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Abstract

This paper describesan implementedrobot system,
which relies heavily on probabilisticAl techniquedor
actingunderuncertainty Therobot Pearl andits prede-
cessoiFlo have beendevelopedby a multi-disciplinary
teamof researchersver the pastthreeyears. The goal
of this researchs to investicatethe feasibility of assist-
ing elderly peoplewith cognitive and physical activity
limitations throughinteractve robotic devices, thereby
improving their quality of life. The robot’s task in-
volvesescortingpeoplein an assistediving facility—a
time-consumingdaskcurrentlycarriedout by nurses.ts
softwarearchitectureemploys probabilistictechniquest
virtually all levels of perceptionand decisionmaking.
During the courseof experimentsconductedin an as-
sistedliving facility, therobotsuccessfullydemonstrated
thatit could autonomouslyprovide guidancefor elderly
residentsWhile previousexperimentswith fieldedrobot
systemshave provided evidencethat probabilistictech-
nigueswork well in the context of navigation, we found
the sameto be true of humanrobotinteractionwith el-
derly people.

Intr oduction

The US populationis agingat an alarmingrate. At present,
12.5%o0f the US populationis of age65 or older. The Ad-
ministrationof Aging predictsa 100%increaseof this ratio
by the year2050[26]. By 2040, the numberof peopleof
ageof 65 or older per 100 working-agepeoplewill have in-
creasedrom 19to 39. At the sametime, the nationfacesa
significantshortageof nursingprofessionalsThe Federation
of NursesandHealthCareProfessionalbasprojectedaneed
for 450,000additionalnursesby the year2008. It is widely
recognizedhatthesituationwill worsenasthebaby-boomer
generatiormovesinto retirementage,with no clearsolution
in sight. Thesedevelopmentgrovide significantopportuni-
tiesfor researcherim Al, to developassistve technologythat
canimprove thequality of life of ouragingpopulationwhile
helpingnursedo becomanoreeffectivein theireverydayac-
tivities.

To respondto thesechallengesthe NursebotProjectwas
conceved in 1998 by a multi-disciplinary team of investi-
gatorsfrom four universities,consistingof four health-care

faculty, oneHCI/psychologyexpert,andfour Al researchers.

The goal of this projectis to develop mobile robotic assis-
tantsfor nursesandelderly peoplein varioussettings.Over
the courseof 36 months,the teamhasdevelopedtwo proto-
typeautonomousnobilerobots,shavnin Figurel.

From the mary servicessuch a robot could provide
(se€[11, 16]), thework reportecherehasfocusedonthetask
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of remindingpeopleof events(e.g.,appointmentsandguid-

ing them throughtheir ervironments. At present,nursing
staf in assistediving facilities spendssignificantamounts
of time escortingelderly peoplewalking from onelocation
to another The numberof actvities requiring navigationis

large, ranging from regular daily events (e.g., meals), ap-

pointments(e.g., doctor appointments physiotherap, hair

cuts),socialevents(e.qg.,visiting friends,cinema) to simply

walking for the purposeof exercising. Many elderly people
move at extremelyslow speedge.g.,5 cm/sec) makingthe

taskof helpingpeoplearoundoneof the mostlaborintensive

in assistediving facilities. Furthermorethe help provided

is often not of a physical nature,as elderly peopleusually
selectwalking aids over physical assistancéy nursesthus
preservingsomeindependencdnsteadnursesoftenprovide

importantcognitive help,in theform of remindersguidance
andmotivation, in additionto valuablesocialinteraction.

In two day-longexperimentsour robothasdemonstrated
the ability to guide elderly people,without the assistancef
a nurse. This involves moving to a persons room, alerting
them,informing themof anupcomingeventor appointment,
andinquiring abouttheir willingnessto be assisted.It then
involves a lengthy phasewherethe robot guidesa person,
carefully monitoringthe persons progressandadijustingthe
robot’s velocity andpathaccordingly Finally, therobotalso
senesthe secondarypurposeof providing informationto the
personupon request,such as information about upcoming
communityevents,weatherreports, TV schedulesgtc.

