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Abstract— Sums-of-squares (SOS) optimization is a promis-
ing tool to synthesize certifiable controllers for nonlinear
dynamical systems. Building upon prior works [1], [2], we
demonstrate that SOS can synthesize dynamic controllers with
bounded suboptimal performance for various underactuated
robotic systems by finding good approximations of the value
function. We summarize a unified SOS framework to syn-
thesize both under- and over- approximations of the value
function for continuous-time, control-affine systems, use these
approximations to generate approximate optimal controllers,
and perform regional analysis on the closed-loop system driven
by these controllers. We then extend the formulation to han-
dle hybrid systems with contacts. We demonstrate that our
method can generate tight under- and over- approximations
of the value function with low-degree polynomials, which
are used to provide stabilizing controllers for continuous-
time systems including the inverted pendulum, the cart-pole,
and the quadrotor as well as a hybrid system, the planar
pusher. To the best of our knowledge, this is the first time
that a SOS-based time-invariant controller can swing up and
stabilize a cart-pole, and push the planar slider to the desired
pose. Videos at https://youtu.be/QQR pPNPeyg; demo code at
https://deepnote.com/workspace/lujieyang/project/hjb-sos.

I. INTRODUCTION
Many interesting robotic tasks, including running, fly-

ing, and manipulation are naturally formulated as optimal
control problems. Dynamic programming [3], [4] and the
Hamilton-Jacobi-Bellman (HJB) equation provide a sound
theoretical framework to study the solution to such problems
and obtain optimal controllers to the nonlinear dynamical
systems. However, the HJB equation is challenging to solve
and most methods suffer from an exponential growth of
computational complexity, widely recognized as the “curse of
dimensionality” [5]. This challenge has motivated the study
of numerically tractable methods to provide approximate
solutions to the HJB equation [6], [7].

Reinforcement learning has demonstrated great empirical
success in finding approximate solutions to the HJB equation
which in turn generate highly dynamic controllers. Despite
their great empirical success, such methods are rarely, if ever,
able to bound the suboptimality of the resulting controllers
or the approximation quality of the true cost-to-go function
due to their reliance on finite sampling and function approx-
imators.

These drawbacks have motivated the study of a variety of
methods that provide such guarantees. In [8], [9], the authors
lower bound the value function (the viscosity solution [10],
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Fig. 1. Quadrotor: (a) snapshots of the simulation using the stabilizing
controller synthesized from value function approximations. The red curve is
the quadrotor’s trajectory to balance around the origin. Here is an animation.
(b) (z, pitch) slice of the relative approximation error of the value function
under- and over- estimates (J∗ and J̄∗ respectively).

[11] to the HJB partial differential equation) by relaxing the
HJB equation to an inequality and only consider discrete-
time systems. Other works [1] consider continuous-time sys-
tems and provide under-approximation of the value function
based on the moment-SOS hierarchy; this forms the basis
of our approach. We show that with careful attention to a
few details, their results can be extended to the interesting
dynamic regimes. On the other hand, [2] relaxes the optimal
control problem to find a global over-approximator on the
value function using a policy iteration method. We extend
this work by explicitly removing the assumption of an initial,
globally stabilizing, polynomial control law, which may not
exist even for polynomial dynamics.

In this work, we provide a unified framework to obtain
both an under- and over- approximation of the value func-
tion within a compact region for continuous-time nonlinear
systems. We synthesize tight value function approximations
(see Fig. 1) satisfying relaxed HJB conditions using convex
optimization, specifically sums-of-squares (SOS) program-
ming [12], which can be solved in polynomial time. The
approximation is generated locally over regions of interest
for various underactuated robotic systems, which improves
the approximation quality when compared to many works
seeking global approximators. This is due to the fact that
the SOS conditions are stronger [13] over a compact set than
over unbounded sets.

While a significant body of work in the controls literature
[14], [15] has adopted SOS-based methods for verifying and
analyzing the stability and safety of nonlinear systems, their
focus has primarily been on Lyapunov or barrier certificates.
SOS has been used in the robotics community to cover the
state-space with stabilizing [16], [17] and safe [18], [19] con-
trollers. These works emphasize stability or safety rather than

https://youtu.be/QQR_pPNPeyg
https://deepnote.com/workspace/lujieyang-d88573a8-1f76-410d-81bf-e0d65a047c67/project/hjb-sos-7a7b3bf1-fa02-4814-9b91-7df510a7f674/%2Fcubic.ipynb
https://hongkai-dai.github.io/figures/quadrotor3d.html


the optimality of the local controller and consider dynamics
locally approximated by their Taylor expansion. In this work,
we show that using the original robot dynamics without local
approximations and incorporating a notion of optimality can
dramatically increase the size of the regions over which
the resulting SOS-based controllers stabilize the system.
Moreover, these prior works require a locally stabilizing
initial controller for non-autonomous systems. In contrast,
our approach does not require any initial guess on the
controller to synthesize a value function under-approximator,
which can be used to derive a stabilizing controller for
synthesizing a value function over-approximator in all of our
experiments.

