
Guiding Nonconvex Trajectory Optimization with
Hierarchical Graphs of Convex Sets

by

David von Wrangel

S.B. in Aerospace Engineering and in Electrical Engineering and Computer Science,
Massachusetts Institute of Technology (2023)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

MASTER OF ENGINEERING IN ELECTRICAL ENGINEERING AND COMPUTER
SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2024

© 2024 David von Wrangel. All rights reserved.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free license to
exercise any and all rights under copyright, including to reproduce, preserve, distribute and

publicly display copies of the thesis, or release the thesis under an open-access license.

Authored by: David von Wrangel
Department of Electrical Engineering and Computer Science
May 10, 2024

Certified by: Russ Tedrake
Toyota Professor of EECS, Aero/Astro, MechE, Thesis Supervisor

Accepted by: Katrina LaCurts
Chair, Master of Engineering Thesis Committee

2

Guiding Nonconvex Trajectory Optimization with
Hierarchical Graphs of Convex Sets

by

David von Wrangel

Submitted to the Department of Electrical Engineering and Computer Science
on May 10, 2024 in partial fulfillment of the requirements for the degree of

MASTER OF ENGINEERING IN ELECTRICAL ENGINEERING AND COMPUTER
SCIENCE

ABSTRACT

Collision-free motion planning with trajectory optimization is inherently nonconvex. Some
of this nonconvexity is fundamental: the robot might need to make a discrete decision to go left
around an obstacle or right around an obstacle. Some of this nonconvexity is potentially more
benign: we might want to penalize high-order derivatives of our continuous trajectories in order
to encourage smoothness. Recently, Graphs of Convex Sets (GCS) have been applied to trajectory
optimization, addressing the fundamental nonconvexity with efficient online optimization over a
"roadmap" represented by an approximate convex decomposition of the configuration space. In this
thesis, we explore some of the most useful nonconvex costs and constraints and introduce a novel
hierarchical GCS structure, composing subgraphs that represent different task phases or alternative
paths and enabling efficient planning for complex tasks involving both discrete decision-making
and continuous trajectory generation. We investigate the suitability of combining convex "global"
optimization using GCS with nonconvex trajectory optimization for rounding the local solutions.
Through extensive experiments on diverse robotic systems, we demonstrate that this combination
can effectively guide a small number of nonconvex optimizations, ultimately finding high-quality
solutions to challenging nonconvex motion planning problems.

Thesis supervisor: Russ Tedrake
Title: Toyota Professor of EECS, Aero/Astro, MechE

3

4

Acknowledgments

I am eternally grateful for the opportunities and experiences during my time at MIT. I had the
freedom to pursue my curiosity and collaborate with incredible individuals who have shaped me
into the person I am today. I extend my heartfelt thanks to those who guided and supported me on
my research journey.

First and foremost, I want to express my deepest gratitude to my advisor, Russ Tedrake. After
a skydiving accident that left me with a shattered ankle, my attention shifted from astronautics
to robotics. During a summer of relentless exploration into simulation, control, and kinematics,
I stumbled upon optimization methods through Drake. Russ’s class left a profound impression
on me, showcasing his dedication to the robotics community, and I was fortunate to join his lab.
Throughout my UROP, SuperUROP, and MEng program, Russ’s principled approach, attention to
detail, and profound questioning taught me the value of slowing down and embracing the rewards
of deep long-term thinking, not only in research but in life. I am incredibly grateful for this early
realization and look forward to continuing this journey with Russ in my graduate studies.

I extend my sincere thanks to all the members of the Robot Locomotion Group, especially Mark
Petersen, who mentored me during my early UROP years, and Tobia Marcucci, with whom I had
the privilege of collaborating on the initial development of GCS trajectory optimization. I am also
grateful to the other members of the RLG with whom I’ve had the pleasure of interacting: Nicholas,
Savva, Boyuan, Tommy, Ria, Abhinav, Adam, Terry, Pang, Alex, Lujie, Bernhard, Rebecca, Max,
Lirui, and Shao.

I would also like to thank Al Rizzi and Jiuguang Wang at the AI Institute for their support in
enabling me to complete my thesis while employed there. My work there reinforced the importance
of maintaining relevance between academic research and industrial applications.

Finally, I express my deepest appreciation to my family, especially my mother, Lusine, for
their unwavering emotional support throughout my time at MIT. Their encouragement has been
invaluable, making my journey both fulfilling and enjoyable.

5

6

Contents

Title page 1

Abstract 3

Acknowledgments 5

List of Figures 9

1 Introduction 11

2 Background 15
2.1 Trajectory Optimization for Motion Planning . 15
2.2 The Challenges of Nonconvexity . 16
2.3 Graphs of Convex Sets (GCS) . 17

3 Using Graphs of Convex Sets to Guide Nonconvex Trajectory Optimization 19
3.1 High-Level Approach . 19
3.2 Nonlinear extension to GCS Trajectory Optimization 21

3.2.1 Minimizing path duration, length, and smoothness 22
3.2.2 Derivative Constraints . 24
3.2.3 Continuity . 26
3.2.4 Collision Avoidance . 26
3.2.5 Task Space Constraints . 28

3.3 Multimodal Planning with Hierarchical Graph Structures 30
3.3.1 Subgraphs and Subspaces . 30
3.3.2 Sequential and Parallel Subgraphs . 31
3.3.3 Utilizing Subgraphs as Start and Goal Regions 32

4 Application 35
4.1 Two Dimensional Example . 35

4.1.1 Comparison of Post-processing with NGCSTrajOpt 35
4.1.2 Planning through Hierarchical Graphs . 37

4.2 Quadrotor Example . 38
4.3 Manipulation Example . 41

4.3.1 Planning with Task-Space Constraints . 42
4.3.2 Avoiding Collisions in Changing Environments 43

7

4.4 Spot Example . 44
4.4.1 Planning a Multi-Stage Manipulation Task with a Floating Base 44
4.4.2 Adapting to Dynamic Environments . 48
4.4.3 Planning in All Degrees of Freedom . 50

5 Conclusion 53
5.1 Future Directions . 54

References 60

8

List of Figures

3.1 Convex Approximations of 1D acceleration limits. The filled gray area represents
the feasible set of the nonlinear constraint. The blue line represents a McCormick
envelope, a convex relaxation of the original constraint. The red lines illustrate a
tighter piecewise envelope. The orange line shows a simpler approximation. 25

3.2 Sequential and parallel subgraphs in a hierarchical graph structure. Blue shapes
represent subgraphs (GS , GT , G1−4), and red denote subspace (S1−2 constraints
on gray edges connecting the subgraphs. 31

3.3 Hierarchical graph structure with subgraphs as start and goal regions. Blue shapes
represent subgraphs (GS , GT , G1), gray edges connect the subgraphs, and the
dummy vertices (orange lines) enable the selection of any vertex within a subgraph
as the effective start or target. 32

4.1 2D comparison of GCS trajectory optimization with GCS + TOPP and nonconvex
GCS (The trajectory is blue). Obstacles in red, the initial q0 and final qT con-
figurations are marked with crosses and the free space is decomposed in convex
safe regions Qi (in light blue). The blue graph in the velocity and acceleration
plot illustrates the horizontal component in x and the orange plot for the vertical
component in y. The left column shows the convex duration transcription of GCS
and its corresponding velocities and accelerations. The middle column illustrates
the same path, but with a reparametrization using TOPP and acceleration bounds.
Lastly, we show our method that includes nonlinear continuity constraints and ac-
celeration bounds. 36

4.2 Planning with intermediate waypoints and multi-start/goal points. The left column
shows a planning problem, which is constrained to find a solution going through
the light blue subspace between the two red obstacles in the middle. The right
column shows a problem with two possible start configurations q0 and two final
configurations qT configurations, where one of them is not a point, but a target
region in light blue. The blue graph in the velocity and acceleration plot illustrates
the horizontal component in x and the orange plot for the vertical component in y. . 37

4.3 Three candidate trajectories for a quadrotor navigating from the bottom left corner
to the top right room of a building. The blue trajectory (convex GCS trajectory
optimization) is fast but lacks smoothness and exhibits unrealistic roll due to high
initial accelerations. The yellow and red trajectories (proposed method) enforce
higher-order continuity, limit accelerations, and achieve smoother paths while the
yellow trajectory also minimizes snap. 38

9

4.4 The top left image illustrates the planning environment with designated waypoints
q1−5 and the robot arms in transparent at these configurations. The right image
shows the additional seed points used to connect the convex sets, shown as a graph
below. Light blue represents the waypoint regions, and orange indicates the extra
regions. 41

4.5 The top image shows the Kuka robot in the environment, overlaid NGCS (blue)
and classical GCS (orange) trajectories, following the end-effector position. The
plots compare joint velocities and accelerations for both trajectories, focusing on
joints 2 to 4. GCS violates every joint acceleration limit, whereas NGCS adhered
to the constraints. 42

4.6 The first image displays the robot initiating from the right bin, the middle illus-
trates the blue trajectory resulting from separately solving the inverse kinematics
problem and planning to the configuration. The last shows the orange trajectory,
achieved by jointly solving motion planning with a task space position constraint. . 43

4.7 The Kuka arm is avoiding the middle using minimum distance constraints, since it
hasn’t been captured by the iris regions. 44

4.8 Simulation environment for Spot’s multi-stage manipulation task. The environ-
ment includes shelves, a camera station and bins. The bottom left image shows
the robot grasping the sugar box and lifting it in the image above. Spot scan’s the
retrieved box in the camera station shown in the top right image and dropped it off
into the bin in the image below. The trajectory of end-effector is shown in blue,
while the floating base trajectory is traced in orange. 45

4.9 Sequential graph of Spot’s multi-stage manipulation task. Blue shapes represent
regions in the subgraphs, and red shapes denote the subspace constraints on the
gray edges between the subgraphs. GC1-3 show the collision free regions for the
whole environment, which are internally almost fully connected. 46

4.10 The simulation environment presents a new challenge with unexpected obstacles.
A red shelf blocks the brown shelves, and various items clutter the racks and bins,
requiring Spot to adapt its planned trajectory to avoid collisions. 48

4.11 Collision instances encountered when executing the original trajectory in the clut-
tered environment. The relevant collision geometry is shown in red. 49

4.12 The collision geometries considered by the minimum distance constraints are shown
in red. 49

4.13 Spot successfully navigates the cluttered environment by leveraging minimum dis-
tance constraints. 50

4.14 Coordinated motion planning for two Spot robots in a 50-dimensional configura-
tion space. The blue and orange trajectories represent the end-effector paths of the
two robots. The images depict snapshots of the planned motion, read from left to
right, top to bottom. The robots start in an initial configuration (top left), reach
between each other’s legs (top right), close their grippers, and move their arms to
their backs (bottom right). The feet remain stationary throughout the motion. . . . 51

4.15 Collision-free grasping configuration for two Spot robots, demonstrating coordi-
nated motion planning in a 50-dimensional configuration space. The robots reach
under each other’s bodies without colliding. 52

10

Chapter 1

Introduction

Trajectory optimization offers a powerful approach for planning robot motions [3, 7, 17, 24, 31],

capable of generating dynamically feasible trajectories that respect kinematic and dynamic con-

straints [11, 28, 30]. However, the inherent nonconvexity of collision-free space often leads to

suboptimal solutions or even failures to find feasible paths [16]. While existing sampling-based

planners like RRTs and PRMs [9, 13, 15] can handle nonconvexity, they present several practical

challenges.

