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Abstract

Hybrid systems arise in many robotic problems such as manipulation and locomo-
tion, and efficient motion planning is critical for obtaining practical implementations
of these systems. However, due to the complexity associated with multiple contact
modes, existing motion planning techniques have limited success with hybrid sys-
tems. This thesis investigates the entire sampling-based motion planning stack with
an emphasis on hybrid system applications. First, a reachability-based variant of the
rapidly-exploring random tree algorithm (RRT) named R3T is introduced. R3T is
suitable for planning in nonlinear and hybrid systems. It is probabilistically com-
plete in kinodynamic systems and asymptotically optimal through rewiring. The
advantages of R3T are demonstrated with case studies on nonlinear and contact-rich
robotic systems. Efficient mathematical tools for solving the “nearest-polytope prob-
lem”, as motivated by control application including R3T, are then discussed. The
tools demonstrated logarithmic empirical complexity with respect to the dataset size
in examples motivated by approximate explicit model predictive control and R3T.
Finally, a novel framework for generating robot manipulation policies is proposed. In
this framework, a formulation of RRT* for manipulation first explores the state space
and discover plans to a given goal state. A neural network then learns a manipula-
tion policy from the RRT* plans. The manipulation plans from RRT* are verified
via playback in simulation, and training results of the neural network suggests the
validity of this approach. The goal of this thesis is to provide algorithmic frameworks
for developing applications requiring hybrid system motion planning.

Thesis Supervisor: Russ Tedrake
Title: Toyota Professor of EECS, Aero/Astro, MechE.
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Chapter 1

Introduction

Efficient motion planning is key to performing complicated tasks with robots. Whether

it is avoiding obstacles, manipulating objects, or performing dynamic locomotion, mo-

tion planning is the backbone of such applications. However, many limitations exist

with the state-of-the-art techniques today, especially in systems with complex hybrid

dynamics. This thesis is an investigation on the entire motion planning stack with

a focus on sampling-based planning. Topics covered include a novel sampling-based

planning algorithm, mathematical tools motivated by applications such as the afore-

mentioned algorithm, and a manipulation planning paradigm leveraging sampling-

based planning and learning techniques. The ultimate objective of this thesis is to

address the task of hybrid system motion planning, with an emphasis on robot ma-

nipulation.

1.1 Sampling-based Motion Planners

Sampling-based motion planning algorithms such as probabilistic road-maps (PRMs)

[19] and rapidly-exploring random trees (RRTs) [23, 26, 17, 9] have been proven

powerful in a broad range of planning problems. As opposed to optimization-based

trajectory synthesis, where all the system dynamics and environment specifications

are encoded in the constraints of an optimization problem, sampling-based methods

are simpler to implement and sometimes faster in finding feasible trajectories in highly
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cluttered environments.

Nevertheless, a number of limitations exist in these methods. The bases of RRTs

are rapid exploration of the state space and connection of new states to explored

states. When kinodynamic constraints are present, one needs to solve the expensive

two point boundary value problem of finding an admissible trajectory to perform

connection. For linear systems, the problem is manageable and implementations exist

[50, 12]. A widely-adopted alternative for general systems is to simulate trajectories

forward, then expand the explored states with the nearest produced point to the

sample state [26, 18]. However, this approach is not probabilistically complete [24].

Existing RRT approaches also tend to perform poorly in hybrid systems. With hybrid

systems, the extension strategy choice is not obvious, and a distance metric is often

unavailable [4, 28, 40]. Hybrid systems will be discussed in detail in Section 1.2.

1.2 Hybrid System Motion Planning

1.2.1 Hybrid System Definition

Hybrid system are characterized by the mixture of discrete and continuous dynamical

behaviors. In continuous time, a general hybrid system can be described as

𝑥̇ = 𝑓(𝑥, 𝑢, 𝜎), (𝑥, 𝑢) ̸∈ G, (1.1a)

(𝜎, 𝑥)+ = 𝑟(𝑥, 𝑢, 𝜎), (𝑥, 𝑢) ∈ G, (1.1b)

where 𝑥 ∈ 𝑋 ⊂ R𝑛, is the continuous system state, 𝑢 ∈ 𝑈 ⊂ R𝑚, is the control input,

𝜎 ∈ Σ is the system mode such that Σ is a finite set, and G is the (zero-measured)

set of guards where mode transitions happen. Using a time step 𝜏 ∈ R+ and a

time-integration scheme such as time-stepping ([44]), (1.1) can be formulated as the

following discrete time form:

𝑥+ = 𝐹𝑖(𝑥, 𝑢), (𝑥, 𝑢) ∈ S𝑖, (1.2)
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where S𝑖, 𝑖 = 1, · · · , 𝑁 , are interior-disjoint sets corresponding to 𝑁 modes described

by a number of inequalities 𝑆𝑖(𝑥, 𝑢) ≤ 0. The constraint (𝑥, 𝑢) ∈ 𝑋 × 𝑈 is also

included in each S𝑖, 𝑖 = 1, · · · , 𝑁 .

1.2.2 Hybrid System in Robotics

Hybrid system arise in many robotics applications. In particular, many robotic prob-

lems involving contact can be modeled as hybrid systems. The different contact modes

can be captured naturally with hybrid dynamics. Two major classes of such problems

are locomotion and manipulation.

Motion planning in hybrid robotic systems is challenging in general. Crucial

maneuvers with particular mode sequences are hard to discover as the planning space

grows combinatorially with the number of hybrid modes. This renders exhaustive

search techniques impractical. Difficulties associated with choosing distance metrics

in hybrid state spaces exacerbate this issue as heuristics are not readily available [40].

While locomotion and manipulation are both common hybrid systems in robotics,

the two problems have distinct structures. In locomotion, there are typically fewer

contact modes. For instance, if slipping is not considered, a walking quadruped

has 24 = 16 contact modes: each leg can be in or out of contact with the ground.

Meanwhile, a three-finger robotic hand manipulating a square object with no slip on

a plane has 53 = 125 contact modes: each finger can make contact with any face of

the object or not make contact. Moreover, locomotion problems are often periodic,

which allow for efficient analysis and techniques such as return maps and limit cycle

[46]. Manipulation, on the other hand, does not posses such a property. This thesis

will therefore focus on manipulation as the primary application of interest.

1.3 Manipulation Planning

Robust robotic manipulation outside of controlled environments can enable robotics

applications that are currently impossible, such as versatile autonomous assembly

and disaster response. However, manipulating objects with robots remains one of
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the most significant unsolved tasks in robotics today. The main challenges with

robot manipulation are twofold. First, generating manipulation plans in contact-rich

space requires exploring different mode sequences, which is difficult to perform on-

line [38][14]. Moreover, manipulation plans generated by existing methods are brittle

against environmental variations [20]. Traditional control and planning methods rely

heavily on model accuracy and state estimation, yet contact dynamics are challenging

to model and observe [20]. While some methods based on machine learning may cir-

cumvent the modeling challenges, learning models are tedious to train. Consequently,

most robot manipulation applications have yet to evolve beyond controlled laboratory

settings [20].

1.4 Contributions and Organization

This thesis presents a series of work with the ultimate purpose of achieving efficient

and robust hybrid systems motion planning through sampling-based planners. In

particular, the thesis contains three major results:

1. A RRT-style planner named “R3T”, which stands for rapidly-exploring random

reachable set trees. R3T is designed for planning in kinodynamic and hybrid

systems.

2. Mathematical tools for solving the “nearest polytope problem” as motivated by

motion planning examples such as R3T.

3. A manipulation planning framework that combines RRT and learning tech-

niques to achieve robust manipulation planning. This method is focused on the

“planar gripper” robot system.

Chapter 2 presents and analyzes R3T. Chapter 3 introduces the mathematical

tools for solving the nearest polytope problem. Chapter 4 discusses manipulation

planing on the planar gripper system. Finally, Chapter 5 summarizes the impacts of

these results.
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Chapter 2

Rapidly-Exploring Random

Reachable Set Tree (R3T)1

2.1 Background and Motivation

As discussed in Chapter 1.1, performance of sampling-based planners is limited in

kinodynamic and hybrid systems. Consequently, many variants of RRT have been

developed to improve planning performance. In these systems, the nearest state in

the tree to the sample might not be associated with the nearest reachable state to

the sample (see Fig. 2-1). Reachability guided methods, such as reachability guided

RRT (RG-RRT) [41], address this problem by exploring reachable states in advance

and then growing the tree to the nearest reachable state to the sample. However,

this requires searching over a much larger number of points. A number of algorithms

in the spirit of RG-RRT have been developed. Environment-guided RRT (EG-RRT)

[16] combines RG-RRT with a sampling strategy biased toward more promising parts

of the state-space; planning with motion cones [6] uses the notion of reachability in

configuration space for in-hand manipulation.

In this chapter, a formal approach to reachability-guided sampling-based planning

1 c○2020 IEEE. Reprinted, with permission, from Albert Wu, Sadra Sadraddini, and Russ Tedrake.
R3t: Rapidly-exploring random reachability set trees. To appear in the proceedings of 2020 IEEE
International Conference on Robotics and Automation, 2020.
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𝑥sample

𝑥𝐴

𝑥nearest

𝑥𝐵

ℛ𝐴
ℛ𝐵

Figure 2-1: RRT extension and system reachability. While 𝑥𝐵 is closer to 𝑥sample than
𝑥𝐴, the reachable set of 𝑥𝐴, ℛ𝐴, has states closer to 𝑥sample than any point in ℛ𝐵.
A reachability guided algorithm would extend the tree to 𝑥nearest, whereas traditional
RRT would either extend in ℛ𝐵 or fail.

is proposed and discussed. A method to represent and plan on the whole reachable

set is developed. The main contributions of this chapter are as follows.

∙ A framework to represent the forward (or backward) reachable set of a state as

(the union of) polytope(s) using the linearized local dynamics. (Chapter 2.3.1).

∙ Rapidly-exploring Random Reachable Set Tree (R3T) sampling-based planning

algorithm guided by (polytopic) reachable sets (Chapter 2.3.2). The algorithm is

probabilistically complete in kinodynamic settings with approximated reachable

sets(Chapter 2.4.2). R3T*, the version with rewiring (Chapter 2.3.3), retains

the asymptotic optimality of traditional RRT*s (Chapter 2.4.3). The benefits

of planning with reachable sets are demonstrated using kinodynamic and hybrid

systems (Chapter 2.5).

∙ As a consequence of R3T, a tool for approximate (subject to linearization errors)

reachability verification, as opposed to RRT-based falsification [33, 11].

A video summary, which accompanied the conference paper version of this chapter,

is available on YouTube2.

2.2 Problem Definition

A planning problem in a hybrid system, which is the problem of interest in this

chapter, is defined in Problem 1.
2https://youtu.be/E8TICePNqE0
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Problem 1. Given a system defined by Equation (1.1), an initial state 𝑥0 and a

goal state 𝑥𝐺, find a trajectory 𝜁 : [0, 𝑇 ] → (𝑥, 𝑢) respecting Equation (1.1), 𝑥(0) =

𝑥0, 𝑥(𝑇 ) = 𝑥𝐺, 𝑥(𝑡) ∈ 𝑋, 𝑢(𝑡) ∈ 𝑈,∀𝑡 ∈ [0, 𝑇 ], and 𝑇 is finite. If optimality is

desired, find the optimal trajectory such that it minimizes 𝐽 =
∫︀ 𝑇

0
𝑐(𝑥, 𝑢)𝑑𝑡, where

𝑐 : 𝑋 ×𝑈 → R is the running cost. Using a time step 𝜏 ∈ R+ and a time-integration

scheme such as time-stepping ([44]), Equation (1.1) can be replaced with Equation

1.2. In the rest of the chapter, usage of Equation (1.2) is assumed.

The mathematical preliminaries on polytopes are given in Chapter 3.2.1.

2.3 The R3T Algorithm

2.3.1 Reachable Set Approximation

In order to perform sampling-based planning with reachable sets, a framework to

approximate the forward (or backward) reachable sets of hybrid systems is first pro-

posed.

