
Model Estimation Within Planning and Learning

Alborz Geramifard†∗, Joshua D. Redding†, Joshua Joseph∗, Nicholas Roy∗, and Jonathan P. How†

Abstract— Risk and reward are fundamental concepts in the
cooperative control of unmanned systems. In this research, we
focus on developing a constructive relationship between cooper-
ative planning and learning algorithms to mitigate the learning
risk, while boosting system (planner & learner) asymptotic
performance and guaranteeing the safety of agent behavior. Our
framework is an instance of the intelligent cooperative control
architecture (iCCA) where the learner incrementally improves
on the output of a baseline planner through interaction and
constrained exploration. We extend previous work by extracting
the embedded parameterized transition model from within the
cooperative planner and making it adaptable and accessible to
all iCCA modules. We empirically demonstrate the advantage
of using an adaptive model over a static model and pure
learning approaches in an example GridWorld problem and
a UAV mission planning scenario with 200 million possibilities.
Finally we discuss two extensions to our approach to handle
cases where the true model can not be captured exactly through
the presumed functional form.

I. INTRODUCTION

The concept of risk is common among humans, robots and
software agents alike. Risk models are routinely combined
with relevant observations to analyze potential actions for
unnecessary risk or other unintended consequences. Risk
mitigation is a particularly interesting topic in the context of
the intelligent cooperative control of teams of autonomous
mobile robots [1]. In such a multi-agent setting, coopera-
tive planning algorithms rely on knowledge of underlying
transition models to provide guarantees on resulting agent
performance. In many situations however, these models are
based on simple abstractions of the system and are lacking
in representational power. Using simplified models may aid
computational tractability and enable quick analysis, but at
the possible cost of implicitly introducing significant risk
elements into cooperative plans [2,3].

Aimed at mitigating this risk, we adopt the intelligent
cooperative control architecture (iCCA) as a framework for
tightly coupling cooperative planning and learning algo-
rithms [4]. Fig. 1 shows the template iCCA framework which
is comprised of a cooperative planner, a learner, and a per-
formance analysis module. The performance analysis module
is implemented as a risk-analyzer where actions suggested
by the learner can be overridden by the baseline cooperative
planner if they are deemed unsafe. This synergistic planner-
learner relationship yields a “safe” policy in the eyes of the
planner, upon which the learner can improve.

Our research has focused on developing a constructive
relationship between cooperative planning and learning algo-
rithms to reduce agent risk while boosting system (planner

† Aerospace Controls Laboratory, MIT Cambridge, MA 02139 USA
∗ Robust Robotics Group, MIT Cambridge, MA 02139 USA
{agf,jredding,jmjoseph,nickroy,jhow}@mit.edu

Fig. 1. The intelligent cooperative control architecture (iCCA) is a cus-
tomizable template for tightly integrating planning and learning algorithms.

and learner) performance. The paper extends previous work
[5] by extracting the parameterized transition model from
within the cooperative planner and making it accessible to
all iCCA modules. This extension enables model adaptation
which facilitates better risk estimation and allows the use
of multiple planning schemes. In addition, we consider two
cases where the assumed functional form of the model is 1)
exact and 2) inaccurate.

When the functional form is exact, we update the assumed
model using an adaptive parameter estimation scheme and
demonstrate that the performance of the resulting system
increases. Furthermore, we explore two methods for han-
dling the case when the assumed functional form can not
represent the true model (e.g., a system with state dependent
noise represented through a uniform noise model). First,
we enable the learner to be the sole decision maker in
areas with high confidence, in which it has experienced
many interactions. This extension eliminates the need for
the baseline planner altogether asymptotically. Second, we
use past data to estimate the reward of the learner’s policy.
While the policy used to obtain past data may differ from
the current policy of the agent, we can still exploit the
Markov assumption to piece together trajectories the learner
would have experienced given the past history [6]. By using
an inaccurate but simple model, we can further reduce the
amount of experience required to accurately estimate the
learner’s reward using the method of control variates [7,8].

When the assumed functional form of the model is exact,
the proposed approach of integrating an adaptive model into
the planning and learning framework improved the sample
complexity in a GridWorld navigation problem by a factor
of two. In addition, empirical results in an example UAV
mission planning domain led to more than 20% performance
improvement on average compared to the best performing
algorithm.

The paper proceeds as follows: Section II provides back-
ground information and Section III highlights the problem of
interest by defining a pedagogical scenario where planning

and learning algorithms are used to mitigate stochastic risk.
Section IV outlines the proposed technical approach for
learning to mitigate risk. Section V empirically verifies the
effectiveness of our new approach. Section VI highlights two
extensions to our approach when the true model can not
be captured exactly in the parametric form assumed for the
model. Section VII concludes the paper.

II. BACKGROUND

A. Markov Decision Processes (MDPs)
MDPs provide a general formulation for sequential plan-

ning under uncertainty [9]. MDPs are a natural framework
for solving multi-agent planning problems as their versatility
allows modeling of stochastic system dynamics as well as
inter-dependencies between agents. An MDP is defined by
tuple (S,A,Pass′ ,Rass′ , γ), where S is the set of states, A is
the set of possible actions. Taking action a from state s has
Pass′ probability of ending up in state s′ and receiving reward
Rass′ . Finally γ ∈ [0, 1] is the discount factor used to prior-
itize early rewards against future rewards.1 A trajectory of
experience is defined by sequence s0, a0, r0, s1, a1, r1, · · · ,
where the agent starts at state s0, takes action a0, receives
reward r0, transits to state s1, and so on. A policy π is
defined as a function from S × A to the probability space
[0, 1], where π(s, a) corresponds to the probability of taking
action a from state s. The value of each state-action pair
under policy π, Qπ(s, a), is defined as the expected sum of
discounted rewards when the agent takes action a from state
s and follows policy π thereafter:

Qπ(s, a) = Eπ

[∞∑
t=1

γtrt

∣∣∣∣s0 = s, a0 = a,

]
.

The optimal policy π∗ maximizes the above expectation for
all state-action pairs: π∗ = argmaxaQ

π∗(s, a).

B. Reinforcement Learning in MDPs
The underlying goal of the reinforcement learning (RL) al-

gorithms herein is to improve performance of the cooperative
planner over time using observed rewards by exploring new
agent behaviors that may lead to more favorable outcomes.
In this paper, we focus on one of the simplest RL techniques,
known as SARSA (state action reward state action) [10].

SARSA is a popular approach among MDP solvers that
finds an approximation to Qπ(s, a) (policy evaluation) and
updates the policy with respect to the resulting values (policy
improvement). Temporal Difference learning (TD) [11] is a
traditional policy evaluation method in which the current
Q(s, a) is adjusted based on the difference between the
current estimate of Q and a better approximation formed
by the actual observed reward and the estimated value of the
following state. Given (st, at, rt, st+1, at+1) and the current
value estimates, the temporal difference (TD) error, δt, is
calculated as:

δt(Q) = rt + γQπ(st+1, at+1)−Qπ(st, at).