In my industry experience, I have observed that finding collision-free trajectories using sampling-

based planners, like RRTs and PRMs, can be unreliable, particularly in complex or high-dimensional

configuration spaces. This unreliability stems from the very nature of sampling-based methods,

which may struggle to adequately explore the vast space of possible robot configurations. Even

when a collision-free path is found, it often exhibits jaggedness, requiring computationally expen-

sive smoothing techniques that still tend to yield suboptimal motions. This lack of smoothness

can lead to jerky robot behavior, potentially causing the low-level trajectory tracking controller

to deviate from the desired trajectory, resulting in unwanted collisions or undesirable interactions

with the environment or manipulated objects. Furthermore, the absence of an inherent notion of

time in these planners often leads to simplistic, constant-speed trajectory parametrizations.

Such rudimentary time parametrizations either underutilize the robot’s dynamic capabilities or

11

risk violating its limits. Even with powerful time optimal reparametrization [27], the disconnect

between path planning and timing further exacerbates the problem of finding truly optimal trajecto-

ries. A common misconception in robotic motion planning is that minimizing path length and then

performing time parametrization will yield a minimum-time trajectory. However, this approach

overlooks the crucial interplay between path geometry and dynamic constraints. A trajectory op-

timized for minimum path length might involve sharp turns or rapid changes in direction that are

infeasible to execute at high speeds, leading to suboptimal results. Consequently, a minimum-time

trajectory might necessitate a completely different discrete path, potentially navigating through

wider curves or taking alternative routes to leverage the robot’s full dynamic capabilities while

respecting its limitations.

The challenges of sampling-based methods become even more pronounced when considering

long-horizon trajectories, especially for mobile bases operating in expansive environments. The

computational burden of sampling such vast spaces often necessitates the use of heuristics, which

can compromise solution quality. Furthermore, the performance of these planners is highly sensi-

tive to parameter tuning, requiring significant effort to obtain satisfactory results for different tasks

and environments. Their lack of optimality guarantees further complicates their reliable deploy-

ment in practical settings.

This thesis introduces a novel approach that leverages the strengths of the Graph of Convex

Sets (GCS) framework [18] to guide nonlinear trajectory optimization. GCS provides a powerful

tool for global optimization over an approximate convex decomposition [23] of the configuration

space. We extend this framework to incorporate a broader range of cost functions and constraints,

including those involving nonconvexities, through a hybrid approach that combines convex surro-

gates for global guidance with efficient rounding via nonlinear optimization.

Furthermore, we propose a hierarchical structure for the GCS, organizing it into connected

subgraphs. This enables the formulation of problems with intermediate goals or logical decision-

making using series or parallel connections between subgraphs. This hierarchical approach enables

us to plan continuous trajectories while simultaneously making discrete decisions, gaining fine-

12

grained control over the constraints and costs imposed at different stages of a task.

We evaluate the effectiveness of this approach across a range of challenging robotic motion

planning scenarios. These evaluations demonstrate the capability to generate smooth, dynami-

cally feasible trajectories while simultaneously optimizing for multiple objectives and satisfying

diverse constraints. First, we consider the problem of planning minimum-snap trajectories for

quadrotors navigating cluttered environments. Our method successfully incorporates acceleration

constraints and continuity requirements, generating trajectories that are both efficient and motion-

wise smooth. Next, we investigate the challenges of planning for manipulators like the KUKA

iiwa, demonstrating that generated trajectories respect joint limits and task-space constraints even

in dynamic settings. Finally, we showcase the method’s applicability to more complex robotic sys-

tems like Spot, a legged mobile manipulator, planning complex tasks involving sequential goals

and adaptation to unforeseen obstacles, and even scaling to a 50-dimensional configuration space

for planning coordinated motions of two Spots.

The results of these evaluations highlight the robustness and versatility of our approach, show-

casing its potential to advance the state of the art in robotic motion planning. The following chap-

ters delve into the theoretical foundations, implementation details, and experimental validations of

our proposed method.

13

14

Chapter 2

Background

This chapter establishes the context and foundational knowledge necessary for understanding the

contributions of this thesis. We begin by reviewing trajectory optimization and its significance in

robot motion planning. We then delve into the challenges of nonconvexity in this domain, high-

lighting the limitations of conventional techniques. Finally, we introduce the Graphs of Convex

Sets (GCS) framework as a powerful tool for addressing these challenges, paving the way for the

novel methods presented in this thesis.

2.1 Trajectory Optimization for Motion Planning

Trajectory optimization is a fundamental approach in robot motion planning, aiming to generate

dynamically feasible, time-parameterized motions that satisfy given constraints while optimizing

for desired objectives [3, 7, 17, 24, 31]. It seeks to find an open-loop control solution, represented

as a time-varying trajectory, that is optimal for a specific initial condition.

Trajectory optimization problems are typically formulated as mathematical optimization pro-

grams, where the decision variables represent the robot’s state and control inputs over time. The

objective function often encodes metrics such as time, energy consumption, or path length, while

constraints ensure the trajectory adheres to physical limitations like joint limits, velocity bounds,

and collision avoidance.

15

Solving these optimization problems generally involves discretizing the continuous-time tra-

jectory using techniques like piecewise polynomials or basis functions. The resulting optimization

program can then be solved using various techniques, including nonlinear programming methods.

However, the presence of nonconvex constraints, such as those arising from collision avoid-

ance or nonlinear system dynamics, can make it challenging to find globally optimal solutions.

Traditional trajectory optimization methods, which rely on local optimization algorithms, are sus-

ceptible to getting trapped in local minima, leading to suboptimal or even infeasible trajectories.

This underscores the need for techniques that can effectively navigate the nonconvexities inherent

in many robot motion planning problems.

2.2 The Challenges of Nonconvexity

Obstacles in the environment, and kinematic or dynamic constraints often introduce nonconvexities

into a robot’s configuration space or, more generally, into the space of feasible trajectories. This

nonconvexity poses a significant challenge for traditional trajectory optimization methods.

Local optimization algorithms, commonly used to solve trajectory optimization problems, are

fundamentally limited in their ability to handle nonconvexity. They tend to converge to local

minima, which may be far from the globally optimal solution. In the context of motion planning,

this can lead to trajectories that are unnecessarily long, inefficient, or even fail to find any feasible

trajectory.

Sampling-based methods [9, 13, 15], such as Rapidly-exploring Random Trees (RRT), offer

an alternative approach for handling nonconvexity. These methods construct graphs by randomly

sampling the robot’s configuration space. RRT incrementally builds a tree by iteratively extend-

ing it towards randomly sampled configurations, while Probabilistic RoadMaps (PRM) generate a

graph by connecting nearby feasible configurations.

While probabilistically complete, meaning they will eventually find a feasible path if one exists,

these methods often struggle to find optimal paths. Moreover, generating smooth, dynamically fea-

16

sible trajectories that satisfy additional constraints, especially those involving higher-order deriva-

tives, remains a challenge for these methods.

The limitations of traditional trajectory optimization methods in handling nonconvexity high-

light the need for alternative approaches. These approaches should be capable of effectively nav-

igating the nonconvex search space, exploring multiple path homotopies, and ultimately finding

high-quality solutions that satisfy the desired constraints and objectives.

2.3 Graphs of Convex Sets (GCS)

The Graphs of Convex Sets (GCS) framework [19] offers a powerful approach for addressing

mixed discrete and continuous optimization problems, particularly in the context of motion plan-

ning [18]. It provides a structured representation of the robot’s configuration space as a graph,

where:

• Vertices: Each vertex corresponds to a convex, collision-free region in the configuration

space. For trajectory optimization, a vertex contains multiple control points defining a Bézier

curve segment within that region, along with a duration scaling variable that determines the

time spent traversing the segment.

• Edges: Edges connect vertices whose corresponding regions intersect, indicating a feasible

transition. Continuity constraints on the Bézier curves and their derivatives enforce smooth

transitions between regions.

The key strength of GCS lies in its ability to formulate the motion planning problem as a sin-

gle, unified optimization program that simultaneously addresses both the discrete and continuous

aspects of the problem.

The discrete aspect involves selecting a path through the graph, which corresponds to choosing

a sequence of convex regions to traverse. The continuous aspect involves optimizing the shape and

timing of the trajectory within each region, determined by the control points of the Bézier curves

and the duration scaling variables.

17

This optimization can be naturally formulated as a mixed-integer convex program. However,

previous mixed-integer formulations for similar problems have proven extremely inefficient. The

GCS framework, in contrast, provides a remarkably efficient representation. Marcucci et al. [18]

further introduced a tight convex relaxation and a cheap rounding strategy to solve the problem

even more efficiently as a convex program. By relaxing the binary variables that indicate edge

selection into continuous flows, and by employing perspective operators to scale the costs and

constraints accordingly, the resulting convex relaxation yields a solution where these flows can

be interpreted as edge probabilities. A randomized rounding strategy, guided by these edge prob-

abilities, is then used to identify a small set of promising discrete paths. These paths are then

optimized independently, leveraging the continuous optimization capabilities of GCS to recover a

final collision-free trajectory.

