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Fig. 1: Three candidate trajectories for a quadrotor navigating from the bottom left corner to the top right room of a building.
The blue trajectory (convex GCS trajectory optimization) is fast but lacks smoothness and exhibits unrealistic roll due to high
initial accelerations. The yellow and red trajectories (proposed method) enforce higher-order continuity, limit accelerations,
and achieve smoother paths while the yellow trajectory also minimizes snap.

Abstract—Collision-free motion planning with trajectory opti-
mization is inherently nonconvex. Some of this nonconvexity is
fundamental: the robot might need to make a discrete decision
to go left around an obstacle or right around an obstacle. Some
of the nonconvexity is potentially more benign: we might want to
penalize high-order derivatives of our continuous trajectories in
order to encourage smoothness. Recently, Graphs of Convex Sets
(GCS) have been applied to trajectory optimization, addressing
the fundamental nonconvexity with efficient online optimization
over a “roadmap” represented by an approximate convex de-
composition of the configuration space. In this paper, we explore
some of the most useful nonconvex costs and constraints and the
suitability of combining convex “global” optimization using GCS
with nonconvex trajectory optimization for rounding the local
solutions. We find that for many applications, this combination
can lead to a small number of nonconvex optimizations finding
extremely good solutions to the nonconvex trajectory optimization
problem.

I. INTRODUCTION

Trajectory optimization offers a powerful approach for
planning robot motions [7, 4, 20, 15, 25], taking into account
both kinematics and dynamics [10, 23, 24]. However, the
inherent nonconvexity of collision-free trajectory optimiza-
tion often leads to suboptimal solutions or even failures to
find feasible paths [14]. Existing sampling-based planners
[13, 8, 12] can handle nonconvexity but face scalability issues

in high-dimensional spaces and struggle to impose continuous
constraints.

To address these challenges, we propose a novel approach
that leverages the strengths of the Graph of Convex Sets (GCS)
framework [16]. GCS provides a powerful tool for global
optimization over an approximate convex decomposition [19]
of the configuration space. We extend this framework to
incorporate a broader range of cost functions and constraints,
including those involving nonconvexities. This is achieved
through a hybrid approach that combines convex surrogates
for global guidance with efficient rounding via nonlinear
optimization.

Our method generates high-quality solutions for complex
motion planning problems with rich costs and constraints. We
demonstrate its effectiveness in diverse scenarios, including
generating minimum-snap trajectories for quadrotors navi-
gating through cluttered environments and planning smooth,
dynamically feasible motions for manipulators like the Kuka
iiwa operating in dynamic settings.

This work bridges the gap between sampling-based and
optimization-based motion planning, offering a unified frame-
work for tackling challenging problems with global optimality
guarantees. By combining the strengths of convex and non-
convex optimization, we pave the way for more efficient and



robust robot motion planning in complex real-world scenarios.

II. HIGH-LEVEL APPROACH

The Graph of Convex Sets (GCS) framework [17] provides
a powerful tool for addressing mixed discrete and continuous
decision making problems whose discrete component can be
transcribed into a network flow problem like shortest path. The
framework provides a transcription from a graph of convex
sets into a mixed-integer optimization, but also provides a
tight convex relaxation so that many of these generalized
network flow problems can be solved to global optimality by
only solving the convex relaxation and employing a simple
rounding strategy. The term “rounding” is commonly used
because the convex relaxation of the mixed-integer problem
may produce floating point values which are (hopefully) close
to, but not exactly, zero or one; the rounding step takes the
approximate solutions and “rounds” them to nearby solutions
that completely satisfy the original constraints.