The one-step TD algorithm, also known as TD(0), updates

1can set γ = 1 for episodic tasks, where trajectories are finite length.

Fig. 2. The GridWorld domain is shown in (a), where the task is to
navigate from the bottom middle (•) to one of the top corners (?). The the
danger region (◦) is an off-limit area where the agent should avoid. The
corresponding policy and value function, are depicted with respect to (b) a
conservative policy to reach the left corner in most states, (c) an aggressive
policy which aims for the top right corner, and (d) the optimal policy.

the value estimates using:

Qπ(st, at) = Qπ(st, at) + αδt(Q), (1)

where α is the learning rate. SARSA is essentially TD
learning for control, where the policy is directly derived from
the Q values as:

πSARSA(s, a) =

{
1− ε a = argmaxaQ(s, a)
ε
|A| Otherwise ,

where ε is the probability of taking a random action. This
policy is also known as the ε-greedy policy.2

III. GRIDWORLD DOMAIN: A PEDAGOGICAL EXAMPLE

Consider the GridWorld domain shown in Fig. 2-a, in
which the task is to navigate from the bottom-middle (•) to
one of the top corner gridcells (?), while avoiding the danger
zone (◦), where the agent will be eliminated upon entrance.
At each step the agent can take any action from the set {↑, ↓,
←,→}. However, due to wind disturbances unbeknownst to
the agent, there is a 20% chance the agent will be transferred
into a neighboring unoccupied grid cell upon executing each
action. The reward for reaching either of the goal regions and
the danger zone are +1 and −1, respectively, while every
other action results in −0.01 reward.

First consider the conservative policy shown in Fig. 2-b
designed for high values of wind noise. As expected, the
nominal path, highlighted as a gray watermark, follows the
long but safe path to the top left goal. The color of each
grid represents the true value of each state under the policy.
Green indicates positive, and white indicates zero. The value

2Ties are broken randomly, if more than one action maximizes Q(s, a).

of blocked gridcells are shown as red.
Fig. 2-c depicts a policy designed to reach the right goal

corner from every location. This policy ignores the existence
of the noise, hence the nominal path in this case gets close
to the danger zone. Finally Fig. 2-d shows the optimal
solution. Notice how the nominal path under this policy
avoids getting close to the danger zone. Model-free learning
techniques such as SARSA can find the optimal policy of
the noisy environment through interaction, but require a
great deal of training examples. More critically, they may
deliberately move the agent towards dangerous regions in
order to gain information about those areas. Previously, we
demonstrated that when a planner (e.g., methods to generate
policies in Fig. 2-b,c) is integrated with a learner, it can
rule out suggested actions by the learner that are poor
in the eyes of the planner, resulting in safer exploration.
Furthermore, the planner’s policy can be used as a starting
point for the learner to bootstrap on, potentially reducing
the amount of data required by the learner to master the
task [4,5]. In our past work, we considered the case where
the model used for planning and risk analysis were static.
In this paper, we expand our framework by representing the
model as a separate entity which can be adapted through
the learning process. The focus here is on the case where
the parametric form of the approximated model includes
the true underlying model (T) (e.g., assuming an unknown
uniform noise parameter for the GridWorld domain). In
Section VI, we discuss drawbacks of our approach when
the approximation model class is unable to exactly represent
T and introduce two potential extensions.

Adding a parametric model to the planning and learning
scheme is easily motivated by the case when the initial
bootstrapped policy is wrong, or built from incorrect as-
sumptions. In such a case, it is more effective to simply
switch the underlying policy with a better one, rather than
requiring a plethora of interactions to learn from and refine
a poor initial policy. The remainder of this paper shows that
by representing the model as a separate entity that can be
adapted through the learning process, we enable the ability
to intelligently switch-out the underlying policy, which is
refined by the learning process.

IV. TECHNICAL APPROACH

This section first discusses the new architecture used in
this research, which is shown in Fig. 3. Note the addition
of the “Models” module in the iCCA framework as im-
plemented when compared to the template architecture of
Fig. 1. This module enables the agent’s transition model
to be adapted in light of actual transitions experienced.
An estimated model, T̂ , is output and is used to sample
successive states when simulating trajectories. As mentioned
above, this model is assumed to be of the exact functional
form (e.g., a single uncertain parameter). Additionally, Fig. 1
shows a dashed boxed outlining the learner and the risk-
analysis modules, which are formulated together within an
MDP to enable the use of reinforcement learning algorithms
in the learning module.

Fig. 3. The intelligent cooperative control architecture as implemented.
The conventional reinforcement learning method (e.g., SARSA) sits in the
learner box while the performance analysis block is implemented as a
risk analysis tool. Together, the learner and the risk-analysis modules are
formulated within a Markov decision process (MDP).

SARSA is implemented as the system learner, which uses
past experiences to guide exploration and then suggests
behaviors that have potential to boost the performance of
the baseline planner. The performance analysis block is
implemented as a risk analysis tool where actions suggested
by the learner can be rejected if they are deemed too risky.
The following sections describe the iCCA blocks in further
detail.

A. Cooperative Planner
At its fundamental level, the cooperative planning algo-

rithm used in iCCA yields a solution to the multi-agent
path planning, task assignment or resource allocation prob-
lem, depending on the domain that seeks to optimize an
underlying, user-defined objective function. Many existing
cooperative control algorithms use observed performance to
calculate temporal-difference errors which drive the objective
function in the desired direction [3,12]. Regardless of how it
is formulated (e.g., MILP or MDP), the cooperative planner,
or cooperative control algorithm, is the source for baseline
plan generation within iCCA. We assume that given a model
(T̂), this module can provide a safe solution (πp) in a
reasonable amount of time.

B. Learning and Risk-Analysis
As discussed earlier, learning algorithms may encourage

the agent to explore dangerous situations (e.g., flying close
to the danger zone) in the hope of improving the long-term
performance. While some degree of exploration is necessary,
unbounded exploration can lead to undesirable scenarios
such as crashing or losing a UAV. To avoid such undesirable
outcomes, we implemented the iCCA performance analysis
module as a risk analysis element where candidate actions are
evaluated for safety against an adaptive estimated transition
model T̂ . Actions deemed too “risky” are replaced with the
safe action suggested by the cooperative planner. The risk-
analysis and learning modules are coupled within an MDP
formulation, as shown by the dashed box in Fig. 3. We now
discuss the detail of the learning and risk-analysis algorithms.