This approach enables the efficient exploration of multiple path homotopies, avoiding local

minima that often plague traditional trajectory optimization methods. The GCS framework ef-

fectively blends the combinatorial power of graph search with the expressiveness of continuous

trajectory optimization, offering a promising direction for addressing complex motion planning

problems in robotics.

18

Chapter 3

Using Graphs of Convex Sets to Guide

Nonconvex Trajectory Optimization

3.1 High-Level Approach

The Graph of Convex Sets (GCS) framework [19] provides a powerful tool for addressing mixed

discrete and continuous decision making problems whose discrete component can be transcribed

into a network flow problem like shortest path. The framework provides a transcription from a

graph of convex sets into a mixed-integer optimization, but also provides a tight convex relaxation

so that many of these generalized network flow problems can be solved to global optimality by only

solving the convex relaxation and employing a simple rounding strategy. The term “rounding" is

commonly used because the convex relaxation of the mixed-integer problem may produce floating

point values which are (hopefully) close to, but not exactly, zero or one; the rounding step takes the

approximate solutions and “rounds" them to nearby solutions that completely satisfy the original

constraints.

Marcucci et al. [18] provides a transcription of the collision-free motion planning problem

into a GCS problem which provides new capabilities for global trajectory optimization of smooth

trajectories, avoiding the local minima that are normally inherent in collision-free trajectory opti-

19

mization. This work demonstrated the power of efficient convex optimization in solving seemingly

nonconvex robotics problems, and encourages us to continue working on tight convex relaxations

[12] for increasingly complex problems. However, the strict reliance on convexity may not be nec-

essary. Many costs and constraints that are used in trajectory optimization contain nonlinearities

for which we don’t yet have efficient relaxations; some of these nonconvexities are benign (do not

introduce new local minima).

In GCS, we form a graph in which we associate convex sets Xv with vertices v ∈ V , and

associate convex sets (xu, xv) ∈ Xe with directed edges e = (u, v) ∈ E . The shortest path problem

on a GCS can be formulated as the search for a path p ∈ P (defined as an ordered list of vertices

and edges) where:

minimize
∑

e=(u,v)∈Ep

le(xu, xv) (3.1a)

subject to p ∈ P , (3.1b)

xv ∈ Xv, ∀v ∈ p, (3.1c)

(xu, xv) ∈ Xe, ∀e = (u, v) ∈ Ep. (3.1d)

le are convex costs associated with each edge e. Here we wish to extend the framework to allow Xv

and Xe to be support nonconvex sets (described via the union of nonconvex constraints), and le to

include nonconvex costs. The fundamental question we explore here is: how can we effectively use

GCS to guide nonlinear optimization, to capture the global optimization benefits of GCS (which

combat local minima) but still solve the nonconvex problem?

Broadly speaking, when faced with a nonlinear objective or constraint, then we have two op-

tions: We can explore a convex surrogate (which can be either a relaxation/outer approximation,

or simply a convex approximation), or we can attempt to deal with the nonlinearities directly with

nonlinear optimization algorithms. We propose a hybrid approach:

Convex Surrogates as a Guide: We aim to find the tight convex relaxations or close convex

approximations for smooth nonlinear constraints and objectives. These approximations are incor-

20

porated into the GCS problem. The convex relaxation of GCS is then used to effectively guide the

subsequent rounding process. Importantly, stronger convex approximations yield stronger guid-

ance, increasing solution quality.

Rounding with Nonlinear Optimization: Nonlinear optimization fills the gaps left by the

convex relaxations. During rounding, we directly address the original nonlinearities using appro-

priate algorithms. Warm-starting the nonlinear solver with the solution to the convex approxima-

tion allows this step to further refine the solution.

There are some important aspects of the GCS formulation which can make this approach very

powerful. The solution to the GCS convex relaxation, even when the relaxation is not tight and

edges are assigned values between zero and one, can be interpreted as a probability distribution on

the flow polytope. The natural rounding scheme introduced in Marcucci et al. [18] used this “edge

probability" interpretation. In this work, we further leverage this probabilistic interpretation – GCS

doesn’t just tell us a single path through the graph, it gives us a probability distribution over paths

which effectively guides our global search through many path-homotopies and navigates multiple

local minima of the original nonlinear program.

In some problems, one may be able to restrict the nonconvexity to only appear in the objective,

le. In this important class of problems, through appropriate care in choosing the solver, it may

be possible to use the convex formulation to guarantee completeness of the planner. However

we do not explore this approach here, as many important nonconvexities we wish to study are

more naturally represented as constraints. Instead, like other nonlinear trajectory optimization

formulations, we sacrifice guarantees and instead focus here on the empirical performance of the

algorithm in representative problem instances.

3.2 Nonlinear extension to GCS Trajectory Optimization

We formulate the trajectory optimization problem as the optimization over continuous curves over

a graph of convex sets, closely following the formulation in [18], but with additional nonconvex

21

costs and constraints added to the vertices and edges. In particular, we associate with each vertex

a Bézier curve describing the configuration space path, r(s), defined over the interval s ∈ [0, 1],

and a scalar time duration, h. The final parameterized trajectory is q(t) = r(t/h). Note that [18]

used a richer parameterization for the time re-scaling, but this was primarily introduced to provide

high-order derivative continuity constraints which we will handle more directly in this work.

The Bézier curve parameterization over convex sets in configuration space allows us to im-

pose convex constraints which guarantee that the Bézier curves in the solution path stay inside the

convex collision-free configuration-space regions for all time (not just at the sample points) – pro-

viding strong certificates that the motions are collision free. This is accomplished by constraining

the control points of the path r(s), which we denote with decision variables ri, to be inside the con-

vex sets, and leveraging the convex hull property of Bézier curves. The original formulation also

provides convex constraints which can guarantee that the path was smooth and that velocity limits

are strictly imposed for all t. One of the first places where the transcription in [18] was limited

was that it did not provide a similar set of convex constraints to enforce higher-degree derivative

constraints (e.g. on acceleration and jerk).

In the remainder of this section, we describe how we address these derivative continuity and

other constraints directly with convex surrogates at the level of GCS and nonconvex optimization

in the rounding stage.

3.2.1 Minimizing path duration, length, and smoothness

The transcription in Marcucci et al. [18] introduced convex objective functions which directly

optimize a weighted sum of the total path duration, and convex surrogates for path length and

a path velocity regularization. We use the same objectives here, and add additional support for

penalizing the higher derivatives of the trajectory:

minimize aT + bL(r) +
N∑

n=2

cnD(r, h, n) (3.2)

22

Here a, b, and cn are user-specified positive scalar weights. These weights represent the importance

given to the trajectory duration, T, path length, L(r), and regularization of the nth order derivative

D(r, h, n), respectively.

Minimizing trajectory duration is achieved by considering the convex cost associated with

minimizing each individual segment’s duration’s (hi):

T =
∑
i∈I

hi. (3.3)

To minimize path length, we minimize the cumulative length between control points of each

Bézier curve (ri):

L(ri) =
d−1∑
k=0

|ri,k+1 − ri,k|2. (3.4)

This provides an upper bound on path length and avoids unnecessary numerical integration while

maintaining convexity.

Finally, to promote smoothness, we can minimize the trajectory’s higher-order derivatives. We

achieve this by minimizing the squared distance between control points of the Nth minus one

derivative of r(s), normalized by the duration:

D(r, h, n) =
1

h

d−n∑
k=0

∣∣∣∣dn−1ri,k+1

dsn−1
− dn−1ri,k

dsn−1

∣∣∣∣2
2

. (3.5)

This expression remains convex for h > 0. This is an approximation for regularizing the true time

derivative, dnq(t)
dtn

, which involves a term of hn in the denominator. While this true nonconvex cost

could be directly enforced during the rounding stage, we have found the convex surrogate to be

sufficiently tight in practice, especially for higher-order derivatives where the h2(n−1) denominator

can lead to numerical challenges. Therefore, we use the convex surrogate for both the relaxation

and the rounding.

By combining these sub-objectives, we can concurrently optimize for trajectory duration (3.3),

path length (3.4), and smoothness (3.5), tailoring the optimization to specific task requirements.

23

3.2.2 Derivative Constraints

Many robot controllers require that trajectories strictly adhere to velocity, acceleration, and even

jerk limits. In some cases, acceleration limits can also be used as a surrogate for torque limits.

For velocity constraints, we leverage the fact that the derivative of a Bézier curve is also a

Bézier curve. This allows us to impose linear constraints on the control points of the path, guaran-

teeing that velocity limits are respected throughout the entire trajectory. Here V is a convex set of

the allowable velocities.

ṙ(s) ∈ hV . (3.6a)

However, constraints on higher-order derivatives, such as acceleration, are inherently nonlinear

due to the relationship between path derivatives and time scaling:

dNq(t)

dtN
=

dNr(s)/dsN

hN
. (3.7)

For example, consider a 1D path with acceleration x and limits [-1, 1]. The nonlinear constraint

is:

−1 ≤ x

h2
≤ 1. (3.8)

The feasible set is highlighted in gray in Figure 3.1.

The McCormick envelope for this constraint, considering the range of h between hmin and

hmax, can be constructed using the following inequalities:

hN ≤ hN
max − hN

min

hmax − hmin

h+
hmaxh

N
min − hminh

N
max

hmax − hmin

. (3.9)

The single McCormick envelope using (3.9) is shown as a blue line. Alternatively, we could choose

to copy a configuration space region into e.g. separate slow, normal, and fast regions, shown in

red. We can use the discrete machinery in GCS to enable these tighter piecewise-McCormick

24

Figure 3.1: Convex Approximations of 1D acceleration limits. The filled gray area represents the
feasible set of the nonlinear constraint. The blue line represents a McCormick envelope, a convex
relaxation of the original constraint. The red lines illustrate a tighter piecewise envelope. The
orange line shows a simpler approximation.

envelopes, but at the cost of increasing the size of the graph and the solve times.

Alternatively, we use a simpler linear approximation, where D is a convex set with the allow-

able derivatives:
dNr(s)

dsN
∈ hN−1

0 hD, (3.10)

where h0 is a characteristic time constant. While this approximation is less tight than the piecewise-

McCormick envelope and too conservative for large accelerations, it is often sufficient for guiding

the optimization and can be computationally more efficient.