From an Al point of view, several factorsmale this task
a challengingone. In additionto the well-developedtopic
of robotnavigation[15], thetaskinvolvessignificantinterac-
tion with people. Our presentrobot Pearlinteractsthrough
speechandvisual displays.Whenit comesto speechmary
elderly have difficulty understandingven simplesentences,
and more importantly articulatingan appropriateresponse
in a computerunderstandablevay. Thosedifficulties arise
from perceptuabndcognitive deficienciespfteninvolving a
multitudeof factorssuchasarticulation,comprehensiorand
mentalagility. In addition, peoples walking abilities vary
drasticallyfrom personto person.Peoplewith walking aids
areusuallyan orderof magnitudeslower than peoplewith-
out, and peopleoften stopto chator catchbreathalongthe
way. It is thereforeimperatve thatthe robot adaptsto indi-
vidual people—araspecbf peopleinteractionthathasbeen
poorly exploredin Al androbotics. Finally, safetyconcerns
are much higherwhen dealingwith the elderly population,
especiallyin crovdedsituationg(e.g.,dining areas).

Thesoftwaresystempresentedhereseekgo addresshese
challenges All softwarecomponentsiseprobabilistictech-
niguesto accommodatevarious sorts of uncertainty The
robot’s navigation systemis mostly adoptedfrom [5], and
thereforewill not be describedin this paper On top of



Figure 1: Nursebotd-lo (left) andPearl(centerandright) interact-
ing with elderly peopleduringoneof ourfield trips.

this, our softwarepossesseacollectionof probabilisticmod-
ules concernedwith peoplesensing,interaction,and con-
trol. In particular Pearlusesefficient particle filter tech-
niguesto detectandtrack people.A POMDPalgorithmper

forms high-level control, arbitrating information gathering
andperformance-relatedctions. And finally, safetyconsid-
erationsare incorporatedeven into simple perceptuaimod-
ulesthrougharisk-sensitve robotlocalizationalgorithm. In

systematicexperimentswe found the combinationof tech-
niguesto be highly effective in dealingwith the elderly test
subjects.

Hardware, Software, And Environment

Figurel shavsimagesof therobotsFlo (first prototype howv
retired)andPearl(thepresentobot). Bothrobotspossessdlif-
ferentialdrive systemsThey areequippedvith two on-board
PentiumPCs, wirelessEthernet,SICK laserrangefinders,
sonarsensorsmicrophonedor speechrecognition, speak-
ersfor speechsynthesistouch-sensitie graphicaldisplays,
actuatedheadunits, and stereocamerasystems. Pearl dif-
fersfrom its predecessodFlo in mary respectsincluding its
visual appearancewo sturdy handle-barsaddedto provide
supportfor elderly people,a more compactdesignthat al-
lows for caigo spaceand a removabletray, doubledbattery
capacityasecondaserrangefinder, andasignificantlymore
sophisticatedieadunit. Many of thosechangeaverethere-
sult of feedbackirom nursesand medicalexpertsfollowing
deploymentof thefirst robot,Flo. Pearlwaslargely designed
andbuilt by the StandardRobotCompaly in Pittshurgh, PA.

On the softwareside, both robotsfeatureoff-the-shelfau-
tonomousmobile robot navigation system[5, 24], speech
recognitionsoftware[20], speeclsynthesisoftware[3], fast
image captureand compressiorsoftware for online video
streamingfacedetectiontrackingsoftware[21], andvarious
new software modulesdescribedn this paper A final soft-
warecomponents a prototypeof aflexible remindersystem
usingadwancedplanningandschedulingechnique$18].

The robot's ervironmentis a retirementresortlocatedin
OakmontPA. Like mostretirementhomesn the nation,this
facility suffers from immensestafing shortages All exper
imentsso far primarily involved peoplewith relatively mild
cognitive, perceptualpr physical inabilities, thoughin need
of professionalssistanceln addition, groupsof elderly in
similar conditionswerebroughtinto researchaboratoriegor
testinginteractionpatterns.

Navigating with People

Pearls navigation systembuilds on the onedescribedn [5,
24]. In thissectionwe describehreemajornew modulesall

concernedvith peopleinteractionandcontrol. Thesemod-
ulesovercomeanimportantdeficieng of thework described
by [5, 24], which hada rudimentaryability to interactwith

people.