Our contributions are summarized as follows: 1) we
present a strengthened numerical relaxation of the programs
from [2], [7] for computing value function estimates that
approximately satisfy the HJB over a compact domain. 2)
We analyze the local performance of our value approx-
imations by computing inner approximations of both the
closed-loop system’s region of attraction and the region in
which the controllers synthesized from our value function
approximations are guaranteed to perform well. 3) We apply
our approach to continuous robotic systems such as the
inverted pendulum, cart-pole, and quadrotor. We showcase
that tight under- and over- estimates of the value function
can be synthesized and the corresponding controller derived
from these approximators can stabilize the systems for a
large region of the state space. 4) We extend the under-
approximation formulation to hybrid systems with contacts
and validate the framework on the hybrid planar-pusher
system. To the best of our knowledge, our method provides
the first time-invariant polynomial controllers synthesized
with SOS to achieve full cart-pole swing-up and accomplish
the planar-pushing task.

II. PROBLEM STATEMENT
We consider a continuous-time control-affine system:

ẋ(t) = f(x(t), u(t)) = f1(x(t)) + f2(x(t))u(t), (1)

where f1 and f2 are polynomial functions of x(t) ∈ Rnx

and u(t) ∈ U = {u|umin ≤ u ≤ umax} ⊂ Rnu is the control
input.

We consider an optimal control problem of regulating
the system to a desired set point xd ∈ Rnx incurring the
instantaneous cost

l(x, u) = q(x− xd) + uTRu,

where q(•) is a positive-definite polynomial and R is a
diagonal matrix with positive entries. Under the system
dynamics (1), the optimal cost-to-go function is positive
definite and defined as

J∗(x0) = min
u∈U

∫ ∞

0

l(x(t), u(t))dt, x(0) = x0, (2)

while the cost-to-go under a policy π is defined as

Jπ(x0) =

∫ ∞

0

l(x(t), π(x(t))) dt, x(0) = x0. (3)

The Hamilton-Jacobi-Bellman equation defines a necessary
and sufficient condition for a function J∗ to be the optimal
cost-to-go [11]:

∀x, min
u∈U

[
l(x, u) +

∂J∗

∂x
f(x, u)

]
= 0. (4)

Using (4), the optimal controller can be given in closed-form
for the case of diagonal R (proof in Appendix VII-A):

π∗(x) = π̃(x; J∗) (5)

π̃(x; J) := argmin
u∈U

[
l(x, u) +

∂J

∂x
f(x, u)

]
(6)

= clamp

(
−1

2
R−1f2(x)

T ∂J

∂x

T

, umin, umax

)
, (7)

where clamp function is defined as clamp(u, umin, umax) =
min(max(u, umin), umax) elementwise.

In general, it is intractable to find an analytic solution
J∗(x) to the HJB equation [20], so we aim to find good
approximations of the value function, by providing both
under- and over-approximators for J∗(x).

A. Global value function under-approximation

It is shown in [21] that J is a global under-estimate of the
value function if it satisfies:

∀x, min
u∈U

[
l(x, u) +

∂J

∂x
f(x, u)

]
≥ 0. (8)

This under-estimate HJB inequality is equivalent to

∀x, ∀u ∈ U , l(x, u) + ∂J

∂x
f(x, u) ≥ 0. (9)

A good under-approximator can be found using the optimiza-
tion program:

max

∫
X
J(x) dx (10a)

s.t. l(x, u) +
∂J

∂x
f(x, u) ≥ 0, ∀x, ∀u ∈ U , (10b)

where X ⊆ Rnx is a compact region where the value
function approximation is encouraged to be accurate. The
integral objective is to push up the under-estimate J .

B. Global value function over-approximation

Similarly, a function J̄ is a global over-estimate of the
value function [2] if it satisfies:

∀x, min
u∈U

[
l(x, u) +

∂J̄

∂x
f(x, u)

]
≤ 0. (11)

The over-estimate HJB inequality is equivalent to

∀x, ∃u ∈ U , l(x, u) + ∂J̄

∂x
f(x, u) ≤ 0. (12)

Handling the ∃ quantifier is much more challenging in
general. However, for a fixed control law u = π(x) ∈ U that
globally asymptotically stabilizes xd, a sufficient condition
that J̄ is an over-approximator is

∀x, π(x) ∈ U , l(x, π(x)) + ∂J̄

∂x
f(x, π(x)) ≤ 0. (13)



A good over-approximator satisfying (12) can be found in the
manner of policy evaluation using the optimization program:

min

∫
X
J̄(x) dx (14a)

s.t. l(x, π(x)) +
∂J̄

∂x
f(x, π(x)) ≤ 0, ∀π(x) ∈ U . (14b)

Similar to the under-estimate program (10), the integral of
J̄(x) over X is used to push down the over-estimate.

It is often impractical to find tight global value function
under-/over- approximators. In this paper, we restrict to
a local compact region X h ⊂ Rnx (h stands for HJB)
where low-degree polynomials provide tight approximations
and synthesize approximate optimal controllers that generate
dynamic behavior for complicated robotic systems.