Definition 1. The forward reachable set of state 𝑥̄ is defined as the set of all states

that can be reached from 𝑥̄ in less than time 𝜏 using valid control inputs

𝑅(𝑥̄) := {𝑥 ∈ 𝑋|∃[0, 𝜏 ]→ 𝑈, 𝑥(0) = 𝑥̄, (1.2)}. (2.1)

While R3T supports planning with exact 𝑅(𝑥̄) (see Chapter 2.5.2), finding an

explicit representation for 𝑅(𝑥̄) is generally difficult. However, an approximation can

be found with time discretization and linearization. To achieve so, the dynamics and

the constraints of each mode of the system is linearized. Following the notations

defined in Equation (1.2), given 𝜂 = (𝑥̄, 𝑢̄), the linearized dynamics is 𝑥+ = 𝐴𝜂
𝑖 𝑥 +

𝐵𝜂
𝑖 𝑢 + 𝑐𝜂𝑖 , where 𝐴𝜂

𝑖 = 𝜕𝐹𝑖

𝜕𝑥
|𝜂, 𝐵𝜂

𝑖 = 𝜕𝐹𝑖

𝜕𝑢
|𝜂, and 𝑐𝜂𝑖 = 𝐹𝑖(𝑥̄, 𝑢̄) − 𝐴𝜂

𝑖 𝑥̄ − 𝐵𝜂
𝑖 𝑢̄. The set of

constraints 𝑆𝑖(𝑥, 𝑢) ≤ 0 is linearized to obtain the following polyhedral set in 𝑋 ×𝑈 :

𝐷𝜂
𝑖 𝑥 + 𝐸𝜂

𝑖 𝑢 ≤ 𝜁𝜂𝑖 , (2.2)
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𝑥̄ℛ𝐷𝑇1

(mode 1)
ℛ𝐷𝑇2

(mode 2)

ℛ𝐶𝑇2ℛ𝐶𝑇1

Figure 2-2: Schematic illustration of the reachable sets of a hybrid system. ℛ𝐷𝑇1 and
ℛ𝐷𝑇2 represent discrete time reachable sets of 𝑥̄ in 2 different modes. ℛ𝐶𝑇1 (red) and
ℛ𝐶𝑇2 (blue), the continuous-time reachable set of each mode, is computed by taking
the convex hull of 𝑥̄ and the respective ℛ𝐷𝑇 .

where 𝐷𝜂
𝑖 = 𝜕𝑆𝑖

𝜕𝑥
|𝜂, 𝐸𝜂

𝑖 = 𝜕𝑆𝑖

𝜕𝑢
|𝜂, and 𝜁𝜂𝑖 = 𝐷𝜂

𝑖 𝑥̄ + 𝐸𝜂
𝑖 𝑢̄− 𝑆𝑖(𝑥̄, 𝑢̄). Note that (2.2) is an

H-polytope if 𝑋 and 𝑈 are bounded sets, which is often the case. An approximation

of the reachable set in discrete time is the following set:

ℛ𝐷𝑇 (𝑥̄) =
𝑁⋃︁
𝑖=1

(𝐴𝜂
𝑖 𝑥̄ + 𝑐𝜂𝑖 ) + 𝐵𝜂

𝑖 {𝑢 | 𝐸
𝜂
𝑖 𝑢 ≤ 𝜁𝜂𝑖 −𝐷𝜂

𝑖 𝑥̄}, (2.3)

which is a union of AH-polytopes. It is possible that some of the polytopes in (1.2)

are empty—not every mode is attainable at a given state. Following the straight

line continuous-time approximation discussed earlier, the polytopic reachable set in

continuous time ℛ𝐶𝑇 is approximated by taking the convex hull of ℛ𝐷𝑇 with 𝑥̄. The

convex-hull of a point and an AH-polytope is still an AH-polytope [36]. Thus,

ℛ𝐶𝑇 (𝑥̄) =
𝑁⋃︁
𝑖=1

A(𝑥̄, [𝐵𝜂
𝑖 , 𝐴

𝜂
𝑖 𝑥̄ + 𝑐𝜂𝑖 − 𝑥̄], [𝐸𝜂

𝑖 , 𝐷
𝜂
𝑖 𝑥̄− 𝜁𝜂𝑖 ], 0),

where [·, ·] stands for concatenating matrices horizontally. This construction of reach-

able sets is illustrated in Fig. 2-2.

2.3.2 The Main R3T Algorithm

Algorithm 1 provides an overview of R3T. First, the tree is initialized with the start

state. The tree is then expanded through sampling the state space and performing

the Extend routine. Whenever a new node is added, R3T may check for more optimal

paths through Rewire if optimality is flagged true. R3T then checks whether the

goal is reachable from the new node with ExtendToPoint. If it is the case, a path is
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Algorithm 1 R3T
Require: ℛ, 𝒮, 𝑥0 and 𝑥𝑔 ◁ reachable set oracle, sampling function, start state,

goal state
Require: optimality, 𝑖𝑚𝑎𝑥, 𝜖 ◁ whether to rewire, max iterations, tolerance for

reaching 𝑥𝑔

1: 𝑇 .add(𝑥0,ℛ(𝑥0)) ◁ initialize tree with start state
2: 𝑖← 0 ◁ reset iterations count
3: if 𝑥𝑔 ∈ ℛ(𝑥0) then
4: 𝑔 ← ExtendToPoint(ℛ(𝑥0), 𝑥𝑔)
5: if 𝑔 ̸= ∅ then
6: 𝑇 .add(𝑔)
7: return BuildPath(𝑇, 𝑔) ◁ found path to goal
8: while 𝑖 < 𝑖𝑚𝑎𝑥 do
9: 𝑥𝑠 ← 𝒮() ◁ sample the state space

10: 𝑅𝑐, 𝑥𝑐 ← FindNearest(𝑇, 𝑥𝑠)
11: 𝑥𝑛 ← Extend(𝑅𝑐, 𝑥𝑐)
12: if 𝑥𝑛 ̸= ∅ then ◁ successful extension
13: 𝑇 .add(𝑥𝑛,ℛ(𝑥𝑛)) ◁ add new node
14: if optimality==True then
15: Rewire(𝑇,ℛ(𝑥𝑛)) ◁ optional rewiring
16: if 𝑥𝑔 ∈ ℛ(𝑥𝑛) then
17: 𝑔 ← ExtendToPoint(ℛ(𝑥𝑛), 𝑥𝑔)
18: if 𝑔 ̸= ∅ ∧ Dist(𝑔, 𝑥𝑔) < 𝜖 then
19: 𝑇 .add(𝑔)
20: return BuildPath(𝑔) ◁ found path
21: 𝑖← 𝑖 + 1

22: return ∅ ◁ R3T failed

found and R3T terminates.

Guiding Tree Growth with Random Sampling

R3T’s extension routine is entirely based on the reachable set. First, the nearest

reachable set in the tree 𝑅𝑐 ∈ 𝑇 to the random state sample 𝑥𝑠 is found. If 𝑥𝑠 ∈ 𝑅𝑐,

the tree is extended toward 𝑥𝑠. Otherwise, extension is performed through finding

the nearest state 𝑥𝑐 ∈ 𝑅𝑐. This sampling method favors states that are feasible and

prevents sample rejection, similar to RG-RRT [41]. Moreover, the extension routine of

R3T avoids an explicit distance metric if at least one reachable set contains 𝑥𝑠. Design

of a distance metric is challenging in underactuated system and hybrid systems, and
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Algorithm 2 Extend with approximated ℛ(·)
Require: 𝑅, 𝑥 ◁ Approximated reachable set, target state
Require: 𝜏 ◁ Time horizon
1: 𝑢← CalcInput(𝑅, 𝑥) ◁ Control input to get to 𝑥
2: 𝑥𝑛 ←

∫︀ 𝑡=𝜏

𝑡=0,𝑥(0)=𝑅.𝑥
𝑓(𝑅.𝑥, 𝑢)𝑑𝑡 ◁ Simulate trajectory using 𝑢. 𝑅.𝑥 is the state

from which 𝑅 is generated.
3: if CollisionFree(𝑅.𝑥, 𝑥𝑛) then
4: return 𝑥𝑛

5: return ∅

the “nearest” state found with conventional distance metrics like 𝐿2 and 𝐿∞ can be

unreachable or does not progress toward the sample, as illustrated in Fig. 2-1.

Computing Reachable Sets

In general, the reachable set oracle ℛ(·) computes reachable sets with AH-polytope

approximations (Chapter 2.3.1). Some systems such as Dubins car (Chapter 2.5.2)

have exploitable properties that allow system-specific reachable set computation.

Extension

Extend routine is trivial if 𝑅 is a conservative approximation, as the target state

must be reachable. Otherwise, Algorithm 2 can be used to ensure the extended path

is indeed reachable. Notice that 𝑥𝑛 may be obtained by a more precise simulation

than when generating 𝑅.

For the polytopic reachable set approximation discussed in Chapter 2.3.1, CalcInput

can be implemented using (2.4).

𝑢 = (𝐵𝜂)†(𝑥𝑐 − 𝑥− 𝐴𝜂𝑥− 𝑐𝜂)|𝑥=𝑅𝑐.𝑥, (2.4)

where (.)† stands for Moore-Penrose inverse. Equation (2.4) is implemented in all

subsequent experiments. For proving probabilistic completeness, another CalcInput

is proposed and discussed in Chapter 2.4.2.

A variant of Extend, ExtendToPoint, has an additional constraint that Dist(𝑥𝑛,

𝑥𝑐) is small. ExtendToPoint is used in rewiring and goal checking. This routine is
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Algorithm 3 ExtendToPoint with input enumeration
Require: 𝑅, 𝑥 ◁ Approximated reachable set, target state
Require: 𝒰 , 𝜏 ◁ Possible control inputs, time horizon
1: u← Sample(𝒰) ◁ Sample control inputs
2: for 𝑢𝑖 ∈ u do
3: xi ←

∫︀ 𝑡=𝜏

𝑡=0,𝑥(0)=𝑅.𝑥
𝑓(𝑅.𝑥, 𝑢𝑖)𝑑𝑡 ◁ Simulate trajectory using 𝑢𝑖. 𝑅.𝑥 is the state

from which 𝑅 is generated.
4: if Dist(𝑥,xi) ≈ 0 ∧ CollisionFree(𝑅.𝑥, 𝑥) then
5: return 𝑥
6: return ∅

also trivial if the 𝑅 is a conservative approximation. If 𝑅 is an over-approximation,

solving the two-point boundary value from 𝑅.𝑥 to 𝑥𝑛 problem is necessary. Algorithm

3 provides an approach where the solution is obtained through sampling the input

space. Note that by keeping a reachable set approximation, we can weed out most

unreachable states with little computation.

Generally, the explicit trajectory between tree nodes only needs to be calculated

during the BuildPath routine. Even with rewiring, the algorithm can maintain opti-

mality as long as the cost-to-go is consistent. If there are obstacles in addition to the

system dynamics, the collision checking routine CollisionFree is performed during

extension. Standard collision checking routines used by other RRT algorithms may

be applied. The extension routine is illustrated in Figure 2-3a.

2.3.3 Rewiring

R3T may maintain asymptotic optimality (Chapter 2.4.3) through a rewiring pro-

cedure similar to [18]. Rewire consists of finding the best parent of a newly added

node, and using the new node as a potential parent. Algorithm 4 describes Rewire

in detail. Notice that the first for loop is only relevant when multiple reachable sets

contain the same state. Moreover, if the nearest reachable set 𝑅𝑐 is selected during

extension to favor the reachable set with the least cost-to-go, this loop can be skipped

entirely. The rewiring routine is illustrated in Figure 2-3b.

25



(a) Extension in R3T. The nearest reachable
set (orange triangle) to the sample (orange
dot) is identified. The tree is then grown
toward the nearest state (green dot) to the
sample in this reachable set.

(b) Rewiring in R3T. The best parent of the
new node (green) is identified. If the new
node provides a better cost for some existing
node, the new node is assigned as the new
parent.

Figure 2-3: Extension and rewiring in R3T.

Goal Checking

Whenever a new reachable set is added to the tree, ExtendToPoint is performed to

see whether the goal state is in the new reachable set. If it is, the goal node is added

to the tree, and the algorithm terminates.

2.3.4 Optimizations

Information from the reachable sets can be exploited to accelerate R3T. Here, two

techniques that apply to planning with polytopic reachable sets are proposed: com-

puting convex hull with originating states and exploring deterministic states. Both

techniques were implemented in Sec. 2.5.