Locating People

Theproblemof locatingpeopleis theproblemof determining
their z-y-locationrelative to the robot. Previous approaches
to peopletrackingin roboticswerefeature-basedthey ana-
lyze sensomeasuremeni@mnagesrangescansyor thepres-
enceof features[13, 22] asthe basisof tracking. In our
case,the diversity of the ervironmentmandateda different
approach.Pearldetectspeopleusing map differencing: the
robot learnsa map, and peopleare detectedby significant
deviationsfrom the map. Figure 3a shavs an examplemap
acquiredusingpreeisting software[24].

Mathematically the problemof peopletrackingis a com-
binedposteriorestimatiorproblemandmodelselectiorprob-
lem. Let N bethe numberof peoplenearthe robot. The
posteriorover the peoples positionsis givenby

p(yl,ta"'7yN,t Zt7ut7m) (1)
wherey, ; with 1 < n < N is the locationof a personat
timet, 2! thesequencef all sensomeasurements,’ these-
quenceof all robotcontrols,andm is the ervironmentmap.
However, to usemapdifferencing,the robot hasto know its
own location. The locationandtotal numberof nearbypeo-
ple detectedby the robotis clearly dependenbn the robot’s
estimateof its own location and headingdirection. Hence,
Pearlestimates posteriorof thetype:

p(yl,ta"'7yN,t7$t|zt7ut7m) (2)

wherex? denoteshesequencef robotposegthepath)upto
timet. If V wasknown, estimatingthis posteriorwould bea
high-dimensionaéstimatiorproblem with compleity cubic
in NV for Kalmanfilters[2], or exponentialin N with particle
filters [9]. Neitherof theseapproachess, thus, applicable:
Kalmanfilters cannotgloballylocalizetherobot,andparticle
filters would be computationallyprohibitive.

Luckily, undermild conditions(discussedbelawn) the pos-
terior (2) canbefactoredinto V + 1 conditionallyindepen-
dentestimates:

p(zt|2t, ut, m) Hp(yn,t|zt’ u',m) ®3)
n

This factorizationopensthe door for a particle filter that
scaledinearlyin N. Our approachis similar (but notidenti-
cal)to theRao-Blackwellizegarticlefilter describedn [10].
First, therobot patha? is estimatedusinga particlefilter, as
in theMonte Carlolocalization(MCL) algorithm[7] for mo-
bile robotlocalization.However, eachparticlein thisfilter is
associatedvith a setof N particlefilters, eachrepresenting
oneof the peoplepositionestimate®(y,, ;|2?, ut, m). These
conditionalparticlefiltersrepresenpeoplepositionestimates
conditionedon robotpathestimates—henasapturingthein-
herentdependenc®f peopleand robot location estimates.
The dataassociationbetweenmeasurementand peopleis
doneusingmaximumlikelihood,asin [2]. Underthe (false)
assumptiorthatthis maximumlik elihoodestimatoiis always
correct,ourapproacttanbeshaowvn to corvergeto thecorrect
posteriorandit doessowith updateimelinearin N. In prac-
tice, we found thatthe dataassociatioris correctin the vast
majority of situations. The nestedparticlefilter formulation
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Figure 2: (a)-(d) Evolution of the conditionalparticlefilter from global uncertaintyto successfulocalizationandtracking. (d) Thetracker
continuedo tracka personevenasthatpersonis occludedrepeatediyby a secondndividual.

hasa secondanadwantagethatthe numberof peopleN can
be madedependenbn individual robot path particles. Our
approachfor estimatingN usesthe classicalAIC criterion
for modelselection,with a prior thatimposesa compleity
penaltyexponentialin V.

Figure 2 shaws resultsof thefilter in action. In Figure2a,
therobotis globally uncertain,andthe numberandlocation
of the correspondingeopleestimates/ariesdrastically As
therobotreducests uncertaintythe numberof modesn the
robot poseposteriorquickly becomesdinite, and eachsuch
modehasa distinctsetof peopleestimatesasshavn in Fig-
ure 2b. Finally, asthe robot is localized, so is the person
(Figure 2c). Figure 2d illustratesthe robustnesf the filter
to interferingpeople.Hereanothempersonstepsbetweerthe
robotandits tamget subject. Thefilter obtainsits robustness
to occlusionfrom a carefully crafted probabilisticmodel of
peoples motionp(y,,.++1|yn,:). Thisenableshe conditional
particlefilters to maintaintight estimatesvhile the occlusion
takes place,asshavn in Figure 2d. In a systematicanaly-
sisinvolving 31 trackinginstanceswith up to five peopleat
a time, the error in determiningthe numberof peoplewas
9.6%. The errorin the robot positionwas 2.5 £ 5.7 cm,
and the peopleposition error wasaslow as 1.5 + 4.2 cm,
when comparedo measurementebtainedwith a carefully
calibratedstaticsensomwith +1 cmerror.