Previous research employed a risk analysis scheme that
used the planner’s transition model, which can be stochastic,
to mitigate risk [5]. In this research, we pull this embedded

Algorithm 1: safe

Input: s, a, T̂
Output: isSafe
risk ← 01

for i← 1 to M do2

t← 13

st ∼ T̂ (s, a)4

while not constrained(st) and not5

isTerminal(st) and t < H do
st+1 ∼ T̂ (st, π

p(st))6

t← t+ 17

risk ← risk + 1
i (constrained(st)− risk)8

isSafe← (risk < ψ)9

model from within the planner and allow it to be updated
online. This allows both the planner and the risk-analysis
module to benefit from model updates. Algorithm 1 explains
the risk analysis process where we assume the existence of
the function constrained: S → {0, 1}, which indicates if
being in a particular state is allowed or not. We define risk
as the probability of visiting any of the constrained states.
The core idea is to use Monte-Carlo sampling to estimate
the risk level associated with the given state-action pair if
the planner’s policy is applied thereafter. This is done by
simulating M trajectories from the current state s. The first
action is the learner’s suggested action a, and the rest of
actions come from the planner policy, πp. The adaptive
approximate model, T̂ , is utilized to sample successive states.
Each trajectory is bounded to a fixed horizon H and the risk
of taking action a from state s is estimated by the probability
of a simulated trajectory reaching a risky (e.g., constrained)
state within horizon H . If this risk is below a given threshold,
ψ, the action is deemed to be safe.

Note that the cooperative planner has to take advantage
of the updated transition model and replan adaptively. This
ensures that the risk analysis module is not overriding actions
deemed risky by an updated model with actions deemed
“safe” by an outdated model. Such behavior would result
in convergence of the cooperative learning algorithm to the
baseline planner policy and the system would not benefit
from the iCCA framework.

For learning schemes that do not represent the policy
as a separate entity, such as SARSA, integration within
iCCA framework is not immediately obvious. Previously, we
presented an approach for integrating learning approaches
without an explicit component for the policy [4]. Our idea
was motivated by the concept of the Rmax algorithm [13].
We illustrate our approach through the parent-child analogy,
where the planner takes the role of the parent and the learner
takes the role of the child. In the beginning, the child does
not know much about the world, hence, for the most part
they take actions advised by the parent. While learning from
such actions, after a while, the child feels comfortable about
taking a self-motivated actions as they have been through
the same situation many times. Seeking permission from the
parent, the child could take the action if the parent thinks the

[ACC 2011]

Adaptive Model

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Model Estimation Within Planning and Learning

Algorithm 2: Cooperative Learning
Input: N,πp, s, learner
Output: a
a← πp(s)1

πl ← learner.π2

knownness← min{1, count(s,a)
N }3

if rand() < knownness then4

al ∼ πl(s, a)5

if safe(s, al, T̂) then6

a← al7

else8

count(s, a)← count(s, a) + 19

Take action a and observe r, s�10

learner.update(s, a, r, s�)11

T̂ ← NewModelEstimation(s, a, s�)12

if ||T̂ p − T̂ || > ξ then13

T̂ p ← T̂14

πp ← Planner.replan()15

if πp is changed then16

reset all counts to zero17

learner suggests optimal actions such as taking → in the
3rd row, they are deemed too risky as the planner’s policy
which is followed afterward is not safe anymore.

5. Experimental Results
We compare the effectiveness of the adaptive model ap-
proach combined with iCCA framework (AM-iCCA) with
respect to two methods (i) our previous work with a
fixed model (iCCA) and (ii) the pure learning approach
Sarsa (see Sutton & Barto, 1998) in a GridWorld Domain
showin in Figure

against representations that (i) use only the initial features,
(ii) use the full tabular representation, and (iii) use two
state-of-the-art representation-expansion methods: adap-
tive tile coding (ATC), which cuts the space into finer re-
gions through time (Whiteson et al., 2007), and sparse dis-
tributed memories (SDM), which creates overlapping sets
of regions (Ratitch & Precup, 2004). All cases used learn-
ing rates αt = α0

kt

N0+1
N0+Episode #1.1 , where kt was the number

of active features at time t. For each algorithm and do-
main, we used the best α0 from {0.01, 0.1, 1} and N0 from
{100, 1000, 106}. During exploration, we used an �-greedy
policy with � = 0.1. Each algorithm was tested on each
domain for 30 runs (60 for the rescue mission). iFDD was
fairly robust with respect to the threshold, ψ, outperform-
ing initial and tabular representations for most values.

[ACC 2011]

Adaptive Model

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Model Estimation Within Planning and Learning

Algorithm 2: Cooperative Learning
Input: N,πp, s, learner
Output: a
a← πp(s)1

πl ← learner.π2

knownness← min{1, count(s,a)
N }3

if rand() < knownness then4

al ∼ πl(s, a)5

if safe(s, al, T̂) then6

a← al7

else8

count(s, a)← count(s, a) + 19

Take action a and observe r, s�10

learner.update(s, a, r, s�)11

T̂ ← NewModelEstimation(s, a, s�)12

if ||T̂ p − T̂ || > ξ then13

T̂ p ← T̂14

πp ← Planner.replan()15

if πp is changed then16

reset all counts to zero17

learner suggests optimal actions such as taking → in the
3rd row, they are deemed too risky as the planner’s policy
which is followed afterward is not safe anymore.

5. Experimental Results
We compare the effectiveness of the adaptive model ap-
proach combined with iCCA framework (AM-iCCA) with
respect to two methods (i) our previous work with a
fixed model (iCCA) and (ii) the pure learning approach
Sarsa (see Sutton & Barto, 1998) in a GridWorld Domain
showin in Figure

against representations that (i) use only the initial features,
(ii) use the full tabular representation, and (iii) use two
state-of-the-art representation-expansion methods: adap-
tive tile coding (ATC), which cuts the space into finer re-
gions through time (Whiteson et al., 2007), and sparse dis-
tributed memories (SDM), which creates overlapping sets
of regions (Ratitch & Precup, 2004). All cases used learn-
ing rates αt = α0

kt

N0+1
N0+Episode #1.1 , where kt was the number

of active features at time t. For each algorithm and do-
main, we used the best α0 from {0.01, 0.1, 1} and N0 from
{100, 1000, 106}. During exploration, we used an �-greedy
policy with � = 0.1. Each algorithm was tested on each
domain for 30 runs (60 for the rescue mission). iFDD was
fairly robust with respect to the threshold, ψ, outperform-
ing initial and tabular representations for most values.

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Model Estimation Within Planning and Learning

Figure 3. The intelligent cooperative control architecture as im-
plemented. The consensus-based bundle algorithm (CBBA (Choi
et al., 2009)) serves as the cooperative planner to solve the multi-
agent task allocation problem. Natural actor-critic (Bhatnagar
et al., 2007) and Sarsa (Rummery & Niranjan, 1994) reinforce-
ment learning algorithms are implemented as the system learners
and the performance analysis block is implemented as a risk anal-
ysis tool. Together, the learner and the risk-analysis modules are
formulated within a Markov decision process (MDP).

