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Abstract— The notion of approximate information states
(AIS) was introduced in [1] as a methodology for learning task-
relevant state representations for control in partially observable
systems. They proposed particular learning objectives which
attempt to reconstruct the cost and next state and provide a
bound on the suboptimality of the closed-loop performance,
but it is unclear whether these bounds are tight or actually
lead to good performance in practice. Here we study
this methodology by examining the special case of discrete
approximate information states (DAIS). In this setting, we can
solve for the globally optimal policy using value iteration for
the DAIS model, allowing us to disambiguate the performance
of the AIS objective from the policy search. Going further, for
small problems with finite information states, we reformulate
the DAIS learning problem as a novel mixed-integer program
(MIP) and solve it to its global optimum; in the infinite
information states case, we introduce clustering-based and end-
to-end gradient-based optimization methods for minimizing the
DAIS construction loss. We study DAIS in three partially
observable environments and find that the AIS objective
offers relatively loose bounds for guaranteeing monotonic
performance improvement and is sufficient but not necessary
for implementing optimal controllers. DAIS may even prove
useful in practice by itself or as part of mixed discrete-
and continuous-state representations, due to its ability to
represent logical state, to its potential interpretabilty, and to
the availability of these stronger algorithms.

I. INTRODUCTION
In most autonomous control applications, the agent (or

controller) only has access to partial observations of the
system state [2]–[5]. Common examples include robot
navigation [2], [3] and robotic manipulation [4], [5]. The
key to planning and control in such partially observable
systems is constructing a state representation: a function of
the partial observations through which we can predict future
performance of future control actions. There is ever-growing
literature on representation learning for control in partially
observable systems, ranging from the classic state estimation
(filtering) in linear systems [6], to the deep learning-based
approaches of learning for control from pixels [7]–[12].

Many of these recent approaches to representation
learning for control from pixels are built upon observation
reconstruction/prediction. In particular, they encode the
history of observations (high-dimensional images) into
lower-dimensional vectors to reconstruct and predict future
observations [7]–[9]. Notably, these approaches are task-
agnostic: the constructed representations are designed to
recover all the information in the observations, including
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Fig. 1: Examples of tasks DAIS deals with.

information irrelevant to the downstream control tasks. Such
irrelevant information may easily distract the control and
planning [13]. Moreover, no theoretical guarantees for the
control performance were established for these types of
representations, and the observations (images) are usually
high-dimensional and challenging to reconstruct/predict.

On the other hand, when modeled by the framework of
partially observable Markov decision processes (POMDPs),
the state representation that is sufficient for performance
evaluation and optimal control is known to be different
from those that are necessary for predicting the observations.
Specifically, it is known that the belief state (i.e. the posterior
belief of the unobserved state given the action-observation
history) is a sufficient statistic for POMDPs, on which the
optimal policy can be defined and identified via dynamic
programming [14]. In fact, the belief state belongs to a
more general notion of information state [1], [15] – a
function of history which is sufficient to: 1) compute the
expected reward; 2) predict its next value. In [1], the
authors showed that these two conditions are sufficient
for performance evaluation in POMDPs. More importantly,
it is also shown in [1] that any state representation that
satisfies these two conditions approximately with uniform
bounds over all possible observation/action histories, can
be used to construct a Markov decision process (MDP)
to identify the value function (and thus policy) of the
original POMDP, with bounded loss of optimality. In other
words, the two aforementioned properties provide rigorous
metrics for the quality of a state representation of a POMDP
based on its relevance to downstream optimal control. Such
representations can thus be viewed as being task-relevant.

In this paper, we study a discrete approximate information
state (DAIS) representation. Specifically, we aim to
discover the possible discrete nature of the approximate
information state (AIS) in many structured POMDPs, which
can potentially represent logical state and improve the
interpretability. Moreover, a discrete AIS enables the use
of optimal planning methods, e.g., value iteration, to solve
the approximate model efficiently. Finally, constructing
a discrete AIS facilitates the direct use of the two
aforementioned conditions in training, without resorting to



the surrogate conditions given in [1] (see Sec. III for
details), which also requires predicting the potentially high-
dimensional observations.

Our contributions are summarized as follows. First, we
present a framework to construct DAIS without observation
prediction, for POMDPs with both finite- and infinite-
cardinality belief states. Second, for the finite belief
space POMDPs, we propose a mixed integer programming
(MIP)-based formulation for constructing the optimal state
representation, followed by a novel reformulation technique
that yields a globally optimal solution. By solving small
problems to optimality, we are able to study the effect
of DAIS fitting loss bounds on task performance. For the
infinite belief space case, we develop both clustering-based
and gradient-based methods and investigate the non-convex
DAIS objective independently from the policy. We find that
although the original AIS bound in [1] can be relatively
loose for guaranteeing monotonic performance improvement,
discrete model representations solved with exact value
iteration can still yield optimal (or close to optimal in the
infinite-belief case) control strategies. Third, we evaluate
the effectiveness of DAIS on three benchmark partially
observable environments, including a visual-feedback object
pile manipulation task in robotics. We also demonstrate the
interpretability of DAIS in some examples, and show the
numerical advantages of planning over DAIS, compared to
existing continuous-space POMDP solvers, e.g., [2].