When evaluating the reachable set ℛ(𝑥) with the method in Sec. 2.3.1, a discrete

time step 𝜏 > 0 is required to generate ℛ. This may lead to a large distance between

𝑥 andℛ(𝑥). However, due to the linearity ofℛ, the reachable set for any time horizon

0 ≤ 𝜏 ′ ≤ 𝜏 is the convex set of 𝑥 and ℛ(𝑥). This allows choosing a coarse 𝜏 without

missing subsets of the state space. For comparison, vertex-based traditional RRT and

RG-RRT has a resolution bounded by the Nyquist sampling criterion. For a state
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Algorithm 4 Rewire
Require: 𝑇 , 𝑅 ◁ R3T, newly added reachable set
Require: 𝒞 ◁ Cost-to-go function
1: R𝑅 ← Contains(𝑇.R, 𝑅.𝑥) ◁ Find all reachable sets containing 𝑅
2: for 𝑅𝑖 ∈ R𝑅 do
3: if 𝒞(𝑅.𝑥) > 𝒞(𝑅𝑖.𝑥) + 𝒞(𝑅𝑖.𝑥, 𝑅.𝑥) then
4: 𝑥′ ← ExtendToPoint(𝑅𝑖, 𝑅.𝑥)
5: if 𝑥′ ̸= ∅ ∧ Dist(𝑥′, 𝑅.𝑥) ≈ 0 then
6: 𝑅.𝑥.parent ← 𝑅𝑖.𝑥 ◁ Rewire 𝑅.𝑥 with 𝑅𝑖

7: x𝑅 ← Contains(𝑅, 𝑇.x) ◁ Find all explored states contained in 𝑅
8: for 𝑥𝑗 ∈ x𝑅 do
9: if 𝒞(𝑥𝑗) > 𝒞(𝑅.𝑥) + 𝒞(𝑅.𝑥, 𝑥𝑗) then

10: 𝑥′
𝑗 ← ExtendToPoint(𝑅, 𝑥𝑗)

11: if 𝑥′
𝑗 ̸= ∅ ∧ Dist(𝑥′

𝑗, 𝑥𝑗) ≈ 0 then
12: 𝑥𝑗.parent ← 𝑅.𝑥 ◁ Rewire 𝑥𝑗 with 𝑅

13: return

spacing of ∆𝑥, an 𝜖-ball in the state space is not guaranteed to be discovered unless

∆𝑥 < 2𝜖.

Another useful technique in kinodynamically constrained system is to exploit de-

terministic dynamics. If the input matrix 𝐵 = 0 in some dynamic modes, the control

inputs do not affect state evolution. In this case, the node can be explored further

with little computational cost through simulating forward dynamics until 𝐵 ̸= 0.

2.4 Analysis of R3T

2.4.1 Correctness of R3T

The correctness of R3T follows by construction. Since all paths planned belong in

the reachable set of some state, the path found by the algorithm is feasible. In the

case where the reachable set is approximated, Algorithm 2 can be applied to ensure

all tree edges are feasible.
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2.4.2 Probabilistic Completeness (PC) in Kinodynamic Sys-

tems

While PC in geometric settings has been established in literature (see [25, 19, 5]), PC

in kinodynamic settings has not reached the same level of generality. However, PC

in kinodynamic systems can be shown in R3T. Assume there exists a robustly feasible

(see [17]) solution 𝒫 to Problem 1. Furthermore, assume the system is Lipschitz

continuous with 1 dynamic mode, and the support of the sampling function 𝒮 contains

∪{𝑅(𝑥) | ∀𝑥 ∈ 𝒫}.

Theorem 1. R3T with exact reachable sets is PC.

Proof. Leveraging the results and notations from [21], we only need to show the

probability of a successful propagation into ℬ𝜅𝛿(𝑥1) from 𝑥′
0 ∈ ℬ𝛿(𝑥0) is nonzero.

Since the path is robustly feasible, ℬ𝜅𝛿(𝑥1) ∩𝑅(𝑥′
0) has nonzero volume and nonzero

probability of being sampled.

For R3T with approximated reachable sets 𝑅̄(·) as discussed in Algorithm 3, the

following additional assumptions are necessary.

Assumption 1. There existsℳ𝑥 : 𝑅̄(𝑥)→ 𝑅(𝑥) defining the following relationship:

for ∀𝑦 ∈ 𝑅(𝑥),∃𝑦 ∈ 𝑅̄(𝑥) such that if 𝑦 is sampled, 𝑦 is extended to from 𝑥. An

alternative assumption is every feasible input 𝑢 ∈ 𝑈 and time 𝑡 ∈ [0, 𝜏 ] has a nonzero

probability of being sampled.

Assumption 2. In the case where a state is contained in multiple 𝑅̄(𝑥), we break

ties randomly. For convenience, we assume the tie breaking probability is uniform.

Under these assumptions, the following theorem is proposed.

Theorem 2. R3T with reachable set approximations satisfying Assumptions 1 and 2

is still PC.

Proof. By Assumption 1, ∃ℬ̄𝜅𝛿(𝑥1) := {𝑦 | ℳ𝑥′
0
(𝑦) = 𝑥, 𝑥 ∈ ℬ𝜅𝛿(𝑥1) ∩ 𝑅(𝑥′

0)} ≠ ∅.

Denote the probability of sampling in ℬ̄𝜅𝛿(𝑥1) as 𝑝, 0 < 𝑝 ≤ 1. There may be tree
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nodes 𝑍 = {𝑧1, 𝑧2, . . . , 𝑧𝑚} ⊂ 𝑇 such that ℬ̄𝜅𝛿(𝑥1)∩ 𝑅̄(𝑧𝑖) ̸= ∅. By Assumption 2, the

probability of choosing 𝑥′
0 is at least 1

𝑚+1
. The probability of propagating from 𝑥′

0

into ℬ̄𝜅𝛿(𝑥1) is 𝑝
𝑚+1
≥ 𝑝

|𝒯 | , where |𝒯 | is the tree size. Suppose initially |𝑇 | = 𝑘 and

𝑛 extensions are performed. The probability of failing to propagate into ℬ̄𝜅𝛿(𝑥1) is

upper bounded by
∏︀𝑛−1

𝑖=0 (1− 𝑝
𝑘+𝑖

). For 0 < 𝑎 < 1,

ln (1− 𝑎) = −𝑎− 𝑎2

2(1− 𝜖)2
≤ −𝑎, 0 < 𝜖 < 𝑎. (2.5)

The logarithm of the failure probability after infinite steps is

lim
𝑛→∞

𝑛−1∑︁
𝑖=0

ln (1− 𝑝

𝑘 + 𝑖
) ≤ lim

𝑛→∞

𝑛−1∑︁
𝑖=0

− 𝑝

𝑘 + 𝑖
= −∞, (2.6)

thus

lim
𝑛→∞

𝑛−1∏︁
𝑖=0

(1− 𝑝

𝑘 + 𝑖
) = 0. (2.7)

In virtue of (2.7), after infinite steps, the propagation to ℬ̄𝜅𝛿(𝑥1) succeeds almost

surely.

To achieve PC with polytopic reachable set 𝑅̄(·), consider an alternative CalcInput

satisfying Assumption 1. Observe that extending to 𝑥𝑠 ∈ 𝑅̄(𝑥𝑐) is a polytopic con-

straint on the time step 𝑡 = 𝛽𝜏 and reparameterized input 𝑣 := 𝛽𝑢.

𝑥𝑠 = (𝐴𝜂𝑥 + 𝑐𝜂)𝛽 + (𝐵𝜂)𝑣 + 𝑥𝑐, 𝑣 ∈ 𝛽𝑈, 𝛽 ∈ [0, 1]. (2.8)

Since 𝑥𝑠 may be any state in 𝑅̄(·), if a random polytope sampler such as [31] is used

to choose 𝑢, 𝑡 for Algorithm 2, all feasible 𝑢, 𝑡 can be chosen and the setup is PC.

2.4.3 Asymptotic Optimality with Rewiring

Definition 2. An R3T tree 𝑇 is “optimal” if the edges connecting the root 𝑥𝑟 and all

𝑥𝑡 ∈ 𝑇 form a path no more costly than any other path from 𝑥𝑟 to 𝑥𝑡 via waypoints

{𝑥𝑖} ∈ 𝑇 , where each 𝑥𝑖+1 ∈ 𝑅(𝑥𝑖).
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Theorem 3. Given an R3T tree 𝑇 constructed with the rewiring procedure, the tree

is optimal.

Proof. The proof is done using an inductive argument. Given a optimal tree 𝑇 ,

suppose a new node 𝑥𝑛 is added. If a suboptimal path appears after adding 𝑥𝑛, it

must contain 𝑥𝑛. The rewiring procedure checks for better paths involving {𝑥 | 𝑥𝑛 ∈

𝑅(𝑥)∧𝑥 ∈ 𝑇} and {𝑥 | 𝑥 ∈ 𝑅(𝑥𝑛)∧𝑥 ∈ 𝑇}, which covers all path segments involving

𝑥𝑛 with duration ≤ 𝜏 . Therefore, 𝑇 ∪ {𝑥𝑛} is still optimal. The “base case” of a tree

with 1 node is optimal, so the proof is complete.

With PC, all possible paths will be explored by R3T given a long enough running

time. Therefore, it is speculated that R3T posses the asymptotic optimality given

in [17, 43]. While bounding the complexity of rewiring is not in the scope of this

chapter, empirical evidence suggests that rewiring is beneficial in practice.

2.5 Empirical Evaluation

To evaluate the performance of R3T, R3T, RG-RRT [41], and RRT [26] were imple-

mented for testing. The RRT and RG-RRT implementations sample 3 evenly-spaced

inputs for tree extension using their respective strategies. All scripts are available on

GitHub3. All tests were performed on a personal computer with i7-7820HQ CPU.

2.5.1 Pendulum Swing-Up

Consider a single-link torque-limited pendulum system with damping. The pendulum

was started at rest, and the goal is to swing up the pendulum to rest at 𝜃 = 𝜋. The

tolerance for reaching the goal is ||𝑥−𝑥𝑔||2 ≤ 0.05. For R3T and RG-RRT, a reachable

set time horizon of 0.2s was used. The time step size for RRT and forward dynamics

was 0.01s. 10 consecutive planning tries were done, and the results are summarized

in Table 2.1. The system parameters used are mass 𝑚 = 1kg, link length 𝑙 = 0.5m,
3https://github.com/wualbert/r3t
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gravity constant 𝑔 = 9.8m/s2, joint damping coefficient 𝑏 = 0.1kg/s, and torque limit

|𝜏 | ≤ 1N.

Table 2.1: Path planning statistics with the pendulum.

R3T RG-RRT RRT

Time(s) Nodes Time(s) Nodes Time(s) Nodes

Mean 5.92 559 21.4 4352 45.8 11134

Median 4.07 472 6.6 1381 31.0 8349

Max 17.26 1218 110.8 22600 97.5 19360

Min 2.14 284 1.5 336 28.0 7677

S.D. 5.09 326 33.8 4353 23.6 4273

R3T significantly outperformed RG-RRT and RRT in both runtime and nodes

explored. This is attributed to the large simulation timestep allowed by planning

with reachable sets. Moreover, by using the convex hull technique discussed in Sec.

2.3.4, choosing a large simulation time step does not cause R3T to “overlook” the goal

states, unlike in RG-RRT and RRT where the exploration often passed by the goal

but not terminate. One way to mitigate this pitfall is to add a possibly expensive

routine in RG-RRT and RRT to check if the goal lies on the path between two nodes.

Fig. 2-5 shows the reachable sets explored by R3T as time progresses.

2.5.2 Dubins Car

To demonstrate asymptotic optimality of R3T, the “Dubins car" problem is consid-

ered. The problem is to find a path subject to a car’s kinematic constraints. The

problem can be simplified to finding a path that consists of curvature-limited Dubins

curves [25]. Observing that the reachable set from each state is just a linear transfor-

mation of a “base” reachable set, a fixed-horizon exact reachable set was precomputed

through simulating the system dynamics forward. Fig. 2-6a and 2-6b shows the solu-

tion improvements as time progressed. Fig. 2-6c plots the path length against time.

As expected from asymptotic optimality, the cost is monotonically decreasing.
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(a) Optimal trajectory from a bang-bang
controller.

(b) Trajectory found by R3T.