Algorithm 1: safe

Input: s, a, T̂
Output: isSafe
risk ← 01

for i← 1 to M do2

t← 13

st ∼ T̂ (s, a)4

while not constrained(st) and not5

isTerminal(st) and t < H do
st+1 ∼ T̂ (st,π

p(st))6

t← t + 17

risk ← risk + 1
i (constrained(st)− risk)8

isSafe← (risk < ψ)9

simply as they parameterize the policy explicitly. For learn-
ing schemes that do not represent the policy as a separate
entity, such as Sarsa, integration within iCCA framework is
not immediately obvious. Previously, we presented an ap-
proach for integrating learning approaches without an ex-
plicit actor component(Redding et al., 2010). Our idea was
motivated by the concept of the Rmax algorithm (Brafman
& Tennenholtz, 2001). We illustrate our approach through
the parent-child analogy, where the planner takes the role of
the parent and the learner takes the role of the child. In the
beginning, the child does not know much about the world,
hence, for the most part s/he takes actions advised by the
parent. While learning from such actions, after a while,
the child feels comfortable about taking a self-motivated
actions as s/he has been through the same situation many

Algorithm 2: Cooperative Learning
Input: N,πp, s, learner
Output: a
a← πp(s)1

πl ← learner.π2

knownness← min{1, count(s,a)
N }3

if rand() < knownness then4

a� ∼ πl(s, a)5

if safe(s, a�, T̂) then6

a← a�7

else8

count(s, a)← count(s, a) + 19

Take action a and observe r, s�10

learner.update(s, a, r, s�)11

T̂ ← NewModelEstimation(s, a, s�)12

if ||T̂ p − T̂ || > ξ then13

T̂ p ← T̂14

πp ← Planner.replan()15

times. Seeking permission from the parent, the child could
take the action if the parent thinks the action is safe. Oth-
erwise the child should follow the action suggested by the
parent.

Algorithm ?details the process. On every step, the learner
inspects the suggested action by the planner and estimates
the knownness of the state-action pair by considering the
number of times that state-action pair has been experienced
following the planner’s suggestion. The N parameter con-
trols the shift speed from following the planner’s policy
to the learner’s policy. Given the knownness of the state-
action pair, the learner probabilistically decides to select an
action from its own policy. If the action is deemed to be
safe, it is executed. Otherwise, the planner’s policy over-
rides the learner’s choice. If the planner’s action is selected,
the knownness count of the corresponding state-action pair
is incremented. Finally the learner updates its parameter
depending on the choice of the learning algorithm. What
this means, however, is that state-action pairs explicitly for-
bidden by the baseline planner will not be intentionally vis-
ited. Hence, if the planner’s model designed poorly, it can
hinder the learning process in parts of the state space for
which the risk is overestimated. Also, notice that any con-
trol RL algorithm, even the actor-critic family of methods,
can be used as the input to Algorithm ?

Here is where we deal with the case of assuming an incor-
rect functional form for the model. Resuming the previous
analogy, the child may simply stop checking if the parent
thinks an action is safe once s/he feels comfortable taking
a self-motivated action. The resulting algorithm is shown

[ACC 2011]

Adaptive Model

6. Extensions
So far, we assumed that the true model can be repre-
sented accurately within functional form of the approxi-
mated model. What if this condition does not hold? In this
section, we are going to discuss challenges involved in us-
ing our proposed methods for this scenario. We suggest two
extensions to our approach to overcome these challenges.

Lets go back to the cliff domain, but now consider the case
where the 20% noise is not applied to all states but only to
grids close to the cliff marked with ∗. Fig. 4 depicts the
resulting policy and the value function. Notice that for any
larger noise value the optimal policy remains unchanged.
When the agent assumes the uniform noise model by mis-
take, it generalizes the noisy movements close to the cliff
to all states. This can cause the ACSarsa agent to converge
to a suboptimal policy, as the risk analyzer filters optimal
actions suggested by the learner due to incorrect model as-
sumption.

The root of this problem is that the risk analyzer has the
final authority in selecting the actions from the learner and
the planner, hence both of our extensions focus on revok-
ing this authority. The first extension turns the risk an-
alyzer mandatory only to a limited degree. Back to our
parent/child analogy, the child may simply stop checking
if the parent thinks an action is safe once s/he feels com-
fortable taking a self-motivated action. Thus, the learner
would eventually circumvent the need for a planner alto-
gether. More specifically, line 6 of Algorithm 2 is changed,
so that if the knowness of a particular state reaches a certain
threshold, probing the safety of the action is not mandatory

6. Extensions
So far, we assumed that the true model can be repre-
sented accurately within functional form of the approxi-
mated model. What if this condition does not hold? In this
section, we are going to discuss challenges involved in us-
ing our proposed methods for this scenario. We suggest two
extensions to our approach to overcome these challenges.

Lets go back to the cliff domain, but now consider the case
where the 20% noise is not applied to all states but only to
grids close to the cliff marked with ∗. Fig. 4 depicts the
resulting policy and the value function. Notice that for any
larger noise value the optimal policy remains unchanged.
When the agent assumes the uniform noise model by mis-
take, it generalizes the noisy movements close to the cliff
to all states. This can cause the ACSarsa agent to converge
to a suboptimal policy, as the risk analyzer filters optimal
actions suggested by the learner due to incorrect model as-
sumption.

The root of this problem is that the risk analyzer has the
final authority in selecting the actions from the learner and
the planner, hence both of our extensions focus on revok-
ing this authority. The first extension turns the risk an-
alyzer mandatory only to a limited degree. Back to our
parent/child analogy, the child may simply stop checking
if the parent thinks an action is safe once s/he feels com-
fortable taking a self-motivated action. Thus, the learner
would eventually circumvent the need for a planner alto-
gether. More specifically, line 6 of Algorithm 2 is changed,
so that if the knowness of a particular state reaches a certain
threshold, probing the safety of the action is not mandatory

action is safe. Otherwise the child should follow the action
suggested by the parent.

Our approach for safe, cooperative learning is shown in
Algorithm 2. The red section highlights our previous coop-
erative method [5], while the green region depicts the new
version of the algorithm which includes model adaptation.
On every step, the learner inspects the suggested action by
the planner and estimates the knownness of the state-action
pair by considering the number of times that state-action
pair has been experienced following the planner’s suggestion
(line 3). The knownness parameter controls the transition
speed from following the planner’s policy to the learner’s
policy. Given the knownness of the state-action pair, the
learner probabilistically decides to select an action from its
own policy (line 4). If the action is deemed to be safe, it
is executed. Otherwise, the planner’s policy overrides the
learner’s choice (lines 5-7). If the planner’s action is selected,
the knownness count of the corresponding state-action pair is
incremented (line 9). Finally the learner updates its parameter
depending on the choice of the learning algorithm (line 11).

A drawback of the red part of Algorithm 2 (i.e., our
previous work) is that state-action pairs explicitly forbidden
by the risk analyzer will not be visited. Hence, if the model
is designed poorly, it can hinder the learning process in
parts of the state space for which the risk is overestimated.
Furthermore, the planner can take advantage of the adaptive
model and revisits its policy. Hence we extended the previous
algorithm (the red section) to enable the model to be adapted
during the learning phase (line 12). Furthermore, if the
change to the model used for planning crosses a predefined
threshold (ξ), the planner revisit its policy and keeps record
of the new model (lines 13-15). If the policy changes, the
counts of all state-action pairs are set to zero so that the

learner start watching the new policy from scratch (lines 16,
17). An important observation is that the planner’s policy
should be seen as safe through the eyes of the risk analyzer
at all times. Otherwise, most actions suggested by the learner
will be deemed too risky by mistake, as they are followed
by the planner’s policy.