III. METHOD

The programs (10) and (14) search over the space of
all functions and are therefore infinite dimensional. In this
section, we discuss strong, finite-dimensional formulations of
convex restrictions to (10) and (14) which can find good local
under- and over-approximations of the value function over a
compact domain using SOS, a convex optimization technique
that searches over a parameterized family of polynomials
through semidefinite programming [12]. We then discuss
how to formulate the programs for rigid-body systems.

A. Regions of interest

When working with compact subsets of a control system,
the notion of an invariant set of the closed-loop system is
important.

Definition 1. Given a controller π and the dynamical system
ẋ = f(x, π(x)), a set Iπ is an invariant set if

x(0) ∈ Iπ ⇒ x(t) ∈ Iπ,∀ t ∈ [0,∞).

The largest invariant set is the union of all invariant sets.

We now define several regions which will be crucial for
formulating the optimization programs to search for value
function approximators. Their relationship is illustrated in
Fig. 2:

• X h: the region over which the HJB inequalities (9),(13)
are enforced.

• Bh
π: the largest invariant set of the closed-loop system

driven by a controller π that is contained within X h.
• X : the region over which we are interested in approxi-

mating the value function. This region must be chosen
such that X ⊆ Bh

π∗ ⊆ X h.
• Bπ: the largest invariant set of the closed-loop system

driven by a controller π that is contained within X .

B. Local value function under-approximation

We parametrize J as a polynomial and require the HJB
inequality (9) for the under-estimate to hold on the compact
region X h. With polynomial J , the nonnegativity constraint

(9) can be enforced by SOS. We can then synthesize a tight
under-approximator via the polynomial optimization program

J∗ := argmax
J(x)⪰0

(10a) s.t. (10b) for x ∈ X h, (15)

where J(x) ⪰ 0 is defined as J(x) ≥ 0 for all x ∈ X h and
J(xd) = 0. This positive-semidefinite requirement on J(x)
is added because we know that the value function satisfies
this condition, and the resulting J∗ might be able to act as a
Lyapunov function to certify the region of attraction for the
closed-loop system using program (24). One can easily cast
(15) (and the subsequent nonnegativity constraints for x in a
semialgebraic set) as a SOS program as shown in Appendix
VII-B. An approximate optimal controller can be generated
from J∗(x):

π(x) = π̃(x; J∗) (16)

Proposition 1. The function J∗(x) is an under-estimate of
the value function for x ∈ Bh

π∗ .

The proof of Proposition 1 is in Appendix VII-C.

C. Local value function over-approximation

We similarly seek to enforce the HJB inequality (13)
for the over-approximation on X h. Provided a polynomial
control law π0(x) that asymptotically stabilizes x ∈ X h to
xd, we can plug in π0 as π to search for a good over-estimate
using the optimization program :

J̄∗ := argmin
J̄(x)⪰0

(14a) s.t. (14b) for x ∈ X h. (17)

An approximate optimal controller derived from J̄∗(x) is
π̄(x) = π̃(x; J̄∗) (18)

Proposition 2. The function J̄∗(x) is an over-estimate of the
value function for x ∈ (Bh

π0
∪ Bh

π̄) ∩ Bh
π∗ .

Proof: Starting from x(0) ∈ Bh
π0

, integrate the inequal-
ity (13) along the trajectory (x, π0(x))

0 ≥
∫ ∞

0

[l(x, π0(x)) +
˙̄J∗(x)] dt

=

∫ ∞

0

l(x, π0(x)) dt+ J̄∗(x(∞))− J̄∗(x(0))

J̄∗(x(0)) ≥
∫ ∞

0

l(x, π0(x)) dt = Jπ0(x(0)),

where the stabilizing controller π0 leads to x(∞) = xd and
J̄∗(x(∞)) = 0. Therefore, we have ∀x ∈ Bh

π0
, Jπ0(x) ≤

J̄∗(x). Moreover, since π̄ is the minimizer of (11), we have
that ∀x ∈ X h, l(x, π̄(x)) + ∂J̄∗

∂x f(x, π̄(x)) ≤ 0. We can then
prove similarly ∀x ∈ Bh

π̄, J
π̄(x) ≤ J̄∗(x). Note that Bh

π0
∪Bh

π̄

is a control invariant set [22].
∀x ∈ Bh

π∗ , J∗(x) ≤ Jπ0(x), J∗(x) ≤ J π̄(x) since by
definition, the value function leads to the optimal policy and
thus incurs smaller cost than any other policies.
If π0(x) = clamp(πpoly(x), umin, umax) is the saturation of
a polynomial control law πpoly(x), a piecewise analysis
following the approach proposed in [16] should be performed



to impose input limits for the over-approximation. In partic-
ular, we enforce the following conditions on the polynomial
optimization program (17):

πpoly(x) ≥ umax, x ∈ X h ⇒ l(x, umax) +
∂J̄

∂x
f(x, umax) ≤ 0

πpoly(x) ≤ umin, x ∈ X h ⇒ l(x, umin) +
∂J̄

∂x
f(x, umin) ≤ 0

umin ≤ πpoly(x) ≤ umax, x ∈ X h ⇒

l(x, πpoly(x)) +
∂J̄

∂x
f(x, πpoly(x)) ≤ 0,

(19)
which can be incorporated as SOS conditions with additional
multipliers.

