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Abstract— We present three algorithms for solving the near-
est polytope problem: given a list of polytopes and a distance
metric in Euclidean space, find the nearest polytope to a query
point. We consider the AH-polytope representation, which
generalizes the H-polytope representation and is particularly
useful in the context of control. Through preprocessing the
polytopes into efficient data structures, we avoid exhaustive
search at query time. We discuss the properties of the al-
gorithms and compare their performances using polytopic
datasets motivated by control applications, including sampling-
based motion planning and model predictive control.

I. INTRODUCTION

Given a finite list of polytopes in n-dimensional space
and a query point, the point location problem is finding
the set of polytopes that contain the point. When this set
is empty, a more general and difficult problem, the nearest
polytope problem, is determining the nearest polytope given
a metric. The solution to the point location problem is
contained in the solution to the nearest polytope problem
- the set of polytopes with zero distance from the point.
The naive solution to both problems is an exhaustive check
over all polytopes. However, evaluating point membership or
computing the distance from a polytope to a query point are
expensive operations. More efficient solutions are necessary
for practicality.

Both of these problems are purely geometrical but have
profound applications in control theory. The point location
problem has long been studied in explicit linear model pre-
dictive control (MPC) literature, where polytopes represent
pre-computed sets that correspond to linear control laws
[1]–[4]. Given a “query” state, one needs to locate the
corresponding “active” polytope to execute the associated
control law. This scheme is typically faster than solving the
MPC optimization problem online. In “exact explicit MPC”,
the polytopes are non-overlapping and are described by their
hyperplanes, a representation known as H-polytopes [5].
Infeasibility is returned if the query state is not within any
of the polytopes. The nearest polytope problem is relevant
in “approximate explicit MPC”, where the nearest but not
necessarily query point-containing polytopic feasible set is
used as a heuristic to compute control inputs [6].

Another application of the nearest polytope problem lies
in reachability-guided motion planning [7], [8]. In the R3T
algorithm in [8], the reachable sets of states are approximated
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by (a union of) polytopes, and a rapidly-exploring random
tree (RRT) [9], [10] of the polytopes is maintained. To
expand the tree, the R3T algorithm requires finding the
nearest polytope to samples from the state space [8].

In this paper, we investigate methods to improve query
speed in the nearest polytope problem. We consider AH-
polytopes [11], a more general representation for polytopic
objects whose hyperplanes may be difficult to compute.
Examples include zonotopes [5], polytopes in lifted spaces,
and convex-hulls/ Minkowski sums of H-polytopes. AH-
polytopes are highly relevant in the context of control.
For instance, they naturally capture the transformation from
admissible control space to state space reachable sets in
linear systems. As motivated by control applications, our
methods are primarily targeted at medium-sized problems
(state dimensions around 10). For very large problems, com-
putational bottlenecks from implementing MPC/RRT often
overshadow the nearest polytope problem.

This paper is organized based on our four main contribu-
tions: three fast algorithms for solving the nearest polytope
problem and benchmarking of these algorithms. The contri-
butions of this paper are as follows:
• An algorithm for solving the nearest polytope problem

using axis-aligned bounding boxes (AABB) of the poly-
topes. This differs from previous work (such as [12]) in
that through leveraging key points, our algorithm is not
limited to point location problems.

• An algorithm for solving the nearest polytope problem by
precomputing distances to a finite set of key points. During
online querying, the key points help eliminate explicit
point-polytope distance queries using triangle inequality
for polytopes.

• An algorithm that leverages the well-known binary space
partitioning (BSP) trees [13], [14] to solve the nearest
polytope problem. Our key contribution here is using
polytope containment reasoning [11] to construct BSP-
trees for the nearest polytope problem.

• Benchmarking of our algorithms with synthetic datasets
and examples from MPC/RRT for (hybrid) control prob-
lems. These examples arise in planning and feedback
policy design, including those for hybrid systems.

