
Auton Robot (2015) 39:347–362
DOI 10.1007/s10514-015-9460-1

Recovering from failure by asking for help

Ross A. Knepper1 · Stefanie Tellex2 · Adrian Li3 · Nicholas Roy4 · Daniela Rus4

Received: 6 December 2014 / Accepted: 2 July 2015 / Published online: 6 August 2015
© Springer Science+Business Media New York 2015

Abstract Robots inevitably fail, often without the abil-
ity to recover autonomously. We demonstrate an approach
for enabling a robot to recover from failures by communi-
cating its need for specific help to a human partner using
natural language. Our approach automatically detects fail-
ures, then generates targeted spoken-language requests for
help such as “Please give me the white table leg that is on the
black table.” Once the human partner has repaired the failure
condition, the system resumes full autonomy. We present a
novel inverse semantics algorithm for generating effective
help requests. In contrast to forward semantic models that
interpret natural language in terms of robot actions and per-
ception, our inverse semantics algorithm generates requests
by emulating the human’s ability to interpret a request using
theGeneralizedGroundingGraph (G3) framework. To assess
the effectiveness of our approach, we present a corpus-
based online evaluation, as well as an end-to-end user study,
demonstrating that our approach increases the effectiveness
of human interventions compared to static requests for help.

Ross A. Knepper and Stefanie Tellex have contributed equally to this
paper.

This is one of several papers published in Autonomous Robots compris-
ing the “Special Issue on Robotics Science and Systems”.

B Ross A. Knepper
rak@cs.cornell.edu

1 Department of Computer Science, Cornell University, Ithaca,
USA

2 Computer Science Department, Brown University,
Providence, USA

3 Department of Engineering, University of Cambridge,
Cambridge, UK

4 Computer Science and Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, Cambridge, USA

Keywords Natural language generation · Failure detec-
tion · Failure handling ·Assembly ·Human–robot interaction

List of Symbols

λ ∈ Λ Set of language variables (words or short phrases)
γ ∈ Γ Set of grounding variables (concepts in the real

world)
φ ∈ Φ Set of correspondence variables
M Environmental context model
a Target symbolic action
γ ∗
a Target action grounding variable

1 Introduction

Robotic capabilities such as robust manipulation, accurate
perception, and fast planning algorithms have led to recent
successes such as robots that can fold laundry (Maitin-
Shepard et al. 2010), cook dinner (Bollini et al. 2012), and
assemble furniture (Knepper et al. 2013). However, when
robots execute these tasks autonomously, failures oftenoccur,
for example failing to pick up an object due to percep-
tual ambiguity or an inaccurate grasp. A key aim of current
research is reducing the incidence of these types of failures,
but eliminating them completely remains an elusive goal.

When failures occur, a human can often intervene to help
a robot recover. If the human is familiar with the robot, its
task, and its common failure modes, then they can provide
this help without an explicit request from the robot. How-
ever, if a person is unfamiliar with the robotic system, they
might not know how to help the robot recover from a failure.
This situationwill occur frequentlywhen robots interact with
untrained users in the home. Moreover, even trained users

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10514-015-9460-1&domain=pdf
http://orcid.org/0000-0003-0462-5502

348 Auton Robot (2015) 39:347–362

Fig. 1 A robot engaged in assembling an IKEA Lack table requests
help using natural language. A vague request such as “Help me” is
challenging for a person to understand. Instead, this paper presents an
approach for generating targeted requests such as “Please hand me the
black table leg that is on the white table”

who are deeply familiar with the robot’s capabilities may
experience problems during times of high cognitive load,
such as a human supervising a large team of robots on a
factory floor.

We propose an alternative approach to recovering from the
inevitable failures which occur when robots execute complex
tasks in real-world environments: when the robot encoun-
ters failure, it verbally requests help from a human partner.
After receiving help, it resumes autonomous task execu-
tion. The contribution of our paper is a family of algorithms
for formulating a pithy natural language request so that a
human without situational awareness can render appropriate
aid.

As a test domain, we focus on a human–robot team assem-
bling IKEA furniture. Consider the example shown in Fig. 1.
The robot is unable to reach the final leg it needs to assem-
ble the black table, and it turns to a human for assistance.
A carefully-worded help request by the robot can make it
easy for the human to give the appropriate aid. The robot
chooses not to say “help me,” even though it is pithy and cor-
rect, because that request has many possible interpretations.
Similarly, “hand me the black table leg” permits four possi-
ble interpretations corresponding to the four black legs. The
robot issues the shortest unambiguous request, “hand me the
black table leg that is on the white table.” Interpreting this
request places a minimal cognitive load on the person, who
is able to quickly render the necessary aid.

Generating natural language requests requires a robot to
map from perceptual aspects of the environment to words,
such that a person will infer the same percepts. Human inter-
pretation of such a request is highly contextual, and the robot
must solve this problem in arbitrary, novel contexts that are
not known at training time. Hard-coded or template-based
methods for generating requests do not take into account the
ability of a person to understand the request, while exist-
ing work in referring expression generation assumes access

to a symbolic representation of the environment, including
ambiguous spatial relations such as “near” or “under” which
may not be directly computed from the robot’s perceptual
system (Krahmer and Deemter 2012).

We propose an algorithm that addresses this problem by
searching for an utterance that maximizes the probability of
a correspondence between the words in the language and the
action the robot desires the human to perform. It takes as input
a symbolic action that the robot would like to perform. The
core of this algorithm is the Generalized Grounding Graph
(G3) (Tellex et al. 2011), a probabilistic model that the robot
employs as a stand-in for a person’s language understanding
faculty. When understanding language, the robot maps from
linguistic symbols to low-level motor actions and perceptual
features that the robot encounters in the environment.

In this paper, we invert thatmodel,mapping from a desired
low-level motor action that the robot would like the human
to execute to a linguistic description. Inverting the model
requires developing a novel algorithm for generating help
requests and adapting the request to the specific environment.
By modeling the probability of a human misinterpreting the
request, the robot is able to generate targeted requests that
humans follow more quickly and accurately compared to
baselines involving either generic requests (e.g. “Help me”)
or template-based non-context-specific requests (e.g. “Hand
me the < part > ”).

We evaluate our approach using a corpus-based experi-
ment with Amazon Mechanical Turk as well as a real-world
user study. The corpus-based approach allows us to effi-
ciently test the performance of different algorithms. The user
study assesses whether we have met our engineering goals in
the context of an end-to-end system. Our evaluation demon-
strates that the inverse semantics language generation system
improves the speed and accuracy of a human’s intervention
when a human–robot team is engaged in a furniture assembly
task and also improves the human’s subjective perception of
their robotic teammates.

This paper contributes the following:

– a framework for language generation by inverse seman-
tics,

– an algorithm implementing inverse semantics that min-
imizes ambiguity by inverting a black-box model of
language understanding, and

– an autonomous assembly system in which robots auto-
matically detect failures and trigger requests for human
help.

This paper builds on a previous version (Tellex et al. 2014)
by adding a more detailed description of the framework for
language inference along with a description of our planning
framework for furniture assembly.

123

Auton Robot (2015) 39:347–362 349

2 Related work

Traditional methods for generating language rely on a dedi-
cated language-generation system that is not integrated with
a language-understanding framework (Jurafsky and Martin
2008; Reiter and Dale 2000). These approaches typically
consist of a sentence planner which computes a symbolic
description of what to say combined with a surface realizer
which converts the symbolic representation into words, but
contain no principled model of how an instruction-follower
would comprehend the instruction (Striegnitz et al. 2011;
Garoufi and Koller 2011; Chen and Mooney 2011; Roy
2002). These models assume access to a formal symbolic
representation of the object to be referenced and its properties
and relations to other options (Krahmer and Deemter 2012).
Our approach differs in that it generates language by invert-
ing a module for language understanding. This inversion is
required to generate physically grounded language about a
particular environment that maps to the robot’s perceptual
data and communicates it to a human partner. Furthermore,
our approach generates references to objects, as well as
actions, unlikemuch previousworkwhich focuses on objects
and sets of objects.