Regardless of the chosen approximation, we refine the solution during the rounding stage using

nonlinear optimization to ensure that the final trajectory strictly satisfies the original nonlinear

acceleration constraints:
dNr(s)

dsN
∈ hND. (3.11)

25

3.2.3 Continuity

In GCS trajectory optimization we use equality constraints on the path and its derivatives to

smoothly stitch together trajectory segments from individual regions. The initial and terminal

points of the scaled trajectory qi correspond to the first and last control points of Bézier curve:

ri,0 = ri(0) and ri+1,d = ri+1(S).

Zero-order continuity (position continuity) is achieved by requiring the initial and terminal

points of consecutive Bézier curves to be equal:

rk,d = rk+1,0. (3.12)

This guarantees that the robot’s path is continuous without any teleportation.

To avoid sudden changes in velocity and acceleration, we can enforce higher-order continuity.

The rounding problem receives these nonconvex equality constraint that relate the derivatives of

consecutive Bézier curves:
dNrk,d
dsN

hN
k+1 =

dNrk+1,0

dsN
hN
k . (3.13)

We introduce a convex surrogate by replacing the time scaling variables with a constant value (h0)

for each region:
dNrk,d
dsN

hN
0,k+1 =

dNrk+1,0

dsN
hN
0,k. (3.14)

In practice, we typically set h0 to one, effectively enforcing continuity on the path variable r(s).

However, depending on the specific problem and prior knowledge about set sizes and velocity

bounds, a different constant value might be more suitable.

3.2.4 Collision Avoidance

For static obstacles, we leverage the convex hull property of Bézier curves. We assign a collision-

free set (Qi) to each vertex in the GCS graph and constrain the control points of the corresponding

trajectory segment (ri) to lie within this set. This guarantees that the entire segment remains

26

collision-free. These sets can represent both the robot’s self-collision-free space and the space

around static obstacles, which can be efficiently generated using tools like IRIS-NP [23]. This

approach leverages the combinatorial power of the GCS framework to efficiently determine the

optimal path around obstacles. It is particularly beneficial for robots with complex morphology

(e.g., bimanual or legged robots) or known cluttered environments. For pick- and place task,

we recommend generating a library of swappable regions that treat grasped objects as welded

geometries.

In dynamic environments, pre-computing collision-free sets for all possible scenarios is im-

practical. Instead, we utilize minimum distance constraints during the rounding stage. Let Rk(r(si))

represent the geometry of the k-th link of the robot at sample point si, and Oj represent the geom-

etry of the j-th object in the environment. We enforce the following constraint:

min
x∈Rk(r(si)),y∈Oj

|x− y|2 ≥ dmin, ∀(j, k) ∈ C,∀si ∈ SI , (3.15)

where C represents the set of all collision pairs between robot links and environment objects.

We do not currently introduce any convex surrogate for these constraints; they are only intro-

duced in the rounding. These constraints, while nonconvex, enforce local obstacle avoidance in the

rounding stage and allow the robot to react to unexpected changes in the environment. Importantly,

the GCS relaxation guides a global search through many path-homotopies and navigates multiple

local minima, reducing the likelihood of becoming ‘stuck’, a common issue with traditional trajec-

tory optimization.

Although we cannot easily enforce that these constraints are satisfied for the entire trajectory,

we enforce them at a finite set of subsamples in each region. To choose the number of subsamples,

we provide a tunable step size and use a simple heuristic (Algorithm 1) to estimate the length of

each convex region. This heuristic samples a random linear cost from a Gaussian distribution and

uses it to find the points within the polyhedron that are farthest apart in the direction of the cost.

By repeating this process for N samples and taking the maximum distance found, we obtain an

27

estimate of the region’s length, which guides the selection of subsamples given a step size.

Algorithm 1 Compute Maximum Distance In Polyhedra
Require: Half-space representation of the polyhedra H = Ax ≤ b, number of samples N
Ensure: Maximum distance between any two points in the polyhedra

distmax ← 0
for i = 1, . . . , N do

Sample a random vector c ∼ N (0, I)
Solve the optimization problem:

min
x1,x2

cT (x1 − x2)

subject to Ax1 ≤ b,

Ax2 ≤ b

distmax ← max(distmax, |x∗
1 − x∗

2|2)
end for
return distmax

3.2.5 Task Space Constraints

In robotic manipulation, we often need to couple task-space goals (e.g. grasp-poses or end-effector

velocity limits) with our joint space costs and constraints. We can enforce constraints on the robot’s

end-effector position, gaze direction, center of mass, or any other relevant function at user-specified

points si ∈ SU along the trajectory r(si):

fkin(r(si)) ∈ P , ∀si ∈ SU . (3.16)

For common manipulators the forward kinematics fkin(r(si)) are typically nonconvex, thus han-

dled in the rounding stage. We leverage Drake’s rich library of kinematic costs and constraints to

write the minimal set of constraints required by the task (e.g. we don’t constrain the entire pose of

the hand if you only need the fingers to be at the grasp point). The convex decomposition of the

configuration space used in GCS also aids the satisfaction of these potentially nonconvex kinematic

constraints.

While we address the nonconvexity of task-space position constraints during the rounding

28

stage, it can be beneficial to introduce convex surrogates in the GCS relaxation to guide the opti-

mization toward feasible solutions.

One approach is to solve the inverse kinematics problem a priori for the desired task-space

position constraints, targeting a specific point, si, along the trajectory segment represented by the

vertex. We can use the Chebyshev center of a vertex in the relevant subgraph as an initial guess

for the inverse kinematics solver. If a solution is found, this joint configuration can serve as a

simple convex surrogate in the relaxation, effectively representing a point constraint at si within

the original convex region.

Alternatively, we can leverage the IRIS-NP algorithm [23] to generate a convex inner approx-

imation of the set of feasible task-space position constraints within the original convex region.

Specifically, we can use IRIS-NP to grow a convex region within the original region, subject to the

task-space position constraint. This results in a new convex region in joint space that corresponds

to task-space positions satisfying the constraint, allowing us to impose a linear constraint on the

corresponding vertex in the GCS relaxation.

When handling delicate objects or executing challenging maneuvers, task space velocity and

accelerations constraints come in handy. For example, when placing a tall box on a table, bounding

task-space velocities can prevent the box from tipping over while not explicitly restriction config-

uration space velocities. Task-space velocity and acceleration constraints can be expressed using

the kinematic Jacobian (J) and its derivative:

J(r(si))ṙ(si) ∈ hV , ∀si ∈ SU , (3.17a)

J(r(si))r̈(si) + hJ̇(r(si))ṙ(si) ∈ h2A, ∀si ∈ SU . (3.17b)

where V ,A ⊆ R6 are bounded convex sets constraining the spatial velocities and accelerations,

respectively. Exploring convex surrogates for these constraints is more challenging due to their

nonlinear dependence on the Jacobian and its derivative. One potential approach is to extend the

IRIS-NP algorithm to generate regions that encompass not only configurations but also trajectory

29

segments, allowing us to impose velocity constraints on the control points of the Bézier curves.

3.3 Multimodal Planning with Hierarchical Graph Structures

The Graph of Convex Sets framework can be leveraged to incorporate discrete decision making.

A task, that can be transcribed to desired positions/velocities/accelerations in configuration or task

space can be tackled through hierarchical graph structures, where multiple subgraphs represent

different task phases and allow for simultaneous optimization of discrete choices and continuous

trajectories.

3.3.1 Subgraphs and Subspaces

Within this structure, a subgraph represents a connected set of collision-free regions in configu-

ration space, corresponding to various task stages such as grasping, manipulation, or navigation.

Individual configurations like start and goal poses are represented as singletons within their respec-

tive subgraphs.

Each subgraph offers control over the objective and constraints with respect to the associ-

ated task stage. The weights of the objectives can be adjusted, allowing some subgraphs to favor

minimum-time planning over the path length cost or to optimize for stronger smoothness. To tra-

verse slower through a subgraph, the velocity and derivative bounds in configuration or task space

can be further tightened. Further, the minimum duration bounds can be adjusted to introduce delays

which would give a gripper enough time to close before continuing with the remaining plan.

Directed edges connect these subgraphs, enabling transitions between task stages. Subspaces

act as optional position constraints on these directed edges, where the control point connecting

the subgraphs must also lie within the subspace. It does not introduce new vertices. A subspace

is a convex set, in the simplest case just a point constraint. Additional constraints like tighter,

or zero, derivative bounds can be constraint on the edges which can be useful to decelerate at an

intermediate waypoint.

30

3.3.2 Sequential and Parallel Subgraphs

Figure 3.2: Sequential and parallel subgraphs in a hierarchical graph structure. Blue shapes repre-
sent subgraphs (GS , GT , G1−4), and red denote subspace (S1−2 constraints on gray edges connect-
ing the subgraphs.

Arranging subgraphs sequentially and in parallel empowers the hierarchical structure to handle

both sequential task execution and decision-making between alternatives. Sequential subgraphs

enable planning with intermediate goals, optimizing for smooth transitions by ensuring continuity

on all continuous variables. Parallel subgraphs allow selecting one path among several, choosing

the option that minimizes the objective function while adhering to all constraints.

We will use figure 3.2 to illustrate the potential of sequential and parallel graphs, where GS ,

G1−4, and GT represent the subgraphs (in blue) and S1, S2 the subspaces (in red). Here GS , GT

represent the start and goal configurations respectively, which are singletons sets in a subgraph

with no more other regions connected to. G1−4 on the other hand contain multiple sets, which in

the motion planning setting are connected based weather a pair of regions intersects. S1. There are

two different sequences of graphs one can traverse to to get from the start to the target. The first

option is through: GS → G1 → S1 → G2 → G4 → GT , which goes through the subspace S1

and the subgraph G2. Alternatively passing with subspace S2 and the subgraph G3 would result in:

GS → G1 → S2 → G3 → G4 → GT .

Consider a robotic arm tasked with picking up an item (apple or bag of flour) from a conveyor

belt, scanning its Barcode, and dropping it in a bag. A hierarchical graph structure effectively

represents this task:

31

• Start and goal subgraphs (GS , GT): Singletons representing the initial and final configu-

rations of the manipulator. Where the final configuration is positioned s.t. it would drop the

picked item in the bag.