II. RELATED WORKS
Besides the most relevant work [1] on AIS discussed

above, the other related works are summarized as follows.
Representation Based on Observation Reconstruction/
Prediction: Encountered with high-dimensional visual input,
model-based reinforcement learning methods typically focus
on reconstructing or predicting observations [7], [12], [16] to
learn the underlying model for optimal planning. [13] aims to
learn invariant representations without reconstruction, which
has the closest motivation to ours. However, the framework
was focused on the fully-observable settings of MDPs.

POMDP Solvers: Various POMDP solvers like point-based
value iteration [17], [18] and incremental pruning [19] have
been proposed to avoid the exponential growth of the value
function, which is the major difficulty for solving POMDPs.
However, most of the solvers are restricted to discrete spaces
and require extensive iterations to update the value function.
[2] deals with continuous POMDP but the algorithm is
fairly slow to train and is sensitive to model parameters (as
observed in Sec. VI).

State Aggregation: There are a number of works on
state discretization [20], [21] and state aggregation [22] in
MDPs. In particular, Givan et al. [23] propose to aggregate
MDPs using bisimulation, the strictest partitioning form
for preserving most properties. Ferns et al. [24] soften
the exact equivalence requirement in bismulation using
bisimulation metrics, presenting state aggregation techniques
for MDPs which combine “behaviorally similar” states given
the distance between their rewards and state distributions.

Castro et al. [25] extend the notion of bisimulation metrics
to POMDPs. However, they do not provide viable algorithms
for computing equivalence and aggregation in belief space.
In this work, we formulate simple optimization problems to
learn DAIS as an effective discretization of the belief space.

III. BACKGROUND
In this section, we provide the background for

understanding the DAIS framework. We start with describing
the POMDP and then introduce the definition of approximate
information state, originated from [1].

Partially Observable Markov Decision Process: A
POMDP is formally defined as a tuple 〈S,A, ), A,Ω, $, W〉,
where S is the set of the states of the world, A is a set
of actions that the agent can execute, ) is the stochastic
transition function ) (B, 0, B′) = %(BC+1 = B′ |BC = B, 0C =

0), A (B, 0) is the reward function, Ω is a set of possible
observations, $ is an observation model with $ (B′, >) =
%(>C = > |BC+1 = B′) and W∈ [0, 1) is the discount factor.
The history until time C, denoted by �C , is the summary of
the past observations and actions, i.e., �C = (>1:C−1, 01:C−1).

Approximate Information State: Let (n, X) be positive
real numbers, (X,G) be a measurable space, 3 denote
a probability metric between two probability distributions
`, a ∈ Δ(X) (the space of probability measures on X) such
as the Wasserstein distance or the Total Variation metrics.
An approximate information state {/C })C=1 is generated by a
history compression function {fC : Ht → Z}C≥1, Markovian
update kernel %̂ : Z × A → Δ(Z) and reward prediction
function Â : Z × A → R where /C = fC (�C ) and the
following properties are satisfied for any C, any realization
ℎC of �C , and any action 0C of �C ∈ A:

(AP1) Sufficient to predict the reward 'C = A (BC , 0C )
approximately:

| E['C |�C = ℎC , �C = 0C ] − Â (IC , 0C ) | ≤ n .

(AP2) Sufficient to predict its Markovian transition
approximately: for any Borel subset Y of Z, define `C (Y) B
%(/C+1 ∈ Y|�C = ℎC , �C = 0C ) , aC (Y) B %̂(/C+1 ∈ Y|IC , 0C ),

3 (`C , aC ) ≤ X.

In general, the condition (AP2) can be abstract to enforce.
[1] has thus proposed the following two surrogate conditions
that imply (AP2), which might be easier to enforce.

(AP2’a) Evolves deterministically like a state: there exists a
measurable update function q : Z ×Ω × A such that

IC+1 = q(IC , >C , 0C ).

(AP2’b) Sufficient to predict future observations
approximately: for any Borel subset Y of Ω, define
`>C (Y) B %($C ∈ Y|�C = ℎC , �C = 0C ), a>C (Y) B %̂> ($C ∈
Y|IC , 0C ), then

3 (`>C , a>C ) ≤ X> .

We denote the true value function of the history by + (ℎC )
and the approximation obtained from AIS with dynamic



programming by +̂ (IC ), then we have the following bound
on the value function approximation error [1, Theorem 9]:

|+ (ℎC ) − +̂ (IC ) | ≤ U, with U =
n + WXd3 (+̂)

1 − W ,

where d3 is a constant associated with the chosen probability
metric related to the underlying extremization definition
of that metric (see [1, Definition 6]). For 5 defined over
a discrete set we have that for the Wasserstein distance
d3 ( 5 ) = | | 5 | |Lip, the Lipschitz semi-norm, and for Total
Variation d3 ( 5 ) = max( 5 )−min( 5 )

2 .
The power of AIS is that, by enforcing the conditions

approximately with some relaxation error (n, X), the value
function of the AIS model, i.e., 〈Z,A, %̂, Â〉, is also pointwise
close to the actual value function of the POMDP, up to an
error that can be bounded linearly by (n, X). This provides
a principled way to design metrics for representation
learning for control in POMDPs, with provable suboptimality
guarantees.