Some previous work has approached the generation prob-
lem by inverting a semantics model. Golland et al. (2010) use
a game-theoretic approach combinedwith a semanticsmodel
to generate referring expressions. Our approach, in contrast,
uses probabilistic grounded semantics, biasing the algorithm
toward shorter sentences unless a longer, more descrip-
tive utterance is unambiguous. Goodman and Stuhlmüller
(2013) describe a rational speech-act theory of language
understanding, where the speaker chooses actions that max-
imize expected global utility. Similarly, recent work has
used Dec-POMDPs to model implicatures and pragmatics
in language-using agents (Vogel et al. 2013a, b) but without
focusing on grounded, situated language as in this paper,
and without implementing an end-to-end robotic system.
Goeddel and Olson (2012) present a model for generating
directions by inverting a model of human wayfinding and
using a particle filter to efficiently evaluate trajectories; a
similar approach could enable our direction inference to run
faster, but they do not apply it to manipulating objects. There
is a deep connection between our models and the notion
of legibility and predictability for grasping and pointing, as
defined by Dragan and Srinivasa (2013), pointing toward a
unified framework for grounded communication using lan-
guage and gesture.

Our approach views the language generation problem as
inverse language understanding; a large body ofwork focuses
on language understanding for robots (Fasola and Mataric
2013;MacMahon et al. 2006;Dzifcak et al. 2009;Kollar et al.
2010; Matuszek et al. 2012). Of these previous approaches,
we chose to invert the G3 framework because it is a prob-

abilistic framework which explicitly models the mapping
between words in language and sensed aspects of the exter-
nal world, so metrics based on entropy may be used to assess
the quality of generated utterances.

Cooperative human–robot activities, including assembly,
have been broadly studied (Wilson 1995; Simmons et al.
2007; Dorais et al. 1998; Fong et al. 2003). These archi-
tectures permit various granularities of human intervention
through a sliding autonomy framework. A failure triggers the
replay of video of the events preceding failure, from which
the human must obtain situational awareness. By contrast,
in our approach the robot diagnoses the failure and lever-
ages natural language to convey to the user exactly how the
problem should be resolved.

3 Assembling furniture

Our assembly system, IkeaBot, comprises a team of KUKA
youBots that collaborate to assemble IKEA furniture, origi-
nally described in Knepper et al. (2013). The robots receive
assembly instructions encoded in a STRIPS-style planning
language called ABPL. A centralized executive takes as
input the symbolic plan and executes each plan step in
sequence. Each symbolic action corresponds to a manipu-
lation or perception action to be performed by one or two
robots. Assembling an IKEA Lack table requires executing
a 48-step plan. If the instructions are not provided, the Ike-
aBot can synthesize a plan derived from only the CAD files
of the parts. All of the steps are autonomously executable
under the right conditions, and the team can assemble the
table in approximately 10 min when no failures occur. Since
perception is not a focus of this paper, we employ a Vicon
motion capture system to track the location of each partici-
pating robot, human and furniture part during the assembly
process. In our experiments, failures occurred at a rate of
roughly one every 2min, mostly due to mechanical problems
such as grasping failures, perceptual issues such as a part not
being visible on Vicon, and planning failures such as a robot
failing to find a path to reach its goal due to obstacles. When
the robots detect a failure, one of the robots requests help
using one of the approaches described in Sect. 5. Figure 2
shows the algorithm used to control the robots and request
help.

3.1 Assembly planning

Symbolic planning problems are specified using a recently-
designed planning language. ABPL (Knepper et al. 2013) is
an object-oriented symbolic planning specification language,
exemplified in Fig. 3. Conceptually similar to OPL (Hertle
(2011)), ABPL describes planning problem data in a man-
ner which respects the logical and intuitive features of the

123

350 Auton Robot (2015) 39:347–362

Fig. 2 An executive algorithm generates robot actions and help
requests

physical environment as a planning space. ABPL enables an
intuitive statement of the problem by logically organizing
concepts using various object-oriented programming (OOP)
paradigms.

ABPL aims to overcome the necessary complexity of
expressing object-oriented relations within first-order logi-
cal systems such as PDDL, the Planning Domain Definition
Language (McDermott et al. 1998). PDDL relies entirely
on a flat, unstructured representation of the objects in the
environment and the relations between them. The burden
of creating structure, such as regions of symbolic symme-
try or commonalities between multiple objects, falls entirely
on the user. While such systems are capable of describing
OOP structures, requiring the user to express each element of
those structures as a set of propositional statements would be
time-consuming and burdensome to the user. ABPL, in con-
trast, allows the user to provide data in a more conventional
object-oriented format. An ABPL problem specification can
be about one-quarter the size of the equivalent PDDL spec-
ification. This simplicity improves readability and ease of
ABPL problem creation, whether manual or automatic.

3.2 Specification language design and structure

ABPL is based on the object-oriented approach to data struc-
ture design, allowing the user to hierarchically organize
objects within the environment. Objects can be assigned
properties that evaluate to either Boolean values or references
to other objects. These values can be changed by the effects

Fig. 3 Excerpt of input file for the symbolic planner, which builds an
upright IKEA Lack table. The full input is 220 lines

of symbolic actions to reflect those actions’ consequent alter-
ations of the environment. Objects themselves can be defined
either at the top level in the global space, or as sub-elements of
other objects. These sub-object relations can be syntactically
referenced in the same way as object-reference properties,
but are semantically different in that their values cannot be
changed after declaration. This fact is meant to convey the
distinction between an object’s sub-objects, which represent
fixed components of that object, and its object-typed prop-
erties, which represent mutable inter-object relations. ABPL
also allows the user to define “types,” which fulfill the role
of object classes. A type can be assigned properties and
sub-objects, which are then replicated in each object that is
declared to be of that type. Types can also be used as action
and goal predicates, for example to restrict a symbolic action
variable to values of a specific type.

An important distinction from other object-oriented sym-
bolic planners is the inclusion of groups. Groups represent
the existence ofmultiple identical instances of a given object.

123

Auton Robot (2015) 39:347–362 351

Fig. 4 Complete symbolic plan to build the IKEA Lack table

For example, Lack tables have four legs, declared simply as
group leg(Leg)[4].

Groups enable the planner to reason efficiently about one
type of symmetry. Because the four legs are identical, they
are interchangeable. Thus any leg can be attached to any
corner of the table, and they can be installed in any sequence.
When referencing a member of the group, it is sufficient to
reference the first member of that group. The planner knows
that this rule extrapolates to all other group members as well.
Subsequently, one may reference the second group member
to indicate any table leg except the one already referenced.

3.3 ABPL implementation for assembly

IkeaBot’s planning module uses the ABPL specification for
its raw input and output data. Figure 4 lists a complete sym-
bolic plan beginning from a completely unassembled start
state. Note that the plan must be computed online because
the systemmust plan fromanyarbitrary state of partial assem-
bly. The resulting plan comes with a guarantee that correctly
executing each specified action in the sequence will result in
a complete and correct assembly.

3.4 Detecting failures

To detect failures, the system compares the expected state
of the world before and after executing each action to the
actual state, as sensed by the perceptual system (line 6 of

Table 1 Summary of common failures and the symbolic groundings
used to form a help request

Failed symbolic condition Symbolic request

Part is not visible to the robot locate_part(robot, part)

Robot is not holding the part give_part(robot, part)

Leg is not aligned with the hole align_with_hole(leg, top, hole)

Leg is not attached to the hole screw_in_leg(leg, top, hole)

Table top is not upside down flip(top)

Legacy software is in infinite loop <not detectable>

Risk of hardware damage <not detectable>

the executive function). We represent the state, q, as a
vector of values for logical predicates. Elements of the state
for the IKEA Lack table include whether the robot is hold-
ing each table leg, whether the table is face-up or face-down,
and whether each leg is attached to the table. In the furniture
assembly domain, we compute the state using the tracked
pose of every rigid body known to the Vicon system, includ-
ing each furniture part, each robot chassis and hand, and each
human. The system recomputes q frequently, since it may
change independently of any deliberate robot action, such as
by human intervention or from an unintended side-effect.