II. RELATED WORK

The nearest polytope problem degenerates to the well
known nearest neighbor problem [15] when points instead
of polytopes are considered. Many efficient algorithms have
been proposed for this problem, such as k-d trees [16] and R-
trees [17]. Variants of these data structures will be leveraged



to solve the nearest polytope problem in this paper. The
nearest neighbor problem has also been extensively studied
in the computer graphics literature. However, such methods
are tailored for 2D/3D applications and do not apply well to
control applications, which typically have higher dimensions
[18].

The point location problem has been widely studied in
the control community [1], [4], [19], [20]. Some approaches
include using bounding boxes and interval trees for faster
search [12] and organizing the space-dividing hyperplanes
into a fast binary search tree [3]. Other approaches exploit
system dynamics to reduce the search space [21], [22], but
they are restricted to simple systems with linear dynamics.
Still other approaches leverage a piecewise affine (PWA)
form of the value function, which arise from exact explicit
MPC with linear cost, to solve the point location problem
[23], [24]. Unfortunately, these methods do not generalize
to the nearest polytope problem and hybrid systems. We
also note that most previous work requires the disjoint space
partitioning. The work in [12] is able to handle overlapping
polytopes. Surprisingly, to the best of the authors’ knowl-
edge, there has been no development on efficient algorithms
for the nearest polytope problem.

III. PROBLEM STATEMENT

A. Preliminaries

The set of n-dimensional real values is denoted by Rn.
Given a ∈ Rn, we denote its transpose by aT . Given
two matrices A,B with appropriate dimension, their vertical
stacking is [A,B]. Given a finite set S, |S| is its cardinality.

Definition 1. (H-Polytope) [5]. An H-polytope P ⊂ Rn is a
bounded set described by its hyperplanes:

P = {x ∈ Rn | Hx ≤ h},

where H ∈ Rq×n and h ∈ Rq , q is the number of
hyperplanes, the kernel of H is only the origin, and all the
inequalities are interpreted element-wise.

Definition 2. (AH-Polytope) [11]. An AH-polytope P ⊂ Rn
is a polytope given by an affine transformation G ∈ Rn×m,
g ∈ Rn, of polytope S ⊂ Rm:

P = {g +Gx | Hx ≤ h},

where H ∈ Rq×m and h ∈ Rq .

Given an AH-polytope P ⊂ Rn, a point q ∈ Rn, a metric
d : Rn × Rn → R≥0, the point-polytope distance function
d(P, q) and the closest point p∗ ∈ P to q are defined as

d(P, q) := min
p∈P

d(p, q), p∗ = arg min
p∈P

d(p, q).

This minimization can be cast as the following optimization
problem:

d(P, q) = min . ‖δ‖ρ
subject to Gx+ g = q + δ, Hx ≤ h, (1)

which is a linear program for ρ = 1,∞. For ρ = 2, a
quadratic program can be constructed by optimizing for the

squared norm ‖ · ‖22. Other types of norms such as polytopic
norms can be also used. We have q ∈ P if and only
if d(P, q) = 0. In this paper, we primarily use ρ = 2.
Note that this paper focuses on reducing the number of
d(P, q) evaluations. Hence, while the complexity of d(P, q)
scales with the dimension and the shape of the polytope, we
consider it to be constant in the subsequent discussion. In
practice, computing d(P, q) requires solving a convex opti-
mization problem, which its complexity grows polynomialy
with dimensions and the complexity of the representation of
the polytope.

B. Problem Formulation
Problem 1. Given a set of AH-polytopes P = {Pi}i=1,··· ,N ,
Pi ⊂ Rn, and a query point q ∈ Rn, find the nearest P ∗ ∈ P
such that

P ∗(q) = arg min
P∈P

d(P, q). (2)

If P ∗(q) is not unique, return one of the minimizers.

Since P is often given in advance, the task is further
split into “offline” and “online” components. The “offline”
component consists of preprocessing P and constructing data
structures. In some applications such as motion planning [8],
P is expanded incrementally. The “online” component is
the actual query and is more speed critical. The subsequent
algorithms focus on creating a fast data structure offline to
allow sub-O(|P|) online computation. When the minimizer
is not unique, we may use a control theoretic tiebreaker
such as the (approximate) value function associated with
the polytopes [6]. We assume such a function is available.
Otherwise, we pick a random minimizer. In the subsequent
sections, we arbitrarily choose a minimizer if multiple exist.