(c) Trajectory found by RG-RRT. (d) Trajectory found by RRT.

Figure 2-4: Pendulum swing-up trajectories found by various planning algorithms.
R3T found a solution significantly faster with fewer nodes explored.
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(a) Reachable set with |𝑢| < 1N after 5 sec-
onds.

(b) Reachable set with |𝑢| < 1N after 3905
seconds.

(c) Reachable set with |𝑢| < 0.25N after 5
seconds.

(d) Reachable set with |𝑢| < 0.25N after
3905 seconds.

Figure 2-5: Polytopic approximation of the pendulum reachable set as explored by
R3T. Swing-up is impossible with the input limit and the damping coefficient in 2-5c
and 2-5d. As the runtime increased, nearly all feasible states were covered, proving
probabilistic completeness empirically.

(a) First path found. Cost-
to-go is 60.9.

(b) Path after 132s. Cost-to-
go is 38.6.

(c) Cost-to-go plotted over
time.

Figure 2-6: Results of R3T on Dubins car. Figures 2-6a, 2-6b are snapshots of the
explored states (grey) and solution (blue). As shown in Fig. 2-6c, the longer the
runtime, the less costly the solution was.
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2.5.3 1D Hopper

The 1D hopping robot is used to compare R3T and other method’s ability to plan

on hybrid systems. The model has 2 states, 2 continuous dynamic modes (flight, soft

ground contact), and 1 discrete dynamic mode (inelastic collision with the ground).

The hopper has a body mass of 𝑚 = 1kg, a retractable piston leg of length 𝑙 = 1m and

piston length 𝑝, 0 ≤ 𝑝 ≤ 𝑝𝑚𝑎𝑥 = 0.1m. The piston is force-limited to 𝐹 < 𝐹𝑚𝑎𝑥 = 80N.

The system has 3 dynamic modes: flight, soft contact, and hard contact. When

𝑝 = 𝑝𝑚𝑎𝑥 and 𝑥 > 𝑙 + 𝑝𝑚𝑎𝑥, the hopper is in flight. During soft contact, 0 < 𝑝 ≤ 𝑝𝑚𝑎𝑥

and 𝑥 = 𝑙+𝑝. The piston can exert force on the ground. During hard ground contact,

𝑝 = 0, 𝑥 ≤ 𝑙, 𝑥̇ < 0. The hopper performs an instantaneous partially inelastic collision

with the ground with damping factor 𝑏 = 0.85.

For the tests, the hopper should hop from 2m to 3m. The tolerance for reaching

the goal is ||𝑠 − 𝑠𝑔||2 ≤ 0.05. For R3T and RG-RRT, a reachable set time horizon

of 0.04s was used. The time step size for RRT and forward dynamics was 0.01s. 10

consecutive planning tries were done with a maximum runtime of 100s. The statistics

on successful tries of finding the first path are summarized in Table 2.2.

Table 2.2: Path planning statistics with the 1D hopper.

R3T RG-RRT RRT

Time(s) Nodes Time(s) Nodes Time(s) Nodes

Mean 2.39 530 47.23 4288

N/A N/A

Median 2.18 497 35.54 3403

Max 5.01 1021 96.49 8006

Min 0.37 75 19.74 2194

S.D. 1.28 265 30.92 2432

Fails 0 2 10

Fig. 2-7 shows the trees explored by each algorithm. R3T is the only algorithm

that found a path consistently and quickly. Two properties from planning with reach-

able sets contribute to this result. Since the 1D hopper has no control input during
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(a) Nodes (grey) and trajectory (cyan)
found by R3T.

(b) Reachable set corresponding to the path
in Fig. 2-7a.

(c) Instance where RG-RRT failed. With
a small goal region, RG-RRT failed to ac-
knowledge the goal between two nodes.

(d) Instance where RRT failed. To match
the simulation granularity of R3T, RRT
needed a much smaller time step.

Figure 2-7: 1D hopper trajectories found by various planning algorithms. R3T finds a
solution consistenly and quickly. RG-RRT and RRT each suffer from different failure
modes.

flight phase, R3T can exploit this property using methods described in Sec. 2.3.1. In

addition, maintaining reachable sets allows for more accurate distance-to-goal calcu-

lation and goal identification, as discussed in Sec. 2.5.1.

2.5.4 2D Hopper

The 2D hopper robot [35, 46] has 10 states, 2 control inputs, and 2 contact modes [46].

The task is to make the robot hop from 𝑥 = 0 to 𝑥 = 10. A body-attitude controller

was used in flight and the leg was modeled as a constant-k spring during compression.

R3T was used to plan push-off and hip torque during contact. 10 consecutive runs

were performed. R3T found a path in all runs using a median time of 106.3s and
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Figure 2-8: 2D hopper trajectory found by R3T. The solution trajectory is shown
in cyan. The tree explored and the nodes are in grey. Snapshots of the hopper
configurations (red for leg, purple for body) are shown.

2163 nodes. Fig. 2-8 shows a successful run.

2.6 Chapter Summary and Future Work

In this chapter, the R3T algorithm, a variant of RRT which takes advantage of reach-

able sets, is proposed. In addition, a framework for R3T planning in nonlinear hybrid

systems using local linearization, a proof for probabilistic completeness of R3T in

kinodynamic systems, and a rewiring procedure that provides asymptotic optimality

for R3T are discussed. Case studies showed that R3T outperforms previous RRT

methods in speed and nodes explored, suggesting that R3T is a superior candidate

algorithm for planning in kinodynamic and hybrid systems.

For future work, one potential direction is to introduce robust planning to R3T.

Since the reachable sets are used explicitly in R3T, it is natural to consider possibilities

of introducing robustness through modifying the reachable sets. As an example, the

reachable set could be shrunk to avoid requiring extreme control inputs that may be

difficult to execute.
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Chapter 3

The Nearest Polytope Algorithms 1

3.1 Background and Motivation

As motivated by the routine of finding the nearest polytopic reachable set approxi-

mation from Chapter 2, this chapter discusses the geometrical problem of finding the

nearest polytope to a point. Given a finite list of polytopes in n-dimensional space

and a query point, the point location problem is finding the set of polytopes that

contain the point. When this set is empty, a more general and difficult problem, the

nearest polytope problem, is determining the nearest polytope given a metric. The

solution to the point location problem is contained in the solution to the nearest

polytope problem - the set of polytopes with zero distance from the point. The naive

solution to both problems is an exhaustive check over all polytopes. However, evalu-

ating point membership or computing the distance from a polytope to a query point

are expensive operations.

Both the point location problem and the nearest polytope problem are purely geo-

metrical but have profound applications in control theory. The point location problem

has long been studied in explicit linear model predictive control (MPC) literature,

where polytopes represent pre-computed sets that correspond to linear control laws

[42, 2, 48, 1]. Given a “query” state, one needs to locate the corresponding “active”
1 c○2020 IEEE. Reprinted, with permission, from Albert Wu, Sadra Sadraddini, and Russ Tedrake.

The nearest polytope problem: Algorithms and application to controlling hybrid systems. To appear
in the proceedings of 2020 American Control Conference, 2020.
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polytope to execute the associated control law. This scheme is typically faster than

solving the MPC optimization problem online. In “exact explicit MPC”, the polytopes

are non-overlapping and are described by their hyperplanes, a representation known

as H-polytopes [53]. Infeasibility is returned if the query state is not within any of the

polytopes. The nearest polytope problem is relevant in “approximate explicit MPC”,

where the nearest but not necessarily query point-containing polytopic feasible set is

used as a heuristic to compute control inputs [39].

Most previous work on the point location problem requires the disjoint space

partitioning condition to hold. The work in [7] is able to handle overlapping polytopes.

Surprisingly, to the best of the author’s knowledge, there has been no development

on efficient algorithms for the nearest polytope problem. For instance, in [39], an

exhaustive search over the whole set of polytopes was performed.

This chapter presents 2 algorithms for solving the nearest polytope problem. The

first algorithm is based on axis-aligned bounding boxes (AABB) of the polytopes.

The second algorithm is based on precomputing distances to a finite set of key points.

The algorithms are analyzed and benchmarked with synthetic and real-world datasets

motivated by MPC and R3T applications.

3.2 Problem Definition

3.2.1 Introduction to Polytopes

First, the definition of polytopes are provided. Denoted by R𝑛 the set of 𝑛-dimensional

real values. Given 𝑎 ∈ R𝑛, the transpose of 𝑎 is denoted by 𝑎𝑇 . Given two matrices

𝐴,𝐵 with appropriate dimension, their vertical stacking is [𝐴,𝐵]. Given a finite set

𝑆, |𝑆| is its cardinality.

Definition 3. (H-Polytope) [53]. An H-polytope 𝑃 ⊂ R𝑛 is a bounded set described

by its hyperplanes:

𝑃 = {𝑥 ∈ R𝑛 | 𝐻𝑥 ≤ ℎ},

where 𝐻 ∈ R𝑞×𝑛 and ℎ ∈ R𝑞, 𝑞 is the number of hyperplanes, the kernel of 𝐻 is only
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the origin, and all the inequalities are interpreted element-wise.

Definition 4. (AH-Polytope) [37]. An AH-polytope 𝑃 ⊂ R𝑛 is a polytope given by

an affine transformation 𝐺 ∈ R𝑛×𝑚, 𝑔 ∈ R𝑛, of polytope 𝑆 ⊂ R𝑚:

𝑃 = {𝑔 + 𝐺𝑥 | 𝐻𝑥 ≤ ℎ},

where 𝐻 ∈ R𝑞×𝑚 and ℎ ∈ R𝑞.

AH-polytopes arise naturally when approximating reachable sets of bounded-input

dynamical systems through linearization, which will be discussed in detailed in Chap-

ter 2.3.1. The AH-polytope representation is the most general of the forms discussed

above. Therefore, the discussion in this thesis will focus on AH-polytopes.

Given a AH-polytope 𝑃 ⊂ R𝑛, a point 𝑞 ∈ R𝑛, a metric 𝑑 : R𝑛 × R𝑛 → R≥0, the

point-polytope distance function is defined as:

𝑑(𝑃, 𝑞) := min
𝑝∈𝑃

𝑑(𝑝, 𝑞), (3.1)

and the closest point in 𝑝* ∈ 𝑃 to 𝑞 is

𝑝* = arg min
𝑝∈𝑃

𝑑(𝑝, 𝑞). (3.2)

The minimization in (3.1) can be cast as the following optimization problem:

𝑑(𝑃, 𝑞) = min . ‖𝛿‖𝜌
subject to 𝐺𝑥 + 𝑔 = 𝑞 + 𝛿,

𝐻𝑥 ≤ ℎ,

(3.3)

which is a linear program for 𝜌 = 1,∞.For 𝜌 = 2, a quadratic program can be con-

structed by optimizing for the squared norm ‖ · ‖22. Other types of norms such as

polytopic norms can be also used. 𝑞 ∈ 𝑃 if and only if 𝑑(𝑃, 𝑞) = 0. In this section

𝜌 = 2 is used. Note that this section focuses on reducing the number of 𝑑(𝑃, 𝑞)

evaluations. Hence, while the complexity of 𝑑(𝑃, 𝑞) scales with the dimension and
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the shape of the polytope, it is considered as a constant in the subsequent discus-

sion. In practice, computing 𝑑(𝑃, 𝑞) requires solving a convex optimization problem,

which its complexity grows polynomially with dimensions and the complexity of the

representation of the polytope.

3.2.2 Formulation of the Nearest Polytope Problem

This chapter seeks to solve the following problem:

Problem 2. Given a set of AH-polytopes P = {𝑃𝑖}𝑖=1,··· ,𝑁 , 𝑃𝑖 ⊂ R𝑛, and a query

point 𝑞 ∈ R𝑛, find the nearest 𝑃 * ∈ P such that

𝑃 *(𝑞) = arg min
𝑃∈P

𝑑(𝑃, 𝑞). (3.4)

If 𝑃 *(𝑞) is not unique, return one of the minimizers.

Since P is often given in advance, the task is further split into “offline” and “online”

components. The “offline” component consists of preprocessing P and constructing

data structures. In some applications such as motion planning [52], P is expanded

incrementally. The “online” component is the actual query and is more speed critical.