Marcucci et al. [16] provides a transcription of the collision-
free motion planning problem into a GCS problem which
provides new capabilities for global trajectory optimization of
smooth trajectories, avoiding the local minima that are nor-
mally inherent in collision-free trajectory optimization. This
work demonstrated the power of efficient convex optimization
in solving seemingly nonconvex robotics problems, and en-
courages us to continue working on tight convex relaxations
[11] for increasingly complex problems. However, the strict
reliance on convexity may not be necessary. Many costs and
constraints that are used in trajectory optimization contain
nonlinearities for which we don’t yet have efficient relaxations;
some of these nonconvexities are benign (do not introduce new
local minima).

In GCS, we form a graph in which we associate convex sets
Xv with vertices v ∈ V , and associate convex sets (xu, xv) ∈
Xe with directed edges e = (u, v) ∈ E . The shortest path
problem on a GCS can be formulated as the search for a path
p ∈ P (defined as an ordered list of vertices and edges) where:

minimize
∑

e=(u,v)∈Ep

le(xu, xv) (1a)

subject to p ∈ P, (1b)
xv ∈ Xv, ∀v ∈ p, (1c)
(xu, xv) ∈ Xe, ∀e = (u, v) ∈ Ep. (1d)

le are convex costs associated with each edge e. Here we
wish to extend the framework to allow Xv and Xe to be
support nonconvex sets (described via the union of nonconvex
constraints), and le to include nonconvex costs. The funda-
mental question we explore here is: how can we effectively
use GCS to guide nonlinear optimization, to capture the global
optimization benefits of GCS (which combat local minima) but
still solve the nonconvex problem?

Broadly speaking, when faced with a nonlinear objective
or constraint, then we have two options: We can explore
a convex surrogate (which can be either a relaxation/outer

approximation, or simply a convex approximation), or we can
attempt to deal with the nonlinearities directly with nonlinear
optimization algorithms. We propose a hybrid approach:

Convex Surrogates as a Guide: We aim to find the tight
convex relaxations or close convex approximations for smooth
nonlinear constraints and objectives. These approximations are
incorporated into the GCS problem. The convex relaxation of
GCS is then used to effectively guide the subsequent rounding
process. Importantly, stronger convex approximations yield
stronger guidance, increasing solution quality.

Rounding with Nonlinear Optimization: Nonlinear opti-
mization fills the gaps left by the convex relaxations. During
rounding, we directly address the original nonlinearities using
appropriate algorithms. Warm-starting the nonlinear solver
with the solution to the convex approximation allows this step
to further refine the solution.

There are some important aspects of the GCS formulation
which can make this approach very powerful. The solution to
the GCS convex relaxation, even when the relaxation is not
tight and edges are assigned values between zero and one,
can be interpreted as a probability distribution on the flow
polytope. The natural rounding scheme introduced in Marcucci
et al. [16] used this “edge probability” interpretation. In this
work, we further leverage this probabilistic interpretation –
GCS doesn’t just tell us a single path through the graph, it
gives us a probability distribution over paths which effectively
guides our global search through many path-homotopies and
navigates multiple local minima of the original nonlinear
program.

In some problems, one may be able to restrict the noncon-
vexity to only appear in the objective, le. In this important class
of problems, through appropriate care in choosing the solver,
it may be possible to use the convex formulation to guarantee
completeness of the planner. However we do not explore this
approach here, as many important nonconvexities we wish to
studey are more naturally represented as constraints. Instead,
like other nonlinear trajectory optimization formulations, we
sacrifice guarantees and instead focus here on the empirical
performance of the algorithm in representative problem in-
stances.

III. NONLINEAR EXTENSION TO
GCS TRAJECTORY OPTIMIZATION

We formulate the trajectory optimization problem as the op-
timization over continuous curves over a graph of convex sets,
closely following the formulation in [16], but with additional
nonconvex costs and constraints added to the vertices and
edges. In particular, we associate with each vertex a Bezier
curve describing the configuration space path, r(s), defined
over the interval s ∈ [0, 1], and a scalar time duration, h.
The final parameterized trajectory is q(t) = r(t/h). Note that
[16] used a richer parameterization for the time rescaling, but
this was primarily introduced to provide high-order derivative
continuity constraints which we will handle more directly in
this work.