Prior to executing each action, the assembly executive ver-
ifies the action’s preconditions againstq. Likewise, following
each action, the postconditions are verified. Any unsatisfied
condition indicates a failure and triggers the assembly execu-
tive to pause the assembly process and initiate error recovery.
For example, the robot must be grasping a table leg before
screwing it into the hole. If it tries and fails to pick up a leg,
then the post-condition for the “pick up” action will not be
satisfied in q, which indicates a failure.

3.5 Recovery strategy

When a failure occurs, its description takes the form of an
unsatisfied condition. The system then asks the human for
help to address the problem. The robot first computes actions
that, if performed by the human, would resolve the failure
and enable the robotic team to continue assembling the piece
autonomously. The system computes these actions using a
pre-specifiedmodel of physical actions a person could take to
rectify failed preconditions. Remedy requests are expressed
in a simple symbolic language, shown in Table 1. This sym-
bolic request, a, specifies the action that the robot would like
the person to take to help it recover from failures. However
these symbolic forms are not appropriate for speaking to an
untrained user. In Sect. 5, we explore a series of approaches
that take as input the symbolic request for help and generate
a language expression asking a human for assistance. Before
doing so, we provide some backgroundmaterial for perform-
ing semantic inference.

123

352 Auton Robot (2015) 39:347–362

Fig. 5 Generating a grounding graph from natural language input. The
output is a CRF structured to resemble the parse tree. The structure
incorporates a set of correspondence variables, Φ, that cause condi-
tional independence of each term, so that inference may be performed
independently on each

4 Generalized grounding graphs

Our approach to language generation involves the inver-
sion of a model of language understanding. Although any
understanding facility could be used here, we employ Gener-
alized Grounding Graphs, which were described in previous
work (Tellex et al. 2011). We offer a primer on G3 here for
background.

To understand natural language, a robot must be able to
map between the linguistic elements of a command, such as
“Pick up the white leg,” and the corresponding aspects of
the external world. Each constituent phrase in the command
refers to a particular object, place, or action that the robot
should execute in the environment. We refer to the object,
place, path, or event as the grounding for a linguistic con-
stituent. The aimof theG3 framework is to find themost prob-
able groundings γ1 . . . γN given a parsed natural language
command Λ and the robot’s model of the environment, M :

argmax
γ1...γN

p(γ1 . . . γN |Λ, M). (1)

The environment model M consists of the robot’s loca-
tion along with the locations, structure and appearance of
objects and places in the external world. It defines a space
of possible values for the grounding variables γ1 . . . γN . A
robot computes the environment model using sensor input.
An object such as a table leg is represented in the map as a
three-dimensional geometric shape, along with a set of sym-
bolic tags that might be produced by an object classifier,
such as “white leg” or “table.” A place grounding represents
a particular location in the map; it has a zero-length trajec-
tory and no tags. A path grounding consists of a trajectory of
points over time. An event or action grounding consists of the
robot’s trajectory over time as it performs some action (e.g.,

as it picks up a leg). Formally, each γi is a tuple, (g, t, p),
where:

– g is a three-dimensional shape, such as a room, or the
vicinity of an object. It is expressed as a set of points that
define a polygon (x1, y1), . . . , (xN , yN) together with a
height z (e.g., as a vertical prism).

– p ∈ R
T×7 is a sequence of T points. Each point is a pose

for the region, g. It consists of a tuple (τ, x, y, z, roll,
pitch, yaw) representing the location and orientation of
g at time τ (with location interpolated linearly across
time). The combination of the shape, g, and the trajectory,
T , define a three-dimensional region in the environment
corresponding to the object at each time step.

– t is a set of pre-defined textual tags {tag1, . . . , tagM }
that are the output of perceptual classifiers, such as object
recognizers or scene classifiers.

The system infers the type of eachgroundingvariable from
the associated syntactic constituent using a rule-based algo-
rithm: noun phrases map to objects; prepositional phrases
map to places or paths; verb phrases map to events. We
assume that the robot has access to the environment model
whenever it infers groundings for a natural language com-
mand. For brevity, we omit M from future equations in this
section.

Since learning the joint distribution over language and
groundings is intractable, we must factor Eq. 1 into simpler
components. One standard approach is to factor based on cer-
tain independence assumptions, then train models for each
factor. Natural language has a well-known compositional,
hierarchical argument structure (Jackendoff 1983), dividing
a sentence into a parse tree where each node is a linguis-
tic constituent (Akmajian 2010). A promising approach is to
exploit this structure in order to factor the model. The G3

framework takes as input a natural language command and
uses the parse structure of the command to define the random
variables and factors in a graphical model (Fig. 5). Specif-
ically, the system creates random variables and factors for
each constituent in the parse tree:

p(γ1 . . . γN |Λ, M) = 1

Z

∏

m

ψm(λm, γm1 . . . γmk). (2)

The individual factorsψm quantify the correlationbetween
words in the linguistic constituent λm and the groundings
γm1 . . . γmk . The factors should have large values where
words correspond well to groundings and small values oth-
erwise. For example, Fig. 6 shows the graphical model for
the phrase “pick up the table leg.” There are two grounding
variables, one for the verb phrase “pick up” and one for the
noun phrase “the table leg.” Values for these variables range
over events and objects in the environment. There is a sepa-

123

Auton Robot (2015) 39:347–362 353

rate factor ψm for each linguistic constituent, and we make
independence assumptions so that each factor ψm depends
on a subset of the language and grounding variables. For
example, the factor for “on” depends only on the values of
the variables γ1 and γ2 and not on other words in the com-
mand. These types of independence assumptions are key to
our approach in that they enable efficient inference and learn-
ing. Without using the structure of language to provide these
independence assumptions, we would need to learn a single
joint model in which the full joint of the grounding variables
would depend on the values of all the language variables. We
will describe how to formally derive the structural indepen-
dencies from the parse tree in Algorithm 5.

The normalization constant Z in Eq. 2 can be ignored dur-
ing languageunderstanding inferencebecausewedonot need
the full distribution; we are optimizing only over γ1 . . . γN .
However, if models for the functions are learned from labeled
data, then the proper distribution (and hence the normal-
izing constant) will be needed during training. Moreover,
when doing language generation (described in the following
sections), this term is not constant with respect to the com-
mand. Ifwe define a directedmodel over these variables (e.g.,
p(γ1 . . . γN |Λ)), we can learn each component in order, each
with a separate constant, but wemust assume a possibly arbi-
trary order to the conditional γi factors. For example, for a
phrase such as “the white leg near the table,” we could factor
in either of the following ways:

p(γleg, γtable|Λ) = p(γtable|γleg,Λ) × p(γleg|Λ) (3)

p(γleg, γtable|Λ) = p(γleg|γtable,Λ) × p(γtable|Λ). (4)

Depending on the order of factorization, we will need
different conditional probability tables that correspond to
the meanings of words in the language. To resolve this
issue, another approach is to use Bayes’ Rule to esti-
mate p(Λ|γ1 . . . γN), but learning with this approach would
require normalizing over all possible words in the language
Λ. Another alternative is to use an undirected model, such as
a CRF over the γi , but this approach is intractable because it
requires normalizing over all possible values of all γi vari-
ables in the model, including continuous attributes such as
location and size.