Remark 1. A piecewise-polynomial control law can be
obtained from a clamped LQR controller around the desired
set point or the under-approximation controller π(x). The
stabilizing region of the initial controller affects the maxi-
mum allowable size of X h.

Remark 2. J̄∗ is a control Lyapunov function [23] on Bh
π0
∪

Bh
π̄ since

∂J̄∗

∂x
f(x, π0(x)) ≤ −l(x, π0(x)) < 0, ∀x ∈ Bh

π0
\{xd}

∂J̄∗

∂x
f(x, π̄(x)) ≤ −l(x, π̄(x)) < 0, ∀x ∈ Bh

π̄\{xd}.

D. Formulation - Rigid-body systems

The dynamics of rigid-body systems can be written as
polynomial functions through a change of state variables,
see [24], [25] for a complete description. Here we use the
simple pendulum as an example.

Example 1. By denoting the new coordinate variable
s ≡ sin θ, c ≡ cos θ, the simple pendulum dynamics given
in [7][Chapter 2, (1)] with mass m, length l, damping ratio
b, and gravity g can be converted to polynomial dynamics

x =

sc
θ̇

 , ẋ =

 cθ̇

−sθ̇
− 1

ml2 (bθ̇ +mgls)

+

 0
0
1

ml2

u. (20)

with the compact domain of x being X h = {x ∈ Rnx |s2 +
c2 = 1, θ̇h

min ≤ θ̇ ≤ θ̇h
max} and X = {x ∈ Rnx |s2 + c2 =

1, θ̇min ≤ θ̇ ≤ θ̇max}. The integration in (10a) can be written
as ∫ θ̇max

θ̇min

∫
s2+c2=1

J(s, c, θ̇) dx.

IV. REGIONAL ANALYSIS

In this section, we introduce various regions over which
we evaluate the quality of our value function approximations
and the resulting synthesized controllers. Fig. 2 illustrates
an example of the containment relationship between these
various sets whose defining properties are summarized in
Table I.

Fig. 2. Visualization of different regions. X h is the region where the HJB
inequalities are satisfied. Bh

π∗ is the largest invariant set of the closed-loop
system driven by π∗ contained within X h. X is the region where the value
function approximation is encouraged to be accurate. ROGCP illustrates
the invariant region where the synthesized controllers have stability and
suboptimality guarantees. ROGCP is strictly contained within X and lies
within the closed-loop system’s ROA. In general, the closed loop system’s
ROA and X have no containment relationship.

A. Region of guaranteed controller performance

Although our value function approximations satisfy the
respective HJB inequalities on X h, the corresponding con-
trollers might not be able to certifiably stabilize the entire
region since X h is not necessarily an invariant set for the
resulting closed-loop system. In addition, the value function
over-approximation is on the set (Bh

π0
∪Bh

π̄)∩Bh
π∗ while the

under-approximation is on Bh
π∗ . Unfortunately, the invariant

set Bh
π∗ is difficult to compute exactly. However, since

X ⊆ Bh
π∗ , we can restrict our calculation to X and try to

find good inner approximations of the largest invariant set
Bπ̄ ⊆ X (resp. Bπ) where the HJB inequality (13) (resp.
(9)) is always satisfied along the trajectories driven by the
synthesized controller π̄ (resp. π).

Definition 2. The region of guaranteed controller perfor-
mance (ROGCP) for the closed-loop dynamics under π̄ (resp.
π) is defined as the largest invariant set contained in X .

1) Approximation of π̄’s ROGCP: The sublevel set of
a Lyapunov function is commonly used to characterize an
invariant set. We can search for an inner approximation of
the largest invariant set strictly contained within the compact
region X using a ρ̄-sublevel set of J̄∗:

ρ̄ := min
x∈∂X

J̄∗(x) (21)

B̂ρ̄
π̄ := {x ∈ X |J̄∗(x) < ρ̄}, (22)

where ∂X is the boundary of X .

Proposition 3. B̂ρ̄
π̄ is a bounded, connected, invariant set.

We prove Proposition 3 in Appendix VII-D.
Within π̄’s ROGCP, the following cost-to-go inequalities

hold.

Proposition 4. ∀x ∈ B̂ρ̄
π̄, J

∗(x) ≤ J π̄(x) ≤ J̄∗(x).

