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Abstract

Optimisation of nuclear fuel assemblies if performed e↵ectively, will lead to fuel e�ciency improvement, cost reduction,
and safety assurance. However, assembly optimisation involves solving high-dimensional and computationally expensive
combinatorial problems. As such, fuel designers’ expert judgement has commonly prevailed over the use of stochastic
optimization (SO) algorithms such as genetic algorithms and simulated annealing. To improve the state-of-art, we explore
a class of artificial intelligence (AI) algorithms, namely, reinforcement learning (RL) in this work. We propose a physics-
based AI optimisation methodology by establishing a connection through reward shaping between RL and the tactics fuel
designers follow in practice by moving fuel rods in the assembly to meet specific constraints and objectives. The methodology
utilizes RL algorithms, deep Q learning and proximal policy optimisation, and compares their performance to SO algorithms.
The methodology is applied on two boiling water reactor assemblies of low-dimensional (∼ 2 × 106 combinations) and high-
dimensional (∼ 1031 combinations) natures. The results demonstrate that RL is more e↵ective than SO in solving high
dimensional problems, i.e., 10x10 assembly, through embedding expert knowledge in form of game rules and e↵ectively
exploring the search space. For a given computational resources and timeframe relevant to fuel designers, RL algorithms
outperformed SO through finding more feasible patterns, 4-5 times more than SO, and through increasing search speed, as
indicated by the RL outstanding computational e�ciency. The results of this work clearly demonstrate RL e↵ectiveness as
another decision support tool for nuclear fuel assembly optimisation.

Keywords: Combinatorial Optimisation, Deep Reinforcement Learning, BWR Assembly Optimisation, Genetic

Algorithms, Deep Q Learning, Proximal Policy Optimisation

1. Introduction

The sustainability of the existing light water reactor fleet is one of the main missions of U.S. nuclear industry

and Department of Energy. The existing fleet provides roughly half of all carbon-free electricity in the United

States. However, the number of reactors online has declined in recent years, mainly driven by cost. Reducing the

nuclear fuel cost is one way to improve fleet e�ciency. The nuclear fuel designers dictate the number and attributes5

of an assembly in terms of its enrichment and burnable poison loading. In e↵ect, fuel designers attempt to solve a

“combinatorial optimization” problem by utilizing expert judgement, nuclear design principles, and physics-based

tools. Combinatorial optimisation [1] in nuclear reactor design and operation is a known problem that aims to find

an optimal pattern from a finite set of patterns [2]. Indeed, the search space for combinatorial optimization is finite

by definition, and thus an optimal solution always exists.10

Nuclear fuel design involves two common problems: (1) core optimisation and (2) assembly optimisation. Core

optimisation aims at finding the best loading pattern of all assemblies in the core such that the reactor operation

is economic and meets safety constraints [2]. Assembly optimisation (the focus of this work) aims on finding

the optimal material composition and location of all fuel rods in the assembly such that when the assembly
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Nomenclature

↵,�0 DQN prioritized experience replay parameters

� Attribute swap/perturbation probability

✏ DQN exploration probability

⌘ Algorithm e�ciency

� Reward discount factor

� PPO Bias-variance tradeo↵ parameter

a Action to take by the agent

B Mini-batch size

C DQN target model update frequency

CL Fuel cycle length (days)

CLIP PPO clipping parameter

CX GA crossover probability

E Assembly average UO2 enrichment

ENTcoef PPO entropy coe�cient

Ftrain Model training frequency

G Assembly average GAD enrichment

k∞ Infinite neutron multiplication factor

lr Learning rate

MUT GA mutation probability

Nanneal DQN exploration fraction to anneal ✏

NGAD Number of gadolinium (GAD) fuel rods

Ngen GA number of generations

Npop GA number of population per generation

Nsteps SA number of annealing steps

NUO2 Number of UO2 fuel rods

Nwarmup Samples to initialize DQN replay memory

optepochs PPO number of supervised training epochs

PPF Power Peaking Factor

r Reward

s Agent current state

Tmax, Tmin SA max/min annealing temperatures

V Fcoef PPO value function loss coe�cient

BWR Boiling Water Reactor

DQN Deep Q Learning

GA Genetic Algorithm

KBS Knowledge-Based Systems

PPO Proximal Policy Optimisation

RL Deep Reinforcement Learning

SA Simulated Annealing

SO Stochastic Optimisation

is introduced in the core, economic and safety constraints are satisfied [3]. A review of related literature on15

optimization techniques is included in section 3.1.

For assembly optimisation, unlike pressurized water reactors (PWR), boiling water reactor (BWR) designs fea-

ture more heterogeneous fuel enrichment distribution radially [4], which will also be seen in this work. For PWRs,

some utilities adopt optimisation tools to find the most economic core design more rapidly, for example ROSA [5]

(Reload Optimisation with Simulated Annealing). However, such stochastic optimisation (SO) based frameworks20

while fast for individual pattern evaluation, are often computationally expensive for finding high performing solu-

tions, thus their commercial application has not found much adoption for more complex problems as in the case

of BWRs. It is also worth mentioning that SO code packages such has ROSA leverage surrogate models to reduce

computational burden and thus do not rely on licensed methodologies. Therefore, when the best design option is

found by SO, manual tuning still needs to be performed by the licensed codes. Aside from classical SO, to the25

authors’ knowledge, there have been very limited attempts so far to investigate the performance of modern RL

algorithms (e.g., DQN, PPO) to support nuclear engineering decisions regarding fuel assembly optimisation, either

for PWR or BWR. RL algorithms would prove e↵ective if they demonstrate promising performance in embedding

domain or expert knowledge through reward shaping, in exploring the search space e↵ectively, and in their ability

to more e↵ectively find a global optimum than standard SO in a problem with many local optima. Accordingly, we30

explore the ability to train an intelligent system by RL that is able to learn from interactions with physics-based

environments and prior expert knowledge, such that it can take proper actions in a short amount of time to e�-

ciently arrange and optimise nuclear fuel within the assembly. RL is compared to SO algorithms (i.e., GA, SA),

2
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which act as baselines that have been widely investigated in literature.

In this work, we provide important definitions about the design of nuclear assemblies of interest in section 2.35

The methodology is described in section 3, which starts with a literature review of related work, followed by the

optimisation strategy and the process of building physics-based environments to facilitate RL and SO. Next, the

mathematical foundation of RL and SO algorithms and their connection to the physics-based environment are

described, followed by the code deployment. The results of this paper are presented in two case studies in section

4 and section 5, respectively. The first case study highlights a small and low-dimensional nuclear assembly (BWR40

6x6) with global optima known beforehand using brute-force search, where RL/SO algorithms are assessed and

compared to each other. Next, RL is compared to SO in a bigger high-dimensional nuclear assembly (BWR 10x10),

that is also limited by expensive simulation costs. Finally, the conclusions of this work are presented in section 6.

2. Nuclear Fuel Assembly Design

The system optimised in this work is the nuclear fuel assembly; a top view of two BWR assembly designs of

interest to this work are sketched in Figure 1. Assembly optimisation is seen as a permutation with repetition

problem with cost proportional to O(mn), where m is the number of fuel types (i.e., choices) to pick from, while

n is the number of fuel rod locations to optimise (i.e., number of times to choose). To reduce the search space,

researchers tend to take advantage of problem symmetry to reduce the value of n. Due to the multiobjective nature

of nuclear optimisation, weighted scalarization has been widely used to construct the objective/fitness/cost function

[2, 6, 7]

min�x F (�x) = k�
i=1

wifi(�x) (1)

where k is the number of single objectives included in the optimisation and w is the corresponding weight determined45

by the analyst based on prior experience and preliminary convergence tests. The first design in Figure 1 has a

dimension of 6x6 with 36 fuel rods, while the second design is 10x10, with 92 fuel rods, and 2 large water rods

occupying the remaining 8 positions. The fuel material consists of Uranium Oxide (UO2). The 6x6 assembly in

Figure 1 features two types of UO2 fuel with 1.87% and 2.53% U-235 enrichment. In addition, some fuel rods have

UO2 mixed with Gadolinium Oxide (GAD), which absorbs neutrons and helps in controlling the fission reaction50

in large assemblies as in Figure 1(b). GAD enrichment is also variable and typically limited to below 10% weight

fraction. Optimising the number of GAD rods and GAD enrichment is extremely important for the safety and

economy of the nuclear assembly. Both assembly designs satisfy 1/2 symmetry, which makes the total number of

possible rod locations to be 21 for the 6x6 and 51 for the 10x10. The numbered rods on and below the diagonal

line in Figure 1 are included in the optimisation process. It is worth mentioning that the 6x6 assembly has an55

interesting feature as all possible permutations can be evaluated by brute-force techniques in a reasonable amount

of time. This means that optimum solutions are known beforehand as will be shown later in Case Study 1, section

4. In this work, the two fuel assemblies are modeled and simulated using the CASMO-4 code. CASMO-4 [8] is a

multigroup two-dimensional transport theory code for burnup calculations of PWR and BWR fuel assemblies based

upon the Method of Characteristics. The term beginning of life (BOL) is used when fuel depletion is not simulated,60

which can be seen as a steady state simulation of the first time step in the cycle. The term end of life (EOL)

3
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involves depleting the fuel and simulating time-dependent behavior of the cycle. Both BOL and EOL simulations

are conducted under fixed fuel temperature of 900 K and moderator temperature of 560 K. For each assembly

design in this work, the following assembly attributes are of high importance to be measured and optimised:

1. k∞: The infinite neutron multiplication factor, which is a measure of the change in the fission neutron popula-65

tion in an infinite multiplying system (e.g., reflected assembly) from one neutron generation to the subsequent

generation. k∞ is a critical safety parameter for nuclear reactor control, thus it should be optimised.