The Bezier curve parameterization over convex sets in
configuration space allows us to impose convex constraints
which guarantee that the Bezier curves in the solution path
stay inside the convex collision-free configuration-space re-
gions for all time (not just at the sample points) – providing
strong certificates that the motions are collision free. This is
accomplished by constraining the control points of the path
r(s), which we denote with decision variables ri, to be inside
the convex sets, and leveraging the convex hull property of
Bezier curves. The original formulation also provides convex
constraints which can guarantee that the path was smooth and
that velocity limits are strictly imposed for all t. One of the
first places where the transcription in [16] was limited was that
it did not provide a similar set of convex constraints to enforce
higher-degree derivative constraints (e.g. on acceleration and
jerk).

In the remainder of this section, we describe how we ad-
dress these derivative continuity and other constraints directly
with convex surrogates at the level of GCS and nonconvex
optimization in the rounding stage.

A. Minimizing path duration, length, and smoothness

The transcription in Marcucci et al. [16] introduced convex
objective functions which directly optimize a weighted sum
of the total path duration, and convex surrogates for path
length and a path velocity regularization. We use the same
objectives here, and add additional support for penalizing the
higher derivatives of the trajectory:

minimize aT + bL(r) +

N∑
n=2

cnD(r, h, n) (2)

Here a, b, and cn are user-specified positive scalar weights.
These weights represent the importance given to the trajectory
duration, T, path length, L(r), and regularization of the nth
order derivative D(r, h, n), respectively.

Minimizing trajectory duration is achieved by considering
the convex cost associated with minimizing each individual
segment’s duration’s (hi):

T =
∑
i∈I

hi. (3)

To minimize path length, we minimize the cumulative length
between control points of each Bézier curve (ri):

L(ri) =

d−1∑
k=0

|ri,k+1 − ri,k|2. (4)

This provides an upper bound on path length and avoids un-
necessary numerical integration while maintaining convexity.

Finally, to promote smoothness, we can minimize the trajec-
tory’s higher-order derivatives. We achieve this by minimizing
the squared distance between control points of the Nth minus
one derivative of r(s), normalized by the duration:

D(r, h, n) =
1

h

d−n∑
k=0

∣∣∣∣dn−1ri,k+1

dsn−1
− dn−1ri,k

dsn−1

∣∣∣∣2
2

. (5)

This expression remains convex for h > 0. This is an approxi-
mation for regularizing the true time derivative, dnq(t)

dtn , which
involves a term of hn in the denominator. While this true
nonconvex cost could be directly enforced during the rounding
stage, we have found the convex surrogate to be sufficiently
tight in practice, especially for higher-order derivatives where
the h2(n−1) denominator can lead to numerical challenges.
Therefore, we use the convex surrogate for both the relaxation
and the rounding.

By combining these sub-objectives, we can concurrently
optimize for trajectory duration (3), path length (4), and
smoothness (5), tailoring the optimization to specific task
requirements.

B. Derivative Constraints
Many robot controllers require that trajectories strictly ad-

here to velocity, acceleration, and even jerk limits. In some
cases, acceleration limits can also be used as a surrogate for
torque limits.

For velocity constraints, we leverage the fact that the
derivative of a Bézier curve is also a Bézier curve. This allows
us to impose linear constraints on the control points of the
path, guaranteeing that velocity limits are respected throughout
the entire trajectory. Here V is a convex set of the allowable
velocities.

ṙ(s) ∈ hV. (6a)

However, constraints on higher-order derivatives, such as
acceleration, are inherently nonlinear due to the relationship
between path derivatives and time scaling:

dNq(t)

dtN
=

dNr(s)/dsN

hN
. (7)

Fig. 2: Convex Approximations
of 1D acceleration limits. The
filled gray area represents the
feasible set of the nonlinear
constraint. The blue line repre-
sents a McCormick envelope, a
convex relaxation of the orig-
inal constraint. The red lines
illustrate a tighter piecewise en-
velope. The orange line shows a
simpler approximation.

