
Approximating Robot Configuration Spaces with few Convex Sets
using Clique Covers of Visibility Graphs

Peter Werner, Alexandre Amice, Tobia Marcucci, Daniela Rus, and Russ Tedrake

Abstract— Many computations in robotics can be dra-
matically accelerated if the robot configuration space is
described as a collection of simple sets. For example,
recently developed motion planners rely on a convex
decomposition of the free space to design collision-free
trajectories using fast convex optimization. In this work,
we present an efficient method for approximately covering
complex configuration spaces with a small number of
polytopes. The approach constructs a visibility graph using
sampling and generates a clique cover of this graph to
find clusters of samples that have mutual line of sight.
These clusters are then inflated into large, full-dimensional,
polytopes. We evaluate our method on a variety of robotic
systems and show that it consistently covers larger portions
of free configuration space, with fewer polytopes, and in a
fraction of the time compared to previous methods.

I. INTRODUCTION

Approximating complex sets as a union of simpler
sets is a common pre-processing method for accelerating
downstream computations. Familiar examples include
clustering methods for high-dimensional data in machine
learning [1, §2.5.2], approximating complex shapes via
triangular meshes to facilitate graphics rendering [2],
and describing geometries as unions of convex sets
for efficient collision checking [3]. Similarly, recently
developed methods for robot motion planning rely on
(conservative) decompositions of the environment into
convex sets to design smooth trajectories around ob-
stacles using efficient convex optimization [4], [5], [6],
[7], [8]. These motion planners have demonstrated great
potential, and performance frequently superior to widely
used sampling-based methods [5]. However, the de-
composition of the environment that they require is a
daunting task, often demanding a substantial degree of
human supervision. This is largely due to the fact that
the collision-free subset of a robot’s configuration space
(Cfree) is intractable to describe analytically [9, §3], even

All authors are with CSAIL, MIT. The corresponding author is
P.Werner, wernerpe@mit.edu. This work was supported in part
by Amazon.com PO# #2D-06310236, Air Force Research Laboratory
FA8750-19-2-1000, Office of Naval Research (ONR), Awards No.
N00014-22-1-2121 and N00014-18-1-2830, and the Toyota Research
Institute (TRI).

q3

q2

q1
q3

q1 q2

Fig. 1: The collision-free configuration space of a simple
robot is decomposed into 7 polytopes, achieving around 92%
coverage. Left: Robot with with 3 revolute joints q1 to q3.
Center: Visualization of the full collision-free configuration
space Cfree, given by the interior of the green mesh. Right:
Approximate convex cover of Cfree generated with the pro-
posed method. See also: Interactive visualization, video.

if the robot’s task space is relatively simple (see Figure 1
for an example).

In [10], the authors proposed an algorithm called IRIS
to quickly compute large convex subsets of Cfree. This
method takes as input a “seed” configuration and inflates
a large polytopic region around this seed point using
convex optimization. While originally limited to the
case of convex obstacles, the IRIS algorithm has been
recently extended to handle nonconvex obstacles and
the complicated configuration spaces of multi-link robot
manipulators [11], [12], [13]. The polytopes generated
with these algorithms have been used with great success
for motion planning in high dimensions [5], [6], [7].
Nevertheless, seeding collections of these regions so that
they cover diverse areas of Cfree remains a challenge:
manual seeding is tedious, and naively growing regions
around randomly chosen configurations leads to very
inefficient decompositions.

In this paper, we propose an efficient method for
the approximate decomposition of robot configuration
spaces into few large convex sets, without any human
supervision. A guiding illustration is shown in Figure 2.

Similar to some motion-planning algorithms [14],
[15], our method constructs a visibility graph by sam-
pling points in Cfree. The vertices of this graph are
collision-free samples, and the edges connect pairs of
points with mutual line of sight. The visibility graph
contains rich information about the geometry of Cfree.

ar
X

iv
:2

31
0.