V. NUMERICAL EXPERIMENTS

We compared the effectiveness of the adaptive model
approach (Algorithm 2), which we refer to as AM-iCCA with
respect to (i) our previous work with a static model —the
red section of Algorithm 2— (iCCA), (ii) the pure learning
approach, and (iii) pure fixed planners. All algorithms used
SARSA for learning with the following form of learning rate:

αt = α0
N0 + 1

N0 + Episode #1.1
.

For each algorithm, we used the best α0 from {0.01, 0.1, 1}
and N0 from {100, 1000, 106}. During exploration, we used
an ε-greedy policy with ε = 0.1. Value functions were
represented using lookup tables. Both iCCA methods started
with the noise estimate of 40% with the count weight of
100, and a conservative policy. We used 5 Monte-Carlo
simulations to evaluate risk (i.e., M = 5). Each algorithm
was tested for 100 trials. Error bars represent 95% confidence
intervals. We allowed 20% risk during the execution of iCCA
(i.e., ψ = 0.2). As for plan adaptation, each planner executed
a conservative policy for noise estimates above 25% and
an aggressive policy for noise estimates below 25%. This
adaptation was followed without any lag (i.e., ξ = 0). For
the AM-iCCA, the noise parameter was estimated as:

noise =
#unintended agents moves + initial weight
#total number of moves + initial weight

.

The noise parameter converged to the real value in all
domains.

A. The GridWorld Domain
For the iCCA algorithm, the planner followed the con-

servative policy (Fig. 2-b). As for AM-iCCA, the planner
switched from the conservative to the aggressive policy
(Fig. 2-c), whenever the noise estimate dropped below 25%.
The knownness parameter (N) was set to 10.

Fig. 4 compares the cumulative return obtained in the
GridWorld domain for SARSA, iCCA, and AM-iCCA based
on the number of interactions. The expected performance of
both static policies are shown as horizontal lines, estimated
by 10, 000 simulated trajectories. The improvement of iCCA
with a static model over the pure learning approach is statis-
tically significant in the beginning, while the improvement is
less significant as more interactions were obtained. Although
initialized with the conservative policy (shown as green in
Figure 4), the AM-iCCA approach quickly learned that the
actual noise in the system was much less than the initial 40%
estimate and switched to using (and refining) the aggressive
policy. As a result of this early discovery and switching
planner’s policy, AM-iCCA outperformed both iCCA and
SARSA, requiring one half the data compared to other

0 2000 4000 6000 8000 10000
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

Steps

R
et
ur
n

Aggressive Policy

AM-iCCA

SARSA

iCCA Conservative Policy

Fig. 4. Empirical results of AM-iCCA, iCCA, and SARSA algorithms in
the GridWorld problem.

learning methods to reach the asymptotic performance.3 Over
time, however, all learning methods (i.e., SARSA, iCCA,
and AM-iCCA) reached the same level of performance that
improved the performance of static policies, highlighting
their sub-optimality.

B. The Multi-UAV Planning Scenario
Fig. 5-a depicts a mission planning scenario, where a team

of two fuel-limited UAVs cooperate to maximize their total
reward by visiting valuable target nodes in the network and
return back to the base (green circle). Details of the domain
is available in our previous work [4,5]. The probability of a
UAV remaining in the same node upon trying to traverse an
edge (i.e., the true noise parameter) was set to 5%. The size
of the possible state-action pairs exceeds 200 million.

As for the baseline cooperative planner, CBBA [3] was
implemented in two versions: aggressive and conservative.
The aggressive version used all remaining fuel cells in one
iteration to plan the best set of target assignments ignoring
the possible noise in the movement. Algorithm 3 illustrates
the conservative CBBA algorithm that adopts a pessimistic
approach for planning. The input to the algorithm is the
collection of UAVs (U) and the connectivity graph (G). First
the current fuel of UAVs are saved and decremented by the
dimeter of the connectivity graph (lines 1-2). This value is
3 for the mission planning scenario shown in Fig. 5-a. On
each iteration, CBBA is called with the reduced amount of
fuel cells. Consequently, the plan will be more conservative
compared to the case where all fuel cells are considered. If
the resulting plan allows all UAVs to get back to the base
safely, it will be returned as the solution. Otherwise, UAVs
with no feasible plan (i.e., Plan[u] = ø) will have their
fuels incremented, as long as the fuel does not exceed the
original fuel value (line 8). Notice that aggressive CBBA
is equivalent to calling CBBA method on line 5 with the
original fuel levels. Akin to the GridWorld domain, the iCCA
algorithm only took advantage of the conservative CBBA
because the noise assumed to be 40%. In AM-iCCA, the
planner switched between the conservative and the aggressive

3Compare AM-iCCA’s performance after 4, 000 steps to other learning
methods’ performance after 8, 000 steps.

a) Domain

1 2 3

.5[2,3]

+100

4

.5

[2,3]

+100
5 [3,4]

+200

5

8

6

+100

.7

7

+300

.6

Maze +- UAV-5-S +- Optimality - UAV Optimality% +-

Sarsa
Planner-Cons
Planner-Agg
CSarsa
CSarsa+AM
Optimal
MinValue

AVG 100
Sarsa
Planner-Cons
Planner-Agg
CSarsa
CSarsa+AM
Optimal
MinValue

0.5928 0.0994 16.4700 34.5300 -96 0.5320 0.0221
357.6000 0.7917 0.7501 0.0005
452.3800 3.5400 0.8106 0.0023

0.7900 0.0725 467.7300 34.8600 2,740 432.8700 0.8205 0.0223
0.7900 0.0725 573.9900 34.4600 27 539.5300 0.8884 0.0220
0.7716 0.0000 748.6582

-816.0000 Planner Over
10000

450.7656 3.5486

0.5928 0.0994 16.4700 34.5300 -96 0.5320 0.0221
357.6000 0.7917 0.7501 0.0005
452.3800 3.5400 0.8106 0.0023

0.7900 0.0725 467.7300 34.8600 2,740 432.8700 0.8205 0.0223
0.7900 0.0725 573.9900 34.4600 27 539.5300 0.8884 0.0220
0.7716 0.0000 748.6582

-816.0000 Planner Over
10000

450.7656 3.5486

-50

100

250

400

550

700
Performance

Crash Rate UAV-5-S(30 Avg) +- UAV-5-S(100 Avg) +-

Sarsa
Planner-Cons
Planner-Agg
CSarsa
CSarsa+AM

0.84 0.036 0.84 0.036
0.002 0.0001 0.002 0.0001
0.2610 0.0040 0.2610 0.0040
0.24 0.04 0.24 0.04
0.2 0.04 0.2 0.04

0%

20%

40%

60%

80%

100%
P(Crash)