IV. FINDING THE NEAREST POLYTOPE WITH
AXIS-ALIGNED BOUNDING BOXES (AABB)

A. Preliminaries
For obtaining an approximation of a polytope that supports

quick querying and construction, consider the axis-aligned
bounding box, or AABB, given in Definition 3:

Definition 3. (Axis-Aligned Bounding Box, AABB) [25]. An
axis-aligned bounding box (AABB) B ∈ Rn can be described
by its the “lower” and “upper” corner points (l, u) ∈ Rn:

B(l, u) = {x | li ≤ xi ≤ ui,∀i = 1, 2, ..., n}. (3)

Finding the axis aligned bounding box (l, u) of an AH-
polytope P ∈ Rn can be formulated as a linear optimization
problem. Let 1i be the column vector with 1 at the ith entry
and 0 at all the other entries. The optimization problem is
given in Proposition 1.

Proposition 1. (AABB of an AH-Polytope). The AABB
B(l, u) of P = {g+Gx | Hx ≤ h} can be found by solving
the following linear programs:

li = min
x|Hx≤h

1i · (g +Gx), ui = max
x|Hx≤h

1i · (g +Gx)



Algorithm 1 AABB-Precompute

Require: P . List of polytopes
Require: K ∈ P . Key points inside the polytopes

1: B ← ∅
2: for Pi ∈ P do
3: Bi ← ComputeAABB(Pi) . Compute AABB
4: B ← B ∪ {Bi} . Store AABB
5: B← BuildFastAABBStructure(B)
6: K← BuildFastPointStructure(K)

B. AABB Algorithm

We leverage AABBs to create a data structure for fast
nearest polytope querying. During the offline phase, for each
of the polytopes Pi ∈ P, we construct AABBs Bi such
that Pi ⊆ Bi. Through the BuildFastAABBStructure
routine, the AABBs are stored in a data structure B
such as R-tree [17] that supports fast AABB query-
ing. We also maintain a data structure K using the
BuildFastPointStructure routine for a constant
number of key points from each polytope. An example of
this structure is k-d tree [16]. The only requirement for
the key points K is they must each be inside a polytope.
In Section VII, arbitrary points that are by construction
inside the polytopes are used. The offline precomputation
is summarized in Algorithm 1.

Given a query point q online, the closest key point p∗ =
arg minp∈K d(p, q) is first found. We identify the “pivot”
polytope P ∗ that contains p∗, then compute d∗ = d(P ∗, q).
A “heuristic box” Bh with side length 2d∗ is constructed,
and B is queried for all overlapping boxes Bv with Bh. We
then randomly choose a polytope Pr from all the polytopes
corresponding to Bv , compute the distance d(Pr, q), then
compare to P ∗. If Pr is closer, we replace P ∗ with Pr,
reconstruct Bh using the new P ∗, and update Bv . This
is repeated until either Bv is exhausted, which means the
nearest polytope is P ∗, or a polytope containing q is found.
The online computation is summarized in Algorithm 2.

This algorithm is valid for L1, L2 and L-infinity distance
metrics. This is due to the fact that all AABB operations are
intersection checks and requires no distance metric. As long
as the heuristic box Bh is constructed using a side length
of 2dρ(·, ·), ρ = 1, 2,∞, Bh will encompass all polytopes
that can be closer to q than the pivot polytope. We also note
that this algorithm can potentially be generalized to arbitrary
convex objects as long as the AABB of such object can be
computed, but pursuing this direction is beyond the scope of
the paper.