02
87

5v
1

 [
cs

.R
O

]
 4

 O
ct

 2
02

3

https://wernerpe.github.io/files/3dofflipper.html
https://www.youtube.com/watch?v=x37fPVST6Zk

Fig. 2: Sketch of the proposed algorithm on a simple example. First four figures: Samples are drawn uniformly from Cfree

to build a visibility graph. The visibility graph is decomposed into five cliques. The principal directions and locations of the
cliques are used to direct a region-inflation algorithm. Remaining two figures: This process is repeated until sufficient coverage
is obtained by drawing new samples from the remaining free space, and repeating the previous steps.

In particular, our key observation is that, as the number
of samples grows, fully connected subgraphs of this
visibility graph (so-called “cliques”) tend to represent
better and better approximations of collision-free convex
sets in the underlying configuration space. Our approach
is to decompose the visibility graph into a small collec-
tion of large cliques. We then circumscribe the points
in each clique with an ellipsoid by solving a convex-
optimization problem. The center and the principal di-
rections of these ellipsoids are subsequently used to
initialize an inflation algorithm analogous to IRIS.

Through a large variety of experiments, we show
that our algorithm outperforms the approaches that have
been previously used in the literature to seed and inflate
convex regions; both in terms of runtimes and number
of regions used to cover the space. As an example, for
a robot arm with seven degrees of freedom, and many
task-space obstacles, our method requires approximately
46 regions and one hour of computations to cover 70%
of Cfree. Whereas the approach outlined in [12] requires
ten times more regions and is ten times slower.

II. RELATED WORKS

Finding the minimum convex cover of a set is a hard
problem; even in the case of two-dimensional polygons,
the problem is hard to solve exactly and approximately.1

Nonetheless, finding low-cardinality convex covers of
high-dimensional nonconvex spaces (both polygonal and
non-polygonal) remains a problem of practical impor-
tance, for which a variety of approximate algorithms
have been devised. In the following, we group these
algorithms into two categories: ones that require explicit
(e.g., analytic) descriptions of Cfree, and ones that only
use implicit descriptions of Cfree (and are hence suitable
for most complex configuration spaces). In this literature
review, we particularly focus on IRIS algorithms, due to
their efficient scaling to high dimensions.

1More formally, the problem is ∃R-complete [16], and therefore
NP-hard, as well as APX-hard [17].

A. Algorithms Requiring Explicit Obstacle Descriptions

The recent work [18] constructs low-cardinality con-
vex covers of two-dimensional polygons by first de-
composing them into small convex pieces (for exam-
ple triangles), and then by joining the pieces based
on a small clique cover of an approximated set-to-
set visibility graph. In three dimensions the approach
in [19] can be used to decompose Cfree into sets that
are approximately convex, provided that a triangle mesh
description is available. Finally, if the configuration-
space obstacles are explicitly described as convex sets,
the original IRIS algorithm from [10] can be used to
inflate a large polytope in Cfree around a specified seed
point in arbitrary dimensions.

B. Algorithms Allowing Implicit Obstacle Descriptions

Most commonly, the explicit descriptions of the obsta-
cles are only available in task space; while the collision-
free configuration space Cfree is defined implicitly
through the robot’s inverse kinematics, and intractable to
describe analytically [9, §3]. Obtaining convex decom-
positions in this setting has been the focus of multiple
works. The method in [20] uses visibility graphs and
kernels to compute convex decompositions of three-
dimensional spaces via sample-based collision checking.
However, that method represents the convex sets through
their vertices, and is inefficient in higher dimensions.
In the family of IRIS algorithms, two methods can
deal with implicit descriptions of Cfree: IRIS-NP [12]
and C-IRIS [11], [13]. The former extends the original
IRIS method [10] to arbitrary configuration spaces using
nonlinear programming and inflates polytopes that are
collision-free with high probability. The latter grows
polytopes that are rigorously certified to be collision-free
using a rational reparametrization of the configuration
space and sums-of-squares programming.