In many robotics applications, the observations, i.e.,
images, are of high dimensions and can be challenging to
reconstruct and predict (i.e. to enforce (AP2’b)). Hence, we
propose to only use (AP2), which becomes tangible and more
tractable under the discrete AIS framework. We introduce
more details in the next sections.

IV. PROBLEM FORMULATION
We now present several common types of POMDPs that

we aim to address in the ensuing sections.

A. Finite Belief Space
Some basic POMDP examples with finite state-action

and observation spaces also by nature have deterministic
transition and observation models. In such models, the set
of belief states, i.e., the exact information state, has finite
cardinality. In this case, it is thus sensible to design discrete
AIS. We take the CheeseMaze [26] as an example.

Example: (CheeseMaze) The maze environment consists of
11 states (grid cells) and 7 observations (numbers on the grid
cells) as shown in Fig. 1. An agent in the maze desires to
reach the goal state (shaded cell) where the cheese lands.
Its movement in all four directions (north, south, east and
west) and the observation functions are deterministic (e.g.
%(>C = > |BC+1 = bottom left cell) = 1(> = 6)). The Bayesian
update for the belief is:

1C+1 (B′) = 5 (1C , 0C , >C ) (1)

=
%(>C |BC+1 = B′)

∑
B %(BC+1 = B′ |BC = B, 0C )1C (B)
%(>C |1C , 0C )

,

where

%(>C |1C , 0C ) =
∑
B′
%(>C |BC+1 = B′) ·

∑
B

%(BC+1 = B′ |BC = B, 0C )1C (B).

(2)

The belief update can be used to form the “belief MDP” for
planning by marginalizing over the future observations:

%(1C+1 = 1 |1C , 0C ) =
∑
>

%(>C = > |1C , 0C )1(1 = 5 (1C , 0C , >)).

(3)

B. Infinite Belief Space

In general, with stochastic transition dynamics and
observation models, there are infinitely many reachable belief
states 1C starting from an initial belief 10. We propose
to discretize the infinite-cardinality belief state space using
the approximate information state conditions in Sec. III. In
particular, we focus on two such settings that are common in
robotics applications: continuous-state space POMDPs, and
vision-feedback control tasks.

1) Continuous-State POMDPs: Most existing algorithms
for solving model-based POMDPs focus on discrete states
while many real-world applications, such as robot navigation
and manipulation, are naturally represented using continuous
states. Note that in this case, the belief state, i.e., the
belief probability over the state space, becomes continuous
and has infinite cardinality. We consider the same class
of continuous POMDPs as studied in [2]. The dynamics
are given by a linear-Gaussian model %(·|BC , 0C ) = q(BC +
5 (0C ),Σ0C ), where q denotes a Gaussian distribution with
mean BC + 5 (0C ) and covariance Σ0C . The reward A0C (BC ) is
modeled by a linear combination of Gaussian distributions
A0C (BC ) =

∑#A

8=1 F
A
8
q8 (BC |`0C8 ,Σ

0C
8
), where FA

8
are weights, q8

are Gaussian distributions and #A is a predefined number.
The observation model %(>C |BC+1) is characterized by a
Gaussian mixture model and by assuming uniform %(B)
and sampling #> observation/state pairs: %(>C = > |BC+1 =
B) = % (>,B)

% (B) ∝ ∑#>

8=1 F
>
8
q8 (B |B>8 ,Σ>8 ). The belief state is

continuously valued and can be written as a Gaussian
mixture:

1C (B) =
#∑
9=1
F 9q 9 (B |B 9 ,Σ 9 ), (4)

where # is the number of Gaussian components, the weights
F 9 > 0 and

∑#
9=1 F 9 = 1. Such a representation of belief

states is a natural consequence of linear-Gaussian dynamics
and Gaussian mixture observation functions because the
belief update can then be computed in closed form with all
the Gaussian based functions.

2) Visual-Feedback Control Tasks: We are interested
in visual feedback manipulation tasks with quasi-static
dynamics, where the observed images can serve as sufficient
statistics of history. Essentially, the high-dimensional raw
pixel images with reduced resolution can be viewed as
1C , which are mapped into a low-dimensional discrete
representations /C for reward and transition model prediction.
We believe that image reconstruction or observation
prediction is not necessary because the low-dimensional
DAIS can capture the most essential information for the
manipulation tasks.