For example, consider a 1D path with acceleration x and
limits [-1, 1]. The nonlinear constraint is:

−1 ≤ x

h2
≤ 1. (8)

The feasible set is highlighted in gray in Figure 2.
The McCormick envelope for this constraint, considering

the range of h between hmin and hmax, can be constructed
using the following inequalities:

hN ≤ hN
max − hN

min

hmax − hmin
h+

hmaxh
N
min − hminh

N
max

hmax − hmin
. (9)



The single McCormick envelope using (9) is shown as a blue
line. Alternatively, we could choose to copy a configuration
space region into e.g. separate slow, normal, and fast regions,
shown in red. We can use the discrete machinery in GCS to
enable these tighter piecewise-McCormick envelopes, but at
the cost of increasing the size of the graph and the solve times.

Alternatively, we use a simpler linear approximation, where
D is a convex set with the allowable derivatives:

dNr(s)

dsN
∈ hN−1

0 hD, (10)

where h0 is a characteristic time constant. While this approx-
imation is less tight than the piecewise-McCormick envelope
and too conservative for large accelerations, it is often suffi-
cient for guiding the optimization and can be computationally
more efficient.

Regardless of the chosen approximation, we refine the so-
lution during the rounding stage using nonlinear optimization
to ensure that the final trajectory strictly satisfies the original
nonlinear acceleration constraints:

dNr(s)

dsN
∈ hND. (11)

C. Continuity

In GCS trajectory optimization we use equality constraints
on the path and its derivatives to smoothly stitch together
trajectory segments from individual regions. The initial and
terminal points of the scaled trajectory qi correspond to the
first and last control points of Bézier curve: ri,0 = ri(0) and
ri+1,d = ri+1(S).

Zero-order continuity (position continuity) is achieved by
requiring the initial and terminal points of consecutive Bézier
curves to be equal:

rk,d = rk+1,0. (12)

This guarantees that the robot’s path is continuous without any
teleportation.

To avoid sudden changes in velocity and acceleration, we
can enforce higher-order continuity. The rounding problem
receives these nonconvex equality constraint that relate the
derivatives of consecutive Bézier curves:

dNrk,d
dsN

hN
k+1 =

dNrk+1,0

dsN
hN
k . (13)

We introduce a convex surrogate by replacing the time scaling
variables with a constant value (h0) for each region:

dNrk,d
dsN

hN
0,k+1 =

dNrk+1,0

dsN
hN
0,k. (14)

In practice, we typically set h0 to one, effectively enforcing
continuity on the path variable r(s). However, depending on
the specific problem and prior knowledge about set sizes and
velocity bounds, a different constant value might be more
suitable.

D. Collision Avoidance

For static obstacles, we leverage the convex hull property
of Bézier curves. We assign a collision-free set (Qi) to each
vertex in the GCS graph and constrain the control points
of the corresponding trajectory segment (ri) to lie within
this set. This guarantees that the entire segment remains
collision-free. These sets can represent both the robot’s self-
collision-free space and the space around static obstacles,
which can be efficiently generated using tools like IRIS-
NP [19]. This approach leverages the combinatorial power
of the GCS framework to efficiently determine the optimal
path around obstacles. It is particularly beneficial for robots
with complex morphology (e.g., bimanual or legged robots)
or known cluttered environments. For pick- and place task,
we recommend generating a library of swappable regions that
treat grasped objects as welded geometries.

In dynamic environments, pre-computing collision-free sets
for all possible scenarios is impractical. Instead, we utilize
minimum distance constraints during the rounding stage. Let
Rk(r(si)) represent the geometry of the k-th link of the robot
at sample point si, and Oj represent the geometry of the j-th
object in the environment. We enforce the following constraint:

min
x∈Rk(r(si)),y∈Oj

|x−y|2 ≥ dmin, ∀(j, k) ∈ C,∀si ∈ SI , (15)

where C represents the set of all collision pairs between robot
links and environment objects.