The proof of Proposition 4 is similar to Proposition 2.
2) Approximation of π’s ROGCP: Unlike J̄∗, J∗ is not a

Lyapunov function by construction and its sublevel set

B̂ρ
π := {x ∈ X |J∗(x) < ρ}

is not guaranteed to be invariant. Nonetheless, we can search
for the region where J∗ acts as a Lyapunov function by



HJB inequality satisfied Invariant

X yes not guaranteed

ROGCP yes yes

ROA not guaranteed yes

TABLE I. HJB inequality satisfaction and set invariance of different
regions.

enforcing the condition that
∂J∗

∂x
f(x, π(x)) ≤ −ϵ(m(x)−m(xd))

T (m(x)−m(xd)) for x ∈ B̂ρ
π ,

where ϵ is a small positive constant and m(x) is a vector
of monomials in x. The largest B̂ρ

π can be obtained with
bisection search on ρ in the optimization program:

ρ := max
ρ,λ(x)

ρ

s.t. J∗(x)− ρ ≥ 0 for x ∈ ∂X

−∂J
∗

∂x
f(x, π(x))− ϵ(m(x)−m(xd))

T (m(x)−m(xd))+

λ(x)(J∗(x)− ρ) ≥ 0 for x ∈ X , π(x) ∈ U
λ(x) ≥ 0 for x ∈ Rnx .

(23)

For piecewise polynomial π, we can perform the piecewise
analysis similar to (19) on program (23).

The following propositions are the direct analogues of
Proposition 3 and 4 for B̂ρ

π, J
∗ and Jπ .

Proposition 5. B̂ρ
π is a bounded, connected, invariant set.

Proposition 6. ∀x ∈ B̂ρ
π, J

∗(x) ≤ J∗(x) ≤ Jπ(x).

B. Region of attraction
Notice that J̄∗ satisfies the Lyapunov condition on X h,

that is ˙̄J∗(x) < 0 for all x ∈ X h\{xd}. We can find an
inner approximation of the region of attraction (ROA) for
the closed-loop system driven by π̄ and verified by J̄∗ as a
Lyapunov function using the optimization program studied
in [25]:

ρ∗ := max
ρ,λ(x)

ρ

s.t. ((x− xd)
T (x− xd))

d(J̄∗(x)− ρ)

+λ(x)
∂J̄∗

∂x
f(x, π̄(x)) ≥ 0 for π̄(x) ∈ U ,

(24)

where d is a positive integer and λ(x) is a free polynomial.

Remark 3. Define the sublevel set Cρ∗ := {x|J̄∗(x) <
ρ∗}. Note that the optimization program (24) ensures that
˙̄J∗(x) < 0,∀x ∈ Cρ∗\{xd}. Therefore, the connected

component of Cρ∗ that includes the origin is an invariant set
and an inner approximation of the true region of attraction
for the closed-loop system under π̄.

V. EXPERIMENTAL RESULTS
We synthesize value function approximations and their

corresponding controllers for the inverted pendulum, cart-
pole, and quadrotor as examples of continuous-time, rigid-
body systems. A value function under-estimate and its cor-
responding controller are obtained for a planar pushing task

nx J∗ deg J∗ time (s) J̄∗ deg J̄∗ time (s)

pendulum 3 2 0.044 2 0.286

cart-pole 5 6 540 2 6.4

quadrotor 13 2 30 2 1100

pusher 6 2 1410 — —

TABLE II. Degree and computation time of value function
approximations to obtain a stabilizing controller for each task.

Fig. 3. Inverted pendulum: (a) quadratic value function under- and over-
estimate with unconstrained control input; (b) inner approximation of region
of guaranteed controller performance/region of attraction and phase portrait
of simulating the pendulum using the under-estimate controller with input
limits. The orange contour is saturated π(x)’s ROGCP and the green curve
displays the closed-loop system’s ROA driven by π(x). The dashed black
line is the region of interest X .

with hybrid dynamics. All programs are run on an Intel Core
i9-7900X CPU and solved using Mosek. Table II records
the function degree and computation time to synthesize a
controller that stabilizes a large region of the state space for
each task.
A. Inverted pendulum

We synthesize an under- and over-approximation to the
value function and their corresponding stabilizing controllers
of an inverted pendulum. We aim to swing up and stabilize
the pendulum at the upright equilibrium θ = π, θ̇ = 0.
The region of interest X is [s, c, θ̇] ∈ [±1,±1,±2π] and
the HJB inequalities are verified in the region [s, c, θ̇] ∈
[±1,±1,±3π] as X h. A quadratic value function under-
estimate (over-estimate) J∗(x) (J̄∗(x)) with unconstrained
control input is visualized in Fig. 3a. The phase portrait
in Fig. 3b demonstrates that starting from any initial state,
the system can always converge to the upright equilibrium
with input limits 1.8 N ·m (the gravity torque is mgl =
4.9 N ·m). The spiraling trajectories demonstrate that the
controller performs nontrivial pumping to swing up the
pendulum.

We can search for the inner approximation of ROA where
J∗(x) serves as a Lyapunov function using the polynomial
optimization program (24) by replacing J̄∗(x) and π̄(x) with
J∗(x) and π(x). In Fig. 3b, the orange contour displays
saturated π’s ROGCP and the green curve demonstrates the
inner approximation of the closed-loop system ROA, driven
by the under-estimate controller and verified by J∗(x).