V. METHODOLOGY

We aim to learn a set of discrete approximate information
states where Z is a finite set and |Z| = =I (=I is a positive
integer). The discrete approximate information states can
be encoded as one-hot vectors /C and their categorical
distributions can be represented using vectors ĪC ∈ Δ(Z). In
general, it is only tractable to sample from `C as closed form
computation is prohibitively difficult. Meanwhile with DAIS,



Fig. 2: DAIS learning framework. The red path shows
that the current belief 1C propagates to the next time step
1C+1 under Bayes rule �0C with action 0C , which is then
discretized to the DAIS under transformation � at time
C + 1 as /C+1; the blue path demonstrates that the current
belief 1C is first discretized to /C and then propagates to
/C+1 under the learned transition �0C . We aim to minimize
the discrepancy between the probability distribution of /C+1
obtained by the two paths as well as the difference between
the reward predicted by 1C (i.e. Â0C ) and /C (i.e. 'C ).

we can calculate the distribution %(/C+1 |ℎC , 0C ) exactly using
Bayes rule and belief discretization. Moreover, instead of
having to minimize the surrogate loss from samples as in the
original AIS framework [1], it is straightforward to encode
probability distributions of discrete variables in vectors and
measure their distance. Starting from the current belief, we
can obtain the probability distribution ĪC+1 of the DAIS at
the next time step following the two paths depicted in Fig.
2. The red path shows that we can update the current belief
1C to 1C+1 using Bayes rule and subsequently discretize 1C+1
to /C+1 using the discretization map �:

%(/C+1 |ℎC , 0C ) = %(/C+1 |1C , 0C ) (5)

=
∑
1

%(/C+1 |1C+1 = 1)%(1C+1 = 1 |1C , 0C )

=
∑
1

1(� (1) = /C+1)%(1C+1 = 1 |1C , 0C ),

where /C+1 only comes from the discretization of the next
time step belief 1C+1 and is conditionally independent of
1C and 0C . Following the red path, we can also define the
categorical distributions ĪC+1 as

ĪC+1 =


%(/C+1 = I1 |1C , 0C )

...

%(/C+1 = I=I |1C , 0C )

 =
∑
1

%(1C+1 = 1 |1C , 0C )� (1).

(6)

In general, � is a function that maps belief states, which are
in general real-valued functions, to a finite set of categorical
variables; in a discrete POMDP with deterministic dynamics
and observations, � becomes a projection matrix that
projects a large set of belief states down to a much smaller
set of DAIS.

Meanwhile, the blue path shows that /C+1 can also be
obtained by first mapping 1C to /C and then propagating /C
to the next time step under the learned transition matrix �0 =

[�0
8 9
]8, 9∈[=I ] , where �0

8 9
= %̂(/C+1 = I8 |/C = I 9 , 0C = 0):

%(/C+1 |1C , 0C ) =
∑
I

%(/C+1 |/C = I, 0C )%(/C = I |1C )

=
∑
I

%(/C+1 |/C = I, 0C )1(� (1C ) = I), (7)

Ī′C+1 = %̂(/C+1 |/C , 0C )� (1C ). (8)

We aim to match the probability distribution of the next
step DAIS ĪC+1 and Ī′

C+1 obtained by the two procedures as
well as the reward predicted by both the belief and DAIS.
This framework explicitly avoids predicting observations and
is beneficial when the output is high-dimensional (which is
common in robotics applications). With the tabular “DAIS
MDP”, we can run value iteration to obtain the optimal
planning policy for the approximate model.

In the following subsections, we first describe how to
formulate the finite-belief DAIS learning problem as an MIP
and then extend it to the infinite-belief case with gradient-
based and clustering-based optimization schemes.

A. Finite Belief Space
In discrete POMDPs with deterministic dynamics, the

number of finite beliefs =1 is bounded. We would like to
use a much smaller number (=I < =1) of DAIS to represent
the task-relevant information of the belief optimally, i.e.,
minimizing the loss that enforces the AIS conditions (AP1)
and (AP2). Due to the discreteness of the belief space, we
can describe each belief state 1C as a one-hot vector 1̄:
(where the :-th entry is 1), write the belief update as a matrix
multiplication and formulate the DAIS learning as a mixed-
integer program:

min
{�0 },�, {Â0 }

∑
0

=1∑
:=1
|A0: − Â

0�1̄: |2 + ‖�0�1̄: − ��0 1̄: ‖2

s.t. �8 9 ∈ {0, 1}, ∀8, 9 and 1) � = 1)

�08 9 ≥ 0, ∀8, 9 , 0 and 1) �0 = 1) , ∀0, (9)

where we denote the belief MDP transition probability matrix
by �0 = [�0

8 9
]8, 9∈[=1 ] with �0

8 9
= %(1̄C+1 = 1̄8 |1̄C = 1̄ 9 , 0C =

0), the DAIS transition probability matrix by �0, and the
projection matrix by � ∈ {0, 1}=I×=1 . A0

:
= E['C |1̄C =

1̄: , 0C = 0] and Â0 = [Â (I1, 0), · · · , Â (I=I , 0)] is the reward
estimation vector with action 0 for all I. 1 denotes an all-
one vector. The two terms in the objective enforce (AP1)
and (AP2) respectively.