40%

50%

60%

70%

80%

90%

100%
Optimality

SARSA Conservative Policy Aggressive Policy iCCA AM-iCCA

2007

Region 1

Region 2

32

17

55

32

51

0

15

30

45

60

2007

Chart 17

Region 1 Region 2

b) c) d)

Fig. 5. (a) Mission scenarios of interest: A team of two UAVs plan to maximize their cumulative reward along the mission by cooperating to visit
targets. Target nodes are shown as circles with rewards noted as positive values and the probability of receiving the reward shown in the accompanying
cloud. Note that some target nodes have no value. Constraints on the allowable visit time of a target are shown in square brackets. (b,c,d) Results of
Sarsa, CBBA-conservative, CBBA-Aggressive, iCCA and AM-iCCA algorithms at the end of the training session in the UAV mission planning scenario.
AM-iCCA improved the best performance by 22% with respect to the allowed risk level of 20%.

a) Domain

1 2 3

.5[2,3]

+100

4

.5

[2,3]

+100
5 [3,4]

+200

5

8

6

+100

.7

7

+300

.6

Maze +- UAV-5-S +- Optimality - UAV Optimality% +-

Sarsa
Planner-Cons
Planner-Agg
CSarsa
CSarsa+AM
Optimal
MinValue

AVG 100
Sarsa
Planner-Cons
Planner-Agg
CSarsa
CSarsa+AM
Optimal
MinValue

0.5928 0.0994 16.4700 34.5300 -96 0.5320 0.0221
357.6000 0.7917 0.7501 0.0005
452.3800 3.5400 0.8106 0.0023

0.7900 0.0725 467.7300 34.8600 2,740 432.8700 0.8205 0.0223
0.7900 0.0725 573.9900 34.4600 27 539.5300 0.8884 0.0220
0.7716 0.0000 748.6582

-816.0000 Planner Over
10000

450.7656 3.5486

0.5928 0.0994 16.4700 34.5300 -96 0.5320 0.0221
357.6000 0.7917 0.7501 0.0005
452.3800 3.5400 0.8106 0.0023

0.7900 0.0725 467.7300 34.8600 2,740 432.8700 0.8205 0.0223
0.7900 0.0725 573.9900 34.4600 27 539.5300 0.8884 0.0220
0.7716 0.0000 748.6582

-816.0000 Planner Over
10000

450.7656 3.5486

-50

100

250

400

550

700
Performance

Crash Rate UAV-5-S(30 Avg) +- UAV-5-S(100 Avg) +-

Sarsa
Planner-Cons
Planner-Agg
CSarsa
CSarsa+AM

0.84 0.036 0.84 0.036
0.002 0.0001 0.002 0.0001
0.2610 0.0040 0.2610 0.0040
0.24 0.04 0.24 0.04
0.2 0.04 0.2 0.04

0%

20%

40%

60%

80%

100%
P(Crash)

40%

50%

60%

70%

80%

90%

100%
Optimality

SARSA Conservative Policy Aggressive Policy iCCA AM-iCCA

2007

Region 1

Region 2

32

17

55

32

51

0

15

30

45

60

2007

Chart 17

Region 1 Region 2

b) c) d)

Fig. 5. (a) Mission scenarios of interest: A team of two UAVs plan to maximize their cumulative reward along the mission by cooperating to visit
targets. Target nodes are shown as circles with rewards noted as positive values and the probability of receiving the reward shown in the accompanying
cloud. Note that some target nodes have no value. Constraints on the allowable visit time of a target are shown in square brackets. (b,c,d) Results of
Sarsa, CBBA-conservative, CBBA-Aggressive, iCCA and AM-iCCA algorithms at the end of the training session in the UAV mission planning scenario.
AM-iCCA improved the best performance by 22% with respect to the allowed risk level of 20%.

Algorithm 3: Conservative CBBA
Input: U, G
Output: Plan
MaxFuel← U.fuel1

U.fuel← U.fuel −G.diameter2

ok ← False3

while not ok or MaxFuel = U.fuel do4

Plan← CBBA(U)5

ok ← True6

for u ∈ U, P lan[u] = ø do7

U.fuel[u]← min(MaxFuel[u], U.fuel[u] + 1)8

ok ← False9

return Plan10

edge (i.e., the true noise parameter) was set to 5%. The size
of the possible state-action pairs exceeds 200 million.

As for the baseline cooperative planner, CBBA [3] was
implemented in two versions: aggressive and conservative.
The aggressive version used all remaining fuel cells in one
iteration to plan the best set of target assignments ignoring
the possible noise in the movement. Algorithm 3 illustrates
the conservative CBBA algorithm that adopts a pessimistic
approach for planning. The input to the algorithm is the
collection of UAVs (U) and the connectivity graph (G). First
the current fuel of UAVs are saved and decremented by the
dimeter of the connectivity graph (lines 1-2). This value is
3 for the mission planning scenario shown in Fig. 5-a. On
each iteration, CBBA is called with the reduced amount of
fuel cells. Consequently, the plan will be more conservative
compared to the case where all fuel cells are considered. If
the resulting plan allows all UAVs to get back to the base
safely, it will be returned as the solution. Otherwise, UAVs
with no feasible plan (i.e., Plan[u] = ø) will have their
fuels incremented, as long as the fuel does not exceed the
original fuel value (line 8). Notice that aggressive CBBA
is equivalent to calling CBBA method on line 5 with the
original fuel levels. Akin to the GridWorld domain, the
iCCA algorithm only took advantage of the conservative
CBBA because the noise assumed to be 40%. In AM-
iCCA, the planner switched between the conservative and
the aggressive CBBA depending on the noise estimate. The
best knowness parameter (N) was selected from {10, 20, 50}
for both iCCA and AM-iCCA.

Figures 5-b to 5-d show the results of learning methods
(SARSA, iCCA, and AM-iCCA) together with two vari-
ations of CBBA (conservative and aggressive) applied to
the UAV mission planning scenario. Fig. 5-b represents the
solution quality of each learning method after 105 steps of
interactions. The quality of planners were obtained through
averaging over 10, 000 simulated trajectories, where on each
step of the simulation a new plan was derived to cope
with the stochasticity of the environment. Fig. 5-c depicts
the optimality of each solution, while Fig. 5-d exhibits the
risk of executing the corresponding policy. First note that
SARSA at the end of training yielded 50% optimal perfor-
mance, together with more than 80% chance of crashing

a UAV. Both CBBA variations outperformed SARSA. The
aggressive CBBA achieved more than 80% optimality in
cost of 25% crash probability, while conservative CBBA
had 5% less performance and, as expected, it led to a safe
policy with rare chances of crashing. The iCCA algorithm
improved the performance of the conservative CBBA planner
again by introducing risk of crash around 20%. While on
average it performed better than that aggressive policy, the
difference was not statistically significant. Finally AM-iCCA
outperformed all other methods statistically significantly,
obtaining close to 90% optimality. AM-iCCA boosted the
best performance of all other methods by 22% on average
(Fig. 5-b). The risk involved in running AM-iCCA was also
close to 20%, matching our selected ψ value.