C. Correctness and Complexity Analysis

The algorithm differ from [12] in that it can handle the
case where no polytope contains the query point q. This
is done by the construction of the heuristic box. Since
the heuristic box must contain at least one polytope and
encompasses everywhere that has closer distance to q than
the polytope, the true closest polytope is guaranteed to be

Algorithm 2 AABB-Query

Require: B, K, q . AABBs, key points, query point
1: p∗ ← arg minp∈K d(p, q) . Find closest key point
2: P ∗ ← p∗.P . Choose corresponding polytope as pivot
3: d∗ ← d(P ∗, q) . Compute distance to pivot
4: Bh ← AABB(q, 2d∗) . Construct AABB centered at q

with side length 2dp
5: Bv ← {B | B ∈ |T |, B ∩Bh 6= ∅} . Find AABBs

intersecting Bh
6: Pcand ← Bv.P . Get candidate polytopes

corresponding to Bv

7: while |Pcand| > 0 do
8: if d∗ = 0 then
9: return P ∗, d∗ . Found a polytope containing q

10: Ps ← Sample(Pcand\P ∗)
11: ds ← d(Ps, q)
12: if ds ≥ d∗ then
13: Pcand ← Pcand\Ps
14: else
15: P ∗, d∗ ← Ps, ds
16: Bh ← AABB(q, 2d∗)
17: Bv ← {B | B ∈ |T |, B ∩Bh 6= ∅} . Update the

list of candidates
18: return P ∗, d∗

found through searching over boxes overlapping with the
heuristic box. Figure 1 visualizes this process.

The offline complexity of the algorithm lies in constructing
the axis aligned bounding boxes (O(|P|)) and creating the
tree structure for searching (BuildFastAABBStructure
and BuildFastPointStructure). Insertion of a new
polytope is O(1) for constructing a new AABB plus the
complexity of updating B and K. The online complexity
depends on the distribution of the polytopes, which will be
evaluated empirically in Section VII.

V. FINDING THE NEAREST POLYTOPE WITH TRIANGLE
INEQUALITY

A. Triangle Inequality Algorithm

In this approach, we attempt to lower-bound the distance
between a query point q and each of the polytopes P ∈ P.
The bound is used to prune the list of polytopes to evaluate
online. This bound is motivated by the triangle inequality,
shown in Theorem 1.

Theorem 1. (Point-Polytope Triangle Inequality). Given
points u, v ∈ Rn, a polytope P ⊂ Rn, and metric d(·, ·),
d(u, v) + d(v, P ) ≥ d(u, P ).

Proof: Suppose the closest point to u in P is u∗ ∈
P , the closest point to v in P is v∗ ∈ P . By the triangle
inequality, d(u, v)+d(v, v∗) ≥ d(u, v∗). By definition of v∗,
d(u, v∗) ≥ d(u, u∗). Therefore,

d(u, v)+d(v, P ) = d(u, v)+d(v, v∗) ≥ d(u, u∗) = d(u, P ).



Fig. 1: Nearest polytope query with AABB. |P| = 30. L2
distance was used. The query point q is black, while the key
points K are blue. Through constructing a heuristic box Bh
(cyan) to prune impossible polytopes and gradually shrinking
Bh using Algorithm 2, only a small subset of d(P, q) (red
boxes, |Bv| = |Pcand| = 2) is evaluated.

If the polytopes are given in advance, we can use Theorem
1 to perform precomputations that reduce online comoputa-
tion. Specifically, we avoid evaluating d(P, q) for polytopes
P that cannot possibly be the closest. Given two polytopes
P1, P2, a key point k, and a query point q, Theorem 2
provides a lower bound on d(P2, q) given d(P1, q) and
d(k, q).

Theorem 2. (Point-Polytope Distance Lower Bound). Given
two polytopes P1, P2, a key point k and a query point q,
the following condition implies a lower bound on d(P2, q)
by d(P1, q):

d(P2, k) ≥ d(k, q) + d(P1, q) =⇒ d(P2, q) ≥ d(P1, q)

Proof: From Theorem 1, we have d(P2, q) ≥ d(P2, k)−
d(k, q) Thus if d(P1, q) ≤ d(P2, k) − d(k, q), d(P1, q) ≤
d(P2, q).