When guiding people,the estimateof the personthat is
beingguidedis usedto determinethe velocity of the robot,
sothattherobotmaintainsroughlya constantdistanceto the
person. In our experimentsin the target facility, we found
theadaptve velocity controlto be absolutelyessentiafor the
robot’s ability to copewith the hugerangeof walking paces
foundin theelderlypopulation.Initial experimentswith fixed
velocity led almostalwaysto frustrationon the peoples side,
in thattherobotwaseithertoo slow or too fast.

Safer Navigation

Whennavigatingin the presencef elderly people therisks
of harmingthemthroughunintendeghysicalcontacis enor
mous. As notedin [5], therobot’s sensorsareinadequateo
detectpeoplereliably. In particular the laserrangesystem
measuresbstacled 8 cm above ground,but is unableto de-
tectary obstacleselov or above this level. In the assisted
living facilities,we foundthatpeopleareeasyto detectwhen
standingor walking, but hardwhenonchairs(e.g.,they might
bestretchingheirlegs). Thus,therisk of accidentallyhitting
apersonsfoot dueto poorlocalizationis particularlyhighin
denselypopulatedregionssuchasthedining areas.
Following anideain [5], werestrictedherobot'soperation
areato avoid denselypopulatedregions, using a manually
augmentednapof the ervironment(blacklinesin Figure3a
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Figure 3: (a) Map of the dining areain the facility, with dining
areasmarked by arravs. (b) Samplesat the beginning of global
localization,weightedexpectedcumulatie risk function.

—thewhite spacecorrespondso unrestrictedree space).To

staywithin its operatingarea therobotneedsaccuratdocal-

ization, especiallyat the boundarief this area. While our
approactyields sufiiciently accurateesultson averagejt is

importantto realizethat probabilistictechniquesever pro-

vide hardguaranteethatthe robotobeys a safetyconstraint.
To addresshis concernwe augmentedherobotlocalization
particlefilter by a samplingstratey thatis sensitve to the
increasedisk in thedining areagseealso[19, 25]). By gen-
eratingsamplesn high-risk regions, we minimize the lik e-

lihood of being mislocalizedin suchregions, or worse,the
likelihood of enteringprohibitedregions undetected.Con-
ventionalparticlefilters generatesamplesn proportionto the
posteriorlikelihood p(z*|2%, ut, m). Our new particlefilter

generatesobotposesamplesn proportionto

l(xt) p(xt|zt7 ut7 m) Hp<yn,t|zta ut’ m)

n

(4)

wherel is arisk functionthat specifieshow desirabléit is to
samplerobotposez;. Therisk functionis calculatedoy con-
sideringan immediatecost function ¢(x, u), which assigns
coststo actionsa androbotstatesr (in our case:high costs



Act
v v
Remind [Assist} [ Rest]
> RemindPhysio > VerifyBring Recharge

> PublishStatus GotoHome

I
[ Contact} [Move}

t RingBell BringtoPhysio
GotoRoom CheckUserPresent;

DeliverUser

> VerifyRelease

SayTime
SayWeather
VerifyRequest

Figure 4: Dialog ProblemAction Hierarclty

for violating anareaconstraintslow costselsavhere).To an-
alyzethe effect of poorlocalizationon this costfunction,our
approachutilizes an augmentednodelthatincorporateghe
localizeritself asa statevariable.In particular the statecon-
sistsof therobotposer,, andthestateof thelocalizer b;. The
latter is definedasaccuratgb; = 1) or inaccuratgb; = 0).
The statetransitionfunctionis composef the corventional
robotmotionmodelp(x;|us—1, 2;—1), andasimplisticmodel
thatassumesvith probability o, thatthe tracker remainsin
the samestate(goodor bad). Putmathematically:

p(mt;bt|ut71;xt717bt71) =
p(ze|ue—1,2e-1) - [ody,—p,_, + (1—) I, 2p,_,] (5)