• Manipulation subgraphs (G1, G4): Representing the collision-free configuration space of

the manipulator and static elements of the environment.

• Grasp subspaces (S1, S2): The subspaces could be constructed such that S1 contains all

possible grasp configurations for the apple and S2 all configurations for the bag of flour. The

velocity and accelerations on the subspace edges would be set to zero since the objects are

initially at rest.

• Barcode scanning subgraphs (G2, G3): Contains configurations s.t. the end-effector with

the grasped items would pass through the Barcode scanner in task-space. Since the scanner

may be slow, constraining lower velocity limits on the subgraphs may be suitable.

This formulation allows the planner to find a collision-free trajectory that minimizes a desired

objective function (e.g., time or path length), selects the appropriate object to grasp, and satisfies

all task constraints to scan the Barcodes and drop the item into the bag.

3.3.3 Utilizing Subgraphs as Start and Goal Regions

Figure 3.3: Hierarchical graph structure with subgraphs as start and goal regions. Blue shapes
represent subgraphs (GS , GT , G1), gray edges connect the subgraphs, and the dummy vertices
(orange lines) enable the selection of any vertex within a subgraph as the effective start or target.

32

Hierarchical graph structures offer further flexibility by accommodating scenarios where the

start or goal configurations are not singular points but rather sets of possibilities. This allows the

planner to adapt to situations with uncertainty or multiple feasible solutions.

Figure 3.3 illustrates such a scenario, where the start subgraph (GS) encompasses two poten-

tial starting configurations (GS1 and GS2), while the goal subgraph (GT) consists of a goal set

(GT1) and a specific configuration (GT2). These start and goal subgraphs are connected by an

intermediate subgraph (G1) composed of multiple regions and edges.

The Shortest Path Problem (SPP) formulation, fundamental to the GCS framework, requires a

single designated start and goal vertex. To accommodate multiple start or goal regions within a

subgraph, we employ a simple technique: introducing a dummy vertex. This dummy vertex is an

empty set connected to all vertices within the subgraph via directed edges. This allows the planner

to choose any vertex within the subgraph as the effective start or goal, depending on which path

minimizes the overall objective function. While it would be possible to introduce a dummy vertex

without the subgraph abstraction, using subgraphs provides a more structured representation. This

allows us to impose specific constraints on only the start and target regions, such as enforcing

zero velocity on all outgoing edges of the start subgraph and on all incoming edges of the target

subgraph.

33

34

Chapter 4

Application

We demonstrate the effectiveness of our nonlinear extension to GCS trajectory optimization (NGC-

STrajOpt) through a series of numerical examples. First, we revisit the 2D problem from [18] to

highlight the impact of nonlinear acceleration and continuity constraints on the resulting trajectory

(Section 4.1). Next, we showcase minimum-snap trajectory planning for quadrotors, incorporating

continuity, velocity, and acceleration constraints (Section 4.2). Finally, we demonstrate planning

executable trajectories for the KUKA iiwa robot, considering task-space constraints and dynamic

environments with obstacles (Section 4.3).

All results are reproducible using the code available at https://ngcs-trajopt.github.io with the

nonlinear extension also available in Drake [26]. We used Mosek 10.1 [2] for solving the relaxation

problems and SNOPT 7.2 [10] for the rounded problems.

4.1 Two Dimensional Example

4.1.1 Comparison of Post-processing with NGCSTrajOpt

As acceleration constraints are nonlinear, convex GCSTrajOpt can only manage velocity con-

straints, producing unrealistic accelerations, which could be regularized, but not bounded[18].

Widely accessible tools, such as time optimal path parameterization (TOPP) [27], enable time

35

https://ngcs-trajopt.github.io

(a) 2D Environment (b) Free Space

(c) Convex GCS (d) GCS + TOPP (e) NGCS

Figure 4.1: 2D comparison of GCS trajectory optimization with GCS + TOPP and nonconvex GCS
(The trajectory is blue). Obstacles in red, the initial q0 and final qT configurations are marked with
crosses and the free space is decomposed in convex safe regionsQi (in light blue). The blue graph
in the velocity and acceleration plot illustrates the horizontal component in x and the orange plot
for the vertical component in y. The left column shows the convex duration transcription of GCS
and its corresponding velocities and accelerations. The middle column illustrates the same path,
but with a reparametrization using TOPP and acceleration bounds. Lastly, we show our method
that includes nonlinear continuity constraints and acceleration bounds.

reparametrization of a given path by incorporating acceleration bounds. Our nonlinear problem

formulation allows derivative bounds up to the order of the Bézier curve and higher order continu-

ity, while considering multiple discrete paths.

We revisit the 2D example from [18] with velocity bounds of [-2, 2] m/s and acceleration

bounds of [-1, 1] m/s2. Bézier curves of order six are used for each region.

Convex GCSTrajOpt, limited to velocity constraints, plans a path around the obstacle from

below (Figure 4.1c). While achieving a short duration of 5.3 seconds, the trajectory exhibits unre-

alistic accelerations (approximately 150 m/s2) at the final turn. If this trajectory were for a fighter

jet, the pilot would experience 15g. Applying TOPP to this path reparameterizes the time to satisfy

acceleration bounds (Figure 4.1d), resulting in a longer duration of 13.8 seconds.

In contrast, our method jointly optimizes velocity and acceleration bounds, producing a dynam-

ically feasible trajectory without requiring post-processing (Figure 4.1e). Notably, NGCSTrajOpt

chooses a different path, going above the obstacle, and achieves a faster duration of 10.4 seconds.

36

This would not have been achieved with TOPP since the path is fixed, and it only optimizes for

time.

4.1.2 Planning through Hierarchical Graphs

(a) Planning through Subspaces (b) Multi Start/Goal Planning

Figure 4.2: Planning with intermediate waypoints and multi-start/goal points. The left column
shows a planning problem, which is constrained to find a solution going through the light blue
subspace between the two red obstacles in the middle. The right column shows a problem with
two possible start configurations q0 and two final configurations qT configurations, where one of
them is not a point, but a target region in light blue. The blue graph in the velocity and acceleration
plot illustrates the horizontal component in x and the orange plot for the vertical component in y.

Hierarchical graph planning excels at constructing complex planning problems by composing

an interconnected graph from multiple subgraphs. This approach allows us to seamlessly integrate

additional constraints on the edges and subgraphs, enabling the optimization of both planning

through waypoints and multi-start/goal scenarios within a single optimization problem. By en-

compassing continuous decision variables like positions, velocities, and accelerations, this method

avoids the potential discontinuities that may arise from solving multiple smaller, disconnected

problems. Consequently, hierarchical planning ensures global consistency and optimally across all

variables, leading to smoother and more efficient trajectories.

Figure 4.2a illustrates a planning scenario where a robot is required to traverse a narrow passage

(blue region) between obstacles to reach a target configuration (qT) from a starting point (q0).

This problem is constructed using a series of interconnected subgraphs: one containing q0, two

encompassing the free space regions, and one containing qT . Connecting the free-space subgraphs

37

alongside imposing a subspace constraint only adds the necessary edges to guide the robot through

the narrow passage. By incorporating velocity, acceleration limits, and continuity constraints,

alongside zero velocity and acceleration requirements at the start and target, we obtain a smooth

trajectory that navigates the passage within 15.1 seconds.

Hierarchical graphs also excel in scenarios with multiple start and goal regions. As elaborated

in Section 3.3.3, dummy vertices can connect all regions within starting/ending subgraphs. Fig-

ure 4.2b demonstrates this concept within the same environment but with two starting points (q0)

and a target region (light blue) in addition to a single target configuration (qT). The objective is

to minimize travel time while adhering to velocity and acceleration constraints, resulting in the

selection of the top starting point and the lowest corner of the target region. With zero velocity and

acceleration constraints at the start and end, the optimal plan takes approximately 7.9 seconds.

4.2 Quadrotor Example

Figure 4.3: Three candidate trajectories for a quadrotor navigating from the bottom left corner to
the top right room of a building. The blue trajectory (convex GCS trajectory optimization) is fast
but lacks smoothness and exhibits unrealistic roll due to high initial accelerations. The yellow and
red trajectories (proposed method) enforce higher-order continuity, limit accelerations, and achieve
smoother paths while the yellow trajectory also minimizes snap.

This section demonstrates the advantages of our proposed method over the convex GCSTrajOpt

38

approach for planning the motion of an unmanned aerial vehicle (UAV). Consider the scenario

depicted in Figure 4.3, where a building contains multiple rooms, windows, and open doors. We

manually decompose this block world into task-space regions (x, y, z) that form the collision-free

regions in our graph of convex sets. We will compare three different approaches for planning the

UAV’s trajectory through this environment.

Following Mellinger and Kumar [20], we exploit the differential flatness of quadrotors. This

allows us to plan in a simpler set of variables, namely the position and yaw angle of its center of

mass. We can then map it to the full thirteen-dimensional quadrotor state space, which includes

rotations (unit quaternion), translations, and their derivatives.

Mellinger and Kumar [20] also recommends minimizing the squared norm of snap (the fourth

derivative of position) in the objective function. This is beneficial because body moments, which

relate directly to net thrust, appear in the fourth derivative of the trajectory. Additionally, enforcing

continuity up to the fourth order ensures smooth and realistic motions.

Figure 4.3 compares three trajectories for a scenario where the UAV must navigate from one

corner of the environment to the top right room of the building. All three trajectories have initial

and final velocities and accelerations set to zero (a special case that is convex in r(s)), ensuring a

level start and finish.

• Blue Trajectory: The baseline trajectory uses the convex GCSTrajOpt with duration tran-

scription, which does not support higher-order continuity on q(t). We minimize the path

length and duration with velocity bounds of 16 m/s [25]. While this trajectory is fast (1.5

seconds), its lack of smoothness and acceleration constraints leads to abrupt roll and pitch

maneuvers while navigating through the building, particularly moments after the start (see

bottom left image). The convex formulation cannot constrain higher-order derivatives, even

with initial zero accelerations, the solver abruptly jumps to over 100 m/s2 to meet the mini-

mum time objective, resulting in unrealistic roll and pitch in the differential flatness model.