We do not currently introduce any convex surrogate for
these constraints; they are only introduced in the rounding.
These constraints, while nonconvex, enforce local obstacle
avoidance in the rounding stage and allow the robot to react
to unexpected changes in the environment. Importantly the
GCS relaxation guides a global search through many path-
homotopies and navigates multiple local minima, reducing
the likelihood of becoming ‘stuck’, a common issue with
traditional trajectory optimization.

Although we cannot easily enforce that these constraints
are satisfied for the entire trajectory, we enforce them at a
finite set of subsamples in each region. To choose the number
of subsamples, we provide a tunable step size and use a
simple heuristic to estimate the length of each convex region:
a random linear cost is sampled from a Gaussian distribution
to find two points within the polyhedron that are farthest apart
in the direction of the cost. By repeating this process for N
samples and taking the maximum distance found, we obtain
an estimate of the region’s length.

E. Task Space Constraints

In robotic manipulation, we often need to couple task-space
goals (e.g. grasp-poses or end-effector velocity limits) with our
joint space costs and constraints. We can enforce constraints
on the robot’s end-effector position, gaze direction, center of
mass, or any other relevant function at user-specified points
si ∈ SU along the trajectory r(si):

fkin(r(si)) ∈ P, ∀si ∈ SU . (16)



For common manipulators the forward kinematics fkin(r(si)
are typically nonconvex, thus handled in the rounding stage.
We leverage Drake’s rich library of kinematic costs and
constraints to write the minimal set of constraints required
by the task (e.g. we don’t constrain the entire pose of the
hand if you only need the fingers to be at the grasp point).
The convex decomposition of the configuration space used in
GCS also aids the satisfaction of these potentially nonconvex
kinematic constraints.

While we address the nonconvexity of task-space position
constraints during the rounding stage, it can be beneficial to
introduce convex surrogates in the GCS relaxation to guide
the optimization toward feasible solutions.

One approach is to solve the inverse kinematics problem a
priori for the desired task-space position constraints, targeting
a specific point, si, along the trajectory segment represented by
the vertex. We can use the Chebyshev center of a vertex in the
relevant subgraph as an initial guess for the inverse kinematics
solver. If a solution is found, this joint configuration can serve
as a simple convex surrogate in the relaxation, effectively
representing a point constraint at si within the original convex
region.

Alternatively, we can leverage the IRIS-NP algorithm [19]
to generate a convex inner approximation of the set of feasible
task-space position constraints within the original convex
region. Specifically, we can use IRIS-NP to grow a convex
region within the original region, subject to the task-space
position constraint. This results in a new convex region in
joint space that corresponds to task-space positions satisfying
the constraint, allowing us to impose a linear constraint on the
corresponding vertex in the GCS relaxation.

When handling delicate objects or executing challenging
maneuvers, task space velocity and accelerations constraints
come in handy. For example, when placing a tall box on a
table, bounding task-space velocities can prevent the box from
tipping over while not explicitly restriction configuration space
velocities. Task-space velocity and acceleration constraints
can be expressed using the kinematic Jacobian (J) and its
derivative:

J(r(si))ṙ(si) ∈ hV, ∀si ∈ SU , (17a)

J(r(si))r̈(si) + hJ̇(r(si))ṙ(si) ∈ h2A, ∀si ∈ SU . (17b)

where V,A ⊆ R6 are bounded convex sets constraining the
spatial velocities and accelerations, respectively. Exploring
convex surrogates for these constraints is more challenging
due to their nonlinear dependence on the Jacobian and its
derivative. One potential approach is to extend the IRIS-
NP algorithm to generate regions that encompass not only
configurations but also trajectory segments, allowing us to
impose velocity constraints on the control points of the Bézier
curves.