Our approach calculates an MDP-style value function,
V(z,b), underthe assumptiorthat good tracking assumes
goodcontrolwhereagoortrackingimpliesrandomcontrol.
Thisis achiered by thefollowing valueiterationapproach:

V(z,b) —

min,, c(z,u) + v p(a’, bz, b, u)V (', ')
if b =1 (goodlocalization)

Zu C(Iv u) +7 Zx’b’ p(l", b/|$, b, U)V($/7 b/)
if b = 0 (poorlocalization)

wherey isthediscounffactor Thisgivesawell-definedVIDP
that can be solved via value iteration. The risk function is
themsimply the differencebetweengood andbadtracking:
l(z) = V(z,1) — V(z,0). Whenappliedto the Nursebot
navigation problem,this approacHeadsto a localizational-
gorithmthat preferentiallygeneratesamplesn the vicinity
of thedining areas. A samplesetrepresenting uniform un-
certaintyis shaovn in Figure3b—noticetheincreasedample
densitynearthe dining area. Extensve testsinvolving real-
world datacollectedduring robot operationshav not only
thattherobotwaswell-localizedin high-riskregions,but that
our approachalso reducedcostsafter (artificially induced)
catastrophidocalizationfailure by 40.1%, when compared
to theplain particlefilter localizationalgorithm.

High Level Robot Control and Dialog Management

The mostcentralnev modulein Pearls softwareis a prob-
abilistic algorithmfor high-level controlanddialogmanage-
ment. High-level robot control hasbeena populartopic in
Al, anddecade®f researcthasled to a reputablecollection
of architecturege.g.,[1, 4, 12]). However, existing architec-
turesrarelytake uncertaintyinto accounturing planning.
Pearls high-level control architectureis a hierarchical
variant of a partially obserable Markov decisionprocess

Obsenation True State Action Reward
pearlhello requestbegun sayhello 100
pearlwhatis like startmeds ask repeat -100
pearlwhattimeis it

for will the wanttime saytime 100
pearlwasonabc wanttv askwhich_station -1
pearlwasonabc wantabc say.abc 100
pearlwhatisonnbc ~ wantnbc confirm_channelnbc -1
pearlyes wantnbc say.nbc 100
pearlgoto thethat

prettygoodwhat sendrobot askrobotwhere -1

pearlthatthathellobe sendrobotbedroomconfirm_robot.place -1

pearlthebedroomary i sendrobotbedroomgo_to_bedroom 100
pearlgoit eightahello sendrobot askrobotwhere -1
pearlthekitchenhello sendrobotkitchen go_to_kitchen 100

Table 1. An exampledialogwith anelderlyperson.Actionsin bold
font are clarificationactions,generatedy the POMDP becausef
highuncertaintyin the speectsignal.

(POMDP)[14]. POMDPsaretechniquedor calculatingop-
timal controlactionsunderuncertainty The controldecision
is basedon the full probability distribution generatedy the
stateestimatoy suchasin Equation(2). In Pearls case this
distributionincludesa multitudeof multi-valuedprobabilistic
stateandgoalvariables:
robotlocation(discreteapproximation)

persons location(discreteapproximation)

persons statug(asinferredfrom speechrecognizer)
motiongoal (whereto move)

remindergoal (whatto inform the userof)
userinitiatedgoal (e.g.,aninformationrequest)

Overall, there are 288 plausible states. The input to the
POMDRP is a factored probability distribution over these
states,with uncertaintyarising predominantlyfrom the lo-
calizationmodulesandthe speechrecognitionsystem. We
conjecturethat the consideratiorof uncertaintyis important
in this domain,asthe costsof mistakingareply canbelarge.

Unfortunately POMDPsof the size encounteredhereare
anorderof magnituddargerthantoday’s bestexactPOMDP
algorithmscantackle [14]. However, Pearls POMDPis a
highly structuredPOMDR where certain actionsare only
applicablein certain situations. To exploit this structure,
we developed a hierarchical version of POMDPs, which
breaksdown thedecisionrmakingprobleminto acollectionof
smallerproblemghatcanbe solved moreefficiently. Ourap-
proachis similarto theMAX-Q decompositiorior MDPs[8],
but definedover POMDPs(wherestatesareunobsered).