Algorithm 3 and 4 describe a procedure for finding the
closest polytope leveraging Theorem 2. When a new set of
polytopes P is given to the algorithm, TI-Precompute is
run offline to construct the necessary data structures. When
a query point q is given, TI-Query is run to compute
the closest polytope P ∗. This algorithm is applicable to any
metric as long as Theorem 2 holds.

B. Correctness and Complexity Analysis

The algorithm is guaranteed to not miss the closest poly-
tope by construction. The reason is the closest distance
from the query point q to a polytope is upper bounded by
d(P (k∗), q). Thus, only polytopes that can possibly be closer
than P (k∗) needs to be checked.

Offline complexity of this algorithm is O(|K||P| log |P|)
plus the complexity for BuildFastPointStructure.
This is a consequence of computing and sorting pairwise

Algorithm 3 TI-Precompute

Require: P . List of polytopes
Require: K ∈ P . Key points inside the polytopes

1: D← ∅ . Initialize distance map
2: for ki ∈ K do
3: for Pj ∈ P, Pj 6= P (ki) do
4: D(ki, Pj)← d(ki, Pj)

5: sort(D(ki, ·)) . Sort key point distances
6: K← BuildFastPointStructure(K)

Algorithm 4 TI-Query

Require: q . Query point
Require: P,K

1: k∗ ← arg mink∈K d(k, q) . Find closest key point
2: d∗ ← d(q, P (k∗)) . Compute distance to polytope

corresponding to k∗

3: Pcand ← {P |P ∈ P, d(k∗, P ) < d∗ + d(k, q)} . Select
polytopes satisfying Theorem 2

4: P ∗ ← arg minP∈Pcand
d(q, P ) . Find closest among

candidates
5: return P ∗, d(P ∗, q)

distances between all the key points and polytopes. In prac-
tice, the number of key points can be chosen arbitrarily to
avoid large precomputations, but this will negatively impact
online performance. In Section VII, we set |K||P| ≤ 106 to
limit precomputation time. Insertion is O(|P| logP)

VI. FINDING THE NEAREST POLYTOPE WITH BINARY
SPACE PARTITIONING TREES (BSP-TREES)

In this section, we introduce our method to use BSP-trees
for the nearest polytope problem.

A. Overall Construction

Definition 4. A BSP-tree in Rn is a binary tree data structure
[15] (V, C, π, σ, τ), where V is the set of nodes, C(v) = {x ∈
Rn|HC(v)x ≤ hC(v)} is the H-polytope of node v ∈ V , π(v)
is the parent of v, σ(v) returns the set of polytopes associated
with node v (defined later), and τ : V → (s, α) ∪ ∅ maps
each node to its splitting hyperplane that is parameterized
by normal vector s ∈ Rn and α ∈ R. A node without a
splitting hyperplane is a leaf node. If v is not a leaf node,
the H-polytopes of the left and right children, denoted by vL
and vR, respectively, are recursively defined as:
• C(vL) = {x ∈ Rn|[HC(v), sT ]x ≤ [hC(v), α]};
• C(vR) = {x ∈ Rn|[HC(v),−sT ]x ≤ [hC(v),−α]};

where (s, α) = τ(v).

Assuming the admissible space is an H-polytope, a BSP-
tree recursively partitions it into smaller H-polytopes. At
every non-leaf node v, the splitting hyperplane cuts C(v) into
two H-polytopes. The procedure for building a BSP-tree is
outlined in Algorithm 5. We detail the subroutines split
and fill in the subsequent subsections. An example of
constructing a BSP-tree is illustrated in Fig. 2.



Fig. 2: BSP-tree polytopic partitions for a synthetic data
of 500 zonotopes uniformly distributed in 2D box. The
construction took 351 seconds. At each iteration, nodes with
|σ(v)| > 5 were split. After reaching the depth of 15, 4138
leaves were obtained, where the mean and maximum of
|σ(v)| over the leaves was than 3.79 and 10, respectively.