These result highlights the importance of an adaptive
model within the iCCA framework: 1) model adaptation
provides a better simulator for evaluating the risk involved
in taking learning actions, and 2) planners can adjust their
behaviors according to the model, resulting in better policies
serving as the stepping stones for the learning algorithms to
build upon.

VI. EXTENSIONS

So far, we assumed that the true model can be repre-
sented accurately within functional form of the approximated
model. In this section, we discuss the challenges involved
in using our proposed methods when this condition does
not hold and suggest two extensions to overcome such
challenges. Returning to the GridWorld domain, consider the
case where the 20% noise is not applied to all states. Fig. 6
depicts such a scenario where the noise is only applied to
the grid cells marked with a ∗. While passing close to the
danger zone is safe, when the agent assumes the uniform
noise model by mistake, it generalizes the noisy movements
to all states including the area close to the danger zone. This
can cause the AM-iCCA to converge to a suboptimal policy,
as the risk analyzer filters optimal actions suggested by the
learner due to the inaccurate model assumption.

The root of this problem is that the risk analyzer has the
final authority in selecting the actions from the learner and
the planner, hence both of our extensions focus on revoking
this authority. The first extension eliminates the need to
analyze the risk after some time. Back to our parent/child
analogy, the child may simply stop checking if the parent
thinks an action is safe once they feel comfortable taking
a self-motivated action. Thus, the learner will eventually
circumvent the need for a planner altogether. More specif-
ically, line 6 of Algorithm 2 is changed so that if the
knownness of a particular state reaches a certain threshold,
probing the safety of the action is not mandatory anymore
(i.e., if knownness > η or safe(s, al, T̂)). While this
approach introduces another parameter to the framework,
we conjecture that the resulting process converges to the
optimal policy under certain conditions. This is due to the
fact that under an ergodic policy realized by the �-greedy
policy, all state-action pairs will be visited infinitely often.
Hence at some point the knownness of all states exceed any

implemented in two versions: aggressive and conservative.
The aggressive version used all remaining fuel cells in one
iteration to plan the best set of target assignments ignoring
the possible noise in the movement. Algorithm 3 illustrates
the conservative CBBA algorithm that adopts a pessimistic
approach for planning. The input to the algorithm is the
collection of UAVs (U) and the connectivity graph (G). First
the current fuel of UAVs are saved and decremented by the
dimeter of the connectivity graph (lines 1-2). This value is
3 for the mission planning scenario shown in Fig. 5-a. On
each iteration, CBBA is called with the reduced amount of
fuel cells. Consequently, the plan will be more conservative
compared to the case where all fuel cells are considered. If
the resulting plan allows all UAVs to get back to the base
safely, it will be returned as the solution. Otherwise, UAVs
with no feasible plan (i.e., Plan[u] = ø) will have their
fuels incremented, as long as the fuel does not exceed the
original fuel value (line 8). Notice that aggressive CBBA
is equivalent to calling CBBA method on line 5 with the
original fuel levels. Akin to the GridWorld domain, the
iCCA algorithm only took advantage of the conservative
CBBA because the noise assumed to be 40%. In AM-
iCCA, the planner switched between the conservative and
the aggressive CBBA depending on the noise estimate. The

Algorithm 3: Conservative CBBA
Input: U, G
Output: Plan
MaxFuel← U.fuel1

U.fuel← U.fuel −G.diameter2

ok ← False3

while not ok or MaxFuel = U.fuel do4

Plan← CBBA(U, G)5

ok ← True6

for u ∈ U, P lan[u] = ø do7

U.fuel[u]← min(MaxFuel[u], U.fuel[u] + 1)8

ok ← False9

return Plan10

best knowness parameter (N) was selected from {10, 20, 50}
for both iCCA and AM-iCCA.

Figures 5-b to 5-d show the results of learning methods
(SARSA, iCCA, and AM-iCCA) together with two vari-
ations of CBBA (conservative and aggressive) applied to
the UAV mission planning scenario. Fig. 5-b represents the
solution quality of each learning method after 105 steps of
interactions. The quality of planners were obtained through
averaging over 10, 000 simulated trajectories, where on each
step of the simulation a new plan was derived to cope
with the stochasticity of the environment. Fig. 5-c depicts
the optimality of each solution, while Fig. 5-d exhibits the
risk of executing the corresponding policy. First note that
SARSA at the end of training yielded 50% optimal perfor-
mance, together with more than 80% chance of crashing
a UAV. Both CBBA variations outperformed SARSA. The
aggressive CBBA achieved more than 80% optimality in
cost of 25% crash probability, while conservative CBBA
had 5% less performance and, as expected, it led to a safe
policy with rare chances of crashing. The iCCA algorithm
improved the performance of the conservative CBBA planner
again by introducing risk of crash around 20%. While on
average it performed better than that aggressive policy, the
difference was not statistically significant. Finally AM-iCCA
outperformed all other methods statistically significantly,

CBBA depending on the noise estimate. The best knowness
parameter (N) was selected from {10, 20, 50} for both iCCA
and AM-iCCA.

Figures 5-b to 5-d show the results of learning methods
(SARSA, iCCA, and AM-iCCA) together with two vari-
ations of CBBA (conservative and aggressive) applied to
the UAV mission planning scenario. Fig. 5-b represents the
solution quality of each learning method after 105 steps of
interactions. The quality of planners were obtained through
averaging over 10, 000 simulated trajectories, where on each
step of the simulation a new plan was derived to cope
with the stochasticity of the environment. Fig. 5-c depicts
the optimality of each solution, while Fig. 5-d exhibits the
risk of executing the corresponding policy. First note that
SARSA at the end of training yielded 50% optimal perfor-
mance, together with more than 80% chance of crashing
a UAV. Both CBBA variations outperformed SARSA. The
aggressive CBBA achieved more than 80% optimality in
cost of 25% crash probability, while conservative CBBA
had 5% less performance and, as expected, it led to a safe
policy with rare chances of crashing. The iCCA algorithm
improved the performance of the conservative CBBA planner
again by introducing risk of crash around 20%. While on
average it performed better than that aggressive policy, the

difference was not statistically significant. Finally AM-iCCA
outperformed all other methods statistically significantly,
obtaining close to 90% optimality. AM-iCCA boosted the
best performance of all other methods by 22% on average
(Fig. 5-b). The risk involved in running AM-iCCA was also
close to 20%, matching our selected ψ value.

These result highlights the importance of an adaptive
model within the iCCA framework: 1) model adaptation
provides a better simulator for evaluating the risk involved
in taking learning actions, and 2) planners can adjust their
behaviors according to the model, resulting in better policies
serving as the stepping stones for the learning algorithms to
build upon.

VI. EXTENSIONS

So far, we assumed that the true model can be repre-
sented accurately within functional form of the approximated
model. In this section, we discuss the challenges involved
in using our proposed methods when this condition does
not hold and suggest two extensions to overcome such
challenges. Returning to the GridWorld domain, consider the
case where the 20% noise is not applied to all states. Fig. 6
depicts such a scenario where the noise is only applied to
the grid cells marked with a ∗. While passing close to the
danger zone is safe, when the agent assumes the uniform
noise model by mistake, it generalizes the noisy movements
to all states including the area close to the danger zone. This
can cause the AM-iCCA to converge to a suboptimal policy,
as the risk analyzer filters optimal actions suggested by the
learner due to the inaccurate model assumption.