IV. NUMERICAL RESULTS

We demonstrate the effectiveness of our nonlinear extension
to GCS trajectory optimization (NGCSTrajOpt) through a

series of numerical examples. First, we revisit the 2D problem
from [16] to highlight the impact of nonlinear acceleration
and continuity constraints on the resulting trajectory (Section
IV-A). Next, we showcase minimum-snap trajectory planning
for quadrotors, incorporating continuity, velocity, and accel-
eration constraints (Section IV-B). Finally, we demonstrate
planning executable trajectories for the KUKA iiwa robot,
considering task-space constraints and dynamic environments
with obstacles (Section IV-C).

All results are reproducible using the code available at
https://ngcs-trajopt.github.io with the nonlinear extension also
available in Drake [21]. We used Mosek 10.1 [3] for solving
the relaxation problems and SNOPT 7.2 [9] for the rounded
problems.

A. Comparison of Post-processing with NGCSTrajOpt

As acceleration constraints are nonlinear, convex GCSTra-
jOpt can only manage velocity constraints, producing un-
realistic accelerations, which could be regularized, but not
bounded[16]. Widely accessible tools, such as time optimal
path parameterization (TOPP) [22], enable time reparametriza-
tion of a given path by incorporating acceleration bounds. Our
nonlinear problem formulation allows derivative bounds up to
the order of the Bézier curve and higher order continuity, while
considering multiple discrete paths.

(a) Convex GCS (b) GCS + TOPP (c) NGCS

Fig. 3: 2D comparison of GCS trajectory optimization with
GCS + TOPP and nonconvex GCS (The trajectory is blue). The
blue graph in the velocity and acceleration plot illustrates the
horizontal component in x and the orange plot for the vertical
component in y. The left column shows the convex duration
transcription of GCS and its corresponding velocities and
accelerations. The middle column illustrates the same path, but
with a reparametrization using TOPP and acceleration bounds.
Lastly, we show our method that includes nonlinear continuity
constraints and acceleration bounds.

We revisit the 2D example from [16] with velocity bounds
of [-2, 2] m/s and acceleration bounds of [-1, 1] m/s2. Bézier

https://ngcs-trajopt.github.io


curves of order six are used for each region.
Convex GCSTrajOpt, limited to velocity constraints, plans

a path around the obstacle from below (Figure 3a). While
achieving a short duration of 5.3 seconds, the trajectory
exhibits unrealistic accelerations (approximately 150 m/s2)
at the final turn. If this trajectory were for a fighter jet,
the pilot would experience 15g. Applying TOPP to this path
reparameterizes the time to satisfy acceleration bounds (Figure
3b), resulting in a longer duration of 12.9 seconds.

In contrast, our method jointly optimizes both velocity
and acceleration bounds, producing a dynamically feasible
trajectory without requiring post-processing (Figure 3c). No-
tably, NGCSTrajOpt chooses a different path, going above the
obstacle, and achieves a faster duration of 10.4 seconds. This
would not have been achieved with TOPP since the path is
fixed, and it only optimizes for time.

B. Quadrotor Example

This section demonstrates the advantages of our proposed
method over the convex GCSTrajOpt approach for planning
the motion of an unmanned aerial vehicle (UAV). Consider
the scenario depicted in Figure , where a building contains
multiple rooms, windows, and open doors. We manually
decompose this block world into task-space regions (x, y, z)
that form the collision-free regions in our graph of convex
sets. We will compare three different approaches for planning
the UAV’s trajectory through this environment.

Following Mellinger and Kumar [18], we exploit the dif-
ferential flatness of quadrotors. This allows us to plan in a
simpler set of variables, namely the position and yaw angle
of its center of mass. We can then map it to the full thirteen-
dimensional quadrotor state space, which includes rotations
(unit quaternion), translations, and their derivatives.