The subsequent algorithms focus on creating a fast data structure offline to allow sub-

𝒪(|P|) online computation. When the minimizer is not unique, a control theoretic

tiebreaker such as the (approximate) value function associated with the polytopes

[39] could be used. In the subsequent sections, a minimizer is chosen arbitrarily if

multiple exist.

3.3 The Axis-Aligned Bounding Box (AABB) Algo-

rithm

3.3.1 Preliminaries

For obtaining an approximation of a polytope that supports quick querying and con-

struction, consider the axis-aligned bounding box, or AABB, given in Definition 5:
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Definition 5. (Axis-Aligned Bounding Box, AABB) [15]. An axis-aligned bounding

box (AABB) 𝐵 ∈ R𝑛 can be described by its the “lower” and “upper” corner points

(𝑙, 𝑢) ∈ R𝑛.

𝐵(𝑙, 𝑢) = {𝑥 | 𝑙𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑖,∀𝑖 = 1, 2, ..., 𝑛}. (3.5)

Finding the axis aligned bounding box (𝑙, 𝑢) of an AH-polytope 𝑃 ∈ R𝑛 can be

formulated as a linear optimization problem. Let 1𝑖 be the column vector with 1 at

the 𝑖th entry and 0 at all the other entries. The optimization problem is given in

Proposition 1.

Proposition 1. (AABB of an AH-Polytope). The AABB 𝐵(𝑙, 𝑢) of 𝑃 = {𝑔 + 𝐺𝑥 |

𝐻𝑥 ≤ ℎ} can be found by solving the following linear programs:

𝑙𝑖 = min
𝑥|𝐻𝑥≤ℎ

1𝑖 · (𝑔 + 𝐺𝑥),

𝑢𝑖 = max
𝑥|𝐻𝑥≤ℎ

1𝑖 · (𝑔 + 𝐺𝑥).
(3.6)

3.3.2 The AABB algorithm

This algorithm leverages AABBs to create a data structure for fast nearest polytope

querying. During the offline phase, for each of the polytopes 𝑃𝑖 ∈ P, AABBs 𝐵𝑖 are

constructed such that 𝑃𝑖 ⊆ 𝐵𝑖. Through the BuildFastAABBStructure routine, the

AABBs are stored in a data structure B such as R-tree [13] that supports fast AABB

querying. A data structure K is maintained using the BuildFastPointStructure

routine for a constant number of key points from each polytope. An example of this

structure is a k-d tree [3]. The only requirement for the key points 𝐾 is they must each

be inside a polytope. In Section 3.5, arbitrary points that are by construction inside

the polytopes are used. The offline precomputation is summarized in Algorithm 5.

Given a query point 𝑞 online, the closest key point 𝑝* = arg min𝑝∈K 𝑑(𝑝, 𝑞) is first

found. The “pivot” polytope 𝑃 * that contains 𝑝* is identified, then 𝑑* = 𝑑(𝑃 *, 𝑞) is
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Algorithm 5 AABB-Precompute
Require: P ◁ List of polytopes
Require: 𝐾 ∈ P ◁ Key points inside the polytopes
1: 𝐵 ← ∅
2: for 𝑃𝑖 ∈ P do
3: 𝐵𝑖 ← ComputeAABB(𝑃𝑖) ◁ Compute AABB
4: 𝐵 ← 𝐵 ∪ {𝐵𝑖} ◁ Store AABB
5: B← BuildFastAABBStructure(𝐵)
6: K← BuildFastPointStructure(𝐾)

computed. A “heuristic box” 𝐵ℎ with side length 2𝑑* is constructed, and B is queried

for all overlapping boxes B𝑣 with 𝐵ℎ. A polytope 𝑃𝑟 is then chosen randomly from

all the polytopes corresponding to B𝑣, compute the distance 𝑑(𝑃𝑟, 𝑞), then compare

to 𝑃 *. If 𝑃𝑟 is closer, 𝑃 * is replaced with 𝑃𝑟, 𝐵ℎ is reconstructed using the new 𝑃 *,

and B𝑣 is updated. This is repeated until either B𝑣 is exhausted, which means the

nearest polytope is 𝑃 *, or a polytope containing 𝑞 is found. The online computation

is summarized in Algorithm 6.

3.3.3 Analysis of the AABB algorithm

This algorithm is valid for L1, L2 and L-infinity distance metrics. This is due

to the fact that all AABB operations are intersection checks and requires no dis-

tance metric. As long as the heuristic box 𝐵ℎ is constructed using a side length of

2𝑑𝜌(·, ·), 𝜌 = 1, 2,∞, 𝐵ℎ will encompass all polytopes that can be closer to 𝑞 than

the pivot polytope. Additionally, the algorithm can potentially be generalized to

arbitrary convex objects as long as the AABB of such object can be computed.

The algorithm differ from [7] in that it can handle the case where no polytope

contains the query point 𝑞. This is done by the construction of the heuristic box. Since

the heuristic box must contain at least one polytope and encompasses everywhere that

has closer distance to 𝑞 than the polytope, the true closest polytope is guaranteed to

be found through searching over boxes overlapping with the heuristic box. Figure 3-1

visualizes this process.
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Figure 3-1: Example of a nearest polytope query with AABB. |P| = 30. L2 distance
was used. The query point 𝑞 is marked in black, while the key points 𝐾 are marked in
blue. Through constructing a heuristic box 𝐵ℎ (cyan) to prune impossible polytopes
and gradually shrinking it using Algorithm 6, only a small subset of 𝑑(𝑃, 𝑞) (red boxes,
|B𝑣| = |P𝑐𝑎𝑛𝑑| = 2) needs to be evaluated.
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Algorithm 6 AABB-Query
Require: B, K, 𝑞 ◁ AABBs, key points, query point
1: 𝑝* ← arg min𝑝∈K 𝑑(𝑝, 𝑞) ◁ Find closest key point
2: 𝑃 * ← 𝑝*.𝑃 ◁ Choose corresponding polytope as pivot
3: 𝑑* ← 𝑑(𝑃 *, 𝑞) ◁ Compute distance to pivot
4: 𝐵ℎ ← AABB(𝑞, 2𝑑*) ◁ Construct AABB centered at 𝑞 with side length 2𝑑𝑝
5: B𝑣 ← {𝐵 | 𝐵 ∈ |𝑇 |, 𝐵 ∩𝐵ℎ ̸= ∅} ◁ Find AABBs intersecting 𝐵ℎ

6: P𝑐𝑎𝑛𝑑 ← B𝑣.𝑃 ◁ Get candidate polytopes corresponding to B𝑣

7: while |P𝑐𝑎𝑛𝑑| > 0 do
8: if 𝑑* = 0 then
9: return 𝑃 *, 𝑑* ◁ Found a polytope containing 𝑞

10: 𝑃𝑠 ← Sample(P𝑐𝑎𝑛𝑑∖𝑃 *)
11: 𝑑𝑠 ← 𝑑(𝑃𝑠, 𝑞)
12: if 𝑑𝑠 ≥ 𝑑* then
13: P𝑐𝑎𝑛𝑑 ← P𝑐𝑎𝑛𝑑∖𝑃𝑠

14: else
15: 𝑃 *, 𝑑* ← 𝑃𝑠, 𝑑𝑠
16: 𝐵ℎ ← AABB(𝑞, 2𝑑*)
17: B𝑣 ← {𝐵 | 𝐵 ∈ |𝑇 |, 𝐵 ∩𝐵ℎ ̸= ∅} ◁ Update the list of candidates
18: return 𝑃 *, 𝑑*

3.4 The Triangle Inequality (TI) Algorithm

In this approach, the distance between a query point 𝑞 and each of the polytopes

𝑃 ∈ P is lower bounded by the triangle inequality (Theorem 4). The bound is used

to prune the list of polytopes to evaluate online.

3.4.1 Preliminaries

Theorem 4. (Point-Polytope Triangle Inequality). Given points 𝑢, 𝑣 ∈ R𝑛, a polytope

𝑃 ⊂ R𝑛, and metric 𝑑(·, ·), 𝑑(𝑢, 𝑣) + 𝑑(𝑣, 𝑃 ) ≥ 𝑑(𝑢, 𝑃 )

Proof. Suppose the closest point to 𝑢 in 𝑃 is 𝑢* ∈ 𝑃 , the closest point to 𝑣 in 𝑃 is

𝑣* ∈ 𝑃 . By the triangle inequality,

𝑑(𝑢, 𝑣) + 𝑑(𝑣, 𝑣*) ≥ 𝑑(𝑢, 𝑣*).
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By definition of 𝑣*,

𝑑(𝑢, 𝑣*) ≥ 𝑑(𝑢, 𝑢*).

Therefore,

𝑑(𝑢, 𝑣) + 𝑑(𝑣, 𝑃 ) =𝑑(𝑢, 𝑣) + 𝑑(𝑣, 𝑣*)

≥𝑑(𝑢, 𝑢*) = 𝑑(𝑢, 𝑃 )

If the polytopes are given in advance, Theorem 4 can be used to perform precom-

putations that reduce online computation. Specifically, evaluating 𝑑(𝑃, 𝑞) is avoided

for polytopes 𝑃 that cannot possibly be the closest. Given two polytopes 𝑃1, 𝑃2, a

key point 𝑘, and a query point 𝑞, Theorem 5 provides a lower bound on 𝑑(𝑃2, 𝑞) given

𝑑(𝑃1, 𝑞) and 𝑑(𝑘, 𝑞).

Theorem 5. (Point-Polytope Distance Lower Bound). Given two polytopes 𝑃1, 𝑃2,

a key point 𝑘 and a query point 𝑞, the following condition implies a lower bound on

𝑑(𝑃2, 𝑞) by 𝑑(𝑃1, 𝑞):

𝑑(𝑃2, 𝑘) ≥ 𝑑(𝑘, 𝑞) + 𝑑(𝑃1, 𝑞) =⇒ 𝑑(𝑃2, 𝑞) ≥ 𝑑(𝑃1, 𝑞) (3.7)

Proof. From Theorem 4,

𝑑(𝑃2, 𝑞) ≥ 𝑑(𝑃2, 𝑘)− 𝑑(𝑘, 𝑞)

Thus if 𝑑(𝑃1, 𝑞) ≤ 𝑑(𝑃2, 𝑘)− 𝑑(𝑘, 𝑞), 𝑑(𝑃1, 𝑞) ≤ 𝑑(𝑃2, 𝑞).

3.4.2 The TI Algorithm

Algorithms 7 and 8 describe a procedure for finding the closest polytope leveraging

Theorem 5. When a new set of polytopes P is given to the algorithm, TI-Precompute
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Algorithm 7 TI-Precompute
Require: P ◁ List of polytopes
Require: 𝐾 ∈ P ◁ Key points inside the polytopes
1: D← ∅ ◁ Initialize distance map
2: for 𝑘𝑖 ∈ 𝐾 do
3: for 𝑃𝑗 ∈ P, 𝑃𝑗 ̸= 𝑃 (𝑘𝑖) do
4: D(𝑘𝑖, 𝑃𝑗)← 𝑑(𝑘𝑖, 𝑃𝑗)

5: sort(D(𝑘𝑖, ·)) ◁ Sort key point distances
6: K← BuildFastPointStructure(𝐾)

Algorithm 8 TI-Query
Require: 𝑞 ◁ Query point
Require: P,K
1: 𝑘* ← arg min𝑘∈K 𝑑(𝑘, 𝑞) ◁ Find closest key point
2: 𝑑* ← 𝑑(𝑞, 𝑃 (𝑘*)) ◁ Compute distance to polytope corresponding to 𝑘*

3: P𝑐𝑎𝑛𝑑 ← {𝑃 |𝑃 ∈ P, 𝑑(𝑘*, 𝑃 ) < 𝑑* + 𝑑(𝑘, 𝑞)} ◁ Select polytopes satisfying
Theorem 5

4: 𝑃 * ← arg min𝑃∈P𝑐𝑎𝑛𝑑
𝑑(𝑞, 𝑃 ) ◁ Find closest among candidates

5: return 𝑃 *, 𝑑(𝑃 *, 𝑞)

is run offline to construct the necessary data structures. When a query point 𝑞 is given,

TI-Query is run to compute the closest polytope 𝑃 *. This algorithm is applicable to

any metric as long as Theorem 5 holds.