To address these problems and to make training tractable,
the G3 framework introduces a correspondence vector Φ to
capture the dependency between γ1 . . . γN andΛ. Each entry
φi ∈ Φ captures whether a particular linguistic constituent
λi ∈ Λ corresponds to the values of the grounding variables,
γ1 . . . γN which are are associated with that constituent by
the parse structure of the language. Thus there is one entry
in Φ for each constituent in the natural language command.
For example, the correspondence variable would be True for
the phrase “the white leg” and a grounding of an actual white
table leg, and False if the grounding was a different object,

such as a black leg or a table. We assume that γ1 . . . γN are
independent of Λ unless Φ is known. Introducing Φ enables
factorization according to the structure of language, and sim-
plifies the normalization for each factor to two values for φi .
These locally normalized factors can simply be multiplied
together during trainingwithout the need to compute a global
normalization constant. This representation also allows us to
express wordmeanings as probabilistic predicates, following
extensive literature in semantics (Heim and Kratzer 1998).
Using the correspondence variable, we can write:

argmax
γ1...γN

p(γ1 . . . γN |Φ,Λ). (5)

To perform inference, we assume the correspondence vari-
able Φ to be True and thereby search for the groundings
that correspond to the words in the natural language com-
mand. When the correspondence vector takes on the value
of True, this maximization is identical to Eq. 1, except that
Φ is listed as a given variable. Listing Φ as a given variable
makes explicit the assumption that all linguistic constituents
correspond to their associated groundings. This inference is
equivalent to maximizing the joint distribution of all ground-
ings γ1 . . . γN , Φ and Λ:

argmax
γ1...γN

p(γ1 . . . γN , Φ,Λ). (6)

Note that even though Eq. 6 uses the joint distribution,Λ and
Φ are fixed and we optimize over γ1 . . . γN . Next, we rewrite
it as a conditional distribution on Φ multiplied by a prior:

argmax
γ1...γN

p(Φ|Λ, γ1 . . . γN)p(Λ, γ1 . . . γN). (7)

When Φ is not known, we assume that Λ and γ1 . . . γN are
independent, as in the graphical model shown in Fig. 6, yield-
ing:

argmax
γ1...γN

p(Φ|Λ, γ1 . . . γN)p(Λ)p(γ1 . . . γN). (8)

This independence assumption is justified because if we do
not know whether γ1 . . . γN correspond to Λ, then the lan-
guage does not tell us anything about the groundings.

Finally, for simplicity, we assume that any object in the
environment is equally likely to be referenced by the lan-
guage, which amounts to a constant prior on γ1 . . . γN . We
ignore p(Λ) since it does not depend on γ1 . . . γN , leading
to:

argmax
γ1...γN

p(Φ|Λ, γ1 . . . γN). (9)

123

354 Auton Robot (2015) 39:347–362

We factor the model according to the hierarchical, composi-
tional linguistic structure of the command:

p(Φ|Λ, γ1 . . . γN) =
∏

m

p(φm |λm, γm1 . . . γmk). (10)

This factorization defines a probabilistic graphical model
that constitutes the grounding graph. It is equivalent to Eq. 2,
except for a constant, but assumes that the factors take
a specific, locally normalized form. Introducing the cor-
respondence variable allows us to define our model as a
conditional random field overΦ, where the random variables
and factors are defined systematically from the parse struc-
ture of a natural language command (Sutton and McCallum
2012). Each factor p(φm |λm, γm1 . . . γmk) can be normal-
ized appropriately—only over the domain of the Φ vector
for each component—during learning, substantially improv-
ing our ability to learn the model. Moreover, each factor
corresponds to a probabilistic predicate, consistent with log-
ical representations for word meanings used in the literature
on semantics (Heim and Kratzer 1998). As we describe
below, the random variables and dependencies are automat-
ically extracted from the parse tree and constituent structure
of the natural language command. These factors capture
the meanings of words in λm . We describe the specific
parametric form for the factors in the following sections.
The factorization corresponds to the compositional struc-
ture of the natural language parse. The parse tree, which
provides the structure for creating the graphical model, can
be extracted automatically, for example with the Stanford
Parser (de Marneffe et al. 2006) or annotated using ground-
truth parses.

Formally, a grounding graph consists of random vari-
ables for the language Λ = [λ1 . . . λM], the groundings
Γ = [

γ1 . . . γM
]
, and the correspondence variables Φ =

[φ1 . . . φM], along with a set of factors F . Each factor f ∈ F
consists of φm, λm, γm1 . . . γmk . Algorithm 5 specifies how
random variables and factors are automatically created from
the parse structure of a natural language command.

Figure 6 shows the grounding graph for the command,
“Pick up the table leg on the table.” The random variable
φ3 is associated with the constituent “the table leg” and the
grounding variable γ2. The random variable φ1 is associated
with the entire phrase, “Pick up the table leg on the table” and
depends on both the grounding variables γ1 (the action that
the robot or human takes) and the arguments γ2 (the object
being manipulated). The λi variables correspond to the text
associated with each constituent in the parse tree.

Having described the mechanism for performing forward
semantics inference using G3 for language understanding,
we now turn to the inverse semantics problem. In the follow-
ing section, we discuss methods for a robot to automatically
generate help requests directed at a human.

Fig. 6 Grounding graph for the request, “Pick up the table leg on the
table.” Random variables and edges are created in the graphical model
for each constituent in the parse tree. The λ variables correspond to lan-
guage; the γ variables correspond to groundings in the external world.
Edges in the graph are created according to the parse structure of the
sentence.

5 Asking for help from a human partner

Once the system computes a symbolic representation of
the desired action, a, it searches for words, Λ, which
effectively communicate this action to a person in the
particular environmental context, M , on line 5 of the
conditions_satisfied function. This section
describes various approaches to the generate_help_
request function which carries out this inference. We
define four increasingly complex approaches for finding Λ,
which lead to more targeted natural language requests for
help by modeling the ability of the listener to understand
it. The contribution of this paper is an approach to finding
Λ using inverse semantics. Forward semantics is the prob-
lem of mapping from words in language to aspects of the
external world; the canonical problem is enabling a robot to
follow a person’s natural language commands (MacMahon
et al. 2006; Kollar et al. 2010; Tellex et al. 2011; Matuszek
et al. 2012). Inverse semantics is the reverse: mapping from
specific aspects of the external world (in this case, an action
that the robot would like the human to take) to words in lan-
guage. To apply this approachwe use theG3 model of natural
language semantics described in the previous section.

More concretely, the conventional G3 model infers the
best action to take given the known language. In contrast, in
our problem, we know what action we want the human to
take but want to infer the best language to elicit that action.

Sections 5.1 and 5.2 give simplistic baseline solutions to
this problem. Then, for Sects. 5.3 and 5.4, we formally define
a function h to score candidate sentences:

argmax
Λ

h(Λ, a, M) (11)

The specific function h used in Eq. 11 will greatly affect the
results. This inference process is therefore a search over pos-
sible sentences given the known action. We define a space

123

Auton Robot (2015) 39:347–362 355

Fig. 7 Part of the context-free grammar defining the linguistic search
space

of sentences using a context-free grammar (CFG), shown in
Fig. 7, and the inference procedure creates a grounding graph
for each candidate sentence using the parse structure derived
from the CFG and then scores it according to the function h,
but with the hypothesized language and the known action
groundings. This search space is quite large, and we use
greedy search to expand promising nodes first.

5.1 Speaking by reflex

The simplest approach from the assembly executive’s per-
spective is to delegate diagnosis and solution of the problem
to the human with the simple fixed request, Λ = “Help me.”
This algorithm takes into account neither the environment
or the listener when choosing what to say. We refer to this
algorithm as S0.

