IROS, 2008.

[9] T. Howard and A. Kelly. Optimal rough terrain trajectory generation
for wheeled mobile robots. IJRR, 26(2):141–166, 2007.

[10] L. D. Jackel, et al. The DARPA LAGR program: Goals, challenges,
methodology, and phase I results. JFR, 23(11-12):945–973, 2006.

[11] S. Karumanchi, et al. Non-parametric learning to aid path planning
over slopes. IJRR, 29(8):997–1018, 2010.

[12] S. Kolski, et. al. Autonomous driving in structured and unstructured
environments. In Intelligent Vehicles Symposium, IEEE, 2006.

[13] K. Konolige, et al. Outdoor mapping and navigation using stereo
vision. In Proc. ISER, 2008.

[14] Y. Kuwata, et al. Real-time motion planning with applications
to autonomous urban driving. Control Systems Technology, IEEE
Transactions on, 17(5):1105–1118, 2009.

[15] J. Leonard, et al. A perception-driven autonomous urban vehicle. JFR,
25(10):727–774, 2008.

[16] J. Michels, et. al. High speed obstacle avoidance using monocular
vision and reinforcement learning. In Proc. ICML, 2005.

[17] M. Montemerlo, et al. Junior: The stanford entry in the urban
challenge. JFR, 25(9):569–597, 2008.

[18] U. Muller, et. al. Off-road obstacle avoidance through end-to-end
learning. In Proc. NIPS, 2005.

[19] D. Pomerleau. Defense and civilian applications of the ALVINN robot
driving system. In Gov. Microcircuit Applications Conf., 1994.

[20] D. Silver, J.A. Bagnell, and A. Stentz. Applied imitation learning for
autonomous navigation in complex natural terrain. In FSR, 2009.

[21] D. Stavens, et. al. Online speed adaptation using supervised learning
for high-speed, off-road autonomous driving. In IJCAI, 2007.

[22] S. Thrun, et al. Stanley: The robot that won the DARPA grand
challenge. JFR, 23(9):661–692, 2006.

[23] C. Urmson, et al. Tartan racing: A multi-modal approach to the
DARPA urban challenge. Technical Report CMU-RI-TR-, 2007.

[24] D. Wettergreen, et. al. Developing nomad for robotic exploration of
the atacama desert. Robotics and Autonomous Systems, 26(2):127–
148, 1999.

	INTRODUCTION
	Motivating Example

	PROBABILISTIC RECEDING HORIZON PLANNING
	LEARNING PROBABILITIES OF COLLISION
	HEURISTIC COST-TO-GO FUNCTION
	RESULTS
	Learned Probabilities of Collision
	Learned Planner Performance
	Performance as a Function of Speed Limit
	Learning Weights with Different Dynamics Models

	ACTUATOR-CONSTRAINED CAR MODEL
	RC CAR EXPERIMENTS
	RELATED WORK
	CONCLUSIONS AND FUTURE WORK
	References