2. PPF : Power peaking factor, which is the ratio of the highest fuel rod power in the assembly to the average

assembly power by all rods. PPF is a constrained safety parameter to be minimized and maintained below

a threshold value.70

3. NUO2 : Number of pure UO2 rods in the assembly.

4. NGAD: Number of GAD rods in the assembly. Current BWR nuclear designs have NUO2 as 5-7 times of

NGAD.

5. E: Average assembly enrichment, which is the mean of U-235 enrichment in all assembly rods (NUO2+NGAD).

Average enrichment is an economic parameter, as higher E values require additional production cost.75

6. G: Average GAD enrichment, which is the mean of GAD enrichment in the assembly GAD rods (NGAD).

Similar to E, GAD enrichment is an economic parameter, where higher G values require additional costs.

7. CL: Cycle length (or assembly burnup), which is a measure of the nuclear fuel cycle length that the assembly

design can supply. It is measured with a unit called e↵ective full power days (for simplicity days in this work),

which is the number of days the reactor can operate at full power under the current fuel loading. Obviously,80

CL is an economic parameter that maximizes the benefit from the fuel assembly. For BOL problems, where

fuel depletion is not simulated, CL = 0. In this work, when fuel depletion is simulated, CL is determined to

be the time in days after the k∞ peak at which k∞ = 0.95.
A sample design for a BWR 6x6 assembly is shown in Figure 1(a). The design is originally obtained from the

Gundremmingen-A nuclear power plant, which started commercial operation in 1967 in Germany [9] and used later85

for spent fuel analysis and nuclear code validation [10]. For this design, NUO2 = 36, and since this is a BOL problem

with assembly that has no GAD rods, then G, NGAD, and CL are all equal to zero. The average enrichment E

can be calculated as (2.53 × 29 + 1.87 × 7)�36 = 2.402%. To calculate k∞ and PPF , the 6x6 assembly is simulated

as a BOL problem using the CASMO-4 nuclear code, which resulted in k∞ = 1.26072 and PPF = 1.455. The 6x6

design will be used in Case Study 1 later in section 4.90

A sample design for a BWR 10x10 assembly is shown in Figure 1(b), which is known as GE14. It is a relatively

new design, originally obtained from [4]. For this design, there are NUO2 = 74 rods and NGAD = 18 rods, forming

a total of 92 fuel rods. The values of E and G can be inferred from Figure 1(b), which are respectively 4.305%

and 7.72%. The remaining responses are calculated based on CASMO-4 simulation with fuel depletion, which are

as follows: k
max∞ = 1.09814, PPF = 1.62, and CL = 1450 days, where CL is determined at k∞ = 0.95. The 10x1095

design will be used in Case Study 2 later in section 5.

The previous reference designs are presented here to demonstrate the process of modeling and simulation. The

geometrical features for the 6x6 and 10x10 assemblies such as fuel rod and assembly dimensions, number of fuel

4
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Figure 1: Top view of the nuclear fuel assemblies used in the analysis: (a) BWR 6x6 with 1/2 symmetry and (b) BWR 10x10 with 1/2
symmetry (Numbers on the fuel rods are explained in section 4 and section 5)

rods, and number of water rods will be fixed during optimisation. However, the material aspects such as UO2

enrichment and location as well as GAD enrichment and location will be the main focus of optimisation. From100

previous descriptions and prior e↵orts on assembly optimisation, four challenges are known to hinder an accurate

decision making regarding final designs: (1) a very large search space of possible patterns, (2) multiple objectives

to optimise and constraints to meet, (3) large number of local optima (very likely to find hundreds of patterns that

have exact same fitness), and (4) computational burden associated with computer simulation. These challenges

emphasize the need for intelligent systems to reduce time and e↵orts solving such problems, some of which are105

described next.

3. Methodology

3.1. Related Work

For most engineering problems, the search space size of combinatorial problems grows drastically with the size

of the input space, e.g., O(n!). Popular combinatorial problems include the traveling salesman problem (TSP),110

the minimum spanning tree problem, and the knapsack problem. Historically, combinatorial optimisation has been

approached by a variety of methods, including but not limited to dynamic programming [11], adaptive search [12],

simulated annealing (SA) [13], genetic algorithms (GA) [14], tabu search [15], neural networks [16], and many

others. A review on metaheuristics for combinatorial optimisation can be found in [17].

Classical reinforcement learning (RL) through REINFORCE and Q-learning (Q originated from quality) was115

first used to approach combinatorial optimisation [18, 19]. The extension to deep RL has also being explored to solve

combinatorial problems [20]. Since this work mainly focuses on deep RL, for convenience, RL will be used to refer

deep RL. RL algorithms o↵er the ability to train an agent, expert, or a knowledge-based system (KBS) that learns

5
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how to take proper actions to find an optimised configuration, which sounds attractive to combinatorial optimization

[21]. This learning ability highlights a major di↵erence between RL and GA/SA methods. Deep Q learning (DQN)120

[22] and proximal policy optimisation (PPO) [23] are common and widely used RL algorithms. Earlier e↵orts

featured combining classical Q-learning (RL) with ant colony system (evolutionary) into a technique called Ant-Q

to solve the TSP problem. Ant-Q demonstrated competitive performance compared to other approaches based

on neural networks and local search [24]. Two approaches based on policy gradients were proposed to perform

neural combinatorial optimisation with RL [21], which were inspired originally from the pointer networks [25]. The125

pretraining approach uses a training set to optimize a recurrent neural network which parameterizes a stochastic

policy. The active search starts from a random policy and iteratively optimizes the recurrent neural network

parameters on a single test instance. Both approaches use a problem-dependent objective/cost function for RL

reward shaping. Another study [26] proposed a combination of RL and graph embedding to learn a policy that

can be used to construct a solution in combinatorial optimisation. Other e↵orts on applying and enhancing RL in130

optimisation include using the Metropolis criterion of SA to balance between exploration/exploitation in Q-learning

[27], multi-agent (RL team) search with decentralization to handle memory issues [28], and using stochastic policy

gradient algorithms to solve the vehicle routing problem [29].

Both core and assembly problems have been approached by almost similar methods that belong to evolution-

ary algorithms. For core optimisation, successful applications of simulated annealing [2], genetic algorithms [30],135

particle swarm optimization [31], continuous firefly algorithm [32], and recurrent neural networks [33] have been

demonstrated to produce high quality solutions (i.e., core loading patterns) to inform the designers. Aside from

evolutionary techniques, the prescribed Ant-Q approach that includes RL was also brought to solve the nuclear core

optimisation problem [34]. For assembly optimisation, GA was utilized by [35] to optimise the axial enrichment in a

3D boiling water reactor (BWR) assembly to minimize the overall average enrichment (i.e., reducing costs) needed140

to obtain the reference cycle length, while meeting the safety constraints. Unlike PWRs, BWR designs feature

larger core size with ∼ 700 assemblies, compensated by smaller assembly size (92 fuel rods per assembly), and more

heterogeneous fuel enrichment distribution radially and axially [4], which will also be seen in this work. Radial

optimisation in a 2D BWR assembly was conducted by [3] using tabu search. Assuming 10 di↵erent fuel types in

the assembly, the authors were able to achieve some reductions on the average enrichment, and a large reduction in145

computational time to find optimum solutions. Additional e↵orts on using Hopefield neural networks [36], adaptive

simulated annealing [37], and di↵erential evolutionary algorithms [38] for fuel assembly design optimisation have

been conducted.

3.2. Environment Structure

Since most of the biggest advances in RL research have been in video game applications [22], most of its150

terminology are inherited from computer games, meaning that we need to observe our problem as a game to

facilitate the analysis. OpenAI Gym [39] is a toolkit for building environments to test RL algorithms in e�cient

form. Following the OpenAI Gym data structure, we developed a CASMO-4 environment based on the geometries

in Figure 1. There are many possibilities for the game scenario and the rules of the game will dictate the e�ciency

of the RL framework. We describe the particular game strategy for each case study later in its appropriate section.155

6
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Compared to OpenAI Gym default functions, we have added two additional functions called Fit and Monitor to

merge SO methods seamlessly into the OpenAI Gym platform, which is RL-oriented.