III. CONVEX COVERS, VISIBILITY, AND CLIQUES

In this section, we formally define our main problem:
approximating the free configuration space Cfree with a
low-cardinality collection of convex sets. We also briefly

review the main technical tools that we will use in the
development of our algorithm, namely, visibility graphs
and clique covers.

A. Problem Statement

Let Cfree ⊆ Rn be the collision-free subset of an
n-dimensional configuration space, which we assume
to have a well-defined finite volume. Let also α be a
constant in the interval (0, 1].

Definition 1 An α-approximate convex cover of Cfree
is a collection of potentially overlapping convex sets
R1, . . . ,RN ⊆ Cfree whose union covers at least an
α-fraction of the volume of Cfree:

vol

(
N⋃
i=1

Ri

)
≥ αvol

(
Cfree

)
.

Our problem is to find an α-approximate convex cover
of minimum cardinality N .

Problem: MIN α-APPROXCONVEXCOVER

minimizeN subject to

vol

(
N⋃
i=1

Ri

)
≥ αvol

(
Cfree

)
,

Ri ⊆ Cfree, ∀i = 1, . . . , N.

In practice, we are interested in solving this prob-
lem for values of α that are sufficiently high to ac-
complish a task of interest, such as collision-free mo-
tion planning, but not so large that the cardinality N
grows unreasonably. Indeed, when α = 1, MIN α-
APPROXCONVEXCOVER might not even have a finite
solution.2

B. Visibility Graphs and Clique Covers

Our algorithm is based on the idea that clusters
of points that see each other can approximate convex
subsets of Cfree. Here, we formally define the notion of
visibility as well as introduce some formal tools from
graph theory to guide the development of our algorithm.

We begin by defining visibility in Cfree.

Definition 2 Two points q, q′ ∈ Cfree are said to see
each other if the entire line connecting them is collision-
free: tq+ (1− t)q′ ∈ Cfree for all t ∈ [0, 1]. Notice that
this definition is symmetric in q and q′.

2For α < 1 a finite solution is guaranteed to exist. This can be
seen by approximating the volume of Cfree over finite hyperrectangle
partitions with a lower Darboux integral.

We are now ready to define the visibility graph of a
set of collision-free configurations.

Definition 3 The visibility graph of a set of points
q1, . . . , qK ∈ Cfree is an undirected graph G = (V, E)
with vertices V = {1, . . . ,K}, and with an edge {i, j} ∈
E for every pair of distinct points qi and qj that see each
other.

We show an example of a visibility graph in Figure 2.
We note that clusters of points that can all see each other
form a clique in the visibility graph.

Definition 4 Let G = (V, E) be an undirected graph. A
clique K is a subset of V where every pair of vertices
is connected by an edge.

Note that if a cluster of configurations can be placed
in the same convex set, then these configurations must
form a clique in the visibility graph. The second panel
in Figure 2 highlights a collection of five cliques in the
visibility graph that have this property. These five cliques
form what is called a clique cover; which resembles a
discrete analog of a convex cover.

Definition 5 A collection T of cliques K1, . . . ,KN is a
clique cover of a graph G if every vertex in the graph
is contained in at least one clique.

A natural discrete counterpart of the minimum convex
cover is the MINCLIQUECOVER problem, where we
look for the minimum number of cliques N required to
cover a graph. Our observation is that, as the number
of samples in the visibility graph increases, a minimum
clique cover typically does an increasingly better job of
approximating a minimum convex cover. Limitations of
this analogy are discussed in §VI.

MINCLIQUECOVER is NP-complete [21]. There ex-
ist heuristics, such as [22], that attempt to solve MIN-
CLIQUECOVER directly. Alternatively, one can greedily
construct a clique cover by repeatedly eliminating the
largest clique. The problem of finding the largest clique
in a graph is called MAXCLIQUE. Even though this
problem is also NP-complete [21], it is often substan-
tially faster to solve in practice. We found the latter ap-
proach with exact solutions of MAXCLIQUE to perform
particularly well on our problem instances.