B. Cart-pole

We apply our method to swing up and balance a cart-pole
with five states and one actuator [7] around the unstable equi-



Fig. 4. Cart-pole: (a) snapshots of the full swing-up simulation using π(x), an animation can be found here; (b) (x, θ) slice of the value function relative
approximation error; (c) the value function over-estimate J̄∗(x) always decreases along the trajectories starting within J̄∗(x)’s ROA and simulated with
π̄(x); (d) (ẋ, θ̇) slice of sampled initial states that can be stabilized by the SOS/LQR controller.

Fig. 5. Quadrotor: (a) snapshots of the simulation using π̄(x). (b) The
quadratic value function over-approximation J̄∗(x) along the trajectories
starting within J̄∗(x)’s ROA and simulated with π̄(x).

librium θ = π. We are interested in the region [x, s, c, ẋ, θ̇] ∈
[±2,±1,±1,±5,±5] as X and verify the HJB inequalities
in the box region [x, s, c, ẋ, θ̇] ∈ [±3,±1,±1,±6,±6] as
X h. With input limits 100 N ·m (cart mass 10 kg, pole
mass 1 kg, pole length 0.5 m), a 6-degree value function
under-estimate is required to swing up the cart-pole while a
quadratic value function over-estimate with an LQR initial
controller π0 suffices to accomplish the task. The successful
full swing-up of the cart-pole, accomplished with a nontrivial
pumping, is visualized in Fig. 4a. Fig. 4b illustrates the
relative approximation error between the value function over-
and under- approximator. Fig. 4c shows that J̄∗(x) always
decreases along the simulated trajectories from various initial
states within the ROA, corroborating that the synthesized
over-estimate is a Lyapunov function. In Fig. 4d, we sample
2500 initial states within the box region [ẋ, θ̇] ∈ [±5,±5]
with [x, θ] = [0, 0], and color them based on whether the
SOS/LQR controller succeeds in stabilizing the initial state
to the goal (we observe that our SOS controller can stabilize
all the initial states in this 2-dimensional slice)

• Purple: SOS succeeds, LQR fails
• Green: both SOS and LQR succeed.

C. Quadrotor

We test our proposed method on a quadrotor model
with 13 states (quadrotor orientation is parameterized by
a unit quaternion) and 4 actuators [26]. Our goal is to
steer the quadrotor to hover at the origin. Let x =
[x, y, z, ϕ, θ, ψ, ẋ, ẏ, ż, ωx, ωy, ωz] be the 12-dimensional
state vector with the quadrotor’s orientation parameterized by
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Fig. 6. The planar pusher system with one point pusher and a 4-face slider.

Euler angles, xh = [1, 1, 1, 0.5π, 0.2π, 0.5π, 1, 1, 1, 1, 1, 1].
The HJB inequalities can be verified within the bounding
box region −xh ≤ x ≤ xh as X h with input constraints
2.5mg

4 . As visualized in Fig. 5a, the controller obtained from
the value function over-estimate with actuator saturation can
stabilize the quadrotor with initial conditions as large as
[1, 1, 1, π, 0.4π, π, 8, 8, 8, 8, 8, 8].

Our method provides a tight quadratic under- and over-
approximation on the true value function for the quadrotor
system, as manifested by the small relative approximation
error J̄∗(x)−J∗(x)

J̄∗(x)
in Fig. 1b. We simulate the system starting

from various initial conditions within the region of interest
and observe that J̄∗(x) decreases along the simulated trajec-
tories in Fig. 5b.

D. Planar pushing

The under-approximation method can be extended to
handle certain hybrid dynamical systems. Here, we use the
planar pushing system (illustrated in Fig. 6) as an example.

We adopt the quasi-static model [27] for robotic manipu-
lation systems. We model this as a hybrid dynamical system
[28] with 4 continuous modes (one mode for every slider
face). The state is denoted as x = [xpusher, xslider] with a
mode index xmode ∈ {1, 2, 3, 4}, where xpusher, xslider are the
pusher/slider state with continuous values. The control is
denoted as u = [umode, upusher] where umode takes the discrete
mode value, and upusher takes the continuous value whose
meaning changes based on umode as we will see shortly.

At each time instant, the controller determines whether
the pusher should stay on the current face or transition to a
different face with umode. When the contact face remains
unchanged (umode remains unchanged), the control action
includes the pusher velocity upusher = vpusher. The continuous

https://hongkai-dai.github.io/figures/cartpole.html


dynamics ( [29], [30]) are denoted as

ẋ(t) = fxmode(x, u), xmode = umode, (25)

when limτ→t− umode(τ) = limτ→t+ umode(τ). If the con-
troller chooses to transition to a different mode (the pusher
transitions to a different face) with limτ→t− umode(τ) ̸=
limτ→t+ umode(τ), the mode transition dynamics to post-
transition state x+ are

x+pusher = upusher, x
+
slider = x−slider︸ ︷︷ ︸

x+:=∆(x,u)

, x+mode = umode, (26)

namely, the controller chooses the contact face x+mode and
pusher position x+pusher after face transition. Due to the
quasi-static assumption, the slider remains static during the
transition. We assume the transition is instantaneous, with a
mode transition cost lm(x, u) = |upusher − xpusher|2 > ε > 0.