In particular, our physics-based environment consists of five major functions: constructor, step, fit, monitor,

reset, and render. The constructor initializes all environment variables, including the action space and state space

for RL. The step function is exclusive to RL, it receives input as the action to take, and returns output as the new160

state, reward for the taken action, and whether the episode reaches the end or not. The fit function is exclusive

to SO algorithms (i.e., GA, SA), it takes enrichment in each rod position as input and returns reward as output.

Compared to the step function, the fit function lacks temporality and acts as a black-box function that takes input

and returns output regardless of the problem state. Finally, monitor, reset, and render functions log the data

for RL/SO, reset the environment back to initial state for RL, and plot the assembly board showing the enrichment165

in each rod location, respectively. Checkpointing (if necessary) can be done through saving the trained model at

di↵erent time steps to be used for other training purposes.

Based on the previous descriptions, it is worth defining the following units that we will use to describe the

training progress:

• Time Step (TS): A time step involves single call of the step function, the agent takes an action, observes170

reward and next state for the next time step. TS may or may not involve a CASMO-4 call, and TS is exclusive

to RL methods.

• Episode: A collection of time steps that mark several interactions between the RL agent and the environment.

The size of episode is directly connected with the game or optimisation strategy adopted. For SO, the episode

involves one interaction with the environment.175

• Epoch: A collection of episodes that help drawing statistics about the agent performance (e.g., reward mean,

variance, max, min). The size of epoch is determined by the analyst to balance between computational costs

and having su�cient sample size to infer accurate performance. Epoch is used for both RL and SO.

• CASMO4 Call (C4C): this is a universal unit for both RL and SO, which counts the number of CASMO-4

calls during training regardless of the method used. Therefore, to compare between the algorithms in terms

of speed and e�ciency, the e�ciency parameter can be defined based on C4C

⌘ = ��1 −
C4C for 1st Feasible

Total C4Cs

�
�%. (2)

Before moving forward, it is worth highlighting two major quantities that would come from epoch statistics:

mean reward and max reward. Mean reward highlights the ability of RL/SO algorithm to consistently produce180

high quality solutions. This feature is specifically important to RL, as it implies that the agent or knowledge-based

system (KBS) is well-trained. In contrast, max reward highlights the best solution or assembly pattern found

during training, which is the end goal of optimisation (i.e., what the designer is looking for). Patterns of max

reward may appear occasionally or in intermittent form during training, while an excellent KBS with high mean

reward is expected to recover such patterns more frequently.185

7
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3.3. Deep Reinforcement Learning (RL)

RL started with the classical Q-learning [40], which relies on tables to store Q-value for every possible state-

action pair in the problem, and then using that table to determine the action with maximum Q value to guide

agent learning. In simple Q-learning, Q value is updated recursively, as derived from the Bellman equation

Q
new(st, at)←� (1 − ↵)

old value����������������������������������
Q(st, at)+ ↵���

learning rate

learned value��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������[ rt���
reward

+ ����
discount factor

⋅ max
a

Q(st+1, a)
�������������������������������������������������������������������������������

optimum future value

], (3)

where st, at, and st+1 are the current state, current action, and next state, respectively. However, in most real-

world applications, the state-action pairs can be extremely large, causing not only memory issues in storing them,

but also large computational costs in interpreting these tables. Alternatively, neural networks are used to predict

Q-value for each possible action based on previous observations by the agent, and then Q-learning can decide which

action to take based on these predicted Q-values. Training deep neural networks to approximate the Q function

is known as deep reinforcement learning [22], or simply reinforcement learning (RL) for our work. However, a

simple introduction of a neural network to approximate the Q function will be ine↵ective since the target network

is continuously changing at every TS, causing training instabilities and overfitting. The work by [22] resolved this

issue by using a concept of two parallel networks, one called primary Q network used for training, and another

copy of it called target Q network used for prediction. The primary network is usually updated every TS (or after

Ftrain), while the target network is frozen and updated after a specific number of steps, controlled by the parameter

C, where C >> Ftrain. The target model update involves simply copying the current weights of the primary network

into the target network. The DQN objective function during training is to minimize the losses between the two

network predictions as

Loss = (rk + � ⋅max
a′ Q(sk+1, a′; ✓̄)

����������������������������������������������������������������������������������������������������������������������������������������������������������������
Target

−Q(sk, ak; ✓)��������������������������������������������������������
Predicted

)2, (4)

where ✓̄ and ✓ are used to distinguish between the weights of the target and primary networks, respectively, k is the

sample index in the replay memory, � is the discount factor (∼0.8-0.99), and rk, sk, ak, and sk+1 are respectively

the reward, current state, action to take, and next state associated with sample k in the memory. Minimizing the

losses can be done by training on gradient descent to find the best ✓ value. Hasselt et al. [41] illustrated that

vanilla DQN introduces systematic overestimation as the max operator uses the same Q values from the primary

network to select and evaluate the action, causing overoptimistic performance. The solution is to use the primary

network for action selection and the target network for action evaluation, where the loss in Eq.(4) can be redefined

as

Loss = (rk + � ⋅Q(sk+1,max
a′ Q(sk+1, a′; ✓); ✓̄)

�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
Target

−Q(sk, ak; ✓)��������������������������������������������������������
Predicted

)2, (5)

where now the target is changed as the action is determined by weights ✓, but evaluated by weights ✓̄. The190

algorithm used in this work is given in Algorithm 1. The algorithm starts by initializing a set of hyperparameters.
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First, ✏ balances the exploration vs exploitation dilemma in RL, and it represents the fraction of time the agent

spent in exploring new knowledge (i.e., taking random actions), where ✏ = 1 refers to a complete exploration, while

✏ = 0 means the agent relies completely on its experience/memory in taking actions. We gradually reduce ✏ during

training from ✏init to ✏end, where the training period at which ✏ is reduced is controlled by Nanneal. After Nanneal is195

passed, ✏ is fixed to ✏end. The replay memory D is another feature of DQN, where past experiences are stored in a

bu↵er during training. A mini-batch of size B is used to estimate the losses in Eq.(5), by running gradient descent

with learning rate lr. The memory is initialized with some random transitions determined by Nwarmup > 4B − 5B,

where B is the mini-batch size. The frequency of sampling transitions from the replay memory and updating the

primary network is controlled by Ftrain, where Ftrain = 1 means that the primary network is updated every TS.200

Afterwards, three loops are executed, for epochs, episodes, and time steps, respectively. By the end of each epoch,

the average reward is determined and used to indicate if the model is improved or not, if yes, the model is saved.

Algorithm 1 Deep Q Learning

1: •Set hyperparameters: ✏init, ✏end,�, C,B,Nwarmup,Nanneal, Ftrain, lr
2: •Initialize primary/target Q networks and set ✓̄ = ✓
3: •Initialize replay memory D with capacity Nwarmup

4: •Initialize rbest=−∞
5: for Epoch i = 1 to EPOCH do
6: for Episode j = 1 to EPISODE do
7: •Initialize first state s1 (i.e., Reset Environment)
8: for Time Step t = 1 to TIME do
9: •With probability ✏, select random action at

10: •Otherwise select at =max
a

Q(st, a; ✓)
11: •Execute action at and observe next state st+1, and reward rt
12: •Set st+1 = st
13: if Frequency Ftrain is reached then
14: •Sample random mini-batch B of transitions (sk, ak, rk, sk+1) from memory D
15: if Episode ends at k + 1 then
16: •yk = rk
17: else
18: •yk = rk + � ⋅Q(sk+1,maxa′Q(sk+1, a′; ✓); ✓̄)
19: •Run gradient descent with learning rate lr on (yk −Q(sk, ak; ✓))2 with respect to ✓

20: •If target model update frequency C is reached, then set ✓̄ = ✓
21: •If Nanneal is reached, then set ✏ = ✏end

22: •Otherwise anneal ✏ between ✏init and ✏end

23: •Calculate mean reward r̄i for the current epoch
24: if r̄i > rbest then
25: •Save model Mi for current epoch
26: •Set rbest = r̄i

Two additional enhancements to DQN are highlighted briefly here since they are important for DQN performance

even in their default settings: (1) dueling and (2) prioritized replay, the reader is referred to the following references

for detailed information [42, 43]. The dueling architecture [42] makes the agent able to evaluate a state without205

caring about the e↵ect of each action from that state. Dueling is useful for cases where certain actions from a

state do not a↵ect the environment at all; these actions are not evaluated, giving the algorithm more speed. So

far for DQN, experience transitions are uniformly sampled from the memory, replaying them in same frequency

regardless of their significance. Prioritized replay aims for prioritizing experience by replaying important transitions

(i.e., higher rewards) more frequently, therefore, learning more e�ciently [43]. Prioritized replay is controlled by210
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two common exponents [43]: ↵ for proportional prioritization and � for importance sampling correction, which is

usually annealed from �0 < 1 toward 1 by end of training. In this work, according to the literature suggestions for

prioritized replay, we set ↵ = 0.6, �0 = 0.4. In summary, the major hyperparameters to tune for DQN are: {Ftrain,

�, lr, C, B, Nwarmup, Nanneal}, and their reasonable values are listed in Table 1.