To address this, we can apply Time Optimal Path Parameterization (TOPP) [27] to repa-

rameterize the timing of the path, enforcing acceleration bounds. This yields a trajectory

39

taking 3.5 seconds. However, the absence of higher-order continuity is evident in the sharp

corners of the blue path, making it non-executable. Enforcing path continuity on r(s) in a

convex manner before re-timing with TOPP results in a smoother path with a duration of 6.5

seconds.

It is important to note that our implementation of TOPP does not bound jerk, leading to rapid

accelerations and deceleration’s that are unattainable. Therefore, an executable trajectory

flying through the building might take longer than 6.5 seconds.

• Red Trajectory: This trajectory utilizes our proposed method, enforcing fourth-order conti-

nuity and limiting accelerations to 10 m/s2 (a thrust-to-weight ratio of two). The objective

function minimizes path length. Notably, this trajectory chooses to fly around the building,

avoiding the sharp corners within it, and takes 5.0 seconds to complete.

• Yellow Trajectory: This trajectory also employs our proposed method with the same con-

straints as the red trajectory. However, the objective function minimizes the convex surrogate

for the squared norm of snap, leading to a smoother path that also flies around the building.

This trajectory takes 4.7 seconds and avoids sharp turns.

Notably, both the red and yellow trajectories, generated by our nonlinear GCS method, achieve

shorter duration’s than the shortest path found by convex GCSTrajOpt re-timed with TOPP. This

highlights a key advantage of our approach: it optimizes for both the discrete path and the contin-

uous trajectory concurrently. This allows our method to discover solutions that might not be found

by decoupling path planning and time parameterization.

Our simplified example plans in Cartesian positions and excludes the yaw angle. However,

future work could incorporate wraparound in the yaw angle using approaches like Cohn et al. [4].

40

q6

q7

q1
q2
q3 q5

q4

(a) Waypoints

q6

q7

q8

(b) Additional Seeds

1

2

3

4 5
6

7 8

Figure 4.4: The top left image illustrates the planning environment with designated waypoints q1−5

and the robot arms in transparent at these configurations. The right image shows the additional seed
points used to connect the convex sets, shown as a graph below. Light blue represents the waypoint
regions, and orange indicates the extra regions.

4.3 Manipulation Example

This section compares our proposed nonconvex GCSTrajOpt method with the convex approach

using the same benchmark example from the original GCS trajectory optimization paper [18].

We consider the KUKA iiwa robot arm, a seven-degree-of-freedom manipulator, operating in an

environment containing a shelf and two bins on each side (Figure 4.4). Since the configuration

space in this scenario cannot be decomposed exactly, we employ the IRIS algorithm [1, 6] to

obtain an approximate decomposition. Our task involves planning a trajectory that passes through

five configurations (Figure 4.4): starting above the shelf, then visiting the top rack, middle rack,

left bin, right bin, and finally returning to the top of the shelf.

While both the convex and nonconvex GCS trajectory optimization select the same minimum-

time paths within the graph, the resulting trajectory shapes differ significantly. We utilize fifth-

order Bézier curves to represent the trajectory segments within each region and connect all inter-

mediate points sequentially by duplicating the graph. Both methods enforce global velocity bounds

and zero joint velocities at the waypoint configurations. However, NGCSTrajOpt offers the addi-

tional advantage of incorporating acceleration constraints and continuity in velocity and higher

orders. We enforce the robot’s acceleration limits, require zero acceleration at the waypoints, and

ensure velocity and acceleration continuity throughout the trajectory.

41

Figure 4.5: The top image shows the Kuka robot in the environment, overlaid NGCS (blue) and
classical GCS (orange) trajectories, following the end-effector position. The plots compare joint
velocities and accelerations for both trajectories, focusing on joints 2 to 4. GCS violates every
joint acceleration limit, whereas NGCS adhered to the constraints.

Figure 4.5 showcases the solutions obtained by both methods, with the end-effector position

visualized during trajectory execution. The GCSTrajOpt solution (blue path) completes the task

in 5.4 seconds while adhering to velocity limits. However, as shown in the acceleration plots for

joints 2 to 4, the trajectory violates the robot’s acceleration limits (red dotted lines), requiring

post-processing to obtain a physically executable motion. In contrast, the NGCSTrajOpt solution

(orange path) takes 8.4 seconds but successfully decelerates at waypoints and maintains bounded

accelerations throughout, resulting in a dynamically feasible trajectory. Animations for enhanced

visualization are available in the repository at https://ngcs-trajopt.github.io.

4.3.1 Planning with Task-Space Constraints

In many motion planning tasks, reaching a desired end-effector pose for specific grasping tasks is

more important achieving specific joint configurations. We demonstrate how NGCSTrajOpt can

jointly plan the trajectory and solve the inverse kinematics problem to reach a desired end-effector

position. Figure 4.6 illustrates planning a motion from the right bin to the top of the shelf. We

utilize fifth-order Bézier regions with velocity and acceleration limits and enforce continuity up to

42

https://ngcs-trajopt.github.io

(a) The robot starts in the right bin (b) Planning to a goal configuration (c) Jointly solving for IK

Figure 4.6: The first image displays the robot initiating from the right bin, the middle illustrates
the blue trajectory resulting from separately solving the inverse kinematics problem and planning
to the configuration. The last shows the orange trajectory, achieved by jointly solving motion
planning with a task space position constraint.

the second degree. Additionally, we constrain initial and final velocities and accelerations to zero.

Figure 4.6b shows the blue trajectory obtained by planning to a goal joint configuration deter-

mined through external inverse kinematics. This trajectory adheres to both position and orientation

constraints and takes 1.5 seconds. In contrast, Figure 4.6c shows the orange trajectory resulting

from jointly planning the motion and solving the inverse kinematics problem within NGCSTra-

jOpt. We relaxed the orientation constraint, focusing solely on reaching above the shelf, and added

the position constraint as a generic constraint to the sets at r(si = 1.0). To guide the optimization

towards feasible solutions, we used the solution from the inverse kinematics as a convex surro-

gate, as described in Section 3.2.5. This approach provides more flexibility to the motion planning

problem, leading to a different and quicker trajectory (1.3 seconds).

4.3.2 Avoiding Collisions in Changing Environments

Finally, we consider scenarios where the environment changes unexpectedly, making it challenging

to generate a new set of collision-free regions on time. Figure 4.7 illustrates the robot arm planning

a trajectory around a newly fallen bin. In addition to basic velocity and acceleration limits, we

enforce minimum distance constraints across the entire graph. The planner successfully navigates

43

Figure 4.7: The Kuka arm is avoiding the middle using minimum distance constraints, since it
hasn’t been captured by the iris regions.

through the environment by selecting alternate paths within the GCS graph, demonstrating its

ability to avoid getting ‘stuck’, a common issue with traditional trajectory optimization methods.

4.4 Spot Example

This section demonstrates our method on Spot [8], a quadruped robot equipped with a mounted

arm, developed by Boston Dynamics. We showcase the planning of a manipulation task with

multiple intermediate goals, incorporating both task-space and configuration-space constraints, and

handling dynamic changes in the environment. Further, we include a high-dimensional planning

problem involving two Spots, demonstrating the scalability of our approach to a 50-dimensional

configuration space.

4.4.1 Planning a Multi-Stage Manipulation Task with a Floating Base

Mobile manipulators, unlike their table-mounted counterparts, significantly expand the reachable

workspace, enabling them to grasp objects, transport them across the environment, and interact

with a wider range of targets. For this demonstration, we leverage Spot’s legged locomotion,

abstracting away its leg motions and commanding holonomic trajectories in SE(2) for the floating

44

Figure 4.8: Simulation environment for Spot’s multi-stage manipulation task. The environment
includes shelves, a camera station and bins. The bottom left image shows the robot grasping the
sugar box and lifting it in the image above. Spot scan’s the retrieved box in the camera station
shown in the top right image and dropped it off into the bin in the image below. The trajectory of
end-effector is shown in blue, while the floating base trajectory is traced in orange.

base. This encompassing planar translations, velocities, and yaw angle control. Spot’s six-degree-

of-freedom arm, coupled with a clam-shell gripper, introduces an additional degree of freedom,

resulting in a 10-dimensional planning problem, while incorporating yaw angle wraparound as

described in [4].

Figure 4.8 depicts our planning scenario. The goal is to plan a trajectory for Spot (shown in

yellow) from its initial configuration to the sugar box on the top rack of the left shelf. Once grasped,

the box must be lifted to the camera scanning station in the background before being dropped off

into the bin next to it.

Since the collision-free configuration space in this scenario cannot be decomposed exactly, we

employ the IRIS algorithm [1, 6] to obtain an approximate decomposition. We manually seed

regions at key configurations: the starting pose, the end-effector in the top and middle racks, the

camera scanning station and both bins. This decomposition considers self-collisions of the arm

with Spot’s body, as well as collisions with static obstacles in the environment.

The complete multi-stage task is represented by the sequential graph illustrated in Figure 4.9.

We enforce velocity and acceleration bounds throughout the graph, as well as up to second order

45

Figure 4.9: Sequential graph of Spot’s multi-stage manipulation task. Blue shapes represent re-
gions in the subgraphs, and red shapes denote the subspace constraints on the gray edges between
the subgraphs. GC1-3 show the collision free regions for the whole environment, which are inter-
nally almost fully connected.

continuity. The objective function minimizes total duration and path length.

We’ll break down the planning process according to each stage of the task:

Initial configuration: Represented by a point in the zeroth-order subgraph Gstart, connected

to GC1, which contains all the collision-free regions (fifth-order Bézier curve). Zero velocity and

acceleration constraints are imposed on the edges connecting Gstart to GC1, reflecting the robot’s

initial resting state.

Grasping: Instead of specifying a single grasping configuration, we introduce task-space con-

straints on an entire region to leverage the robots null space. The subgraph Ggrasping contains the

entire collision-free region seeded at the sugar box’s location, excluding the box itself from the

IRIS region generation.

• At s = 0, we enforce an equality constraint to ensure the gripper is open and constrain the

end-effector pose WXGrasp in task space to ensure a proper grasp, as visualized in the bottom

46

left image of Figure 4.8.

fkin(r(0)) =
WXGrasp, (4.1a)

J(r(0))ṙ(0) = 0⃗ (4.1b)

J(r(0))r̈(0) + hJ̇(r(0))ṙ(0) = 0⃗. (4.1c)

Since the object is initially at rest, the spatial velocity and acceleration is set to zero.