Since each face transition cost lm(x, u) is strictly larger
than an absolute constant, there will only be a finite number
of face transitions in any trajectory with finite cumulative
cost. The controller chooses to transition to a mode k
different from the current mode when the new state in
mode k has a smaller value of the optimal cost-to-go (or its
under-estimate J∗) than that of the current mode under the
best continuous action. Such mode transitions are modeled
as instantaneous events where the control input causes a
discontinuity in the state. We denote the time of mode switch
as ts, s = 1, . . . , N . The optimal control problem is to
minimize the cost function∫ ∞

0

l(x, u)dt+

N∑
s=1

lm(x(t−s ), u(ts)). (27)

It is shown in [31] that J is a global under-estimate to the
optimal cost-to-go for such hybrid systems if it satisfies (8)
for all fk and:

∀x(t−s ),min
u

[
lm(x(t−s ), u) + J(∆(x(t−s ), u))− J(x(t−s ))

]
≥ 0. (28)

In addition, friction can be incorporated into our frame-
work with the complementarity formulation [24]

vtλt ≤ 0 (29a)

µ2λ2n − λ2t ≥ 0 (29b)

(µ2λ2n − λ2t )vt = 0, (29c)

where vt is the tangential velocity of the pusher, λn, λt are
the normal and tangential contact forces of the pusher on the
slider and µ is the coefficient of friction. In the quasi-static
setting, the velocity vt is part of the control u, and the normal
and tangential forces λn, λt are neither part of the state x
nor control u. By treating λn and λt as new indeterminates,
we can define the set D = {(u, λn, λt) | satisfying (29)}.

Similar to Sec. III-B, we can enforce the HJB inequality
(28) on the compact region X h. We can extend the under-
approximation program (15) to the hybrid system case with

friction via the program

J∗ := argmax
J(x)⪰0

∫
X
J(x) dx

s.t. for all k :

l(x, u) +
∂J

∂x
fk(x, u) ≥ 0 for x ∈ X h, u ∈ U , (u, λn, λt) ∈ D

lm(x, u) + J(∆(x, u))− J(x) ≥ 0 for x,∆(x, u) ∈ X h, u ∈ U .
(30)

The complementarity constraints on the input preclude an
analytic form of the control input as in (5). Instead, a control
input π at a particular state x can be synthesized by solving
the nonlinear program for the continuous dynamics:

min
u∈U,λn,λt

[
l(x, u) +

∂J∗

∂x
fk(x, u)

]
(31)

s.t. (u, λn, λt) ∈ D.

Similarly, the optimal action of the mode transition dynamics
at a state x can be found with the mixed-integer program:

min
u∈U

[
lm(x, u) + J∗(∆(x, u))− J∗(x)

]
s.t. ∆(x, u) ∈ Xk iff bk = 1. bk ∈ {0, 1},

∑
k bk = 1,

(32)
where bk is the binary variable indicating if ∆(x, u) is in
mode k and Xk ⊂ X h is the compact set of mode k. During
online execution, we calculate the optimal continuous control
π(x) and mode switch ∆(x, u), and choose the control that
incurs the smaller cost-to-go.

We synthesize a quadratic value function under-estimate
and a controller with actuator saturation for the planar
pushing task. The compact region

X ={x|(px + a)(px − a)(py + a)(py − a) = 0,

− a ≤ px ≤ a,−a ≤ py ≤ a},

requires the pusher to stay on the slider’s surface, where
px, py are the slider’s position and a is half of the slider’s
side length. In Fig. 7, we present two trajectories of the
circle pusher pushing the blue slider from [x, y, θ] =
[−0.28, 0.28, 0] to the origin. For Fig. 7a, the pusher is
restricted to be in contact with the slider’s left surface while
it is allowed to transition to other faces in Fig. 7b. This is
a nontrivial task even for humans, and the mode switches
include the finger sticking, sliding up, and sliding down on
the slider’s left surface (indicated by red, orange and purple
circles). Fig. 7b shows a trajectory that involves the finger
changing to a different face of the slider in order to push
the slider towards the origin. The finger starts from the left
surface and pushes the slider to the position right above the
origin. Then the finger pusher decides to transition to the top
surface (green circle indicates the finger’s face change) and
push the slider downward.

E. Computation

The computation time of the SOS programs depends both
on the system dimension nx and the degree of the value
function approximation. Table II outlines the function de-
grees and computation time to synthesize the value function



Fig. 7. Planar pushing: (a) snapshots of the simulation using J∗(x)
starting from [−0.28, 0.28, 0]. The black curve is the slider’s center of
mass trajectory, the circle is the finger pusher and the pink dashed square is
the desired slider pose. Different colors show that the finger pusher switches
among 3 modes: red, orange and purple denote the finger sticking, sliding
up and down along the slider’s left face. (b) snapshots of the simulation
involving face change using J∗(x). After finishing pushing the slider to
the right, the finger pusher decides to transition to the top face of the slider
(green circle denotes the face change) and then push it towards the origin.

approximations with stabilizing controllers for each task.
In general, J∗(x) takes less time to synthesize than J̄∗(x)
of the same degree because the fixed control law π(x)
raises the final over-estimate SOS program to higher degrees.
However, because the under-estimate is not guaranteed to be
a Lyapunov function, a low-degree J∗(x) might not be able
to stabilize a large region in the state space. For instance,
the cart-pole needs a 6th-degree J∗(x) to swing up the
system and stabilize the state space, resulting in 9-minute
computation compared to 6.4 seconds for a quadratic J̄∗(x).