Table 1: RL/SO hyperparameters and their values or tuning range

Parameter Method(s) Range

� DQN/PPO Fixed to 0.99
B DQN/PPO 2n, n = 2, ...,12
lr DQN/PPO 10−5 − 10−3
Ftrain DQN 1-16
C DQN 100-10000
Nwarmup DQN 100-8000
Nanneal DQN [0.1-0.6] × Total TS
✏init, ✏end DQN Fixed to 1.0, 0.02
↵,�0 DQN Fixed to 0.6, 0.4
Ftrain PPO 400-140000 (N=20 cores)
� PPO 0.9-1.0
CLIP PPO 0.1-0.3
V Fcoef PPO 0.5-1.0
ENTcoef PPO 0-0.03
optepochs PPO 3-30
� GA/SA 0.005-0.2
Npop GA 20-80
CX GA 0.3-0.9
MUT GA 0.025-0.4
Tmax SA 1000-150000
Tmin SA Fixed to 1
Cooling SA Fast, Boltzmann, Cauchy, Eqs.(10)-(12)

Proximal policy optimisation (PPO) belongs to the policy gradient (PG) family. PG family has been developed215

to preserve simplicity in RL implementation and less hyperparameter sensitivity than the Q-learning family. PG

aims to train a policy that directly maps states to appropriate actions without an explicit Q function, by optimising

the following loss function

L
PG(✓) = Et[log ⇡✓(at�st)At], (6)

where Et is the expectation over a batch of transitions, ⇡ is the policy to be optimised which has weights ✓. The

policy ⇡ predicts action a given state s at time step t. The loss term to be optimised is embedded in At, the

advantage estimate, which is controlled by � (the discount factor) and � (the bias-variance tradeo↵ parameter),

see [44] for more details. For a special case when � = 1, At can be written as [44]

At = ∞�
k=0

�
k
rt+k

�����������������������������������������
Discounted Reward

− V (st),����������������
Baseline (or VF) Estimate of Discounted Reward

(7)

where r is the reward function, � is the discount factor, and V is the baseline or value function (VF) estimate of

the discounted reward. The advantage function estimates how much better the action took based on the baseline220

expectation of what would normally happen in this state, or in other words, it quantifies whether the action the

agent took is better than expected (At > 0) or worse (At < 0) than the baseline estimate. Another benefit of

10
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using the advantage estimate is that it helps inferring the change in V F without the need to explicitly calculating

the real V F value. After vanilla PG, several enhancements have been conducted to improve PG for continuous

monitoring and control, which we include here for brevity: deep deterministic policy gradient [45], Trust-Region225

Policy Optimisation [46], and finally reaching to PPO [23]. The PPO algorithm performs two major steps. In the

first step, transitions (i.e., a sequence of states, rewards, and actions) are gathered based on several interactions

of an initial (old) policy with the environment. The length of time during which transitions are collected before

update is Ftrain = NT , which is the multiplication of number of parallel actors (i.e., N cores) times the time horizon

of each actor, T in TS. For fixed N cores, Ftrain or T is tuned for better performance. In the second step, the230

policy is updated by optimising the neural network model, i.e., also known as the “surrogate”. Likewise DQN, the

second step of PPO is the deep learning part, which involves running gradient descent over the surrogate objective

(LPPO) with learning rate lr, mini-batch of size B, and for optepochs epochs. Notice that optepochs here is used

to refer to the supervised learning epoch, which marks a complete forward and backward pass through a static

dataset, in this case, a batch of transitions collected over a time horizon. This epoch definition is di↵erent than235

our definition of RL epoch in section 3.2. By defining the probability ratio, rt(✓) = ⇡✓(at�st)
⇡✓old(at �st) , where ✓old are the

policy parameters before the update, the surrogate loss/objective function for the clipped PPO (i.e., LCLIP ) can

be written as [23]

L
CLIP (✓) = Et[min( rt(✓)At�������������������������

Modified PG Objective

, clip(rt(✓),1 −CLIP,1 +CLIP )At)����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
Clipped Objective

], (8)

where CLIP is the clip range. The first term in the min function is the modified PG objective after including

the trust-region [46], while the second term modifies the objective by clipping the probability ratio to remove the

incentive for moving rt outside of the interval [1 - CLIP , 1 + CLIP ]. Two final terms are added to PPO [23] to

ensure more stable training. The two terms come from the fact that since we are using a neural network architecture

that shares parameters between the policy and the value function (which is embedded in the advantage estimate

At), a loss function (LV F

t
) should be used that combines the policy surrogate error and the value function (VF)

error terms. This e↵ect is controlled by V Fcoef . To augment this e↵ect, an additional entropy term (S[⇡✓]), acting
as a regularizer is incorporated, which is controlled by ENTcoef . The entropy term ensures su�cient exploration

by preventing premature convergence of a “single” action probability to dominate the policy. By combining the

three terms, the final PPO objective can be written as follows [23]

L
PPO(✓) = Et[ LCLIP

t
(✓)�������������������������������������������

Clipping Term

−V Fcoef ⋅LV F

t
(✓)���������������������������������������������������������������������������������������������

Value Function Loss

+ENTcoef ⋅ S[⇡✓](st)].���������������������������������������������������������������������������������������������������������������������������������������
Entropy Term

(9)

According to the previous descriptions, PPO hyperparameters to be tuned are: {Ftrain or T , �, �, CLIP ,

V Fcoef , ENTcoef , lr, B, optepochs}, and their reasonable values are listed in Table 1. Lastly, it is worth highlighting240

some major di↵erences between DQN and PPO. During training, DQN updates the parameters/weights of the Q-

function, which acts as a middleman to map states to actions, while PPO updates the policy ⇡ directly, that maps

states to actions without Q-function in between. In addition, DQN is observed as sample e�cient due to the

11
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replay memory and the frequent training F
DQN

train
<< FPPO

train
. Although PPO is observed as sample ine�cient since it

discards previous experiences after updating the surrogate every Ftrain (i.e., no replay memory), this sacrifice allows245

simpler implementation and faster training, facilitates hyperparameter tuning, and eases parallel calculations. The

PPO algorithm used in this work is shown in Algorithm 2.

Algorithm 2 Proximal Policy Optimisation

1: •Set hyperparameters: �, �, CLIP , V Fcoef , ENTcoef , lr, B, optepochs
2: •Initialize policy ⇡✓old with random weights
3: •Initialize rbest=−∞
4: for Epoch i = 1 to EPOCH do
5: for Actor j = 1 to N do
6: •Run policy ⇡✓old in the environment for time horizon T
7: •Compute rewards and advantage estimates A1, ..., AT

8: •Optimise surrogate LPPO(✓), Eq.(9), with respect to ✓, with optepochs, lr, and mini-batch B ≤ NT
9: •Set ✓old = ✓

10: •Calculate mean reward r̄i for the current epoch
11: if r̄i > rbest then
12: •Save surrogate for the current epoch
13: •Set rbest = r̄i

3.4. Stochastic Optimisation (SO)

SO in this work is used to refer to GA and SA, which act as baselines to PPO and DQN. GA [47] is inspired by

the theory of natural evolution, where the fittest individuals are selected to produce o↵spring of the next generation.250

GA consists of five major phases: (1) generation of initial population with size Npop, (2) fitness evaluation, (3)

crossover, (4) mutation, and (5) selection. The initial population is a set of possible problem solutions, generated

randomly from the search space, while the fitness function is the reward function described before for RL. The

crossover operation selects two random individuals for mating with probability CX. In two-point crossover, two

points are selected randomly from the parent genes. The genes between the two points are swapped between the255

parents, resulting in two o↵spring, each carrying genetic information from the parents. After new o↵spring are

formed, some of the individuals may be selected for mutation with a small probability MUT . In combinatorial

optimisation, the genes of the selected individual are mutated with probability � with an integer uniformly drawn

between the lower and upper bounds of each gene, where integers in this work are used to encode the enrichment/fuel

types. The GA hyperparameters to tune are: {Npop, MUT , CX, �}, and their reasonable values are listed in Table260

1.