Algorithm 5 BSP-Trees Construction

Require: P, C0, Nmax > |P|, Dmax . List of polytopes,
the admissible state polytope, the maximum number of
polytopes in a leaf, and the maximum depth

1: V = {vroot}, L = {vroot} . Tree and list initialization
2: while L 6= ∅ and D ≤ Dmax do
3: for v ∈ L do
4: L← L \ {v} . Remove from the list
5: split(v) to obtain vL, vR
6: fill σ(vL) and σ(vR)
7: for v′ ∈ vL, vR do
8: if |σ(v′)| > Nmax then
9: L← L ∪ {v′} . Node to be split

10: D ← D + 1 . Add depth

Given a query point q ∈ Rn, we traverse the tree in depth
by evaluating ε = α − s′q at each node. If ε > 0, then
we land at the left child. If ε ≤ 0, we land at the right
hand. Note that the set of points resulting in ε = 0 has zero
measure. By evaluating a finite number of inequalities, we
arrive at the leaf node that its H-polytope contains q. Ideally,
BSP-trees end with all leaves containing only one polytope,
making online queries very simple. However, such trees may
be excessively large. We allow for truncated trees [26] where
each leaf may contain up to user-defined Nmax polytopes.

B. split node

One of the key components of all BSP-tree construction
algorithms is finding the splitting hyperplane. For the point
location problem, the authors in [27] used mixed-integer
programming to find the optimal hyperplane that balances the
tree in the sense that the number of polytopes associated for
each child are equal, and ideally, half of those for the parent.
However, solving combinatorial optimization problems for
a large number of times is not feasible, especially in the
shallower nodes of the tree that may contain a large number
of polytopes. Moreover, it is not shown to produce signficant
improvements over simpler methods [27].

Here we follow a simpler solution by picking random
hyperplane directions. We sample s ∈ Rn from a normal
distribution, but choose the right hand side α such that the
splitting hyperplane roughly cuts C(v) into balanced halves
( in the sense of volume instead). We solve the following

linear programs:

ᾱ = max . sTx,
s.t. x ∈ C(v),

α = min . sTx,
s.t. x ∈ C(v).

(4)

Then we choose α = 1
2 (α + ᾱ). Thus, the hyperplane is

guaranteed to cut through C(v).

C. fill Node

Given a node v, we need to find σ(v). A filling procedure
is sound if for all points in C(v), the nearest polytope is one
of the elements in σ(v). Formally, we have:

σ(v) ⊇ {P ∈ P|∃x ∈ C(v), P = arg min
P ′∈P

d(P ′, x)}. (5)

By definition have σ(vroot) = P. Also, it is straightforward
to prove that σ(v) ⊆ σ(π(v)).

We define the following distances. First, we need a notion
for the largest distance from a point in C := C(v) to an
AH-polytope P :

D
−−→max(P,C) := max .x∈Cd(P, x). (6)

Note that, in general, D
−−→max(P,C) 6= D

−−→max(C,P ). Eq. (6)
is also known as the directed Hausdorff distance [11]. We
also define:

Dmin(P,C) := min .x∈C,y∈P d(x, y). (7)

We obtain the following result by construction.

Theorem 3 (Node filling). Given node v ∈ V , σ(v) should
contain all the elements in the following set:

{P ∈ σ(π(v))|Dmin(P,C) ≤ min
P ′∈P(π(v))

D
−−→max(P ′, C)}.

(8)

While (7) can be easily cast as a linear program, solving
the max-min problem in (6) is more challenging. Using
duality, we obtain a non-convex optimization problem for
which a convex linear programming relaxation is obtained
using polytope containment. The details are in [11]. The
relaxation introduces some conservativeness as we over-
approximate the set in (8), making the set σ(v) larger. While
this over-approximation does not break the soundness of the
nearest polytope problem - the nearest polytope is still within
σ(v) - it can be inefficient.

D. Complexity

BSP-trees are computationally intensive to build offline,
but provide very fast online queries as the tree is traversed
in depth. The main bottleneck in the offline phase is the
requirement to solve a large number of linear programs to
fill the nodes. If the number of leaves has a polynomial
relationship with the number of polytopes, then the query of
BSP-trees, under mild assumptions, have average O(log |P|)
time complexity [27]. However, obtaining theoretical bounds
for the complexity of the number of leaves for generic
polytopic data sets is not obvious.