IV. ALGORITHM

We now present our Visibility Clique Cover (VCC)
algorithm, which consists of four main steps. First, we
randomly sample a collection of points in Cfree and
construct their visibility graph. Second, we compute
an approximate clique cover of the graph. Third, we
summarize the geometric information of each clique

using an ellipsoid. Fourth, we use these ellipsoids to
initialize a polytope-inflation algorithm analogous to
IRIS. This process is repeated until the generated set
of polytopes R covers a given fraction α of Cfree.
This procedure is summarized in Algorithm 1, and the
remainder of this section details the individual steps.

Algorithm 1: VISIBILITYCLIQUEINFLATION

Input :
α: coverage threshold
K: number of samples per iteration
smin: minimum clique size
Output:
R: set of convex polytopes approximating Cfree
Algorithm:
R ← ∅
while CHECKCOVERAGE(R) ≤ α do
G ← SAMPLEVISIBILITYGRAPH(K,R)
T ← TRUNCATEDCLIQUECOVER(G, smin)
B ← MINVOLUMEELLIPSOIDS(T)
R ← R∪ INFLATEPOLYTOPES(B)

end
return R

A. Sampling the Visibility Graph

At the beginning of every iteration of VCC, the
subroutine SAMPLEVISIBILITYGRAPH samples K con-
figurations uniformly at random from the portion of Cfree
that is not already covered by the polytopes in R. Then,
it constructs the visibility graph G = (V, E), by checking
for collisions along the line segments connecting each
pair of sampled configurations. Currently, this is per-
formed using sampling-based collision checkers. Exact
visibility checking is possible using methods such as
[23], [24, §5.3.4], or [13].

B. Truncated Clique Cover

In the subroutine TRUNCATEDCLIQUECOVER we ap-
proximately cover the visibility graph with a collection
of cliques, each of which contain at least smin vertices.
We construct this approximate cover T greedily, by
solving a sequence of MAXCLIQUE problems. Each
instance of MAXCLIQUE is formulated as an integer
linear program

maximize
K∑
i=1

bi (1a)

subject to bi + bj ≤ 1, ∀{i, j} ∈ Ē , (1b)
bi ∈ {0, 1}, ∀i = 1, . . . ,K. (1c)

A binary decision variable bi is added for each vertex.
The role of this variable is to take unit value if and

Fig. 3: The growth direction of an IRIS region can be
guided by the initial distance metric. IRIS is initialized with
three ellipsoids with same center but different principal axes,
resulting in polytopes that cover different portions of Cfree.

only if vertex i is included in the clique. The set Ē
contains all the pairs of vertices {i, j} such that i ̸= j
and {i, j} /∈ E . Therefore the first constraint ensures that
two vertices are selected only if they share an edge.

After solving the integer program (1), the clique found
is removed from the graph and added to the clique cover.
Since small cliques are not informative, we stop this
iterative process when the largest clique left in the graph
is smaller than a given threshold smin. For this reason,
our clique covers will be truncated, i.e., generally, not
all vertices will be contained in one of the cliques.

C. Summarizing Cliques with Ellipsoids

In the subroutine MINVOLUMEELLIPSOIDS, we solve
a semidefinite program to enclose each clique with an
ellipsoid of minimum volume [25, §8.4.1]. This collec-
tion B of ellipsoids allows us to summarize the geometry
of each clique with a point and a set of principal
directions, which are then used to initialize the region-
inflation algorithm. For the upcoming computations, it
is necessary that the center of each ellipsoid is not in
collision; if this is not the case, we recenter the ellipsoid
around the vertex in the clique that is closest to its center.