3.4.3 Analysis of the TI Algorithm

The algorithm is guaranteed to not miss the closest polytope by construction. The

reason is the closest distance from the query point 𝑞 to a polytope is upper bounded

by 𝑑(𝑃 (𝑘*), 𝑞). Thus, only polytopes that can possibly be closer than 𝑃 (𝑘*) needs to

be checked.

Offline complexity of this algorithm is 𝑂(|𝐾||P| log |P|) plus the complexity for

BuildFastPointStructure. This is a consequence of computing and sorting pair-

wise distances between all the key points and polytopes. In practice, the number

of key points can be chosen arbitrarily to avoid large precomputations, but this will

negatively impact online performance. In Section 3.5, we set |𝐾||P| ≤ 106 to limit

precomputation time. Insertion is 𝒪(|P| logP).
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3.5 Performance Evaluation

Two synthetic datasets of zonotopes distributed uniformly and along an axis (“linearly

distributed”), and two real datasets of AH-polytopes from R3T (Chapter 2) and MPC

[39] were used to evaluate the algorithms. All code for the experiments can be found

on GitHub2. All tests were performed on a personal computer with i7-7820HQ CPU.

3.5.1 Synthetic Dataset Scalability Evaluation

Precomputation Scalability

The precomputation performances of the AABB algorithm and the triangle inequal-

ity algorithm were tested on synthetic datasets. Specifically, scalability against di-

mension and dataset size on randomly generated polytopes were tested. Figure 3-2

shows the precomputation performance on uniformly distributed random polytopes,

as motivated by sampling-based planning such as [52]. Figure 3-3 shows the pre-

computation performance on random polytopes distributed along an axis (“linearly

distributed”), as motivated by trajectory stabilization techniques such as LQR trees

[47]. All experiments were triplicated.

The AABB algorithm is much faster in precomputation. Both algorithms require

longer precomputation in higher dimensions due to the increase in complexity of the

optimization problems. Note that the number of key points for triangle inequality was

limited to |𝐾||P| < 106 in all experiments to maintain a reasonable precomputation

time.

Online Scalability

The online performances of the AABB and triangle inequality algorithms were tested

against dimension and dataset size. Performance was measured with the number of

polytope distances evaluated on each query. Figure 3-4 shows the query performance

on uniformly distributed random polytopes. Figure 3-5 shows the query performance

on random polytopes distributed along an axis (“linearly distributed”).
2https://github.com/wualbert/closest_polytope_algorithms.git
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(a) Precomputation time dimension scalabil-
ity with 500 polytopes.

(b) Precomputation time dataset size scala-
bility with polytopes in 6D.

Figure 3-2: Precomputation time of the nearest polytope algorithms with uniformly
distributed random polytopes.

(a) Precomputation time dimension scalabil-
ity with 500 random polytopes.

(b) Precomputation time dataset size scala-
bility with random polytopes in 6D.

Figure 3-3: Precomputation time of the nearest polytope algorithms with random
polytopes distributed along an axis (“linearly distributed”).
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(a) Number of polytopes evaluated per
query with 500-polytope synthetic datasets.

(b) Number of polytopes evaluated per
query with synthetic datasets in 6D.

Figure 3-4: Number of polytopes evaluated by the nearest polytope algorithms per
query with uniformly distributed random polytopes.

The AABB algorithm outperformed the triangle inequality algorithm in both me-

dian and worst-case performances. The worst-case of both algorithms did not scale

well with dimension, with both algorithms requiring checking over 40% of the poly-

topes starting in 7D. With the dataset size, scaling performance is much better in

AABB. Section 3.5.2 contains more discussions on AABB complexity.

Notably, these performances are highly dependent on the structure of the dataset

and the query point choice. For instance, if a query point is very far from all of the

polytopes, both algorithms will check nearly all of the polytopes. This dependency

on the specific query point is supported by the much smaller median values.

3.5.2 Real-World Dataset Performance Evaluation

Performance on R3T Datasets

The AABB and triangle inequality algorithms were tested on real polytope data from

R3T (Chapter 2). These polytopes are reachable sets generated by motion planning

in pendulum swing-up (2D continuous system) and planner hopper (10D, 2 contact

modes) problems [35, 46]. In this context, only the query performance is relevant

since the polytopes are added sequentially during runtime as R3T explores the state
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(a) Number of polytopes evaluated per
query with 500-polytope synthetic datasets.

(b) Number of polytopes evaluated per
query with synthetic datasets in 6D.

Figure 3-5: Number of polytopes evaluated by the nearest polytope algorithms per
query with random polytopes distributed along an axis.

space. Figure 3-6 summarizes the results.

The AABB algorithm yielded significantly better performance on R3T datasets.

We attribute this result to the process of generating these polytopes. In R3T, the

polytopes are generated through simulating forward dynamics for a specific time

horizon [52]. Therefore, the polytopes seldom possess elongated shapes that are

unfavorable for AABB approximations. With the AABB algorithm, often less than

5% of all polytopes were checked online.

Performance on MPC Datasets

The AABB and triangle inequality algorithms were tested on two datasets generated

by MPC [39]. The first dataset originates from stabilizing an inverted pendulum

by bouncing against a vertical wall (2D, 2 contact modes) [30]. The second dataset

represents manipulating a rod with 2 fingers3 (10D, 16 contact modes). Similar to

RRT, we considered different exploration stages of the MPC problem. The results

are summarized in Figure 3-7.

With MPC, the AABB algorithm still outperformed the triangle inequality algo-

3The scripts and details of this example are available at https://github.com/sadraddini/PWA-
Control.git
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(a) Number of polytopes evaluated per
query on the R3T pendulum dataset.

(b) Number of polytopes evaluated per
query on the R3T hopper dataset.

Figure 3-6: Testing results of the nearest polytope algorithms on R3T datasets.

(a) Number of polytopes evaluated per
query on the MPC pendulum dataset.

(b) Number of polytopes evaluated per
query on the MPC rod manipulation
dataset.

Figure 3-7: Testing results of the nearest polytope algorithms on MPC datasets.
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(a) Median number of polytopes evaluated
per query. This is roughly logarithmic to
the size of the dataset.

(b) Maximum number of polytopes evalu-
ated per query. This is roughly linear to the
dataset size.

Figure 3-8: Empirical complexity analysis of the AABB algorithm.

rithm by a significant margin. Using the AABB algorithm, typically less than 20%

of all polytopes were evaluated, which is a significant improvement from the naive

algorithm.

Empirical Online Complexity of the AABB Algorithm

Figure 3-8 shows the AABB algorithm’s empirical online complexity in R3T and

MPC datasets. The median computation time is roughly logarithmic to the number

of polytopes, while the worst-case is linear. However, even in the worst case, only

around 50% of all polytopes were evaluated.

3.6 Chapter Summary and Future Work

In this chapter, two algorithms for efficiently solving the nearest polytope problem

are proposed and discussed. Through testing on synthetic, R3T, and MPC datasets,

it is concluded that the AABB algorithm is the superior. Both algorithms provide

significant querying performance improvements over the naive exhaustive search, with

AABB demonstrating roughly logarithmic median performance empirically. The al-

gorithms developed can be applied to control applications that require solving the
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nearest polytope problem. The AABB algorithm was leveraged in Chapter 2 to ac-

celerate the R3T algorithm.

Future work will focus on improving the heuristics, combining the algorithms, and

further implementations. For instance, while the methods discussed in this chapter are

purely geometrical, exploiting the underlying dynamics of the polytope data source

(such as hybrid system dynamics) can potentially lead to performance improvements.
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Chapter 4

Learning a Manipulation Policy from

Sampling-based Planning

4.1 Background and Motivation

Traditional path planning algorithms often have poor performance when applied to

robot manipulation problems. This is a consequence of two major obstacles: com-

plexity and brittleness. In contact rich systems, different hybrid modes produce com-

binatorial complexity in the system. Having such a large number of modes results in

brittleness. Each dynamic mode may require a different tracking policy, which greatly

reduces the error tolerance.

A popular approach to circumvent these challenges in the locomotion setting is to

perform trajectory optimization with predetermined contact modes [34, 10]. However,

the same approach does not generalize well to manipulation. Unlike locomotion, where

a periodic mode sequence is often available, the mode sequences in manipulation

problems are seldom obvious [34]. In [34], the authors formulated the contact-rich

trajectory optimization as a mathematical program with complementarity constraints

to avoid an explicit mode schedule. In [10], to avoid specifying a mode schedule,

the authors used a smooth contact model to obtain an unconstrained, continuous

trajectory optimization problem where all modes can be considered. Nevertheless,

these methods are often too slow to react to disturbances online, and they lack global
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optimality guarantees due to the non-convex nature of the optimization formulations

[8]. One way to obtain global optimality is to formulate discrete modes as a mixed-

integer program, which can then be solved by branch-and-bound [8]. Yet solving

for global optimality may be prohibitively slow for online planning, and the policies

found at runtime may not be consistent among each other [8, 49].

More recently, learning methods have begun to emerge as a candidate for manip-

ulation planning. [32] presents a Rubik’s cube solving robot trained in simulation

via automatic domain randomization. A review of robot manipulation with learning

methods can be found in [22]. The common pitfall of learning based approaches are

large sample complexities and task specificity. To avoid these issues, one way is to in-

corporate system models into the learning process. In [8], the authors proposed “LVIS”

for creating contact-aware controllers. This approach involves learning the optimal

value function with costs-to-go generated by partially-solved mixed-integer programs

offline. Online, the learned costs-to-go are used to rapidly generate a one-step model-

predictive controller to control the system. In Guided Policy Search (GPS) [27], the

challenge with high sample complexity is tackled by assisting policy learning with

trajectory optimization. While GPS can effectively direct policy learning and avoid

poor local optima, there is no guarantee on the solution completeness under GPS’ ex-

ploration strategy. Furthermore, in both LVIS and GPS, each trajectory optimization

problem solved offline is independent and does not inform one another. This leads

to poor handling of scenarios with multiple optimal policies. Each optimization may

select a different optimal policy, leading to inconsistencies especially during learning.

As a comparison, graph-based methods such as RRT* avoid this issue by utilizing

all previously-computed policies. Through the tree extension and rewiring processes,

the policies obtained previously, which are encoded in the topology of the tree, are

used to tie-break the newly-obtained policies. Only the policy that establishes a tree

edge to the best neighboring node will be chosen.

In this chapter, a novel framework that aims to address the shortcomings of ex-

isting robot manipulation planning techniques is introduced. The discussion focuses

on a planar 3-finger robot manipulator. Using a model of the system, RRT* [17] first
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generates a manipulation policy offline to move an object from explored initial condi-

tions to a specified target pose. A neural network is then trained to approximate the

policy obtained from RRT*. The ultimate goal is to produce a dense policy with fast

online evaluation for manipulating objects starting from arbitrary initial conditions.

4.2 Problem Definition

4.2.1 Hardware Setup

In this chapter, the robot system of interest is the “planar gripper” shown in figure

4-1. The planar gripper has 3 fingers, each with 2 degrees of freedom. All motions

of the fingers and the object are constrained on a horizontal 2D plane. No gravity is

present. The object is assumed to be a polygon with known geometry. A quasi-static

model is used in this chapter, which leads to the state definition in Definition 6. The

quasi-static model is further discussed in Chapter 4.3.

Definition 6. The 9D state 𝑥 of the planar gripper system is given by

𝑥 = [𝑞𝑓𝑖𝑛𝑔𝑒𝑟 𝑦 𝑧 𝜃]𝑇 (4.1)

where 𝑞𝑓𝑖𝑛𝑔𝑒𝑟 ∈ R6 contains the position of the 6 finger joints and 𝑦, 𝑧, 𝜃 ∈ R describe

the pose of the object.

The planar gripper system has a motion capture system to accurately measure the

state 𝑥. Each fingertip has a force sensor for measuring contact forces. A low level

controller developed by the Toyota Research Institute (TRI) is available to track the

given motion plans, which consist of finger positions and contact configurations.

4.2.2 Task Definition

This chapter aims to solve the following problem.

Problem 3. Given a goal state 𝑥𝐺 offline, compute a policy such that when given a

initial state 𝑥0 online, the policy can produce a motion plan to reach 𝑥𝐺.
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Figure 4-1: The planar gripper system in simulation with a square object. Each of
the fingers have 2 joints and a force sensor at the fingertip.