5.2 Speaking by template

As a second baseline, we implemented a template-based
algorithm, following traditional approaches to generating
language (Fong et al. 2003; Reiter and Dale 2000). This
approach uses a lookup table to map symbolic help con-
ditions to natural language requests. These generic requests
take the following form:

– “Place part 2 where I can see it.”
– “Hand me part 2.”
– “Attach part 2 at location 1 on part 5.” (i.e. screw in a
table leg)

Note that the use of first person in these expressions refers to
the robot. Since Vicon does not possess any semantic qual-
ities of the parts, they are referred to generically by part
identifier numbers. Such templates can be effective in sim-
ple situations, where the human can infer the part from the
context, but do not model how words map to the environ-
ment, and thus do not reflect the mapping between words
and perceptual data. In constrained interaction scenarios, the
programmer could hard-code object names for each part, but

this approach becomes impractical as the scope of interaction
increases, especially for referring expressions that depend on
the specific spatial context, such as “the part on the table.”

5.3 Speaking by modeling the environment

Next, we describe a more complex model for speaking, that
takes into account a model of the environment, but not a
model of the listener. To speak using a model of the environ-
ment, the robot searches for language that best matches the
action that the robot would like the human to take. We com-
pute thismodel using theG3 framework. The system converts
the symbolic action request a to a value for the action ground-
ing variable, γa ∈ Γ . This variable, γa , corresponds to the
entire sentence; we refer to the desired value of γa as γ ∗

a . It
then searches for the most likely sentenceΛ according to the
semantics model. Equation 11 becomes:

argmax
Λ

h(Λ, γ ∗
a , M) (12)

It does not consider other actions or groundings in any
way when making this determination. Formally:

h(Λ, γ ∗
a , M) = max

Γ |γa=γ ∗
a

p(Λ|Γ, M) (13)

With the correspondence variable, this function is equivalent
to:

h(Λ, γ ∗
a , M) = max

Γ |γa=γ ∗
a

p(Φ|Λ,Γ, M) (14)

We refer to this metric as S1. Note that while the opti-
mization in Eq. 14 does assess the quality of the generated
sentences, it does not actually model the listener’s under-
standing of those sentences, because it only considers those
interpretations where the overall action γa matches the
desired action γ ∗

a . The speaker considers possible sentences
and evaluates them using the G3 framework, selecting the
language that best matches the desired action γ ∗

a in the envi-
ronment.

This optimization considers sentences such as “Pick up the
black table leg on the white table” even though the grounding
for “the white table” is not specified in the symbolic descrip-
tion of the request, because it is added as a disambiguating
expression. We handle this by searching over both sentences
and paired groundings using beam search.

5.4 Speaking by modeling the listener and the
environment

The previous S1 metric scores shorter, ambiguous phrases
more highly than longer,more descriptive phrases. For exam-
ple, “the white leg” will always have a higher score than

123

356 Auton Robot (2015) 39:347–362

“the white leg on the black table” because the corresponding
grounding graph for the longer sentence is identical to the
shorter one except for an additional factor, which causes the
overall probability for the more complex graph to be lower
(or at most equal).

However, suppose the robot team needs a specific leg; for
example, in Fig. 10, the robots might need specifically the
leg that is on the black table, because that leg is out of reach.
In this case, a phrase produced under the S1 metric such as
“Hand me the white leg” will be ambiguous: the person will
not know which leg to give to the robot because there are
several legs in the environment. If the robot instead said,
“Please hand me the white leg that is on the black table,”
then the person will know exactly which leg to give to the
robot.

To address this problem, we augment our robot with a
model of the listener’s ability to understand a request in the
particular environment. Rather than optimizing how well the
language in the request fits the desired action, we minimize
the uncertainty a listener would experience when using the
G3 model to interpret the request. Thismetric, whichwe refer
to as S2, explicitly measures the probability that the listener
will correctly understand the requested action γ ∗

a :

h(Λ, γ ∗
a , M) = p(γa = γ ∗

a |Φ,Λ, M) (15)

To compute this metric, we marginalize over values of Γ ,
where γa = γ ∗

a :

h(Λ, γ ∗
a , M) =

∑

Γ |γa=γ ∗
a

p(Γ |Φ,Λ, M) (16)

We factor the model with Bayes’ rule:

h(Λ, γ ∗
a , M) =

∑

Γ |γa=γ ∗
a

p(Φ|Γ,Λ, M)p(Γ |Λ, M)

p(Φ|Λ, M)
(17)

We rewrite the denominator as a marginalization and condi-
tional distribution on Γ ′:

h(Λ, γ ∗
a , M) =

∑

Γ |γa=γ ∗
a

p(Φ|Γ,Λ, M)p(Γ |Λ, M)∑
Γ ′ p(Φ|Γ ′,Λ, M)p(Γ ′|Λ, M)

(18)

The denominator is constant so we can move the summation
to the numerator:

h(Λ, γ ∗
a , M) =

∑
Γ |γa=γ ∗

a
p(Φ|Γ,Λ, M)p(Γ |Λ, M)

∑
Γ ′ p(Φ|Γ ′,Λ, M)p(Γ ′|Λ, M)

(19)

Next we assume that p(Γ |Λ, M) is a constant, K , for all Γ ,
so it can move outside the summation. This term is constant

because Γ and Λ are independent when we do not know Φ:

h(Λ, γ ∗
a , M) = K × ∑

Γ |γa=γ ∗
a
p(Φ|Γ,Λ, M)

K × ∑
Γ ′ p(Φ|Γ ′,Λ, M)

(20)

The constant K cancels, yielding:

h(Λ, γ ∗
a , M) =

∑
Γ |γa=γ ∗

a
p(Φ|Γ,Λ, M)

∑
Γ ′ p(Φ|Γ ′,Λ, M)

(21)

This equation expresses the S2 metric. Note that unlike
the S1 metric, the S2 metric actually uses the G3 framework
to understand the sentences that it generates: computing the
denominator in Eq. 21 is equivalent to the problem of under-
standing the language in the particular environment because
the systemmust assess the mapping between the languageΛ

and the groundings Γ ′ for all possible values for the ground-
ings (compare with Eq. 9).

In practice, evaluating the S2 metric is expensive because
of the language understanding computation in the denom-
inator. We therefore consider only the best k sentences
produced by the S1 metric, and then re-evaluate them using
the S2 metric. This optimization may remove candidate sen-
tences that the S1 sentence scores with a low score, but
also removes many obviously incorrect sentences and sig-
nificantly increases overall inference speed.

5.5 Approach to search

The problem of grounded help request generation requires
a sophisticated search over sentence structures, grounding
targets, and word choice. We organize search into levels.
The S1 metric employs a single-level approach akin to G3

understanding, whereas the S2 metric performs generation
using two distinct levels.

The S1 metric involves a search of a single level (Fig. 8).
Given the desired action a, a single grounding graph structure
is generated, which contains an appropriate set of grounding
variables Γ , subject only to the action grounding variable γa
corresponding to the desired action grounding variable γ ∗

a .
The language variables Λ are then populated by appropriate
words via search. The result of the S1 metric is then the
sentence in level I that corresponds to the maximum value
of (Φ|Λ,Γ, M).