SA [48] is inspired from the concept of annealing in physics to reduce defects in crystals through heating followed

by progressive and controlled cooling. In optimisation, SA is a combination of high climbing and pure random-

walk to help us find an optimum solution. SA consists of five main steps: (1) generate a candidate solution, (2)

evaluate its fitness, (3) generate a random neighbor solution and calculate its fitness, (4) compare the old and new

fitness evaluations (i.e., �E increment), if better continue with the new solution, if worse, accept the old solution

with probability ↵ = exp−�E�T , (5) repeat steps 3-4 until convergence. Here temperature T refers to the cooling

temperature which is annealed between Tmax and Tmin over the annealing period of length Nsteps. In this work,

three commonly used temperature annealing schedules are considered when tuning SA, namely, fast, Boltzmann,

12
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and Cauchy, described respectively as follows

TFast = Tmax ⋅ exp�−log(Tmax�Tmin)k
Nsteps

�, (10)

TBoltzmann = Tmax

log(k + 1) , (11)

TCauchy = Tmax

k + 1 , (12)

where k is the current annealing step, which builds up from 1 to Nsteps. Two modes of random-walk are used

for SA. Dual swap randomly picks two attributes from the input individual and perturbs them between the lower

and upper bounds of the corresponding attributes. The full swap is consistent with GA mutation, where all input

attributes are subjected to swap with a small probability �, where the selected attributes are replaced with an265

integer uniformly drawn between their lower and upper bounds. The SA hyperparameters to tune are: {�, Tmax,

Cooling}, and their reasonable values are listed in Table 1.

3.5. Coding and Implementation

For this work, stable-baselines-2.10.0 [49] is used here for DQN and PPO implementation. DEAP is an evo-

lutionary computation framework providing e�cient data structures for testing and constructing variety of SO270

algorithms. DEAP-1.3.0 [50] is used here for GA implementation. For SA, we used our own implementation. All

algorithms, including our algorithmic modifications to match the methodology described in sections 3.2-3.4, are

housed under an automated system. The user provides a configuration file that has all algorithms’ hyperparame-

ters as well as a physics-based environment following the structure described in section 3.2. An optimiser class is

initialized based on the selected algorithms to use for optimisation, solving the problem in parallel mode.275

Grid search is adopted in this work to tune the hyperparameters of the four investigated algorithms. Grid

search has the advantages of easier implementation and parallelization and it is recommended when the analyst is

aware of certain range to use for hyperparameters. Each hyperparameter is discretized into k nodes based on its

sensitivity, where finer nodes are used for the sensitive parameters. All possible combinations of hyperparameters

are evaluated and the best combination is selected for further analysis. Lastly, it is worth mentioning that we have280

used a workstation with 2 nodes (useful for CASMO-4), 8 cores each (a total of 32 threads), 128 GB RAM, and

NVIDIA Quadro 4000 graphics card (useful for deep learning) to perform most of the calculations in this work.

4. Case Study 1: BWR 6x6 Fuel Assembly

The first case study forms a 6x6 BWR assembly with a total of 36 rods. The environment setup and reward

shaping are described in the first subsection, while the results are presented and discussed in the second subsection.285

4.1. Problem Setup

The assembly geometry is sketched in Figure 1(a), where the numbered rods on and below the diagonal line

are included in the optimisation process. The exact number of possible permutations (i.e., full size of the search

13
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space) can be estimated as 221 = 2,097,152. All these permutations were evaluated beforehand with the CASMO-4

code. Therefore, beside optimisation, this design serves as a proof-of-concept, as all methods are benchmarked

by their ability to find feasible solutions and their closeness to the known global optima. Following the weighted

scalarization in Eq.(1), the multi-objective function to be minimized can be expressed as

min�x F (�x) = �1.25 − k∞
1.25

� +wp�1.35 − PPF

1.35
� + �2.3 −E

2.3
�, (13)

where wp = 1 when PPF > 1.35 and wp = 0 otherwise. The reason is that PPF is perceived as a threshold safety

parameter to be maintained below a specific value (e.g., 1.35). Once this condition is satisfied, optimising PPF is

no longer needed. Notice that this objective function is uniform as it normalizes all objectives to their constraints,

and gives them equal weights. This is to reduce the bias that would come from well-engineered objective functions290

that rely on physical heuristics, which may overestimate the performance of RL/SO algorithms. The reward to be

maximised for all RL/SO methods is nothing but the reciprocal of F (x), i.e., r(x) = 1�F (x).
The action space has a size of two: 1.87% and 2.53%, which are UO2 enrichment. The state space is an array

of size 21 × 2. The first column contains the current enrichment of each rod, while the second column is a vector of

zeros, except 1 in the entry pointing to the next rod position to be visited. The RL game strategy for this problem295

can be summarised as follows:

1. Each episode starts with same initial pattern with fixed enrichment (1.5%) in all rods, which is di↵erent than

the two possible fuel types (1.87% and 2.53%).

2. The agent randomly visits a rod location and takes an action using the step function defined in section 3.2.

3. Step 2 is repeated until all 21 rod locations are visited, if they do, CASMO-4 is activated and the reward is300

calculated using Eq.(13). Otherwise, the reward is zero.

4. If the new pattern has better reward than the previous (or initial) pattern, the new pattern is used as initial

for the next round.

5. Steps 2-4 are repeated until 84 TS (4 rounds) are completed, which mark the end of episode. The best pattern

found from the 4 patterns is reported for that episode.305

6. Steps 1-5 are repeated until all training episodes or TS are completed.

Step 5 is equivalent to giving the player multiple chances to play the game (i.e., game lives), where here we

give the agent four trials to find a good pattern before we end the episode. Notice that the neural network will

be trained based on all time steps and patterns found, this step is only for logging purposes, as we noticed less

uncertainty in RL predictions compared when terminating the episode early after 1 round (i.e., 21 TS). Therefore,310

each RL episode in this problem has a length of 84 TS and involves 4 C4C. The neural network structure for RL has

a fixed depth, namely, 2 layers and 64 nodes per layer. For SO, the “fit” function handles the training for GA/SA,

where the size of the input vector (�x) for this problem is 21, and each episode involves 1 C4C. The individual or

input vector has the fuel type in each of the 21 rod locations. The individual is perturbed in each iteration through

random-walk in SA and crossover/mutation in GA. Compared to RL, where the perturbation is local by changing315

the assembly one-at-a-time with C4C every 21 TS, the SO perturbation is global, where C4C is used directly after.
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To finalize the setup, a total of 252000 TS are executed for RL, which correspond to 252000/84=3000 episodes.

Every 30 episodes, which involve 120 C4Cs, are grouped into 1 epoch. Therefore, a total of 100 training epochs

are analyzed for RL. In contrast, for SO, since there is no TS, every 120 episodes (or C4C) are treated as 1 epoch.

As indicated in the last row of Table 2, the current setup ensures all algorithms have equal amount of interactions320

with CASMO-4 regardless of their type.

4.2. Results and Discussion

The results of brute-force search demonstrate that there are 59 global solutions with rewards equal to 287.5.

The global solutions exactly meet the constraints, k∞ = 1.25000, PPF < 1.35, and E = 2.292% (this is the closest to

2.3% given the two discrete possibilities of enrichment). The reason for having multiple global solutions originates325

from the threshold condition imposed on PPF (< 1.35). Now, due to the inherent uncertainty in CASMO-4 (e.g.,

model-form, nuclear data uncertainty), like any other physical model, we decided to assume a ±0.0002 uncertainty

over the k∞ constraint, and use that margin to filter a set of “feasible” patterns. Consequently, in the subsequent

discussions of this section, any pattern that has PPF < 1.35, E = 2.292, and k∞ ∈ [1.24080,1.25020] will be
considered a feasible pattern. The reward lower bound for these feasible patterns is 274.85, which is referred to330

as the desired reward.

The hyperparameter tuning procedure is applied four times for the four algorithms in this case study. Since

grid search is adopted, fixed grids are used for the hyperparameters without random sampling. A summary of the

optimised hyperparameters is listed in Table 2 for all algorithms, as detailed results cannot be presented due to

their voluminous size. Clearly, the number of RL hyperparameters is about twice as SO hyperparameters. For this335

specific problem, we noticed that DQN and PPO are more sensitive to hyperparameters compared to GA and SA.

For instance, for GA, we noticed less sensitivity to changes in �, CX, and MUT . On the other hand, DQN shows

large sensitivity to Nanneal, C, B, and Ftrain, which all have wide range. Although PPO shows also sensitivity to

multiple parameters, namely, Ftrain, �, CLIP , and ENTcoef , the last three parameters have narrow range, and

so easier to tune. Overall in this case study, we noticed that PPO is easier to tune than DQN, and both are more340

di�cult to tune than GA and SA.