One of the advantages of BSP-trees over the previous two
algorithms is that it provides user-defined upper bounds for
the number of polytopes that are required to be checked.



(a) Median number of poly-
topes evaluated in a single
query versus tree depth.

(b) Precomputation time versus
tree depth.

Fig. 3: Empirical complexity analysis of the BSP-tree on
the first 1000 AH-polytopes of R3T implementation for the
pendulum swing up. At D = 15, the number of leaves is
8725. We set Nmax = 20. 5629 of the leaves had less than
or equal to 20 polytopes.

VII. EXPERIMENTAL RESULTS

A. Overview

Two synthetic datasets of zonotopes distributed uniformly
and along an axis (“linearly distributed”), and two real
datasets of AH-polytopes from R3T [8] and MPC [6] were
used to evaluate the algorithms. All code for the experiments
can be found on GitHub1. All tests were performed on a
personal computer with i7-7820HQ CPU.

This section is organized as follows. First, we evaluate the
scalability on dimensions and dataset size using synthetic
datasets. Next, we test the real world performance of the al-
gorithms using datasets generated by R3T and MPC. Unless
otherwise noted, the medians of the results are plotted and
the error bars denote maximum and minimum values. A total
of 1000 queries were performed in each experiment.

Due to the limitations on BSP-tree’s scalability to high
dimensions, limited experiments were performed on on BSP-
trees. Moreover, the online complexity of BSP-trees is set by
the user. Therefore, we have plotted the complexity versus
the depth of the tree (determined by the user) in Fig. 3. We
leave further benchmarking of BSP-trees and their speedup
optimization for the nearest polytope problem to future work.

B. Offline Scalability

The precomputation performances of the AABB algo-
rithm and the triangle inequality algorithm were tested on
synthetic datasets. Specifically, we test for the scalability
against dimension and dataset size on randomly generated
polytopes. Figure 4 shows the precomputation performance
on uniformly distributed random polytopes, as motivated
by sampling-based planning such as [8]. Figure 5 shows
the precomputation performance on random polytopes dis-
tributed along an axis (“linearly distributed”), as motivated
by trajectory stabilization techniques such as LQR trees [28].
All experiments were triplicated.

1https://github.com/wualbert/closest polytope algorithms.git

(a) Precomputation time dimen-
sion scalability with 500 poly-
topes.

(b) Precomputation time dataset
size scalability with polytopes
in 6D.

Fig. 4: Precomputation time with uniformly distributed ran-
dom polytopes.

(a) Precomputation time dimen-
sion scalability with 500 ran-
dom polytopes.

(b) Precomputation time dataset
size scalability with random
polytopes in 6D.

Fig. 5: Precomputation time with random polytopes dis-
tributed along an axis (“linearly distributed”).

The AABB algorithm is much faster in precomputation.
Both algorithms require longer precomputation in higher
dimensions due to the increase in complexity of the opti-
mization problems (see Sections III-A and IV-A). Note that
the number of key points for triangle inequality was limited
to |K||P| < 106 in all experiments to maintain a reasonable
precomputation time.

C. Online Scalability

The online performances of the AABB and triangle
inequality algorithms were tested against dimension and
dataset size. We measure performance with the number of
polytope distances evaluated on each query. Figure 6 shows
the query performance on uniformly distributed random
polytopes. Figure 7 shows the query performance on random
polytopes distributed along an axis (“linearly distributed”).

The AABB algorithm outperformed the triangle inequality
algorithm in both median and worst-case performances.
The worst-case of both algorithms did not scale well with
dimension, with both algorithms requiring checking over
40% of the polytopes starting in 7D. With the dataset size,
scaling performance is much better in AABB. Section VII-F
contains more discussions on AABB complexity.

We note that these performances are highly dependent on
the structure of the dataset and the query point choice. For
instance, if a query point is very far from all of the polytopes,
both algorithms will check nearly all of the polytopes. This



(a) Number of polytopes eval-
uated per query with 500-
polytope synthetic datasets.