The S2 metric performs a deeper search (Fig. 9). Level I
uses a CFG to elaborate a space of requests, simultaneously
forming a grounding graph structure and populating the lan-
guage variables, Λ. For each λ ∈ Λ, level II infers the
grounding variables, γa using G3 as a model of the listener’s
understanding faculty. Note that the action grounding vari-
able γa of these newly inferred sets of grounding variables
is not necessarily the same as the desired action grounding
variable γ ∗

a of the original set of grounding variables: these

123

Auton Robot (2015) 39:347–362 357

Fig. 8 Approach S1 performs language generation as a one-level
search. A set of desired groundings, a are provided as structured input
in the required action. In this approach, a parse tree structure γ ∗

a is
hard-coded for each action based on the arguments in the request.
Approach S1 then searches over possible language variables, λ, for the
highest-confidence correspondence. This technique for language gen-
eration resembles the approach to language understanding using G3 as
detailed in Sect. 4

Fig. 9 Approach S2 performs language generation via a two-level
search. A set of desired groundings, a are provided as structured input
in the required action. Level I elaborates a context-free grammar to
search across possible sentence structures and language variables, Λ.
This search level resembles approach S1. Level II infers a set of ground-
ings, γi , from λ via a model of human comprehension such as G3. The
algorithm terminates with success when it finds a phrase that gives back
the desired γ ∗

a with probability above a threshold value

are the ambiguous interpretations of each sentence. For each
candidate sentence, the grounding graphs in level II corre-
spond to a term in the denominator of Eq. 21; those grounding
graphs where the action grounding variable γa matches the
desired action grounding variable γ ∗

a correspond to a term in
the numerator.

5.6 Search complexity

The S1 metric searches in the space of all possible CFG
parses, and as a result scales with the size of the CFG.Adding
a richer vocabulary to the system increases the size of the
search space, in worse than polynomial in the number of
rules and size of the vocabulary. As a result a limitation of
our approach is the ability to scale to larger grammars.We are

exploring adding a probabilistic CFG model to our approach
to bias the search in the space of words to promising parts of
the state space.

The S2 metric additionally must consider all possible
groundings, a challenging problem as the size of the envi-
ronment increases. When there are many parts, for each
unbounded noun phrase the S2 metric must evaluate the like-
lihood that that part will be grounded. We use beam search
to make this inference tractable.

5.7 Training

We trained the model for understanding language following
the same procedure as (Tellex et al. 2011). We collected a
new dataset of natural language requests given by a human
to another human in the furniture assembly domain. We
created twenty-one videos of a person executing a task
involved in assembling a piece of furniture. For example,
one video shows a person screwing a table leg into a table,
and another shows a person handing a table leg to a second
person. Each video has an associated context consisting of
the locations, geometries, and trajectories of the people and
objects, produced with Vicon. We asked annotators on Ama-
zon Mechanical Turk to view the videos and write a natural
language request they would give to ask one of the people
to carry out the action depicted in the video. Then we anno-
tated requests in the video with associated groundings in the
Vicon data. The corpus contains 326 requests with a total of
3279 words. In addition we generated additional positive and
negative examples for the specific words in our context-free
grammar.

6 Evaluation

The goal of our evaluation was to assess whether our algo-
rithms increase the effectiveness of a person’s help, or in other
words, to enable them tomore quickly and accurately provide
help to the robot. To evaluate whether our algorithms enable
a human to accurately provide help compared to baselines,
we use an online corpus-based evaluation. We conducted a
real-world user study to assesswhether our leading algorithm
improves the speed and accuracy of a person’s help to a team
of autonomous robots engaged in a real-world assembly task.

6.1 Corpus-based evaluation

Our online evaluation usedAmazonMechanical Turk (AMT)
tomeasure whether people could use generated help requests
to infer the action that the robot was asking them to perform.
We presented a worker on AMT with a picture of a scene,
showing a robot, a person, and various pieces of furniture,
together with the text of the robot’s request for help. Fig-

123

358 Auton Robot (2015) 39:347–362

Fig. 10 Scene from our dataset and the requests generated by each
approach

ure 10 shows an example initial scene, with several different
requests for help generated by different algorithms, all asking
the human to carry out the same action. Next, we showed the
worker five videos of a human taking various actions in the
scene in response to the requests. We asked them to choose
the video that best matched the request for help. We chose
actions to film based on actions that would recover from typ-
ical failures that the robots might encounter. A trial consists
of a worker viewing an initial scene paired with a request for
help and then choosing a corresponding video.

We created a dataset consisting of twenty trials by con-
structing four different initial scenes and filming an actor
taking five different actions in each scene. We present results
for the four automatic methods described in Sect. 5, as well

Table 2 Fraction of correctly followed requests

Metric % Success 95 % Confidence

Chance 20.0

“Help me” baseline (S0) 21.0 ±8.0

Template baseline 47.0 ±5.7

G3 inverse semantics with S1 52.3 ±5.7

G3 inverse semantics with S2 64.3 ±5.4

Hand-written requests 94.0 ±4.7

as a baseline consisting of hand-written requests which we
created to be clear and unambiguous. Figure 11 shows the
four initial scenes paired with handwritten help requests.
For the “help me” and hand-written baselines, we issued
each of the twenty generated requests to five subjects, for
a total of 100 trials. We issued each request in the template
and G3 approaches to fifteen users for a total of 300 trials.
We assumed the robot had accurate perceptual access to the
objects in the environment and their locations using theVicon
system. Results appear in Table 2.

Our results show that the “Help me” baseline performs
at chance, whereas the template baseline and the G3 inverse
semantics model both improved performance significantly.
The S1 model may have improved performance over the
template baseline, but these results do not rise to the level
of statistical significance. The S2 model, however, realizes a
significant improvement, p = 0.002 by Student’s t-test, due
to its more specific requests, which model the uncertainty of
the listener. These results demonstrate that our model suc-
cessfully generates help requests for many conditions.

Most failures occurred due to ambiguity in the language,
even in sentences generated by the S2 model. For example,
many people confused “the white leg that is near the black
table” with “the white leg that is under the black table.”

Fig. 11 The four initial scenes from the evaluation dataset, together with the hand-written help requests used in our evaluation

123

Auton Robot (2015) 39:347–362 359

Adding more prepositions, such as “next to” would address
this issue by enabling the algorithm to generate more specific
referring expressions that more accurately match people’s
expectations.

6.2 User study

In our experiment, humans and robots collaborated to assem-
ble IKEA furniture. The study split participants into two
conditions using a between-subjects design, with 8 subjects
in each condition. In the baseline condition, robots requested
help with the S0 approach, using only the words “Please help
me.” In the test condition, robots requested help using the S2
inverse semantics metric. The robots autonomously planned
and executed the assembly on two real robots, and all detected
failures were real. Our goal was to assess the effect of the
choice of help request, made to a user with limited situa-
tional awareness, within an end-to-end system. We chose
approach S0 as a baseline to evaluate the magnitude of this
effect. The accompanying video is online at http://youtu.be/
2Ts0W4SiOfs.

We measure effectiveness by a combination of objec-
tive and subjective measures. We report two objective
measures: efficiency—the elapsed time per help request,
and accuracy—the number of error-free user interventions.
Taken together, these measures show how effectively the
human’s time is being used by the robots.We also report three
subjective measures derived from a post-trial survey, as well
as their own written feedback about the system, to gain an
understanding of their view of the strengths and weaknesses
of our approach.

6.2.1 Procedure

Subjects in each condition were gender-balanced and had no
significant difference in experience with robots or furniture
assembly. To familiarize users with the robot’s capabilities,
we gave them a list of actions that might help the robots. Dur-
ing preliminary trials, subjects had problems when handing
parts to the robot (called a hand-off), so we demonstrated
this task and gave each user the opportunity to practice. The
entire instruction period lasted less than 5 min, including the
demonstration. During the experiment, we instructed users
to focus on a different assembly task and only help the robots
when requested.

For each subject, the robot team started from the same
initial conditions, shown in Fig. 12. Some failures were
inevitable given the initial conditions (e.g., a table top turned
upside down; a part on a table out of the robots’ reach.) Other
failures happened naturally (e.g., a table leg that slipped out
of a robot’s gripper.) When a failure occurred during assem-
bly, the failing robot addressed the person by saying, “Excuse
me,” and generated and spoke a request for help through an

Fig. 12 Initial configuration for the user study. The user is seated
behind the whiteboard in the background

on-board speaker, distinguishing itself by color if necessary.
We projected all dialogue on a large screen to remove depen-
dence on understanding synthesized speech. The human then
intervened in the way they felt was appropriate.