Mellinger and Kumar [18] also recommends minimizing
the squared norm of snap (the fourth derivative of position)
in the objective function. This is beneficial because body
moments, which relate directly to net thrust, appear in the
fourth derivative of the trajectory. Additionally, enforcing
continuity up to the fourth order ensures smooth and realistic
motions.

Figure compares three trajectories for a scenario where the
UAV must navigate from one corner of the environment to the
top right room of the building. All three trajectories have initial
and final velocities and accelerations set to zero (a special case
that is convex in r(s)), ensuring a level start and finish.

• Blue Trajectory: The baseline trajectory uses the convex
GCSTrajOpt with duration transcription, which does not
support higher-order continuity on q(t). We minimize the
path length and duration with velocity bounds of 16 m/s
[1]. While this trajectory is fast (1.5 seconds), its lack of
smoothness and acceleration constraints leads to abrupt
roll and pitch maneuvers while navigating through the
building, particularly moments after the start (see bottom
left image). The convex formulation cannot constrain
higher-order derivatives, even with initial zero acceler-
ations, the solver abruptly jumps to over 100 m/s2 to

meet the minimum time objective, resulting in unrealistic
roll and pitch in the differential flatness model.
To address this, we can apply Time Optimal Path Pa-
rameterization (TOPP) [22] to reparameterize the timing
of the path, enforcing acceleration bounds. This yields a
trajectory taking 3.5 seconds. However, the absence of
higher-order continuity is evident in the sharp corners of
the blue path, making it non-executable. Enforcing path
continuity on r(s) in a convex manner before re-timing
with TOPP results in a smoother path with a duration of
6.5 seconds.
It is important to note that our implementation of TOPP
does not bound jerk, leading to rapid accelerations and
deceleration’s that are unattainable. Therefore, an exe-
cutable trajectory flying through the building might take
longer than 6.5 seconds.

• Red Trajectory: This trajectory utilizes our proposed
method, enforcing fourth-order continuity and limiting
accelerations to 10 m/s2 (a thrust-to-weight ratio of two).
The objective function minimizes path length. Notably,
this trajectory chooses to fly around the building, avoiding
the sharp corners within it, and takes 5.0 seconds to
complete.

• Yellow Trajectory: This trajectory also employs our
proposed method with the same constraints as the red
trajectory. However, the objective function minimizes the
convex surrogate for the squared norm of snap, leading to
a smoother path that also flies around the building. This
trajectory takes 4.7 seconds and avoids sharp turns.

Our simplified example plans in Cartesian positions and ex-
cludes the yaw angle. However, future work could incorporate
wraparound in the yaw angle using approaches like Cohn et al.
[5].

C. Manipulation Example

This section compares our proposed nonconvex GCSTra-
jOpt method with the convex approach using the same bench-
mark example from the original GCS trajectory optimization
paper [16]. We consider the KUKA LBR iiwa robot arm, a
seven-degree-of-freedom manipulator, operating in an environ-
ment containing a shelf and two bins on each side (Figure
4). Since the configuration space in this scenario cannot be
decomposed exactly, we employ the IRIS algorithm [2, 6] to
obtain an approximate decomposition.

Our task involves planning a trajectory that passes through
five configurations (Figure 4): starting above the shelf, then
visiting the top rack, middle rack, left bin, right bin, and finally
returning to the top of the shelf.

While both the convex and nonconvex GCS trajectory
optimization select the same minimum-time paths within the
graph, the resulting trajectory shapes differ significantly. We
utilize fifth-order Bézier curves to represent the trajectory
segments within each region and connect all intermediate
points sequentially by duplicating the graph. Both methods
enforce global velocity bounds and zero joint velocities at the
waypoint configurations. However, NGCSTrajOpt offers the



Fig. 4: The top image shows the Kuka robot in the envi-
ronment, overlaid NGCS (blue) and classical GCS (orange)
trajectories, following the end-effector position. The plots
compare joint velocities and accelerations for both trajectories,
focusing on joints 2 to 4. GCS violates every joint acceleration
limit, whereas NGCS adhered to the constraints.

additional advantage of incorporating acceleration constraints
and continuity in velocity and higher orders. We enforce the
robot’s acceleration limits, require zero acceleration at the
waypoints, and ensure velocity and acceleration continuity
throughout the trajectory.