The main distinction between the offline and online phases is that the offline

phase has no restriction on computation time, whereas the online phase requires fast

computation.

4.2.3 Software Setup

All programs in this chapter were written in Python using the Python bindings of

Drake1, pydrake2. The optimization problems in Chapters 4.4.2 and 4.4.3 were im-

plemented using the pydrake bindings of SNOPT. The neural networks in Chapter 4.5

were implemented with Pytorch3.

1https://drake.mit.edu/
2https://drake.mit.edu/pydrake/index.html
3https://pytorch.org/
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4.3 System Modeling

First, the modeling of the planar gripper system is discussed. This system model is

used by the RRT* planner in Chapter 4.4 for generating motion plans.

4.3.1 The Quasi-Static Model

Throughout this chapter, a quasi-static dynamics model is adopted for the planar

gripper. This eliminates the kinodynamic constraints and simplifies the system. The

model is justifiable as the planar gripper moves at a relatively low speed.

4.3.2 Motion Cones

Under the quasi-static model, the reachable set of the object given a specific set of

contact configurations can be computed via the motion cone approach described in

[6]. Here, a brief summary of the motion cone computation is provided.

By the quasi-static assumption, the total force on the object is always zero. There-

fore,

∑︁
𝑖=1,2,3

𝐵𝑓 𝑐𝑖 + 𝐵𝑓𝑡𝑎𝑏𝑙𝑒 = 0, (4.2)

∑︁
𝑖=1,2,3

𝐵𝑝𝑐𝑖 × 𝐵𝑓 𝑐𝑖 + 𝜏𝑡𝑎𝑏𝑙𝑒 = 0. (4.3)

𝐵𝑓 𝑐𝑖 ∈ R2 denotes the force from finger 𝑖, which contacts the object at 𝑐𝑖, in the

object body frame. 𝐵𝑝𝑐𝑖 ∈ R2 is the moment arm of contact position 𝑐𝑖. 𝑓𝑡𝑎𝑏𝑙𝑒 ∈ R2

and 𝜏𝑡𝑎𝑏𝑙𝑒 ∈ R are the friction force and torque from the table in the object body

frame.

Assuming each contact force 𝐵𝑓 𝑐𝑖 lies within a friction cone 𝐹𝐶𝑖, the set of wrench

𝑊𝑖 generated by each friction force is a cone. The summation of 𝑊𝑖, which is the

total wrench generated by all fingers, should be equal to the wrench generated by the
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table 𝑊𝑡𝑎𝑏𝑙𝑒. Hence,

𝑊𝑡𝑎𝑏𝑙𝑒 = {[𝑊𝑓𝑡𝑎𝑏𝑙𝑒, 𝜏𝑡𝑎𝑏𝑙𝑒]
𝑇 | ∃𝐵𝑝𝑐𝑖 ∈ 𝐹𝐶𝑖

𝑠.𝑡. 𝑊𝑅𝐵(𝜃)
∑︁

𝑖=1,2,3

𝐵𝑓 𝑐𝑖 + 𝑊𝑓 𝑡𝑎𝑏𝑙𝑒 = 0,
∑︁

𝑖=1,2,3

𝐵𝑝𝑐𝑖 × 𝐵𝑓 𝑐𝑖 + 𝜏 𝑡𝑎𝑏𝑙𝑒 = 0}.
(4.4)

The notation 𝑊 (·) denotes the world frame representation of vector quantity (·).

Additionally, from the limit surface model,

𝑊𝑓𝑇
𝑡𝑎𝑏𝑙𝑒 · 𝑊𝑓𝑡𝑎𝑏𝑙𝑒 + 𝜏 2𝑡𝑎𝑏𝑙𝑒/(𝑟𝑐)2 = (𝜇𝑚𝑔)2. (4.5)

𝑟 is the equivalent radius of the object, 𝑐 is a constant typically around 0.6, 𝜇 is

the dynamic friction coefficient, 𝑚 is the mass of the object, and 𝑔 is the gravity

constant. Under the maximal dissipation assumption, the table force 𝑊𝑓𝑡𝑎𝑏𝑙𝑒 ∈ R2,

torque 𝜏𝑡𝑎𝑏𝑙𝑒 ∈ R, and the sliding velocity 𝑊𝑣 := [𝑦̇ 𝑧̇]𝑇 ∈ R2 should satisfy

𝑊𝑓𝑡𝑎𝑏𝑙𝑒 = −𝑊𝑣 · 𝜇𝑚𝑔√︁
𝑊𝑣𝑇 · 𝑊𝑣 + (𝑟𝑐)2𝜃2

,

𝜏𝑡𝑎𝑏𝑙𝑒 = −𝜃𝑟2𝑐2 · 𝜇𝑚𝑔√︁
𝑊𝑣𝑇 · 𝑊𝑣 + (𝑟𝑐)2𝜃2

(4.6)

based on the derivation in [6].

Regard 𝑘 := 𝜇𝑚𝑔√
𝑊 𝑣𝑇 ·𝑊 𝑣+(𝑟𝑐)2𝜃2

as a scaling factor, Equation (4.6) provides the rela-

tionship between the object velocity and the table force

[𝑊𝑓𝑡𝑎𝑏𝑙𝑒 𝜏𝑡𝑎𝑏𝑙𝑒]
𝑇 = 𝑘 · 𝑑𝑖𝑎𝑔(1, 1, 𝑟2𝑐2) · [𝑊𝑣 𝜃]𝑇 , (4.7)

where 𝑑𝑖𝑎𝑔(1, 1, 𝑟2𝑐2) ∈ R3×3 is the diagonal matrix with diagonal entries 1, 1, 𝑟2𝑐2.

Finally, leveraging the fact that [𝑊𝑓𝑡𝑎𝑏𝑙𝑒 𝜏𝑡𝑎𝑏𝑙𝑒]
𝑇 ∈ 𝑊𝑡𝑎𝑏𝑙𝑒, the polyhedral cone given

in Equation (4.4), the possible object velocities
{︁

[𝑊𝑣 𝜃]𝑇
}︁

can be described by the

object motion cone 𝑊𝑣.

{︁
[𝑊𝑣 𝜃]𝑇

}︁
= 𝑊𝑣 = 𝑑𝑖𝑎𝑔(1, 1, 1/(𝑟2𝑐2)) ·𝑊𝑡𝑎𝑏𝑙𝑒. (4.8)
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In practice, given a object pose [𝑦, 𝑧, 𝜃]𝑇 and contact configurations 𝑐1, 𝑐2, 𝑐3, the

feasible new positions of the object can be computed by an Euler integration argument

{︀
[𝑦+, 𝑧+, 𝜃+]𝑇

}︀
= [𝑦, 𝑧, 𝜃]𝑇 + 𝑊𝑣. (4.9)

Notice the time step size is absorbed into the cone representation 𝑊𝑣. Likewise, the

backward motion cone, which represents the set of poses that can lead to the current

pose, can be computed using the negated version of 𝑊𝑣. The backward motion cone

is relevant to Chapter 4.4.1.

4.3.3 Contact Modeling and Transition

Since the object is assumed to be a polygon with known geometry, the contacts

between the object and the fingers are specified explicitly. In particular, each finger

𝑖 can be in contact with face 𝑗 of the object at a position 𝐵𝑐𝑖 ∈ 𝑓𝑎𝑐𝑒𝑗. The fingers

can also be out of contact with the object.

Between each pair of discretized waypoints during planning, the fingers are allowed

to make or break contact with the object independently of each other. However,

switching between faces across adjacent waypoints are not allowed. As an example, a

finger cannot jump from contacting face 𝑗1 to 𝑗2 between adjacent waypoints 𝑤1 and

𝑤2. Instead, the finger must break contact from 𝑗1 during the transition from 𝑤1 to

𝑤2, then make contact with 𝑗2 on the next waypoint 𝑤3.

4.4 Obtaining a Manipulation Plan with RRT*

To solve Problem 3, an manipulation policy is first generated offline via RRT*. In

particular, the following problem is solved.

Problem 4. Assume a starting state 𝑥𝐺 is given. For as many states in the state

space as possible, obtain a manipulation policy that can lead the system to 𝑥𝐺.

The policy is then approximated using a neural net, as discussed in Chapter 4.5.
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4.4.1 The Backward Tree

In order to efficiently leverage the RRT* exploration, the “backward” tree formulation

is considered. Using the goal state 𝑥𝐺, the standard RRT* is performed with the

reversed-time system dynamics. This way, through backtracking from a leaf node to

the root node in the obtained RRT* tree, a path in forward time from the state at

the leaf to 𝑥𝐺 can be retrieved.

Under this formulation, every new state explored by RRT* represents a new state

that leads to 𝑥𝐺, as opposed to the standard forward-time tree which produce a

single-source solution from the initial state 𝑥0 to 𝑥𝐺. Moreover, given that a neural

net is ultimately trained to provide online policy evaluation, using the backward tree

allows for generating training datasets across the state space offline for the neural net

to approximate.

4.4.2 RRT* Formulation

Due to the choice of a quasi-static model, there are no differential constraints and

Problem 4 can be solved with purely geometric RRT* [23, 18]. Recall that in geometric

RRT*, a sample is taken in the state space, and the nearest node is identified. An

“extension” procedure is then performed to grow the tree from the nearest node to the

sample state. The tree is then rewired to achieve asymptotic optimality. In order to

ensure the path obtained from extension is indeed feasible, a trajectory optimization

problem is solved on every extension and rewiring. The objectives and constraints of

the optimization are discussed below.

Waypoints and Nodes

For a more granular enforcement of the constraints, an additional level of discretiza-

tion is introduced in the RRT* tree. Between each pair of nodes in the tree, there are

24̃ additional waypoints. The nodes are also waypoints themselves. Waypoints are

solely used for trajectory optimization and the RRT* tree can only branch off nodes.

All constraints discussed below are enforced on the waypoint level.
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Distance Metric

For both extension and rewiring, the squared weighted L2 norm given in Equation

(4.10) is used for distance computation.

𝑑𝑖𝑠𝑡(𝑥1, 𝑥2) := (𝑥1 − 𝑥2)
𝑇𝑀(𝑥1 − 𝑥2)

𝑥1, 𝑥2 ∈ R9,𝑀 ∈ R9×9 is a diagonal matrix with positive entries.
(4.10)

For the coordinates of 𝑥 that represent angles, a “wrap-around” is performed. In other

words, if the 𝑖th coordinate is an angle,

|𝑥1[𝑖]− 𝑥2[𝑖]| := min {|𝑥1[𝑖]− 𝑥2[𝑖]| mod (2𝜋), 2𝜋 − |𝑥1[𝑖]− 𝑥2[𝑖]| mod (2𝜋)} . (4.11)

If waypoints exist between the states of interest, the distance is calculated as the sum

of the pairwise distances between adjacent waypoints.

Motion Cone Constraints

The motion cone constraints detailed in Chapter 4.3.2 specify the directions the object

can move toward. In the RRT* setup, this is enforcing Equation (4.9). However, due

to the backward time formulation, the constraint is instead

{︀
[𝑦−, 𝑧−, 𝜃−]𝑇

}︀
= [𝑦, 𝑧, 𝜃]𝑇 + 𝑊̄𝑣, (4.12)

where 𝑊̄𝑣 is the backward motion cone computed from [𝑦, 𝑧, 𝜃]𝑇 . Notice that this is

a linear constraint as the motion cone is a polyhedral cone.

Rolling Constraints

Pure rolling between the fingers and the object is assumed, so there is no slip between

the fingertips and the object. Notably, this requires the contact position to change

as the object moves because the fingertips have nonzero radii.
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Displacement Bounds

The motion cone is an instantaneous reachable direction from a given state. Under

the pure rolling assumption, the contact points change as the object moves, modifying

the motion cone in the process. However, as an approximation, only the initial

motion cone constraint is enforced. To ensure the quality of the approximation,

the displacement between waypoints 𝑥1, 𝑥2 are bounded by

|𝑥1 − 𝑥2| ≤ 𝛿𝑥𝑚𝑎𝑥 (4.13)

where 𝛿𝑥𝑚𝑎𝑥 ∈ R9 and the ≤ is interpreted element-wise.

Planar Gripper Feasibility Constraints

The planar gripper joint limits are enforced. In addition, no collision is allowed except

between the fingertips and the object.