After communicating a help request, the robots waited up
to 60 sec for the user to provide help. If the environment
changed in a way that satisfied the request, the robot said
“Thank you, I’ll take it from here,” and we counted the per-
son’s intervention as successful. If the allotted time elapsed,
the robot instead said “Never mind, I’ll take it from here,”
and moved on to a different part of the assembly process.
These instances were recorded as failed interventions. For
each intervention, we recorded the time elapsed and number
of actions the human took in attempting to solve the problem.

Each trial ran for 15 min. Although we tried to limit
experimenter intervention, there were several problems with
the robotic assembly system that required expert assistance.
Experimenters intervened when either of two situations
arose: potential damage to the hardware (19 times), or an
infinite loop in legacy software (15 times). In addition, soft-
ware running on the robots crashed and needed to be restarted
5 times. In the future, we plan to address these issues using
methods for directing requests to the person most likely to
satisfy them, rather than only targeting requests at untrained
users.

6.2.2 Results and discussion

Over the course of the study, the robots made 102 help
requests, of which 76 were satisfied successfully within the
60-sec time limit. The most common request type was the
hand-off, comprising 50 requests.

Table 3 gives results from all metrics. Compared to the
baseline, S2 found a decrease in response time for the human
to complete non-hand-off interventions and an increased rate

123

http://youtu.be/2Ts0W4SiOfs
http://youtu.be/2Ts0W4SiOfs

360 Auton Robot (2015) 39:347–362

Table 3 End-to-end user study
results

Objective metrics Interventions S0 S2 p (t test)

Intervention time (sec) Non-hand-offs 33.3 25.1 0.092

Intervention time (sec) All 33.7 31.6 0.499

Error-free interventions (%) All 57.1 77.6 0.039

Successful interventions (%) All 70.3 80 0.174

Subjective metrics p (Kruskal–Wallis)

Robot is effective at communicating its needs 0.001

Prefer working in parallel with the robot 0.056

Easy to switch between and robots’ task and user’s 0.388

of accuracy at performing those interventions. Mean inter-
vention time on all tasks, including handoffs, shows a less-
clear improvement. After observing the trials, we noticed that
subjects found it difficult to successfully hand a part to the
robot, despite our initial training. The change in overall suc-
cess rate was not statistically significant, probably because
users were permitted to try multiple actions within the 60-
sec window when the request was ambiguous. Such retries
counted against the accuracy and intervention time metrics.

Qualitatively, subjects preferred the language generation
system; Table 3 shows subjective metrics on a five-point
Likert scale. Two subjective metrics showed statistically sig-
nificant results. Users in the S2 condition reported that the
robot was more effective at communicating its needs. They
were also more likely to record a preference for assembling
two kits in parallel as opposed to assembling one kit at a time
together with the robots. However, users in the S2 condition
did not find it significantly easier to switch between help-
ing the robot and working on their own task. We attribute
this finding to the facts that interruptions were sometimes
frequent, and that hand-offs, which made up a majority of
requests, remained difficult even with clear requests.

Figure 13 shows comments from participants in the study
in each condition.Overall, users enjoyed the experiencemore
in the S2 condition. Even when users successfully helped the
robots in the baseline condition, they frequently complained
that they did not know what the robot was asking for.

Despite these promising successes, important limitations
remain. First, hand-offs remained difficult for users even after
training. Second, the system required frequent intervention
by the experimenters to deal with unexpected failures. Both
of these conditions might be modified by a more nuanced
model of what help a human teammate could provide. For
example, if the robots could predict that handoffs are chal-
lenging for people to successfully complete, they might ask
for a different action, such as to place the part on the ground
near the robot. Similarly, if the robots were able to model the
ability of different people to provide targeted help, theymight
direct some requests to untrained users, and other requests

Fig. 13 Comments from participants in our study

to “level 2” tech support. The different types of interven-
tions provided by the experimenters compared to the subjects
points to a need for the robots to model specific types of help
that different people canprovide, as inRosenthal et al. (2011).

6.3 Conclusion

The goal of our evaluation was to assess the effective-
ness of various approaches for generating requests for help.
The corpus-based evaluation compares the inverse semantics
method to several baselines in an online evaluation, demon-
strating that the inverse semantics algorithm significantly
improves the accuracy of a human’s response to a natural
language request for help compared to baselines. Our end-
to-end evaluation demonstrates that this improvement can be
realized in the context of a real-world robotic team interacting
with minimally trained human users. This work represents a
step toward the goal of mixed-initiative human–robot coop-
erative assembly.

Our end-to-end evaluation highlights the strength of the
system, but also its weakness. Our robot used a single model
for a person’s ability to act in the environment; in reality,

123

Auton Robot (2015) 39:347–362 361

different people have different abilities and willingness to
help the robot. Additionally we assumed that the robot and
person both had equal perceptual access to the objects in the
environment; in practice many failures may occur due to the
perceptual systemnot detecting anobject, leading to the robot
being unable to generate an accurate help request, or gener-
ating an ambiguous request because it is not aware of all the
distractor objects. Developing a dialogue system capable of
answering questions from people in real time could provide
disambiguation when people fail to understand the robot’s
request. As we move from robot-initiated to mixed-initiative
communication, the reliance on common ground and context
increases significantly. Since our models can be expected to
remain imperfect, the demand for unambiguous sentences
becomes less satisfiable. In the long term, we aim to develop
robots with increased task-robustness in a variety of domains
by leveraging the ability and willingness of human partners
to assist robots in recovering from a wide variety of failures.

Acknowledgments This research was done at CSAIL-MIT. This
work was supported in part by the Boeing Company, and in part by
the U.S Army Research Laboratory under the Robotics Collaborative
Technology Alliance. The authors thank Dishaan Ahuja and Andrew
Spielberg for their assistance in conducting the experiments.

References

Akmajian, A. (2010). Linguistics an introduction to language and com-
munication. Cambridge: MIT Press. ISBN 000-0262513706.

Bollini, M., Tellex, S., Thompson, T., Roy, N., & Rus, D. (2012).
Interpreting and executing recipes with a cooking robot. In 13th
international symposium on experimental robotics.

Chen, D. L., & Mooney, R. J. (2011). Learning to interpret natural lan-
guage navigation instructions from observations. In Proceedings
of AAAI.

de Marneffe, M, MacCartney, B., & Manning, C. (2006). Generating
typed dependency parses from phrase structure parses. In Pro-
ceedings of international conference on language resources and
evaluation (LREC) (pp. 449–454). Genoa.

Dorais, G., Banasso, R., Kortenkamp, D., Pell, P., & Schreckenghost,
D. (1998). Adjustable autonomy for human-centered autonomous
systems on mars. Presented at the Mars Society Conference.

Dragan,A.,&Srinivasa, S. (2013).Generating legiblemotion. InRobot-
ics: Science and Systems.

Dzifcak, J., Scheutz, M., Baral, C., & Schermerhorn, P. (2009). What
to do and how to do it: Translating natural language directives
into temporal and dynamic logic representation for goal manage-
ment and action execution. In Proceedings of IEEE international
conference on robotics and automation (pp. 4163–4168).

Fasola, J., & Mataric, M.J. (2013). Using semantic fields to model
dynamic spatial relations in a robot architecture for natural
language instruction of service robots. In 2013 IEEE/RSJ interna-
tional conference on intelligent robots and systems (IROS). IEEE
(pp. 143–150).

Fong, T., Thorpe, C., & Baur, C. (2003). Robot, asker of questions.
Journal of Robotics and Autonomous Systems, 42, 235–243.

Garoufi,K.,&Koller,A. (2011).Combining symbolic and corpus-based
approaches for the generation of successful referring expressions.
In Proceedings of the 13th European workshop on natural lan-

guage generation. Association for Computational Linguistics (pp.
121–131).