Table 2: Optimum training hyperparameters for all methods for the BWR 6x6 assembly

DQN PPO GA SA

Item Value Item Value Item Value Item Value

Ftrain (TS) 4 Ftrain (TS) 2100 Ngen 200 Nsteps 12000
� 0.99 � 0.99 Npop 60 Swap Mode Dual
lr 0.0005 lr 0.00025 � 0.1 Cooling Cauchy
✏init, ✏end 1, 0.02 ENTcoef 0 CX 0.4 Tmin 1
Nanneal (TS) 88200 V Fcoef 0.5 MUT 0.1 Tmax 150000
C (TS) 1000 � 1 C4C 12000 C4C 12000
Nwarmup (TS) 4200 B 4
B 32 optepochs 15
↵ 0.6 CLIP 0.3
�0 0.4 Total TS 252000
Total TS 252000 Episodes 3000
Episodes 3000 Epochs 100
Epochs 100 C4C 12000
C4C 12000
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Figure 2: Reward convergence and statistical plots for the BWR 6x6 assembly: (a) PPO (1 epoch=30 episodes=120 C4C), (b) DQN
(1 epoch=30 episodes=120 C4C), (c) GA (1 epoch=120 C4C), and (d) SA (1 epoch=120 C4C)

Based on the hyperparameters in Table 2, reward statistics with number of epochs for all algorithms are shown

in Figure 2 along with the desired reward as reference. For RL, each epoch consists of 30 episodes and 120

C4C, while for SO, it consists of 1 episode and 120 C4C. At the beginning of training, the PPO agent collects

initial samples to improve the knowledge-based system (KBS) performance, so this period is characterized by large345

uncertainty. After about 60 epochs, the PPO agent collected su�cient samples to leverage the mean reward and

make the KBS less stochastic. For DQN, similar behavior is observed, earlier epochs are characterized by high

epsilon values (i.e., ✏init), which involve taking random actions. This results in the large uncertainty in the reward

early on. Once ✏ decreases to ✏end (after Nanneal ∼ 35 epochs), the DQN agent prioritizes its main experience. The

reward momentarily experiences a sharp decline after 35 epochs, followed by a consistent increase to converge to350

the desired reward after about 50 epochs. Both DQN and PPO are able to find many feasible patterns over the

training period as can be inferred from the maximum reward per epoch.

GA converges very quickly compared to other methods, but seems to be less exploratory as the mean, max,

and standard deviation of the reward remain somehow invariant over a large number of epochs. This implies that

GA, with the selected hyperparameters, is more prone to hang in a local optima before escaping it to search into355

another region. This may be attributed to the relatively small MUT probability that restricts its exploration,

however, using too large mutation rates are known to destruct the population and likely to lead to divergence.

The opposite behaviour is seen for SA, which is much more exploratory than all other methods with our selected
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hyperparameters, as can be told from the significant reward standard deviation and the large number of feasible

patterns discovered (i.e., max reward per epoch). On the other hand, SA seems to converge slowly, and also unable360

to raise the mean reward to a satisfactory limit. Lastly, Figure 3 shows convergence plot of the optimised objectives

(k∞, E, PPF ) for PPO. The PPO case is presented here for demonstration. Since other methods do not change

the conclusion, they are not presented for brevity. Clearly, all objectives seem to converge in a harmonious manner

shortly after 60 epochs, as can be observed from the strong agreement between each objective’s max, min, and

mean values as well as the negligible standard deviation when approaching the end of the training period.365

Figure 3: PPO’s objective plots of (a) k∞ (optimised to 1.25000), (b) average enrichment E (optimised to 2.3%), and (c) PPF
(maintained below 1.35) with number of training epochs for the BWR 6x6 assembly (1 epoch=30 episodes=120 C4C)

Figure 4: Sample plots of the best BWR 6x6 assembly configurations found by two di↵erent methods: (a) DQN (b) SA. Numbers in
black represent UO2 rods and their UO2 enrichment

The summary of this case study is presented in Figure 4 and Table 3. Figure 4 illustrates two samples of the

best patterns found by two selected methods during the optimisation search, and both are global optimum with

reward of 287.5. The best patterns shown have low enrichment (1.87%) at the corners, meaning that RL is able to

learn our physics heuristics on reducing the assembly PPF by favoring low enrichment at the corners, which helps

reducing neutron leakage at the boundaries and improving overall performance. Table 3, which compares between370

methods in finding feasible patterns, reinforces previous findings. GA is able to find only 7 feasible patterns, but

with very high e�ciency (⌘) to find the first one. On the other hand, SA explores the space well by finding 178
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feasible patterns even though it seems to be the less e�cient among all. DQN and PPO are bounded by GA

and SA in terms of the number of feasible patterns found as well as their e�ciency needed during training. In

addition, many studies prefer to compare RL performance after training by using the trained KBS for predictions375

(i.e., testing phase), since the training process is needed once. This comparison is given in the fourth column of

Table 3. Obviously, if the trained KBS is used for optimisation, DQN and PPO can achieve a superior e�ciency

compared to SO algorithms in discovering the first feasible pattern. The KBS is able to consistently find a feasible

pattern after 1 episode, which is equivalent to 4 C4C, and this should be expected from the converged reward

shown before in Figure 2.380

Table 3: Number of “distinguished” feasible patterns found for the BWR 6x6 assembly by di↵erent methods

Method Number of
Feasible Patterns

E�ciency ⌘
(Training)

E�ciency ⌘
(Testing)

DQN 27 (2 Global) 93.3% 99.9%
PPO 63 (2 Global) 91.6% 99.9%
GA 7 (1 Global) 98.6% 98.6%
SA 178 (3 Global) 90.8% 90.8%

Based on the observations of this case study and our approach to tune algorithm hyperparameters, key di↵erences

can be highlighted between the four algorithms in terms of KBS ability, exploratory nature, hyperparameter

sensitivity, computational cost, and convergence. The next case study features a more complex problem that also

represents a commercial design, where RL performance will be assessed.

5. Case Study 2: BWR 10x10 Fuel Assembly385

In this section, the optimisation strategy is described first, which includes detailed reward/fitness shaping. Next,

RL and SO performances in optimising the BWR 10x10 assembly are evaluated and discussed.

5.1. Problem Setup

The assembly geometry is sketched in Figure 1(b), where the numbered rods on and below the diagonal line

are included in the optimisation process. The application of same problem setup as Case study 1 did not result in390

satisfactory results as the RL agent struggled to find feasible patterns, which was also the case for SO. Therefore,

design heuristics based on expert input such as using low enrichment on assembly boundaries and allowing GAD

rods only in the interior assembly rods, are used to restrict the design search space. Therefore, we utilize some of

these heuristics here, which will also help reducing the dimensionality of the problem:

1. Heuristic 1: In Figure 1(b), the corner rods: 1, 5, and 40 have identical UO2 enrichment with the following395

possibilities: 1.6%, 2.0%, 2.4%, 2.8%, and 3.2%. Corner rods usually have low UO2 enrichment to reduce

neutron leakage at the boundaries.

2. Heuristic 2: In Figure 1(b), the edged rods: 2, 4, and 39 neighboring the corner rods have identical UO2

enrichment with the following possibilities: 2.8%, 3.2%, 3.6%, 4.0%, 4.4%, and 4.95%.

3. Heuristic 3: In Figure 1(b), the remaining edged rods: 3 and 21 have identical UO2 enrichment with the400

following possibilities: 3.6%, 4.0%, 4.4%, and 4.95%.
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4. Heuristic 4: In Figure 1(b), the interior rods between 6-38 except 21 can have both UO2 and GAD rods

and are not necessarily identical. The UO2 possibilities are: 3.6%, 4.0%, 4.4%, and 4.95%, while the GAD

possibilities are: 4.4% + 7% GAD, 4.95% + 7% GAD, 4.4% + 8% GAD, and 4.95% + 8% GAD.

Considering Heuristics 1-3, the exact number of combinations (outer frames) is 5 × 6 × 4 = 120 outer frames.405

For each frame, there is a total of 832 interior combinations based on Heuristic 4, leaving us with a total of

120×832 ≈ 1031 possible patterns. Even after applying the above heuristics, problem dimensionality is still too high

to find a global solution by brute-force. However, in most engineering applications, the designers are looking for a

set of candidate solutions that meet certain constraints. In our case, we assume the following:

1. Constraint set 1 (CASMO-4 independent):

E ∈ [4.25%,4.36%], NGAD ∈ [16,18]. (14)

2. Constraint set 2 (CASMO-4 dependent):

k
max∞ ≤ 1.11000, PPF < c, (15)

where c equals to 1.6 or 1.4. There are two primary motivations behind picking two constraints on PPF.410

First, it can provide more insights on relative performance of di↵erent tested algorithms since the optimization

performance is problem specific. Second, having two constraints on PPF o↵ers a compromising range between

safety and economics. Assembly patterns whose PPF < 1.6 are expected to achieve higher CL than the

patterns whose PPF < 1.4.
3. Objective (CASMO-4 dependent):

max�x F (�x) = CL. (16)

The previous constraints are left up to the analyst to decide, where our choices here are based on various 10x10415

designs available in the literature, including the one in Figure 1(b).