The basicideaof the hierarchicalPOMDP s to partition
the action space—nothe statespace sincethe stateis not
fully obsenable—intosmallerchunks.For Pearls guidance
tasktheactionhierarcly is shovnin Figure4, whereabstiact
actions(showvn in circles)areintroducedto subsumdogical
subgroupsf lowerlevel actions. This action hierarcly in-
ducesadecompositiorof the controlproblem,whereateach
nodeall lowerlevel actions,if ary, areconsideredn thecon-
text of alocal sub-controller At the lowestlevel, the control
problemis a regular POMDR with a reducedaction space.
At higherlevels, the control problemis alsoa POMDR yet
involves a mixture of physical and abstractactions(where
abstractctionscorrespondo lower level POMDPSs.)

Let u be suchan abstractaction,and 7; the control pol-
icy associatedvith the respectie POMDR The “abstract”
POMDP s then parameterizedin termsof statesz, obser
vationsz) by assuminghatwheneer « is chosenpPearluses
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Figure 5: Empirical comparisorbetweenPOMDPs(with uncertaintyshovn in gray) andMDPs (no uncertainty shovn in black) for high-
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userswith good,averageandpoor speechrecognition.

lower-level controlpolicy 73:

p(@'|z,u) = p(a'z, ma(r))
p(elri) = plelr, ma())
R(z,u) = R(z,mg(x)) @)

Here R denotegherewardfunction. It is importantto notice
thatsucha decompositiormay only be valid if rewardis re-
ceivedattheleaf nodesof thehierarcly, andis especiallyap-
propriatewhenthe optimal control transgressedown along
a single pathin the hierarcly to receve its reward. This is
approximatelythe casein the Pearldomain,whererewardis
receved upon successfullydelivering a person,or success-
fully gatheringinformationthroughcommunication.

Using the hierarchicalPOMDR the high-level decision
makingproblemin Pearlis tractableandanearoptimalcon-
trol policy canbe computedoff-line. Thus, during execu-
tion time the controllersimply monitorsthe state(calculates
the posterior)andlooks up the appropriatecontrol. Table1
shavs an exampledialog betweenthe robot and a testsub-
ject. Becauseof the uncertaintymanagemenin POMDPs,
therobot choosego aska clarificationquestionat threeoc-
casions.Thenumberof suchquestionsiepend®ntheclarity
of apersons speechasdetectedy the Sphinxspeechrecog-
nition system.

An importantquestionin our researcttoncerngheimpor-
tanceof handlinguncertaintyin high-level control. To inves-
tigate this, we ran a seriesof comparatre experiments,all
involving real datacollectedin ourlab. In oneseriesof ex-
perimentswe investigatedtheimportanceof consideringhe
uncertaintyarising from the speechinterface. In particular
we comparedPearls performanceo a systemthat ignores
thatuncertaintybut is otherwiseidentical. Theresultingap-
proachis an MDP, similar to the onedescribedn [23]. Fig-
ure5 shavs resultsfor threedifferentperformanceneasures,
andthreedifferentuserqin decreasingrderof speechecog-
nition performance).For poor spealers, the MDP requires
lesstimeto “satisfy” arequestueto thelack of clarification
guestiongFigure5a). However, its errorrateis muchhigher
(Figure 5b), which negatively affectsthe overall reward re-
ceivedby therobot(Figure5c). Theseresultsclearlydemon-
stratetheimportanceof consideringincertaintyatthehighest
robotcontrollevel, specificallywith poorspeechrecognition.