Goeddel, R., & Olson, E. (2012). Dart: A particle-based method for
generating easy-to-follow directions. In 2012 IEEE/RSJ interna-
tional conference on intelligent robots and systems (IROS). IEEE
(pp. 1213–1219).

Golland, D., Liang, P., & Klein, D. (2010). A game-theoretic approach
to generating spatial descriptions. In Proceedings of the 2010 con-
ference on empirical methods in natural language processing.
Association for Computational Linguistics (pp. 410–419).

Goodman,N.D.,&Stuhlmüller,A. (2013).Knowledge and implicature:
Modeling language understanding as social cognition. Topics in
Cognitive Science, 5(1), 173–184.

Heim, I., & Kratzer, A. (1998). Semantics in generative grammar.
Oxford: Blackwell. ISBN 978-0631197133.

Hertle, A. (2011). Design and implementation of an object-oriented
planning language. Master’s thesis, Albert-Ludwigs-Universität
Freiburg.

Jackendoff, R. S. (1983). Semantics and cognition (pp. 161–187). Cam-
bridge: MIT Press.

Jurafsky, D., & Martin, J.H. (2008). Speech and language processing
(2 ed.). Pearson Prentice Hall. ISBN 0131873210.

Knepper, R.A., Layton, T., Romanishin, J., & Rus, D. (May 2013). Ike-
aBot: An autonomous multi-robot coordinated furniture assembly
system. InProceedings of IEEE international conference on robot-
ics and automation. Karlsruhe.

Kollar, T., Tellex, S., Roy, D., & Roy, N. (2010). Toward understanding
natural language directions. In Proceedings of ACM/IEEE inter-
national conference on human-robot interaction (pp. 259–266).

Krahmer, E., & Van Deemter, K. (2012). Computational generation of
referring expressions: A survey.Computational Linguistics, 38(1),
173–218.

MacMahon, M., Stankiewicz, B., & Kuipers, B. (2006). Walk the talk:
Connecting language, knowledge, and action in route instructions.
In Proceedings of national conference on artificial intelligence
(AAAI) (pp. 1475–1482).

Maitin-Shepard, J., Lei, J., Cusumano-Towner,M.,&Abbeel, P. (2010).
Cloth grasp point detection based onmultiple-view geometric cues
with application to robotic towel folding. In Proceedings of IEEE
international conference on robotics and automation. Anchorage,
AK.

Matuszek, C., FitzGerald, N., Zettlemoyer, L., Bo, L., & Fox, D. (2012).
A joint model of language and perception for grounded attribute
learning. Arxiv preprint arXiv:1206.6423.

McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A.,
Veloso, M., Weld, D., & Wilkins, D. (1998). PDDL—the
planning domain definition language. Technical Report CVC
TR98003/DCS TR1165, Yale Center for Computational Vision
and Control. New Haven.

Reiter, E., Dale, R. (2000). Building natural language generation sys-
tems. Cambridge University Press. ISBN 9780521620369.

Rosenthal, S., Veloso, M., & Dey, A. K. (2011). Learning accuracy and
availability of humans who help mobile robots. In Proceedings of
AAAI.

Roy, D. (2002). A trainable visually-grounded spoken language gen-
eration system. In Proceedings of the international conference of
spoken language processing.

Simmons, R., Singh, S., Heger, F., Hiatt, L.M., Koterba, S.C., Melchior,
N., & Sellner, B.P. (2007). Human-robot teams for large-scale
assembly. In Proceedings of the NASA science technology con-
ference.

Striegnitz, K., Denis, A., Gargett, A., Garoufi, K., Koller, A., & Theune
M. (2011). Report on the second second challenge on generat-
ing instructions in virtual environments (give-2.5). In Proceedings
of the 13th European workshop on natural language generation.
Association for Computational Linguistics (pp.270–279).

123

http://arxiv.org/abs/1206.6423

362 Auton Robot (2015) 39:347–362

Sutton, C. A., & McCallum, A. (2012). An introduction to conditional
randomfields.Foundations and Trends inMachine Learning, 4(4),
267–373.

Tellex, S., Kollar, T., Dickerson, S., Walter, M., Banerjee, A., & Teller,
S., et al. (2011). Understanding natural language commands for
robotic navigation and mobile manipulation. In Proceedings of
AAAI.

Tellex, S., Knepper, R., Li, A., Rus, D., & Roy, N. (2014). Asking for
help using inverse semantics. In Robotics: Science and systems,
(Best Paper.).

Vogel, A., Bodoia, M., Potts, C., & Jurafsky, D. (2013a). Emergence of
gricean maxims from multi-agent decision theory. In Proceedings
of NAACL.

Vogel, A., Potts, C., & Jurafsky, D. (2013b). Implicatures and nested
beliefs in approximate Decentralized-POMDPs. In Proceedings
of the 51st annual meeting of the association for computational
linguistics. Association for Computational Linguistics. Sofia.

Wilson, R. (1995). Minimizing user queries in interactive assembly
planning. IEEE transactions on robotics and automation, 11(2).

Ross A. Knepper is an assis-
tant professor in the Depart-
ment of Computer Science at
Cornell University. His research
focuses on the theory, algo-
rithms, and mechanisms of auto-
mated assembly. Previously,Ross
was a Research Scientist in
the Distributed Robotics Lab at
MIT. Ross received his M.S and
Ph.D. degrees in Robotics from
Carnegie Mellon University in
2007 and 2011.

Stefanie Tellex is an assistant
professor at Brown University.
The aim of her research program
is to construct robots that seam-
lessly use natural language to
communicate with humans. She
completed her Ph.D. at the MIT
Media Lab in 2010, where she
developed models for the mean-
ings of spatial prepositions and
motion verbs. Her postdoctoral
work at MIT CSAIL focused on
creating robots that understand
natural language. Shewas named
one of IEEE Spectrum’s AI’s 10

to Watch and won the Richard B. Salomon Faculty Research Award at
Brown University.

Adrian Li received an M.Eng.
degree from the University of
Cambridge in 2014 in the Engi-
neering Tripos. He spent a year
abroad visiting MIT EECS in
2012–2013.

Nicholas Roy is an Associate
Professor in the Department of
Aeronautics & Astronautics at
the Massachusetts Institute of
Technology and a member of the
Computer Science and Artificial
IntelligenceLaboratory (CSAIL)
at MIT. He received his Ph.D. in
Robotics from Carnegie Mellon
University in 2003. His research
interests includemobile robotics,
decision-making under uncer-
tainty, human-computer interac-
tion, and machine learning.

Daniela Rus is a professor in the
EECS Department at MIT. She
is the Director of CSAIL. She
holds a PhD degree in computer
science form Cornell University.
Her research interests include
distributed robotics,mobile com-
puting, and programmable mat-
ter. She has several research
activities in environmental robot-
ics. She is the recipient of an
NSF Career award and an Alfred
P. Sloan Foundation fellowship.
She is a class of 2002MacArthur
Fellow. She is a fellow of AAAI
and IEEE.

123

	Recovering from failure by asking for help
	Abstract
	1 Introduction
	2 Related work
	3 Assembling furniture
	3.1 Assembly planning
	3.2 Specification language design and structure
	3.3 ABPL implementation for assembly
	3.4 Detecting failures
	3.5 Recovery strategy

	4 Generalized grounding graphs
	5 Asking for help from a human partner
	5.1 Speaking by reflex
	5.2 Speaking by template
	5.3 Speaking by modeling the environment
	5.4 Speaking by modeling the listener and the environment
	5.5 Approach to search
	5.6 Search complexity
	5.7 Training

	6 Evaluation
	6.1 Corpus-based evaluation
	6.2 User study
	6.2.1 Procedure
	6.2.2 Results and discussion

	6.3 Conclusion

	Acknowledgments
	References