1) Reformulating Bilinear Optimization Problem: Notice
that the optimization objective is bilinear in �0 and � as
well as Â0 and �. Such bilinear objectives are generally
intractable for MIP solvers. To make the optimization
problem amenable to numerical computation, we use change
of variables &0 = �0�, Ā0 = Â0� and introduce binary
auxiliary variables {C 91 92 } 91 , 92 to reformulate the optimization
problem:

min
{&0 },�, {Ā0 }, {C 91 92 }

∑
0

=1∑
:=1
|A0: − Ā

0 1̄: |2 + ‖&0 1̄: − ��0 1̄: ‖2



s.t. �8 9 ∈ {0, 1}, ∀8, 9 and 1) � = 1)

&08 9 ≥ 0, ∀8, 9 , 0 and 1)&0 = 1) , ∀0
C 91 92 ∈ {0, 1}, ∀ 91 ∈ [=I], 92 ∈ [=I], 91 < 92

C 91 92 − 1 ≤ �: 91 − �: 92 ≤ 1 − C 91 92
�: 91 + �: 92 ≤ 1 + C 91 92
&0: 91 −&

0
: 92 ≤ 1 − C 91 92 , ∀0

(C 91 92 − 1)" ≤ Ā0: 91 − Ā
0
: 92 ≤ (1 − C 91 92 )", ∀0∑

91 , 92

C 91 92 ≥ =1 − =I , (10)

where �: 9 denotes the 9 th column of matrix � and " can
be set to max |A0

:1
− A0

:2
|. This optimization problem can

be efficiently solved to its global optimum using off-the-
shelf solvers like Gurobi [27]. The additional constraints on
C 91 92 , &

0, Ā0 and � adopt the big-M technique and retains
the important structure of &0 and Ā0 as the multiplication of
a matrix and the projection matrix �: �’s columns are one-
hot vectors, and multiplying �0 (resp. Â0) by � is essentially
selecting certain columns of �0 (resp. Â0) and concatenating
them into &0 (resp. Ā0). The binary auxiliary variables
C 91 92 specify the connections between �’s column selection
behavior and &0 (resp. Ā0)’s columns: when C 91 92 = 1,
�: 91 = �: 92 guarantees &0: 91 = &

0
: 92 and Ā0: 91 = Ā

0
: 92 (meaning

that � is selecting the same column from �0 for both 91-th
and 92-th column of &0); when C 91 92 = 0, �’s 91-th column
is guaranteed to be different from its 92-th column and there
are no constraints on &0 (resp. Ā0)’s corresponding columns.

B. Infinite Belief Space

We extend our discrete representation learning framework
to infinite belief settings. We propose two approaches with
function approximations to handle the infinitely many belief
states.

1) Gradient-Based Optimization: We parametrize the
discretization map � as well as the transition and reward
estimation models {�0}0∈A and {Â0}0∈A as neural networks
with a set of parameters \ to minimize the DAIS loss in Eq.
(11) using end-to-end gradient-based optimization:

min
\

∑
0

∑
C

|A0C − Â0\� \ (1C ) |2 + ‖�0\� \ (1C ) − ĪC+1‖2

s.t. [�0\ ]8 9 ≥ 0, ∀8, 9 , 0 and 1) �0\ = 1) , ∀0, (11)

where A0C = E['C |1C , 0C = 0] and ĪC+1 is calculated using Eq.
(6). Unlike the finite belief setting where there are finitely
many A0

:
and 1̄: , A0C and 1C can be assumed to have a

continuous spectrum of values and the loss corresponding to
(AP1) and (AP2) have to be minimized through sampling. In
the continuous-state POMDPs with Gaussian mixed models,
i.e., the setting in Sec. IV-B 1), the weights, means and
covariances of a Gaussian mixture characterizing a belief
state are flattened and concatenated into a single vector
as the input to the discretization map �, which outputs a
one-hot vector /C as the discrete representation; in visual
feedback control tasks, i.e., the setting in Sec. IV-B 2), the
images are fed into the discretization map � instantiated
by a convolutional neural network followed by categorical

Algorithm 1 DAIS Learning and Planning

1: Generate data (1C , 0C , AC , 1C+1) from rollout samples of
{0C , >C }C≥1 using Eq. (1)

2: if gradient-based optimization then
3: Solve Eq. (11) for {�0}, �, {Â0}, using gradient-based

solvers
4: else
5: Find � via Total Variation K-means clustering
6: Solve Eq. (12) for {�0}, {Â0}
7: end if
8: policy, + = value iteration ({�0}, {Â0})

reparametrizaiton. In order to allow backpropagation through
categorical variables to adjust the parameters of �, {�0} and
{Â0} simultaneously, we use the Gumbel-Softmax [28] as a
continuous approximation to the one-hot vector.

The discretization map � essentially aggregates beliefs
into clusters based on (AP1) and (AP2) loss. The one-
hot vector /C indicates that the current belief is assigned
deterministically to the cluster corresponding to /C ’s non-
zero entry. The next-time-step belief 1C+1 given the current
action has the probability of being assigned to the clusters
based on the categorical distribution specified by ĪC+1.