Our optimisation strategy is a two-step process: the KBS training step and the optimisation step. In the first

step, a KBS trained by RL is used to satisfy constraint set 1, which does not require C4C. In the second step, after

meeting constraint set 1, all methods are trained to meet the constraint set 2 and maximize CL, which require C4C.

The pre-trained KBS is re-loaded and used directly for optimisation by continuing RL training under a di↵erent420

objective function. Each C4C for the 10x10 assembly takes about 1-1.5 minutes compared to 1-2 seconds for the

6x6 assembly, which is significantly larger.

Similar to Case Study 1, the agent randomly visits one position-at-a-time, picks a valid action, and moves to

the next position. However, a major di↵erence should be highlighted. Since the outer frames can be counted (i.e.,

120 frames), they can be included explicitly without a need for random-walk to visit them. In other words, the425

positions 1, 2, 3, 4, 5, 21, 39, and 40 in Figure 1(b) are used as a fixed frame to the assembly based on their possible

fuel types (see Heuristics 1-3). The agent starts with the first frame, visits the remaining 32 interior locations

according to Heuristic 4, evaluate the pattern according to the rules below, and then moves to the next frame. This
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process is repeated for all 120 frames, and this marks the end of one episode. Therefore, each episode consists of

120 × 32 = 3840 TS. This setup ensures the agent passes through all possible outer frames in every episode rather430

than randomly sampling them. Now, lets shape the reward function in form of game rules that the agent is going

to learn, which are similar to the rules that nuclear engineers follow in practice:

1. Rule 1 (Excessive GAD actions): This rule penalizes the agent for excessively taking GAD actions during

training (e.g., 4.4% + 7% GAD). This rule helps the agent to understand early on that large number of

GAD rods is undesirable from physics perspective since they cause large power suppression by overly killing

neutrons. If NGAD > 25 and the agent attempts to take a GAD action, the agent is penalized with -1 reward,

and the GAD action is replaced by a random UO2 action (e.g., 3.6%, 4.0%, 4.4%, 4.95%)

V1 = TS�
t=11{NGAD > 25 ∩ at ∈ Gset}, (17)

where 1 is the indicator function, at is the action taken at time step t, and Gset = {4.4% + 7% GAD, 4.95%

+ 7% GAD, 4.4% + 8% GAD, 4.95% + 8% GAD} is the set of possible GAD actions.

2. Rule 2 (NGAD control): This rule asks the agent to learn how to optimise NGAD between lower/upper bounds

according to constraint set 1 in Eq.(14). Violation of Rule 2 is quantified by relative di↵erence

V2 = w
�����������
NGAD −Bound

Bound

�����������%, (18)

where Bound can be either 16 or 18 depending on NGAD value and w is set to 1 for this rule.435

3. Rule 3 (GAD positioning): This rule deals with the position of GAD rods, where two GAD rods are not

allowed to sit next to each other either vertically or horizontally, diagonally is allowed. In addition, for the

two rod positions 26 and 29, which neighbor the large water rods, GAD rods are not allowed. See Figure

1(b) for a sample of how GAD rods are positioned. From physics perspective, having multiple GAD rods

next to each other causes large power suppression, which is reflected in having larger power production from

the neighboring UO2 rods to match the total assembly power, leading to a large and undesirable PPF, see

Eq.(15). For each assembly pattern, number of GAD position violations (Nviolate) are counted and multiplied

by a factor of 10 to preserve a comparable numerical scale with other rules

V3 = 10 ∗Nviolate. (19)

4. Rule 4: This rule asks the agent to learn how to optimise E between lower/upper bounds according to

constraint set 1 in Eq.(14). Violation of Rule 4 (V4) is quantified similar to V2 by relative di↵erence where

NGAD, Bound, and w in Eq. (18) are replaced by E, 4.25%/4.36%, and 50, respectively. Using larger w for

V4 is done to preserve comparable numerical scale as other rules.

5. Total Reward: Reward is the sum of the 4 rules’ violation. A negative sign is used to convert violation to

reward

Reward1 = −(V1 + V2 + V3 + V4 + p), (20)
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where p is a penalty factor between [0,400] to handle a possible caveat that could result from Rule 2. The p440

value is determined on-the-fly based on V2 value, which proved to improve the learning stability.

The term candidate pattern is used to refer to a pattern that satisfies constraint set 1 in Eq.(14). For the

KBS step, a total of 6,912,000 TS are executed for RL, which correspond to 6912000

120×32 = 1800 episodes. Every 30

episodes are grouped into 1 epoch, and so a total of 60 training epochs are analyzed for RL. In contrast, for SO,

since there is no TS, every 3600 episodes (or C4C) are treated as 1 epoch. The individual for SO has a size of 51,445

each corresponds to the fuel type in each rod location. The individual is perturbed globally using random-walk in

SA and mutation/crossover in GA. As indicated in the last row of Table 4, the current setup ensures all algorithms

have equal amount of interactions with CASMO-4 regardless of their type.

After mastering the game by RL, a KBS is generated which is capable of producing candidate patterns frequently.

The KBS is used for step 2, the optimisation step, where if a candidate pattern is identified during search, it is

evaluated by CASMO-4 according to the following reward (i.e., maximizing CL):

Reward2 = CL − pk∞ − pppf , (21)

where pk∞ and pppf are set to zero if constraint set 2 in Eq.(15) is met. Otherwise, the two penalties are set to

relative di↵erence as in Eq.(18) where w = 1, and NGAD and Bound are replaced by their k∞�PPF correspondences.450

Similarly for the optimisation step, the term feasible pattern is used to refer to a pattern that satisfies constraint

set 1 and set 2 in Eqs.(14)-(15), where the objective is to maximize the number of feasible patterns discovered

and as a result CL. The epoch setup is similar to the KBS step, but with less number of environment calls due to

computational expense, see the items with asterisk in Table 4. For both steps, KBS and optimisation, the neural

network structure has a fixed depth, namely, 2 layers and 64 nodes per layer.455

In summary, for RL, the agent is firstly trained to match constraint set 1, leading to a trained model/KBS.

Then the model is re-loaded and optimisation is continued toward meeting constraint set 2 and maximizing CL. On

the other hand, for SO, since no model is trained, GA and SA have to match constraints set 1, set 2, and maximize

CL simultaneously.

Table 4: Optimum training hyperparameters for all methods for the BWR 10x10 assembly

PPO GA SA

Item Value Item Value Item Value

Ftrain (TS) 40000 Ngen 4320/720* Nsteps 216000/36000*
� 0.99 Npop 50 Swap Mode Full
lr 0.00025 � 0.025 Cooling Cauchy
ENTcoef 0 CX 0.8 � 0.01
V Fcoef 1 MUT 0.25 Tmin 1
� 0.9 C4C 216000/36000* Tmax 10000
B 4 C4C 216000/36000*
optepochs 15
CLIP 0.2
Total TS 6,912,000/1,152,000*
Episodes 1800/300*
Epochs 60/30*
C4C 216000/36000*

*Items used in the optimisation step, section 5.3.
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5.2. Step 1: KBS Results460

For conciseness of the results, we restricted our RL training in this case study to PPO since DQN demonstrated

similar performance. Therefore, the term KBS is directly referring to a PPO agent in this case study. The

hyperparameters of PPO, GA, and SA are tuned with grid search and listed in Table 4. As mentioned before,

for the KBS step (step 1), matching constraint set 1 does not need CASMO-4, so PPO training does not take

significant time. The training results are plotted in Figure 5. The agent is able to learn Rule 1 very quickly as465

V1 takes few epochs to converge to zero despite attempting about 100 invalid GAD actions in the first epoch. For

Rule 2, we can notice that V2 increases in earlier epochs and the total reward as well. Here, where the penalty p

interrupts and corrects the behavior, causing V2 to drop significantly after the third epoch, and to converge after

about 30 epochs. V3 and V4 follow similar trends with sharp decrease early on, followed by slow exponential decay,

where Rule 4 seems to be the most di�cult rule to learn as about 40 epochs are needed to converge. This plot470

shows how the KBS improved itself over time. The first 10 epochs are characterized by large amount of mistakes as

can be inferred from the small reward in Figure 5(a). Once the agent masters the game well, a surge in candidate

patterns appears, reaching as many as 90 di↵erent candidate patterns per episode, which is set as the desired limit.