In a secondseriesof experimentswe investigatedtheim-
portanceof uncertaintymanagemenn the context of highly
imbalancedcostsand rewards. In Pearls case,suchcosts
areindeedhighly imbalancedaskinga clarificationquestion
is much cheaperthan accidentallydelivering a personto a
wronglocation,or guidinga persornwho doesnotwantto be
walked. In this experimentwe comparecperformancaising
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costmodels. Resultsarean averageover 10 tasks. Depictedare 3
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Users2 & 3 hadthe lowestrecognitionaccurag, andconsequently
moreerrorswhenusingthe uniform costmodel.

two POMDPmodelswhichdifferedonly in theircostmodels.
One modelassumediniform costsfor all actions,whereas
the secondnodelassumea morediscriminative costmodel
in which the costof verbalquestionavaslower thanthe cost
of performingthe wrong motion actions. A POMDP policy
waslearnedfor eachof thesemodels,andthentestedexper
imentallyin our laboratory Theresultspresentedn figure 6
shaw thatthe non-uniformmodelmakes morejudicioususe
of confirmationactions thusleadingto a significantlylower
errorrate,especiallyfor userswith low recognitionaccurag.

Results

We testedtherobotin five separat@xperimentseachlasting
onefull day Thefirst threedaysfocusedon open-endedh-

teractionswith alarge numberof elderlyusersduringwhich

therobotinteractedrerballyandspatiallywith elderlypeople
with the specifictaskof deliveredsweets.This allowedusto

gaugepeoplesinitial reactiongo therobot.

Following this, we performedtwo daysof formal experi-
mentsduringwhich therobotautonomouslyed 12 full guid-
ances,nvolving 6 differentelderly people. Figure 7 shavs
anexampleguidancexperiment,jnvolving anelderlyperson
who usesa walking aid. The sequencef imagesillustrates
the major stagesof a successfudelivery: from contacting
thepersongxplainingto herthereasorfor thevisit, walking
her throughthe facility, and providing information after the
successfutlelivery—in this caseon theweather

In all guidanceexperiments,the task was performedto
completion. Post-eperimentaldebriefingsillustrateda uni-
form highlevel of excitementonthesideof theelderly. Over-
all, only a few problemsweredetectedduring the operation.
None of the test subjectsshaved difficulties understanding
themajorfunctionsof therobot. They all wereableto operate
the robot after lessthanfive minutesof introduction. How-
ever, initial flaws with a poorly adjustedspeechrecognition



(b) Remindingof appointment
um

(a) Pearlapproachinglderly

—~

Figure7: Exampleof asuccessfujuidancesxperiment.Pearlpicks
up the patientoutsideherroom,remindsherof a physiotheray ap-
pointment,walks the personto the departmentandrespondgo a
requestof the weatherreport. In this interaction,the interaction
took placethroughspeechtandthe touch-sensitie display

systemled to occasionatonfusion,which wasfixed during
the courseof this project. An additionalproblemarosefrom
the robot’s initial inability to adaptits velocity to peoples
walking pace,which wasfoundto be crucial for the robot’s
effectiveness.

Discussion

Thispaperdescribedamobileroboticassistantor nursesand
elderlyin assistediving facilities. Building on a robot nav-
igation systemdescribedn [5, 24], newv software modules
specificallyaimedatinteractionwith elderlypeoplewerede-
veloped. The systemhasbeentestedsuccessfullyin exper
imentsin an assistediving facility. Our experimentswere
successfuin two maindimensionsFirst, they demonstrated
the robustnessof the various probabilistic techniquesn a
challengingreal-world task. Secondthey provided someev-
idencetowardsthe feasibility of usingautonomousmobile
robots as assistantdo nursesand institutionalizedelderly.
Oneof thekey lessondearnedwhile developingthisrobotis
thatthe elderly populationrequirestechniqueghat cancope
with their degradation(e.g.,speakingabilities)andalsopays
specialattentionto safetyissues.We view the areaof assis-
tive technologyas a prime sourcefor greatAl problemsin
thefuture.

Possiblythe mostsignificantcontrikution of this research
to Al is thefactthatthe robot’s high-level control systemis
entirely realizedby a partially observableMarkov decision
process(POMDP) [14]. This demonstrateshat POMDPs
have maturedto a level that makesthemapplicableto real-
world robotcontroltasks.Furthermorepur experimentake-
sults suggesthat uncertaintymattersin high-level decision

making. Thesefindingschallengea long termview in main-
streamAl thatuncertaintyis irrelevant,or atbestcanbehan-
dleduniformly atthehigherlevelsof robotcontrol[6 17]. We
conjecturdnsteadthatwhenrobotsinteractwith people,un-
certaintyis penasive andhasto beconsideredt all levels of
decisionmaking,not solelyin low-level perceptuatoutines.
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