• At s = 0.5, the same task-space constraints are enforced, but the gripper is closed.

• At s = 1.0, the gripper remains closed, and the grasping position is shifted five centimeters

higher without zero velocity and acceleration constraints, resulting in the robot lifting the

box, as shown in the top left image of Figure 4.8.

By enforcing end-effector constraints while allowing redundancy in the null space, we enable

Spot’s base to rotate towards the next goal during the lifting motion, reducing the overall path

length.

Scanning Station: After retrieving the box, Spot must pass it through the scanning station.

This is achieved by sequentially connecting Ggrasping, GC2, and GC3, with the edges between GC2

and GC3 containing the subspace Sscanning, which represents the configuration of the robot arm

extended into the camera scanning station (top right image in Figure 4.8). To minimize motion

blur during scanning, we reduce velocity and acceleration limits within the subspace to a tenth

of their original values. The gripper is kept closed throughout these subgraphs, as the gripper

component of all control points are constrained.

Dropping off the Box: Finally, the box is dropped off in the bin next to the camera station, as

shown in the bottom right image of Figure 4.8. GC3 is connected to Gdropoff, containing the region

seeded in the drop-off configuration (see figure 4.9. The pre-drop configuration with the gripper

still closed is constrained via a subspace Spre-drop on the edges between GC3 and Gdropoff. Gdropoff

is then connected to Ggoal, which shares the same configuration as the pre-drop, but with an open

47

gripper. The higher order subgraph Gdropoff ensures a smooth gripper opening while guaranteeing

zero velocity and acceleration at the final configuration.

4.4.2 Adapting to Dynamic Environments

Figure 4.10: The simulation environment presents a new challenge with unexpected obstacles. A
red shelf blocks the brown shelves, and various items clutter the racks and bins, requiring Spot to
adapt its planned trajectory to avoid collisions.

The next day, our fulfillment center presents a new challenge: a cluttered workspace! As shown

in Figure 4.10, a red shelf now obstructs access to the brown shelves, and several sugar boxes and

mustard bottles occupy the racks and bin.

Attempting to execute the previously planned trajectory in this environment would lead to

collisions, as illustrated in Figure 4.11. The geometries in collision will be highlighted in red.

During the approach, Spot’s body collides with the red shelf (Figure 4.11a). When attempting

to retrieve the sugar box, the box itself hits the shelf (Figure 4.11b), potentially causing it to slip

from the gripper. While the final configuration remains collision-free, another sugar box in the bin

obstructs the trajectory towards the drop-off configuration (Figure 4.11c).

To handle these unforeseen obstacles, we introduce minimum distance constraints within the

relevant subgraphs. Specifically, constraints are added to GC1 to prevent collisions between Spot

48

(a) Spot’s body collides with the
shelf during the initial approach.

(b) The sugar box being grasped
collides with the shelf.

(c) Another sugar box obstructs
the path as Spot moves towards
the drop-off bin.

Figure 4.11: Collision instances encountered when executing the original trajectory in the cluttered
environment. The relevant collision geometry is shown in red.

and the new obstacles. Furthermore, to account for potential collisions between the grasped object

and the environment, we attach a collision sphere to the end-effector and include corresponding

minimum distance constraints in subgraphs GC2 and GC3, as illustrated in Figure 4.12.

(a) The collision sphere ensures sufficient clear-
ance from the shelf while grasping the sugar box.

(b) The sphere helps prevent collisions with the
other sugar boxes during the drop-off phase.

Figure 4.12: The collision geometries considered by the minimum distance constraints are shown
in red.

The flexibility provided by the end-effector constraints in Ggrasping allows the minimum distance

constraints to adjust Spot’s body position while maintaining the desired grasp location. Figure

4.13a shows how Spot repositions itself further away from the shelf, extending its arm to reach the

grasping pose. Figure 4.13b demonstrates the arm lifting the sugar box over the shelf without col-

49

(a) Spot avoids the blue shelf
by repositioning its body while
maintaining the desired grasp
location.

(b) The arm lifts the sugar box
over the shelf without collision.

(c) As Spot drops the sugar box
into the bin among other objects,
it remains collision free.

Figure 4.13: Spot successfully navigates the cluttered environment by leveraging minimum dis-
tance constraints.

liding. Finally, during the drop-off phase, the sugar boxes remain collision free while singulating

the box into the bin, as seen in Figure 4.13c.

To further enhance robustness in highly cluttered environments, we can replace the fixed goal

configuration with an end-effector position constraint with liberal bounds. This would allow the

drop-off location to vary as more objects are added to the bin.

4.4.3 Planning in All Degrees of Freedom

While Spot’s API provides a convenient abstraction of the legs, allowing us to plan in floating base

coordinates, we demonstrate the scalability of our method by planning in the full configuration

space, encompassing all degrees of freedom. This includes three degrees of freedom for each leg,

six for the floating base (using Euler rotations), and seven for the arm, including the gripper. For

two Spots, this results in a 50-dimensional planning problem.

Our goal is to plan a collision-free trajectory for two robots that reach between each other’s

legs, close their grippers, and move their arms to their backs, mimicking a grasping and transfer

motion.

We utilize IRIS to generate collision-free regions, taking into account the full configuration

50

space of both robots. To ensure meaningful regions for this complex task, we manually seed the

regions by teleoperating the robots’ bases and arms via inverse kinematics. During teloperation, we

impose position constraints on the feet to ensure they remain stationary and a polytopic constraint

on the center of mass to keep it within the support polygon.

Figure 4.14: Coordinated motion planning for two Spot robots in a 50-dimensional configuration
space. The blue and orange trajectories represent the end-effector paths of the two robots. The
images depict snapshots of the planned motion, read from left to right, top to bottom. The robots
start in an initial configuration (top left), reach between each other’s legs (top right), close their
grippers, and move their arms to their backs (bottom right). The feet remain stationary throughout
the motion.

Figure 4.14 shows the planned motion. The robots start in an initial configuration (top left

image) and move to a configuration where their arms reach under each other’s bases (top right

image). They then close their grippers and move their arms above their backs (bottom right image),

simulating a handover motion. The figure depicts the traced end-effector trajectories, with blue

corresponding to the nearer robot and orange to the robot in the back. Throughout the motion,

the feet remain stationary, achieved by enforcing position constraints on all eight feet centers, as

described in Section 3.2.5. These position constraints, similar to the minimum distance constraints

discussed in Section 3.2.4, are enforced at multiple sample points along the trajectory segment

within each region, determined by the size of the collision-free set.

Figure 4.15 provides a closer look at the grasping configuration from different angles, high-

51

(a) Side view (b) Top view

Figure 4.15: Collision-free grasping configuration for two Spot robots, demonstrating coordinated
motion planning in a 50-dimensional configuration space. The robots reach under each other’s
bodies without colliding.

lighting that the robots are not colliding.

It is important to note that in this high-dimensional scenario (50 degrees of freedom) with

manually seeded regions, finding a trajectory took approximately 15 minutes. We used eleven

regions, with an average of 2530 hyperplanes defining each region. Planning with fourth-order

Bézier curves results in five control points per region, resulting in a total of 138,990 constraints per

subgraph to ensure collision avoidance between the robots and themselves.

To address the computational challenges posed by such high-dimensional planning, Jiang et al.

[14] are developing methods for polytopic simplification by creating inner approximations of the

collision-free sets. These simplifications could be applied at different levels of fidelity. Using

coarser approximations for the GCS relaxation, which considers all regions, can significantly speed

up the global search. For the restriction stage, which typically involves optimizing over a smaller

subset of vertices corresponding to the selected path, finer approximations can be used to preserve

important details of the configuration space and avoid overly conservative solutions.

52

Chapter 5

Conclusion

This thesis has presented a novel approach for addressing nonconvex trajectory optimization prob-

lems by building upon the Graphs of Convex Sets (GCS) framework. Our primary focus has been

integrating nonconvex constraints, such as dynamic limits, task space constraints and local colli-

sion avoidance, while preserving the global optimization advantages of GCS. To achieve this, we

have utilized carefully crafted convex surrogates for nonconvex constraints, enabling efficient con-

vex optimization to guide the global search. The solutions obtained from this convex relaxation are

then refined using nonconvex optimization in a parallelized rounding process, ensuring the final

trajectories satisfy the original nonconvex constraints. This hybrid approach enables the generation

of smooth, dynamically feasible trajectories that can satisfy a wider range of constraints compared

to traditional GCS methods.

Furthermore, we have introduced a hierarchical graph structure to enhance the expressiveness

of GCS Trajectory Optimization, allowing for the representation of complex robotic tasks. This

structure accommodates sequential goals, and decision-making between alternative paths for task

and motion planning. Through this hierarchical representation, we can plan continuous trajectories

while simultaneously reasoning about discrete decisions.

We have evaluated our method on diverse robotic systems, including quadrotors, manipulators,

and legged mobile manipulators, demonstrating its effectiveness in planning challenging motions.

53

The results highlight the method’s ability to generate minimum-snap trajectories for quadrotors,

respect task-space constraints for manipulators, and plan multi-stage manipulation tasks for mobile

robots with a floating base. Furthermore, our approach has shown promise in handling dynamic

environments by adapting to unforeseen obstacles using minimum distance constraints.

5.1 Future Directions

This work contributes to the field of robotic motion planning by offering a framework for tackling

jointly discrete and continuous complex planning problems. The integration of nonconvex opti-

mization with GCS aims to expand the scope of addressable tasks, allowing for the generation of

more efficient and realistic robot motions. However, several promising research avenues remain to

be explored:

Legged Locomotion and Footstep Planning: For legged robots, planning directly in foot

positions rather than joint positions offers a more powerful mechanism for enforcing foothold

constraints. While task-space position constraints can be imposed at set intervals, they cannot

guarantee that a foot remains perfectly stationary throughout a trajectory. By employing analytical

inverse kinematics [5] to relate foot positions to the base configuration, we gain the ability to

impose constraints that ensure specific feet remain stationary while allowing the base to move, tilt,

and roll.