VI. CONCLUSIONS

Building upon prior works on SOS hierarchy, we have
summarized a unified approach to synthesizing regional
under- and over- approximations to the value function via
sums-of-squares programming, and synthesize dynamic con-
trollers for various underactuated robotic systems. We per-
formed local analysis on these value function approximations
by computing the region of guaranteed controller perfor-
mance and an inner approximation of the region of attraction
using additional SOS programs. Moreover, we demonstrated
how these SOS optimization programs can be adapted for
rigid-body systems with input limits and hybrid systems with
contacts. In future work, we plan to extend the algorithm to
more complex systems and deal with disturbances, model
uncertainties, and sensor noise.
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VII. APPENDIX

A. Optimal controller with input constraints

Since R = diag(r1, · · · , rnu
) is diagonal, the quadratic

program (QP) (6) can be decomposed into nu small scalar
QPs and solved separately

for m = 1, · · · , nu :

u∗m = argmin
umin≤um≤umax

rmu
2
m +

[
∂J

∂x
f2(x)

]
m

um, (33)

where the subscript m denotes the m-th element of a vector.
The optimal solution to this single-variable quadratic cost
with interval bounds occurs either at the boundary of the
interval, or when the gradient of the quadratic cost is zero,
whichever takes smaller quadratic cost. Hence in the scalar
case, the m-th element of the constrained optimal controller
is

u∗m = clamp
(
−1

2
r−1
m

[
f2(x)

∂J

∂x

]
m

, umin, umax

)
. (34)

B. SOS program

For a rigid-body system with s and c (defined in Sec.
III-D Example 1) in the state variable, assume that X h can
be written as a basic semialgebraic set X h = {x|gi(x) ≤
0,∀i = 1, . . . , n} with gi(x) polynomials in x and the control
input set U = {u|hj(u) ≤ 0,∀j = 1, . . . ,m} with hj(u)
polynomials in u. The value function under-approximation
SOS program is

max
J(x)⪰0,τ(x,u),τ̄i(x,u),τ̃j(x,u)

∫
X
J(x) dx

s.t. l(x, u) +
∂J

∂x
f(x, u) + τ(x, u)(s2 + c2 − 1)

+

n∑
i=1

τ̄i(x, u)gi(x) +

m∑
j=1

τ̃j(x, u)hj(u) is SOS

τ̄i(x, u), τ̃j(x, u) are SOS
τ(x, u) is free polynomial. (35)

C. Proof of Proposition 1

Proof: Starting from x(0) ∈ Bh
π∗ , integrate the inequal-

ity (9) along the trajectory (x, π∗(x))

0 ≤
∫ ∞

0

[l(x, π∗(x)) + J̇
∗
(x)] dt

=

∫ ∞

0

l(x, π∗(x)) dt+ J∗(x(∞))− J∗(x(0))

J∗(x(0)) ≤
∫ ∞

0

l(x, π∗(x)) = J∗(x(0)),

where the optimal controller π∗ leads to x(∞) = xd and
J∗(x(∞)) = 0.

D. Proof of Proposition 3

Proof: We begin by noting that B̂ρ̄
π̄ cannot intersect

the boundary of X . Indeed if x0 ∈ B̂ρ̄
π̄ ∩ ∂X , then we

must have that J̄∗(x0) < ρ̄ which implies that ρ̄ is not
the minimum value on the boundary of X . Now, seeking

a contradiction, suppose B̂ρ̄
π̄ is disconnected and thus the

disjoint union of a non-empty open set A and an open set Z
containing xd. Neither of these sets intersect the boundary
and therefore A,Z ⊂ X and so both are bounded. Without
loss of generality, we have that the closure cl(A) is a compact
set that does not contain xd.

Recall that the stage cost l(x, u) > 0, ∀u ∈ U ,∀x ∈
Rnx\{xd}. Moreover, A is an open sublevel set of J̄∗(x)

and since A ⊂ X , ˙̄J∗(x) ≤ −l(x, π0(x)) < 0, ∀x ∈ A.
Therefore, A is invariant.

By the extreme value theorem, the minimum of J̄∗(x) over
the compact set cl(A) is attained at some point x1 in cl(A),
with J̄∗(x1) strictly less than ρ̄. Since all points x ∈ ∂A
achieve J̄∗(x) = ρ̄, we have that x1 ∈ A.

However, ˙̄J∗(x1) < 0 and so there exists x̂1 such that
J̄∗(x̂1) < J̄∗(x1). Since A is invariant, x̂1 ∈ A which
contradicts the minimality of x1.
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