2) Clustering-Based Optimization: Jointly optimizing �,
{�0}0∈A and {Â0}0∈A as in Eq. (11) is highly nonconvex
and generally intractable (note that even the discrete
case with deterministic dynamics in the previous section
requires convex reparametrization and the MIP reformulation
technique). Therefore, we propose to sequentially optimize
� followed by {�0} and {Â0} jointly. Because the expected
reward A0C =

∫
B
A (B, 0)1C (B)3B is linear in the belief,

aggregating the belief states with small distances to each
other helps reduce the loss associated with (AP1). Similarly,
because the Bayesian update Eq. (1) is linear in belief,
starting from belief states 1C close in probability metrics
and executing the same action 0 result in 1C+1 close to each
other. If these neighboring 1C get mapped to the same DAIS
I8 and similar 1C+1 get mapped to the same DAIS I 9 , ĪC+1
will become a one-hot vector � (1C+1) and the second term
in Eq. (12)’s objective can be made small with �0

98
= 1.

Hence, we first find a suitable discretization � via K-means
clustering under the total variation-distance metric and then
solve a constrained convex optimization problem to minimize
the DAIS loss:

min
{�0 }, {Â0 }

∑
0

∑
C

|AC − Â0IC |2 + ‖�0IC − ĪC+1‖2

s.t. �08 9 ≥ 0, ∀8, 9 , 0 and 1) �0 = 1) , ∀0,
(12)

where IC = � (1C ) is the one-hot vector representing the
clusters obtained by total variation K-means clustering [29]
and ĪC+1 is again computed using Eq. (6).

C. Planning
One main advantage of DAIS is that we can run

value iteration to obtain the optimal policy for such



a representation. This way, we are able to “solve the
approximate model exactly”. Note that other planning
approaches, i.e., policy iteration, Monte-Carlo tree search,
may also be used for the DAIS model, but we focus on
value iteration for simplicity. The overall DAIS learning and
planning pipeline is summarized in Algorithm 1.

VI. RESULTS

In this section, we validate our discrete representation
learning framework for both finite belief space task
(CheeseMaze), and infinite belief space tasks: one with
continuous-state space (Corridor Navigation) and the other
with high-dimensional visual inputs for robotic manipulation
(Object Pile Manipulation).

A. CheeseMaze

We investigate the relationship between learning loss,
model performance and DAIS dimension in the CheeseMaze
example adapted from [1]. We solve the DAIS optimization
program (10) to its global optimum using Gurobi. As
baselines comparison, we replace the second term in Eq. (10)
that enforces (AP2) by losses corresponding to (AP2’ab),
(AP2)+(AP2’a), (AP2)+(AP2’b) and (AP2)+(AP2’ab)
respectively. Recall that the DAIS construction loss
associated with (AP1)+(AP2) gives a concrete bound on the
suboptimality of the downstream policy, we plot the DAIS
construction loss associated with (AP1)+(AP2) for the five
different optimization programs in Fig. 3a. We also compute
the bounds U on the loss in performance and find them
orders of magnitude larger (e.g., 17.6 for =I = 11 and 189.9
for =I = 7) than the empirical value function approximation
errors. Although the DAIS fitting loss offers a relatively
loose bound on approximation errors and consequently task
performance (e.g., purple curve with larger DAIS fitting loss
in Fig. 3a can have smaller value function approximation
mean squared errors in Fig. 3e compared with the blue
curve), Fig. 3c shows that DAIS can still recover the optimal
controller computed from the true belief states (dashed
line) up to compressed dimension =I = 9 by solving the
DAIS model exactly with value iteration. Intuitively, the
higher dimensional the discrete representation is, the more
capacity it has to capture useful information to model the
task. Using only (AP2), we observe that the DAIS loss and
value function approximation error decrease monotonically
as the maximum DAIS dimension grows (Fig. 3). The AIS
loss is zero at 15 states, which is the true cardinality of
the belief state, but the value function approximation error
reaches zero with just 11 states.

Predicting observations is unnecessary in the regime
where the DAIS can retain the optimal sufficient statistics
for planning and control. Although we do not encourage
observation prediction, this can still be done in this small-
scale example. We then observe that in the suboptimal regime
where the low-dimensional DAIS has to sacrifice useful
information, predicting the output and DAIS’ deterministic
evolution (i.e., enforcing conditions (AP2’ab)) can help
decrease the value function approximation error and improve
the overall performance (Fig. 3c). Note that the last three

optimization programs have redundancy ((AP2’ab) imply
(AP2)), the additional losses can change the objective
landscape and thus might offer some numerical advantages
for empirical implementation.

Remark (Interpretability of DAIS in CheeseMaze):
Notably, one main advantage of DAIS is that the learned
representation may be readily interpretable, which can be
illustrated in this example. For instance, the DAIS algorithm
learns to aggregate the three belief states where it is certain
about its location at the bottom left cell 1C (B) = 1(B =
bottom left cell), certain about its location at the bottom right
cell 1C (B) = 1(B = bottom right cell) and uncertain about
its location at the bottom left or right cell with probability
0.5 each 1C (B) = 0.5 · 1(B = bottom left cell) + 0.5 · 1(B =
bottom right cell). The aggregation of these three beliefs
does not sacrifice information for planning at all because
the optimal action at all three belief states is to go north.
DAIS also achieves similar aggregation for the three belief
states associated with the middle left and right cells without
losing any information for optimal planning (as demonstrated
by the non-degrading performance and small value function
approximation error until =I = 11 in Fig. 3).