This concept naturally extends to integrate footstep planning into the framework. By associ-

ating footholds with specific regions in the environment, we can leverage GCS to optimize both

footstep placement and continuous base motions. Employing the quasi-static contact model in

GCS introduced by Graesdal et al. [12], the planner could reason about contact forces and po-

tentially be extended via centroidal dynamics [21] to ensure a dynamically feasible gait, even in

challenging environments.

Automatic Convex Decomposition: Existing decomposition algorithms like IRIS-NP [23]

require manual seeding of regions, demanding substantial time and expertise. Automating this

54

process is crucial for wider adoption of GCS-based planning. The clique cover method [29] offers

a promising direction, automatically identifying clusters of mutually visible configurations for

polytope generation. However, in high-dimensional configuration spaces, uniform sampling may

miss critical regions, such as those where the robot interacts with objects or navigates through

tight spaces. Developing effective sampling strategies, potentially leveraging machine learning or

task-specific heuristics, could prioritize these regions, using inverse kinematics to sample relevant

configurations. This would accelerate decomposition and broaden the applicability of GCS-based

planning.

Integration with Perception: Integrating our method with robust perception pipelines for

obstacle detection can bridge the gap between planning and execution. In particular, handling

dynamic environments necessitates perceiving newly introduced obstacles. We can leverage li-

dar sensors and point clouds, employing primitive fitting or learned signed distance fields [22] to

represent newly introduced obstacles for collision avoidance. Incorporating real-time perception

data enables the planner to adapt to changing environments, ensuring robust and collision-free

execution of planned trajectories.

The combination of GCS and nonlinear optimization, as investigated in this thesis, represents

a step toward more powerful robot motion planning. Continuing to explore the future directions

outlined above holds the potential to enhance the capabilities of robots, allowing them to operate

more effectively in complex and dynamic environments.

55

56

References

[1] Alexandre Amice, Hongkai Dai, Peter Werner, Annan Zhang, and Russ Tedrake. Finding

and optimizing certified, collision-free regions in configuration space for robot manipula-

tors. In International Workshop on the Algorithmic Foundations of Robotics, pages 328–348.

Springer, 2022.

[2] MOSEK ApS. The MOSEK optimization manual. Version 10.1., 2023. URL https://docs.

mosek.com/10.1/capi/index.html.

[3] Federico Augugliaro, Angela P Schoellig, and Raffaello D’Andrea. Generation of collision-

free trajectories for a quadrocopter fleet: A sequential convex programming approach. In

2012 IEEE/RSJ international conference on Intelligent Robots and Systems, pages 1917–

1922. IEEE, 2012.

[4] Thomas Cohn, Mark Petersen, Max Simchowitz, and Russ Tedrake. Non-euclidean motion

planning with graphs of geodesically-convex sets. arXiv preprint arXiv:2305.06341, 2023.

[5] Thomas Cohn, Seiji Shaw, Max Simchowitz, and Russ Tedrake. Constrained bimanual plan-

ning with analytic inverse kinematics. arXiv preprint arXiv:2309.08770, 2023.

[6] Robin Deits and Russ Tedrake. Computing large convex regions of obstacle-free space

through semidefinite programming. In Algorithmic Foundations of Robotics XI: Selected

Contributions of the Eleventh International Workshop on the Algorithmic Foundations of

Robotics, pages 109–124. Springer, 2015.

57

https://docs.mosek.com/10.1/capi/index.html
https://docs.mosek.com/10.1/capi/index.html

[7] Moritz Diehl, Hans Georg Bock, Holger Diedam, and P-B Wieber. Fast direct multiple

shooting algorithms for optimal robot control. Fast motions in biomechanics and robotics:

optimization and feedback control, pages 65–93, 2006.

[8] Boston Dynamics. Boston dynamics spot, 2024. URL https://bostondynamics.com/products/

spot/.

[9] Jonathan D Gammell, Siddhartha S Srinivasa, and Timothy D Barfoot. Informed rrt*: Op-

timal sampling-based path planning focused via direct sampling of an admissible ellipsoidal

heuristic. In 2014 IEEE/RSJ international conference on intelligent robots and systems, pages

2997–3004. IEEE, 2014.

[10] Philip E Gill, Walter Murray, and Michael A Saunders. Snopt: An sqp algorithm for large-

scale constrained optimization. SIAM review, 47(1):99–131, 2005.

[11] Gustavo Goretkin, Alejandro Perez, Robert Platt, and George Konidaris. Optimal sampling-

based planning for linear-quadratic kinodynamic systems. In 2013 IEEE International Con-

ference on Robotics and Automation, pages 2429–2436. IEEE, 2013.

[12] Bernhard P Graesdal, Shao YC Chia, Tobia Marcucci, Savva Morozov, Alexandre Amice,

Pablo A Parrilo, and Russ Tedrake. Towards tight convex relaxations for contact-rich manip-

ulation. arXiv preprint arXiv:2402.10312, 2024.

[13] Lucas Janson, Edward Schmerling, Ashley Clark, and Marco Pavone. Fast marching tree: A

fast marching sampling-based method for optimal motion planning in many dimensions. The

International journal of robotics research, 34(7):883–921, 2015.

[14] Rebecca H. Jiang, Ravi Gondhalekar, and Russ Tedrake. Simplifying polytopic representa-

tions via incremental face translation. Manuscript in preparation, 2024.

[15] Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal motion plan-

ning. The international journal of robotics research, 30(7):846–894, 2011.

58

https://bostondynamics.com/products/spot/
https://bostondynamics.com/products/spot/

[16] Steven M LaValle. Planning algorithms. Cambridge university press, 2006.

[17] Anirudha Majumdar and Russ Tedrake. Funnel libraries for real-time robust feedback motion

planning. The International Journal of Robotics Research, 36(8):947–982, 2017.

[18] Tobia Marcucci, Mark Petersen, David von Wrangel, and Russ Tedrake. Motion planning

around obstacles with convex optimization. Science robotics, 8(84):eadf7843, 2023.

[19] Tobia Marcucci, Jack Umenberger, Pablo Parrilo, and Russ Tedrake. Shortest paths in graphs

of convex sets. SIAM Journal on Optimization, 34(1):507–532, 2024.

[20] Daniel Mellinger and Vijay Kumar. Minimum snap trajectory generation and control for

quadrotors. In 2011 IEEE international conference on robotics and automation, pages 2520–

2525. IEEE, 2011.

[21] David E Orin, Ambarish Goswami, and Sung-Hee Lee. Centroidal dynamics of a humanoid

robot. Autonomous robots, 35:161–176, 2013.

[22] Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove.

Deepsdf: Learning continuous signed distance functions for shape representation. In Pro-

ceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages

165–174, 2019.

[23] Mark Petersen and Russ Tedrake. Growing convex collision-free regions in configuration

space using nonlinear programming. arXiv preprint arXiv:2303.14737, 2023.

[24] John Schulman, Yan Duan, Jonathan Ho, Alex Lee, Ibrahim Awwal, Henry Bradlow, Jia Pan,

Sachin Patil, Ken Goldberg, and Pieter Abbeel. Motion planning with sequential convex

optimization and convex collision checking. The International Journal of Robotics Research,

33(9):1251–1270, 2014.

[25] Skydio. Skydio 2+, 2024. URL https://www.skydio.com/skydio-2-plus-enterprise/.

59

https://www.skydio.com/skydio-2-plus-enterprise/

[26] Russ Tedrake and the Drake Development Team. Drake: Model-based design and verification

for robotics, 2019. URL https://drake.mit.edu.

[27] Diederik Verscheure, Bram Demeulenaere, Jan Swevers, Joris De Schutter, and Moritz Diehl.

Time-optimal path tracking for robots: A convex optimization approach. Automatic Control,

IEEE Transactions on, 54(10):2318–2327, 2009.

[28] Dustin J Webb and Jur van den Berg. Kinodynamic rrt*: Optimal motion planning for systems

with linear differential constraints. arXiv preprint arXiv:1205.5088, 2012.

[29] Peter Werner, Alexandre Amice, Tobia Marcucci, Daniela Rus, and Russ Tedrake. Approx-

imating robot configuration spaces with few convex sets using clique covers of visibility

graphs. arXiv preprint arXiv:2310.02875, 2023.

[30] Albert Wu, Sadra Sadraddini, and Russ Tedrake. R3t: Rapidly-exploring random reachable

set tree for optimal kinodynamic planning of nonlinear hybrid systems. In 2020 IEEE Inter-

national Conference on Robotics and Automation (ICRA), pages 4245–4251. IEEE, 2020.

[31] Xiaojing Zhang, Alexander Liniger, and Francesco Borrelli. Optimization-based collision

avoidance. IEEE Transactions on Control Systems Technology, 29(3):972–983, 2020.

60

https://drake.mit.edu

	Title page
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	1 Introduction
	2 Background
	2.1 Trajectory Optimization for Motion Planning
	2.2 The Challenges of Nonconvexity
	2.3 Graphs of Convex Sets (GCS)

	3 Using Graphs of Convex Sets to Guide Nonconvex Trajectory Optimization
	3.1 High-Level Approach
	3.2 Nonlinear extension to GCS Trajectory Optimization
	3.2.1 Minimizing path duration, length, and smoothness
	3.2.2 Derivative Constraints
	3.2.3 Continuity
	3.2.4 Collision Avoidance
	3.2.5 Task Space Constraints

	3.3 Multimodal Planning with Hierarchical Graph Structures
	3.3.1 Subgraphs and Subspaces
	3.3.2 Sequential and Parallel Subgraphs
	3.3.3 Utilizing Subgraphs as Start and Goal Regions

	4 Application
	4.1 Two Dimensional Example
	4.1.1 Comparison of Post-processing with NGCSTrajOpt
	4.1.2 Planning through Hierarchical Graphs

	4.2 Quadrotor Example
	4.3 Manipulation Example
	4.3.1 Planning with Task-Space Constraints
	4.3.2 Avoiding Collisions in Changing Environments

	4.4 Spot Example
	4.4.1 Planning a Multi-Stage Manipulation Task with a Floating Base
	4.4.2 Adapting to Dynamic Environments
	4.4.3 Planning in All Degrees of Freedom

	5 Conclusion
	5.1 Future Directions

	References