Consequently, the KBS can generate on average a total of 90×30 = 2700 candidate patterns over 1 epoch, assuming

each epoch has 30 episodes.475

Figure 5: KBS/PPO’s convergence plots for (a) total reward, (b)-(e) reward components (game rules), and (f) number of candidate
patterns. Each epoch consists of 30 episodes

Comparison of PPO and GA/SA in terms of their ability to find candidate patterns is shown in Table 5. To
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ensure one-to-one comparison between the three methods, PPO, GA, and SA are subjected to same amount of

interactions with the environment as indicated in the last row of Table 4. In addition, the constraints, rules, and

reward shaping described before are preserved across the methods. Compared to Case Study 1, larger CX and

MUT probabilities for GA seem to improve the exploratory behavior of GA, while retaining stable performance.480

For SA, we adopt the full swap approach with small probability of � = 0.01 for each rod position. The results in

Table 5 clearly show that RL performance is superior to GA/SA, generating more than twice of candidate patterns

as GA/SA. This clearly implies that the gradient-based nature of RL and its ability to retain expert knowledge in

form of game rules (V1-V4) significantly helped in exploring the search space better than SO. The agent was able to

build an e�cient model to escape most of the infeasible regions, leading to more comprehensive and e�cient search485

for candidate patterns. It is worth highlighting again that these candidate patterns in Table 5 are not necessarily

feasible (i.e., may not meet constraint set 2). This fact will be confirmed in the next subsection.

Table 5: Number of “distinguished” candidate patterns found for the BWR 10x10 assembly by di↵erent methods after 60 epochs of
training. Based on these results, PPO-based KBS is used for the optimisation step, section 5.3

Method Number of
Candidate Patterns∗

RL (PPO) 80578
GA 35625
SA 31788

*Candidate patterns refer to the pat-
terns that satisfy constraint set 1 in
Eq.(14).

5.3. Step 2: Optimisation Results

The pre-trained KBS model from step 1 is re-loaded and used for optimisation in continual form via PPO based

on the reward of Eq.(21). Hyperparameters for all methods are similar to the ones listed in Table 4, where the490

items marked with asterisk are exclusive for this optimisation section. All algorithms have been exposed to equal

36,000 C4C.

Figure 6: Total number of feasible patterns found by di↵erent methods for the 10x10 optimisation case as a function of epochs (1 epoch
= 1200 C4C). Feasible patterns refer to the patterns that satisfy constraint set 1 and set 2 in Eqs.(14)-(15)

As shown in Eq.(15), we present results for two PPF cases, PPF < 1.6 (less-constrained) and PPF < 1.4. The
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results of the optimisation search for these two cases are shown in Figure 6 and Tables 6-7. Similar to Case Study 1,

two evaluation metrics are used to compare the algorithms in Tables 6-7: (1) number of feasible patterns discovered495

and (2) algorithm e�ciency (⌘). Unlike Table 5 for Case Study 1, the testing e�ciency is not presented in Tables

6-7 for RL, since we started the optimisation step with a well-trained KBS that can already generate candidate

patterns. Since any candidate pattern could become feasible after executing C4C, it is likely to find a feasible

pattern early on in training, which justifies the RL incredible training e�ciency in Tables 6-7.

Clearly in Figure 6(a) and Table 6, RL seems to outperform SO by big margin in terms of number of feasible500

patterns discovered for the PPF < 1.6 case, finding more than 7000 feasible patterns. RL found 4 times more feasible

patterns than GA, and 5 times more than SA. Also, RL provides outstanding e�ciency in reaching the feasible

region with outstanding 99.9% compared to 96% and 90% for SA and GA, respectively. Here, it is worth highlighting

that this e�ciency improvement, even though it sounds small numerically, is significant computationally. RL saved

about 1380 C4Cs compared to SA, which correspond to about 29 hours of serial computational time, assuming 1.25505

minutes on average per C4C. And this e�ciency enhancement is even larger when compared to GA.

Table 6: Number of “distinguished” feasible patterns with PPF < 1.6 found for the BWR 10x10 assembly by di↵erent methods

Method Number of
Feasible Patterns∗

E�ciency ⌘
(Training)

RL (PPO) 7525 99.9%
GA 1752 90.2%
SA 1477 96.0%

*Feasible patterns refer to the patterns that satisfy
constraint set 1 and set 2 in Eqs.(14)-(15) with PPF< 1.6.

Table 7: Number of “distinguished” feasible patterns with PPF < 1.4 found for the BWR 10x10 assembly by di↵erent methods

Method Number of
Feasible Patterns∗

E�ciency ⌘
(Training)

RL (PPO) 67 99.3%
GA 1 9.4%
SA 0 0%

*Feasible patterns refer to the patterns that satisfy
constraint set 1 and set 2 in Eqs.(14)-(15) with PPF< 1.4.

Moving to a more constrained optimisation with PPF < 1.4 in Figure 6(b) and Table 6, we can notice that SO

algorithms really struggle to resolve the search space, with only one feasible pattern found by GA, and nothing by

SA. RL excels for this confined case, finding larger number of feasible patterns with very good e�ciency. Therefore,

we can notice the explicit sensitivity of GA/SA performance in finding candidate/feasible patterns, when moving510

from Table 5 (KBS step) to Table 7 (a constrained optimisation step), which indeed demonstrated the promise of

RL in these types of problems. After all, the practical application of the proposed algorithms is limited by the

computational resources at the user’s disposal, especially the computational time needed by the code to evaluate

each pattern.

For the practical results, we plot two patterns featuring the best (highest CL) in Figure 7 for PPF < 1.6 and515

< 1.4, based on RL search. The final patterns respect the heuristics, game rules, and constraints described before,
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yielding a best CL of 1478 days with PPF < 1.6 and 1462 days with PPF < 1.4. In summary, the implication of

this case study to non-nuclear applications features using RL as a tool to embed expert knowledge by learning how

to match certain rules and constraints of the problem, which in turn leads to a better optimisation search than

random-walk or stochastic optimisation.520

Figure 7: Sample plots of the best BWR 10x10 assembly configurations found for cases with (a) PPF < 1.6 and (b) PPF < 1.4. Numbers
in black represent UO2 rods and their UO2 enrichment. Numbers in blue represent GAD rods, where the upper value represents the
UO2 enrichment and lower value represents the GAD enrichment

6. Closing Remarks

The potential e�ciency gains in nuclear fuel cost encourage fuel designers to solve high dimensional, and

expensive combinatorial optimisation problems. Fuel optimization is still mainly tackled by expert judgement and

classical stochastic optimisation (SO) algorithms. In this work, we propose a reinforcement learning (RL) physics-

based optimisation methodology based on deep RL to improve upon SO performance under a robust and licensed525

nuclear code. The methodology utilizes deep Q learning (DQN) and proximal policy optimisation (PPO), where

genetic algorithm (GA) and simulated annealing (SA) serve as baselines for comparison.

The algorithms are applied first to a small/low-dimensional BWR 6x6 assembly (∼ 2 × 106 combinations). All

algorithms are validated by their ability to find a set of pre-evaluated global solutions from brute-force search.

All algorithms were able to find at least 1 global solution under similar reward shaping and computational cost530

constraints. RL algorithms (PPO/DQN) have large number of hyperparameters and experience hyperparameter

sensitivity. Although hyperparameter sensitivity is a common issue of deep RL, most of the observations found are

still subjective to the problem analyzed and the approach used to tune hyperparameters. On the other hand, RL

algorithms o↵er knowledge-based system (KBS) and good exploratory capabilities to e�ciently explore the search

space. For SO algorithms (GA/SA), GA seems to converge faster than RL, but prone to fall into local optima and535

hence does not explore the space well. SA has good exploratory capability, but its inherent random-walk nature

could slowdown the search. Overall, the results reveal that DQN and PPO performances are bounded by GA and
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SA, leading to a conclusion that SO seems to be adequate to solve this low-dimensional problem. Nevertheless,

when using the pre-trained KBS from PPO and DQN, an outstanding testing e�ciency can be achieved by RL

compared to SO.540

In the second case study, a larger BWR 10x10 assembly, which is more complex, high-dimensional (∼ 1031

combinations), and expensive, is optimised using RL and SO. As the problem complexity grows, it became clear

that expert input based on nuclear engineering principles in setting the rules of the game are critical for a successful

RL strategy. RL using PPO demonstrated superior performance in training a KBS to match certain rules and

constraints such as controlling assembly enrichment and learning how to place GAD rods in appropriate positions.545

RL demonstrated superior performance to SO by exploring the search space better and increasing the algorithm

speed and e�ciency. Overall, RL successfully found large number of competitive assembly patterns for the BWR

10x10 assembly.

While this work clearly demonstrated the value of RL for a simplified BWR 2D lattice optimization, its appli-

cation to more realistic 2D assembly as well as full core optimization for both PWRs and BWRs is currently being550

explored. Particularly, the move from case study 1 to 2 required a di↵erent problem setup to help RL e�ciency.

This means as di↵erent fuel design optimisation problems are tackled, nuclear engineering input and hyperparam-

eter tuning are needed to obtain optimal results. Also, the performance of traditional SO algorithms will change

with new problems. In other words, there are almost never a free-lunch with any optimization technique [51], and

problem-dependent reward shaping is always needed. Furthermore, studies on combining RL and SO techniques555

to better inform each other are worthy of investigation. Lastly, the readers are cautioned on use of black-box

surrogates in place of licensed methodology to accelerate the optimization process without fully capturing and

understanding the resulting uncertainties on the performance.
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