Contact Modes

The contact model and transition rules described in Chapter 4.3.3 are applied on

the waypoint level. Moreover, the mode switch between node pairs is artificially

constrained to between the child node (the node farthest away from the root node)

and its immediately adjacent preceding waypoint. As a concrete example, consider

an edge on the RRT* tree with 3 waypoints between the parent and child nodes,

parent-w1-w2-w3-child. parent, w1, w2, w3 must share an identical contact mode,

while child can have a different contact mode as long as the mode switch between

w3 and child obeys the rules given in Chapter 4.3.3.

In order to account for the motion cone change during mode switches, a more

conservative motion cone is computed on waypoint pairs with mode switches. Denote

not making contact as ∅. For two contact mode vectors 𝑚1,𝑚2, the intersection

64



𝑚1 ∩𝑚2 is defined element-wise as

𝑚1𝑖 ∩𝑚2𝑖 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑚1𝑖, 𝑚1𝑖 = 𝑚2𝑖,

∅, 𝑚1𝑖 = ∅ ∨𝑚2𝑖 = ∅,

undefined, otherwise.

(4.14)

The undefined case never happens if the contact transition rules in Chapter 4.3.3 are

obeyed. Continuing on the example, Equation (4.14) will be applied to compute the

motion cone constraint between w3-child. This way, the trajectories computed is

guaranteed to be feasible even if the contact modes are changing.

The Complete Optimization Problem

The complete optimization problem solved on each extension is the nonlinear opti-

mization problem in Equation (4.15).

min 𝑑𝑖𝑠𝑡(sample, nearest node)

𝑠.𝑡. constraints from Chapter 4.4.2
(4.15)

using the distance metric and constraints described above.

The complete optimization problem solved on each rewiring is a two-point bound-

ary value problem given in Equation (4.16), with the boundary values being the states

of potential parent, new node when rewiring a new node’s parent, and new node,

potential child when evaluating the new node as other nodes’ parent. For more

details on the RRT* rewiring procedure, please refer to Algorithm 6 of [17].

min 𝑑𝑖𝑠𝑡(boundary 1, boundary 2)

𝑠.𝑡. constraints from Chapter 4.4.2.
(4.16)

While the boundary values are fixed, the waypoints between the two boundary values

are free to move and are the decision variables in this problem.
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4.4.3 RRT* Tree Post Processing

While RRT* guarantees asymptotically optimality in theory, practically only finite

samples are drawn. As a result, rewiring RRT* may still yield suboptimal behaviors.

The problem is especially significant due to the nonlinear optimization problem de-

scribed in Chapter 4.4.2. The chance of finding a node suitable for rewiring while

satisfying all the constraints is slim, and RRT* tends to find suboptimal solutions in

practice. For instance, the fingers out of contact often “dance” around. Therefore, a

post processing procedure is performed on the RRT* tree. Specifically, this procedure

extracts the paths from each of the leaf nodes to the root node using depth first search

(DFS) [45]. The paths are then “smoothed” in a large optimization problem. For a

path containing 𝑛 nodes, Equation (4.17) specifies the optimization setup.

min
∑︁

𝑖=1,2,...,𝑛−1

𝑑𝑖𝑠𝑡(node𝑖, node𝑖+1)

𝑠.𝑡. constraints from Chapter 4.4.2,

all waypoints retain their original contact configurations.

(4.17)

Here “original contact configuration” refers to the fingers making contact with the

same faces of the object, as opposed to keeping the contact locations 𝐵𝑐𝑖 identical.

Essentially, Equation (4.17) is a contact-explicit trajectory optimization problem with

the contact modes obtained from RRT*.

The outcome of the post processing procedure is a list of paths from a state

explored by RRT* to the goal state 𝑥𝐺. A neural network is then used to approximate

the policies encoded by these paths, as detailed in Chapter 4.5.

4.5 Learning a Policy from RRT*

A neural network was implemented to approximate the policy produced by RRT*

from Chapter 4.4.
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Neural Network Input-Output

The neural network takes in a state and predicts the next state in forward time. Both

the 9 dimensional continuous state and the 3 dimensional discrete contact configura-

tion (finger-object face mapping) are fed into the network, yielding a 12 dimensional

input. The neural network has 2 outputs: the 9 dimensional desired state, and the

desired contact configuration of dimension 3× (1 + number of object faces). Each en-

try of the latter output represents the log-likelihood of a finger making contact with

one of the faces or not making contact on the next step.

During training and validation, the datasets are generated by extracting waypoint

pairs from the RRT* tree and formatted into the required structure for the neural

network.

Neural Network Structure

The neural network is fully connected with leaky ReLU activation. There are 4 layers

including the input and output layers, with input-output dimensions 12×32, 32×64,

64× 64, and 64× (9 + 3× (1 + number of object faces)).

Loss Functions

A mean squared error loss is imposed on the outputs corresponding to the next state.

A negative log likelihood loss is imposed on the outputs corresponding to the contact

mode prediction.

4.6 Results and Discussions

4.6.1 RRT* Tree Generation

Figure 4-2 shows an instance of the RRT* tree generated for the planar gripper system.

In this particular instance, the object is an equilateral triangle. As expected from the

symmetry of the object and the planar gripper system, the RRT* tree generated is

symmetric.
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Figure 4-2: Planar gripper RRT* tree. The horizontal and vertical axes are meters
away from an arbitrary origin. Each arrow represents the location of the object at a
tree node, with the position and orientation of the arrow corresponding to the position
and orientation of the object. Each color denotes a contact mode.
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4.6.2 RRT* Plan Playback

Figure 4-3 shows a series of snapshots of playing back a plan found by RRT* in

Drake’s simulator. The plan is played back in forward time, which means starting

from a leaf node and ending at a root node. From the plan playback, it is evident

that RRT* can plan complex mode sequences.

4.6.3 RRT* Tree Post Processing

The result of smoothing the tree, as described in Chapter 4.4.3, is demonstrated

in Figure 4-4. In this figure, the plans before and after smoothing are compared

side-to-side.

After smoothing, much of the redundant finger “dancing” motion was eliminated,

showing that the post-processing step effectively improves the quality of the RRT*

plans. However, the smoothing process did introduce challenges during implementa-

tion, as described below.

Issues with Nonlinear Optimization

In general, there are no guarantees on finding a solution to a nonlinear optimization

problem. The optimization problem in Equation (4.17) is particularly challenging

to solve. One major culprit is the distance calculation for collision constraints. In

the model used in this thesis, the planar gripper fingers are modeled as cylinders,

while the object is modeled as a polygon. However, the underlying FCL4 library

used for distance calculation approximates cylinders as polygons, which often lead

to approximation errors and ultimately failures from the SNOPT solver. A potential

solution is to model the fingers as a polygon instead. As the discussion in this chapter

is limited to 2D and the projection of a cylinder onto a 2D plane is a rectangle, a

polygonal approximation is reasonable.

4https://github.com/flexible-collision-library/fcl
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(a) RRT* plan-1 (b) RRT* plan-2

(c) RRT* plan-3 (d) RRT* plan-4

(e) RRT* plan-5 (f) RRT* plan-6

Figure 4-3: Playback of an RRT* plan. The fingers switch between contact modes
to move the object to the desired position. The object position in Figure 4-3f would
have not been attainable had the fingers kept the contact mode in Figure 4-3a.
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(a) RRT* plan before smoothing-1 (b) RRT* plan after smoothing-1

(c) RRT* plan before smoothing-2 (d) RRT* plan after smoothing-2

(e) RRT* plan before smoothing-3 (f) RRT* plan after smoothing-3

Figure 4-4: Comparison of an RRT* plan before and after smoothing. Figures 4-4a,
4-4c, 4-4e are before smoothing, whereas Figures 4-4b, 4-4d, 4-4f are after smoothing.
Smoothing eliminated the unnecessary finger movements, such as the top-left finger
bending upwards in Figure 4-4c, and the bottom finger swinging to the left in Figure
4-4e.
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𝑥𝐺

𝑥𝑥𝐿1
𝑥𝐿2

𝑥𝐿3

𝑥𝐿4

(a) Hypothetical RRT* tree before
smoothing.

𝑥𝐺

𝑥1

𝑥2

𝑥𝐿1
𝑥𝐿2

𝑥

𝑥𝐿3

𝑥𝐿4

(b) Hypothetical RRT* tree after
smoothing.

Figure 4-5: Illustration of possible loss of probability completeness after smoothing.
The grey polygons are obstacles, 𝑥𝐺 is the root node of the tree, 𝑥𝐿1, 𝑥𝐿2, 𝑥𝐿3, 𝑥𝐿4 are
leaf nodes. Prior to smoothing, 𝑥 connects 𝑥𝐿1 and 𝑥𝐿2 to 𝑥𝐺, and the RRT* policy is
defined in the vicinity of all the nodes. After smoothing with the procedure described
in Chapter 4.4.3, 𝑥 may be replaced by 𝑥1 and 𝑥2. The original 𝑥 is lost and the
RRT* policy no longer covers regions around 𝑥. As 𝑥1, 𝑥2 are close to 𝑥𝐿3, 𝑥𝐿4, they
provide less information for policy learning than 𝑥. Notice that under the smoothing
procedure, the total number of nodes on each path is not changed.

Loss of Probability Completeness After Smoothing

A potential issue with smoothing using the procedure in Chapter 4.4.3 is the loss of

RRT*’s probability completeness, as illustrated in Figure 4-5. One way to circumvent

this issue is to perform smoothing for paths starting at every node of the tree instead

of just the leaf nodes. However, despite being an offline procedure, the computation

cost of doing so could still be prohibitively high. The feasibility of smoothing every

node will have to be determined empirically.

4.6.4 Neural Network Training

Figure 4-6 shows the training result of the neural network on a 1000-node RRT* tree

with no smoothing. The decreasing training and validation losses suggest that the

neural network is able to approximate the policy from the RRT* tree.

Nevertheless, it is worth mentioning that the training loss is not completely repre-

sentative of the neural network policy approximation. For instance, if the loss results

from an incorrect prediction of a crucial mode switch, a single prediction error could

break the entire trajectory. The true validity of the neural network policy can only
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Figure 4-6: Neural network policy approximation on a 1000-node RRT* tree without
smoothing. 1000 epochs were run with a batch size of 100.

be verified via simulation.

4.7 Chapter Summary and Future Work

In this chapter, a novel paradigm for generating a manipulation policy to a given

target position is proposed. During the offline stage, a backward RRT* tree is com-

puted to provide sparse motion plans for explored states throughout the state space.

A neural net is then trained to approximate the policy obtained from RRT*. Online,

the neural net should be queried with the system’s current state and contact config-

uration to produce a target next-step state and contact configuration for a low-level

controller to track. Through performing trajectory optimization during the extension

and rewiring stages of RRT*, motion plans were successfully obtained from RRT*. A

post-processing step via contact-explicit trajectory optimization smoothed the RRT*

tree and visibly improved the RRT* plan. Preliminary testing of the neural net-

work on RRT* trees suggested that extracting a policy from the RRT* plan is indeed
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possible.

Moving forward, besides addressing the challenges described in Chapter 4.6, more

investigation can be done on the neural network approximation, including trying dif-

ferent parameters and network architecture. In addition, the RRT* plan and the

neural network policy can be validated through physics-based simulation and hard-

ware experiments. Finally, the project can be expanded to include a perception

component. Leveraging techniques such as keypoint representations [29] may yield a

visuomotor policy with category-level generalization.
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Chapter 5

Conclusions and Closing Remarks

Motion planning is a key component for achieving challenging behaviors with robots.

Sampling-based planners are powerful candidates for motion planning in hybrid robotic

systems as they can potentially circumvent the complexity due to having multiple

dynamic modes. This thesis investigated the sampling-based planning stack through

introducing “R3T” for sampling-based planning with reachable sets, algorithms for

solving the nearest polytope problem, and a framework combining RRT* with neural

network policy approximation for robot manipulation planning.

Results from this thesis can improve the understanding of hybrid system planning

and robot manipulation. The primary purpose is to provide algorithmic frameworks

that can be leveraged to achieve desired applications. In recent years, robots with hy-

brid dynamics such as quadrupeds have begun to emerge as commercial products. As

more sophisticated applications with hybrid systems are developed, sampling-based

planning combined with learning methods could provide a direction for developing

complex motion plans efficiently.
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