The root of this problem is that the risk analyzer has the
final authority in selecting the actions from the learner and
the planner, hence both of our extensions focus on revoking
this authority. The first extension eliminates the need to
analyze the risk after some time. Back to our parent/child
analogy, the child may simply stop checking if the parent
thinks an action is safe once they feel comfortable taking a
self-motivated action. Thus, the learner will eventually cir-
cumvent the need for a planner altogether. More specifically,
line 6 of Algorithm 2 is changed so that if the knownness

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1

2

3

4

5

Fig. 6. The solution to the GridWorld scenario where the noise is only
applied in windy grid cells (∗).

of a particular state reaches a certain threshold, probing the
safety of the action is not mandatory anymore (i.e., new
line 6: if knownness > η or safe(s, al, T̂)). While this
approach introduces another parameter to the framework,
we conjecture that the resulting process converges to the
optimal policy under certain conditions. This is due to the
fact that under an ergodic policy realized by the ε-greedy
policy, all state-action pairs will be visited infinitely often.
Hence at some point the knownness of all states exceed any
predefined threshold. This leads to 1) having SARSA suggest
an action for every state, and 2) turning the risk analyzer
off for all states. This means the whole iCCA framework is
reduced to pure SARSA with an initial set of weights. Under
certain conditions, it can be shown that the resulting method
is convergent to the optimal policy with probability one [14].

An additional approach to coping with the risk analyzer’s
inaccurate model is to estimate the reward of the learner’s
policy from previous experience. This can be achieved by
standard on-policy importance sampling [9] but requires an
impractical amount of data to accurately estimate the reward
of the learner’s policy. By taking the approach of [15],
we hope to reduce the sample complexity of this estimate
by using a combination of two methods. The first, control
variates [7], allow us to use the risk analyzer’s approximate
model to reduce the variance of the estimate in states
that have sparse data. The second, based on [6], leverages
the Markov assumption to stitch together episodes of data
from previous experience that the learner’s policy would
have taken. We conjecture that this approach increases the
effective number of episodes on-policy importance sampling
is performed with, leading to a more accurate estimate.

VII. CONCLUSIONS

This paper extended our previous iCCA framework by
representing the model as a separate entity which can be
shared by the planner and the risk analyzer. Furthermore,
when the true functional form of the the transition model
is known, we discussed how the new method can facilitate
a safer exploration scheme through a more accurate risk
analysis. Empirical results in a GridWorld domain and a
UAV mission planning scenario verified the potential and
scalability of the new approach in reducing the sample com-
plexity and improving the asymptotic performance compared
to our previous algorithm [5] and pure learning/planning
techniques. Finally we argued through an example that model
adaptation can hurt the asymptotic performance, if the true
model can not be captured accurately. For this case, we
provided two extensions to our method in order to mitigate
the problem, which form the main thrust of our future work.

ACKNOWLEDGMENTS

This work was sponsored by the AFOSR and USAF under
grant FA9550-09-1-0522 and by NSERC. The views and
conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied,
of the Air Force Office of Scientific Research or the U.S.
Government.

REFERENCES
[1] R. Weibel and R. Hansman, “An integrated approach to evaluating risk mit-

igation measures for UAV operational concepts in the NAS,” in AIAA In-
fotech@Aerospace Conference, 2005, pp. AIAA–2005–6957.

[2] R. Beard, T. McLain, M. Goodrich, and E. Anderson, “Coordinated target
assignment and intercept for unmanned air vehicles,” IEEE Transactions on
Robotics and Automation, vol. 18(6), pp. 911–922, 2002.

[3] H.-L. Choi, L. Brunet, and J. P. How, “Consensus-based decentralized auctions
for robust task allocation,” IEEE Transactions on Robotics, vol. 25, no. 4, pp.
912–926, August 2009. [Online]. Available: http://acl.mit.edu/papers/email.html

[4] J. Redding, A. Geramifard, H.-L. Choi, and J. P. How, “Actor-Critic Policy
Learning in Cooperative Planning,” in AIAA Guidance, Navigation, and Control
Conference (GNC), August 2010, (AIAA-2010-7586).

[5] A. Geramifard, J. Redding, N. Roy, and J. P. How, “UAV Cooperative Control
with Stochastic Risk Models,” in American Control Conference (ACC), June
2011, pp. 3393 – 3398. [Online]. Available: http://people.csail.mit.edu/agf/Files/
11ACC-iCCARisk.pdf

[6] M. Bowling, M. Johanson, N. Burch, and D. Szafron, “Strategy evaluation in
extensive games with importance sampling,” Proceedings of the 25th Annual
International Conference on Machine Learning (ICML), 2008.

[7] M. Zinkevich, M. Bowling, N. Bard, M. Kan, and D. Billings, “Optimal unbiased
estimators for evaluating agent performance,” in Proceedings of the 21st national
conference on Artificial intelligence - Volume 1. AAAI Press, 2006, pp. 573–
578.

[8] M. White, “A general framework for reducing variance in agent evaluation,”
2009.

[9] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. MIT
Press, 1998.

[10] G. A. Rummery and M. Niranjan, “Online Q-learning using connectionist
systems (tech. rep. no. cued/f-infeng/tr 166),” Cambridge University Engineering
Department, 1994.

[11] R. S. Sutton, “Learning to predict by the methods of temporal differences,”
Machine Learning, vol. 3, pp. 9–44, 1988.

[12] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming (Optimization
and Neural Computation Series, 3). Athena Scientific, May 1996.

[13] R. I. Brafman and M. Tennenholtz, “R-MAX - a general polynomial time
algorithm for near-optimal reinforcement learning,” Journal of Machine Learning
Research (JMLR), vol. 3, pp. 213–231, 2001.

[14] F. S. Melo, S. P. Meyn, and M. I. Ribeiro, “An analysis of reinforcement learning
with function approximation,” in International Conference on Machine Learning
(ICML), 2008, pp. 664–671.

[15] J. Joseph and N. Roy, “Reduced-order models for data-limited reinforcement
learning,” in ICML 2011 Workshop on Planning and Acting with Uncertain
Models, 2011.

http://acl.mit.edu/papers/email.html
http://people.csail.mit.edu/agf/Files/11ACC-iCCARisk.pdf
http://people.csail.mit.edu/agf/Files/11ACC-iCCARisk.pdf

	Introduction
	Background
	Markov Decision Processes (MDPs)
	Reinforcement Learning in MDPs

	GridWorld Domain: A Pedagogical Example
	Technical Approach
	Cooperative Planner
	Learning and Risk-Analysis

	Numerical Experiments
	The GridWorld Domain
	The Multi-UAV Planning Scenario

	Extensions
	Conclusions