(b) Number of polytopes eval-
uated per query with synthetic
datasets in 6D.

Fig. 6: Number of polytopes evaluated per query with
uniformly distributed random polytopes.

(a) Number of polytopes eval-
uated per query with 500-
polytope synthetic datasets.

(b) Number of polytopes eval-
uated per query with synthetic
datasets in 6D.

Fig. 7: Number of polytopes evaluated per query with
random polytopes distributed along an axis (“linearly dis-
tributed”).

dependency on the specific query point is supported by the
much smaller median values.

D. Performance on R3T Datasets

The AABB and triangle inequality algorithms were tested
on real polytope data from R3T [8]. These polytopes are
reachable sets generated by motion planning in pendulum
swing-up (2D continuous system) and planner hopper (10D,
2 contact modes) problems [29], [30]. In this context, only
the query performance is relevant since the polytopes are
added sequentially during runtime as R3T explores the state
space. Figure 8 summarizes the results.

(a) Number of polytopes eval-
uated per query on the R3T
pendulum dataset.

(b) Number of polytopes eval-
uated per query on the R3T
hopper dataset.

Fig. 8: Testing results of the algorithms on R3T datasets.

(a) Number of polytopes eval-
uated per query on the MPC
pendulum dataset.

(b) Number of polytopes evalu-
ated per query on the MPC rod
manipulation dataset.

Fig. 9: Testing results of the algorithms on MPC datasets.

The AABB algorithm yielded significantly better per-
formance on R3T datasets. We attribute this result to the
process of generating these polytopes. In R3T, the polytopes
are generated through simulating forward dynamics for a
specific time horizon [8]. Therefore, the polytopes seldom
possess elongated shapes that are unfavorable for AABB
approximations. With the AABB algorithm, often less than
5% of all polytopes were checked online.

E. Performance on MPC Datasets

The AABB and triangle inequality algorithms were tested
on two datasets generated by MPC [6]. The first dataset
originates from stabilizing an inverted pendulum by bouncing
against a vertical wall (2D, 2 contact modes) [31]. The
second dataset represents manipulating a rod with 2 fingers2

(10D, 16 contact modes). Similar to RRT, we considered
different exploration stages of the MPC problem. The results
are summarized in Figure 9.

With MPC, the AABB algorithm still outperformed the
triangle inequality algorithm by a significant margin. Using
the AABB algorithm, typically less than 20% of all polytopes
were evaluated, which is a significant improvement from the
naive algorithm.

F. Empirical Online Complexity of the AABB Algorithm

Figure 10 shows the AABB algorithm’s empirical online
complexity in R3T and MPC datasets. The median computa-
tion time is roughly logarithmic to the number of polytopes,
while the worst-case is linear. However, even in the worst
case, only around 50% of all polytopes were evaluated.

VIII. CONCLUSION AND FUTURE WORK

We developed 3 algorithms for efficiently solving the
nearest polytope problem. Of the three algorithms, AABB
and triangle inequality can be scaled up to high dimensions.
Through testing on synthetic, R3T, and MPC datasets, we
concluded that the AABB algorithm is the superior. All
algorithms provide significant querying performance im-
provements over the naive exhaustive search, with AABB
demonstrating roughly logarithmic median performance em-
pirically. The algorithms developed in this paper can be

2The scripts and details of this example are available at
https://github.com/sadraddini/PWA-Control.git



(a) Median number of poly-
topes evaluated per query. This
is roughly logarithmic to the
size of the dataset.

(b) Maximum number of poly-
topes evaluated per query. This
is roughly linear to the dataset
size.

Fig. 10: Empirical complexity analysis of the AABB algo-
rithm.

applied to control applications that require solving the nearest
polytope problem. Future work will focus on improving the
heuristics, combining the algorithms, and further implemen-
tations. For instance, while the methods in this paper were
purely geometrical, exploiting the underlying dynamics of
the polytope data source (such as hybrid system dynamics)
can potentially lead to performance improvements.
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