Remark (Minimality of State Representation): When
implementing the optimal controller, it is possible to
fully describe the evolution of the CheeseMaze using
only 7 controller states by aggregating the belief states
with the same optimal action and analyzing their closed-
loop transitions. However, this closed-loop state space is
insufficient for describing transitions under policies other
than the optimal one. As (AP2)/(AP2’ab) require the
distribution bound to hold for all possible histories and
actions, for the histories and actions that are not covered by
the optimal policy, the error bound X (or X>) can be vacuous.
In other words, this 7-state representation cannot be properly
characterized by the AIS framework, implying that the AIS
conditions might be only sufficient but not necessary for
optimal decision-making. An interesting observation is that if
we decrease the weights for the transition loss corresponding
to the belief states executing the same optimal action in the
handcrafted controller, the optimization program with loss
(AP2)+(AP2’ab) will be able to find a 8-state DAIS that
recovers the optimal policy.

B. Corridor Navigation

We test the effectiveness of DAIS on the robot corridor
navigation task used in [2], which fits in the setting in Sec.
IV-B 1). We observe that the clustering-based optimization
approach leads to better and more consistent performance
than gradient-based optimization in this example, and thus
report results from the former in Fig. 3. As an alternative
to computing ĪC+1 analytically following Eq. 6, we can
approximate %(/C+1 |/C , 0C ) using samples:

%(/C+1 = I8 |/C = I 9 , 0C = 0) ≈
∑
C 1(� (1C+1) = I8))1(0C = 0)∑
C 1(� (1C ) = I 9 ))1(0C = 0)

.
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Fig. 3: (left) DAIS loss, task performance from empirical
rollouts and value function approximation error vs maximum
DAIS dimension in CheeseMaze example. (right) DAIS loss
and task performance vs exact DAIS dimension for Corridor
Navigation with 10 random seeds. DAIS achieves higher
return, more robust performance and much smaller runtime
compared to CPBVI.

The optimization program that uses samples to approximate
the DAIS transition kernel then becomes:

min
{�0 }, {Â0 }

∑
0

∑
C

|AC − Â0IC |2 + ‖�0IC − � (1C+1)‖2

s.t. �08 9 ≥ 0, ∀8, 9 , 0 and 1) �0 = 1) , ∀0.
(13)

Our method is compared with continuous point-based
value iteration (CPBVI), a competitive baseline solution
proposed in [2]. CPBVI samples belief points to perform
Bellman updates due to the piecewise-linearity of the value
function. In contrast, our method first aggregates the belief
states into discrete variables and then runs value iteration on
this finite set. In our experiments, we observe that CPBVI
is extremely sensitive to environmental parameters, takes a
long time to train and can fail to converge for certain model
parameters. On the contrary, our DAIS does not suffer from
convergence issues and consistently achieves higher return
and much lower variance.

We also compare DAIS + value iteration against
continuous information states + reinforcement learning (RL).
We feed the continuous belief states (i.e. the information
states with both n and X equal to 0 in (AP1) and (AP2))

into state-of-the-art RL algorithms such as PPO and A2C
to learn a policy. The RL implementation is using Stable-
Baselines3 [30] across 10 random seeds. The discrete
approximate information states incur approximation error for
the model representation but enable quick synthesis of the
optimal controller for the approximate model; the continuous
information states achieve zero AIS construction loss but
make it much harder to obtain the optimal policy due to
function approximation. Fig. 3d shows that for tasks with
certain structures (e.g. the innate discreteness in corridor
navigation), DAIS can achieve better performance with much
lower variance than running PPO and A2C on continuous
information states.

As in any K-means approach, convergence to local
optima is possible, given different initialization. Moreover,
increasing  does not necessarily improve test prediction
due to various factors attributable to overfitting [31].
Nevertheless, in Fig. 3b we observe a strong downward trend
in the loss as the dimension of the DAIS is allowed to
increase. As expected, this downward trend in loss correlates
with an upward trend in average return. Though the increase
in performance is less dramatic, it is important to note that
the higher DAIS dimensions give a stronger a priori bound
on the worst case suboptimality even if they achieve roughly
the same expected return.

C. Visual-Feedback Control for Object Pile Manipulation

We are interested in manipulating a pile of objects
(e.g., a pile of carrot pieces), whose movement is more
“fluid” with interactions among themselves (carrot pieces
colliding and pushing each other). We aim to extract such
challenging evolution in image space into transition in a
discrete representation and follow the setup developed by
Suh et al. [5] where the robot manipulator is required to
use a flat pusher to push the object pile into a target region.
This can be viewed as an example of the setting in Sec. IV-
B 2). In total, 2000 trajectories of length 20 are generated
with randomly sampled actions (i.e. the pusher’s starting and
ending locations) in the Pymunk simulator. The greyscale
images of the object pieces are downsampled to 32 × 32.
The images are then fed into a convolutional neural network
followed by a Gumbel-Softmax [28], [32] as DAIS /C . The
one-hot vector /C then goes through a feedforward neural
network �0 with softmax as the last layer to output the
categorical distribution of DAIS ĪC+1 at the next time step.
The parameters of all the neural networks are optimized
using the end-to-end gradient-based method proposed in Sec.
V-B.1). Fig. 4 shows that reasoning in the low-dimensional
DAIS space without reconstructing or predicting the high
dimensional visual outputs enables the robot manipulator to
push the object pile into different target sets including circles,
H-shaped and T-shaped regions.