Figure 4 showcases the solutions obtained by both methods,
with the end-effector position visualized during trajectory
execution. The GCSTrajOpt solution (blue path) completes
the task in 5.4 seconds while adhering to velocity limits.
However, as shown in the acceleration plots for joints 2 to
4, the trajectory violates the robot’s acceleration limits (red
dotted lines), requiring post-processing to obtain a physically
executable motion. In contrast, the NGCSTrajOpt solution
(orange path) takes 8.4 seconds but successfully decelerates
at waypoints and maintains bounded accelerations throughout,
resulting in a dynamically feasible trajectory. Animations
for enhanced visualization are available in the repository at
https://ngcs-trajopt.github.io.

In many motion planning tasks, reaching a desired end-

effector pose for specific grasping tasks is more important
achieving specific joint configurations. We demonstrate how
NGCSTrajOpt can jointly plan the trajectory and solve the
inverse kinematics problem to reach a desired end-effector
position. Figure 5 illustrates planning a motion from the right
bin to the top of the shelf. We utilize fifth-order Bézier regions
with velocity and acceleration limits and enforce continuity
up to the second degree. Additionally, we constrain initial and
final velocities and accelerations to zero.

Figure 5b shows the blue trajectory obtained by planning to
a goal joint configuration determined through external inverse
kinematics. This trajectory adheres to both position and ori-
entation constraints and takes 1.5 seconds. In contrast, Figure
5c shows the orange trajectory resulting from jointly planning
the motion and solving the inverse kinematics problem within
NGCSTrajOpt. We relaxed the orientation constraint, focusing
solely on reaching above the shelf, and added the position
constraint as a generic constraint to the sets at r(si = 1.0).
To guide the optimization towards feasible solutions, we
used the solution from the inverse kinematics as a convex
surrogate, as described in Section ??. This approach provides
more flexibility to the motion planning problem, leading to a
different and quicker trajectory (1.3 seconds).

Finally, we consider scenarios where the environment
changes unexpectedly, making it challenging to generate a
new set of collision-free regions on time. Figure 6 illustrates
the robot arm planning a trajectory around a newly fallen
bin. In addition to basic velocity and acceleration limits, we
enforce minimum distance constraints across the entire graph.
The planner successfully navigates through the environment by
selecting alternate paths within the GCS graph, demonstrating
its ability to avoid getting ‘stuck’, a common issue with
traditional trajectory optimization methods.

V. CONCLUSION

This paper has presented a novel approach for robotic
motion planning that leverages the combinatorial power of the
GCS relaxation to guide nonconvex trajectory optimization.
We have have shown that convex surrogates can be strong
enough to guide the global search through multiple local min-
ima for planning smooth, dynamically feasible, and efficient
robot motions in complex environments.

We have showcased the effectiveness of our method in
diverse examples, including minimum-snap trajectory planning
for quadrotors and dynamically feasible motion planning for
manipulators like the KUKA iiwa, even in dynamic environ-
ments with obstacles.
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(a) The robot starts in the right bin (b) Planning to a goal configuration (c) Jointly solving for IK

Fig. 5: The first image displays the robot initiating from the right bin, the middle illustrates the blue trajectory resulting from
separately solving the inverse kinematics problem and planning to the configuration. The last shows the orange trajectory,
achieved by jointly solving motion planning with a task space position constraint.

Fig. 6: The Kuka arm is avoiding the middle using minimum
distance constraints, since it hasn’t been captured by the iris
regions.
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