VII. CONCLUSIONS

In this paper, we evaluate discrete task-relevant
representations for planning and control in partially
observable environments using AIS. For finite-belief
space tasks, we formulate a mixed-integer program



Fig. 4: DAIS performance in object pile manipulation task:
the robot manipulator is required to push the object pieces
into the blue region.

for solving the globally optimal DAIS in terms of
expected reward and Markovian transition prediction; in
infinite-belief space tasks, we develop new gradient-based
and clustering-based optimization methods to learn the
discrete approximate representation. Even the simple finite
CheeseMaze example demonstrates that the AIS bounds
on closed-loop performance can be loose. However, we
posit that DAIS can still be effective due to its ability to
extract the most relevant information to accomplish the
tasks, which often times can be characterized in a discrete
form, especially for control tasks with certain structures.
We are interested in validating the effectiveness of DAIS on
the real robot and other partially observable robotic control
tasks in the future.
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[14] K. J. Åström, “Optimal control of markov processes with incomplete
state information,” Journal of Mathematical Analysis and Applications,
vol. 10, pp. 174–205, 1965.

[15] P. Kumar and P. Varaiya, Stochastic Systems: Estimation,
Identification, and Adaptive Control. SIAM, 1986, vol. 75.

[16] A. Zhang, Z. C. Lipton, L. Pineda, K. Azizzadenesheli,
A. Anandkumar, L. Itti, J. Pineau, and T. Furlanello, “Learning
causal state representations of partially observable environments,”
arXiv preprint arXiv:1906.10437, 2019.

[17] J. Pineau, G. Gordon, S. Thrun, et al., “Point-based value iteration:
An anytime algorithm for pomdps,” in IJCAI, vol. 3. Citeseer, 2003,
pp. 1025–1032.

[18] M. T. Spaan and N. Vlassis, “Perseus: Randomized point-based
value iteration for pomdps,” Journal of artificial intelligence research,
vol. 24, pp. 195–220, 2005.

[19] A. R. Cassandra, M. L. Littman, and N. L. Zhang, “Incremental
pruning: A simple, fast, exact method for partially observable markov
decision processes,” arXiv preprint arXiv:1302.1525, 2013.

[20] D. Bertsekas, “Convergence of discretization procedures in dynamic
programming,” IEEE Transactions on Automatic Control, vol. 20,
no. 3, pp. 415–419, 1975.

[21] R. Munos and A. Moore, “Variable resolution discretization in optimal
control,” Machine learning, vol. 49, no. 2, pp. 291–323, 2002.

[22] W. Whitt, “Approximations of dynamic programs, i,” Mathematics of
Operations Research, vol. 3, no. 3, pp. 231–243, 1978.

[23] R. Givan, T. Dean, and M. Greig, “Equivalence notions and model
minimization in markov decision processes,” Artificial Intelligence,
vol. 147, no. 1-2, pp. 163–223, 2003.

[24] N. Ferns, P. Panangaden, and D. Precup, “Metrics for finite markov
decision processes.” in UAI, vol. 4, 2004, pp. 162–169.

[25] P. S. Castro, P. Panangaden, and D. Precup, “Equivalence relations in
fully and partially observable markov decision processes,” in Twenty-
First International Joint Conference on Artificial Intelligence, 2009.

[26] R. A. McCallum, “Overcoming incomplete perception with utile
distinction memory,” in Proceedings of the Tenth International
Conference on Machine Learning, 1993, pp. 190–196.

[27] G. Optimization, “Inc.,“gurobi optimizer reference manual,” 2015,”
2014.

[28] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with
gumbel-softmax,” arXiv preprint arXiv:1611.01144, 2016.

[29] Y. Chen, T. T. Georgiou, and A. Tannenbaum, “Optimal transport for
gaussian mixture models,” IEEE Access, vol. 7, pp. 6269–6278, 2018.

[30] A. Raffin, A. Hill, M. Ernestus, A. Gleave, A. Kanervisto, and
N. Dormann, “Stable baselines3,” https://github.com/DLR-RM/stable-
baselines3, 2019.

[31] G. Hamerly and C. Elkan, “Learning the k in k-means,” Advances in
neural information processing systems, vol. 16, pp. 281–288, 2004.

[32] C. J. Maddison, A. Mnih, and Y. W. Teh, “The concrete distribution:
A continuous relaxation of discrete random variables,” arXiv preprint
arXiv:1611.00712, 2016.