D. Inflating Polytopes

In the last step of VCC, the subroutine INFLATEPOLY-
TOPES inflates a large collision-free polytope around the
center of each ellipsoid induced by a clique.

Let us initially assume that the obstacles are convex.
Consider a single ellipsoid. Using convex optimization
we compute the point in each obstacle that is closest
to the center of the ellipsoid, according to the distance
metric induced by the ellipsoid. These points anchor
separating hyperplanes between the ellipsoid center and
the obstacles, which form a polytope of obstacle-free
space. These steps are repeated for each ellipsoid (i.e.,
for each clique) to obtain a collection of collision-free
polytopes that we add to the set R.

These computations correspond to a single iteration
of the IRIS algorithm [10], and ensure that the largest
uniformly-scaled, collision-free version of the ellipsoid
is contained in the resulting polytope. Figure 3 illustrates

(a) Village

q3

q2

q1
q

(b) 3DOF Flipper

q5

q4

q3

q2
q1

(c) 5DOF UR5

q5

q6q7

q2
q1

q3

q4

(d) 7DOF IIWA

Domain Village 3DOF Flipper 5DOF UR5 7DOF IIWA
Algorithm IOS VCC (ours) IOS VCC (ours) IOS VCC (ours) IOS VCC (ours)

regions |R| 198.0±13.6 93.9±7.5 10.4±1.9 6.7±0.5 90.5±18.8 35.1±1.6 482.6±83.8 46.3±4.5
runtime [s] 2.7e3±2.9e2 1.7e3±3.4e2 2.0e2±2.9e1 4.9e1±7.1 1.12e4±2.1e3 5.5e2±6.6e1 8.9e4±1.9e4 5.7e3± 1.7e3
coverage threshold α 0.8 0.8 0.9 0.9 0.75 0.75 0.7 0.7
visibility vertices K - 500 - 500 - 1000 - 1500
min. clique size smin - 10 - 10 - 10 - 20

TABLE I: Comparison of our Visibility Clique Cover (VCC) algorithm to the Iterative Obstacle Seeding (IOS) method from [12],
across four different environments. All experiments are repeated ten times. The numbers in the first two rows indicate the mean
and the empirical standard deviation over the trials. We observe that VCC achieves the given coverage targets with 1.6 to 10.4
times fewer regions, and between 1.4 to 20 times faster than IOS. The environment names are linked to interactive visualizations.

how the initial metric is fundamental in guiding the
shape of the regions generated by IRIS. Traditionally,
the IRIS algorithm was initialized with an uninformed
ellipsoidal metric and needed to run for multiple (ex-
pensive) iterations in order to expand and cover a larger
volume of space; in VCC we require only a single IRIS
iteration.

When the obstacles are not convex, we run one
iteration of the nonlinear programming variant IRIS-
NP [12] instead. Alternatively, C-IRIS [11], [13] could
be employed to obtain certifiably collision-free regions.

E. Convergence Check

The subroutine CHECKCOVERAGE estimates the frac-
tion of Cfree covered by the regions in R, and terminates
our algorithm if this value exceeds the threshold α.
Computing this fraction exactly is impractical, and so we
resort to randomized methods. The coverage is estimated
by drawing a large number of M samples in Cfree, and
computing the ratio of samples that land in at least one
of the regions in R. More sophisticated checks, such as
one-sided Bernoulli hypothesis testing, are possible.

F. Completeness

Analogous to [26], [27], VCC is probabilistically
complete under mild assumptions. This means as the
number of iterations goes to infinity, the probability of
completely covering Cfree goes to one.

V. EXPERIMENTS

As there are no direct baseline methods, we compare
our VCC algorithm against an extension of the method
in [12, §III.D]. The natural extension of this approach is

to iteratively grow polytopes around uniformly sampled
points from the uncovered free space using IRIS, while
treating previously computed regions as obstacles. This
process is repeated until the desired coverage is met. We
call this approach Iterative Obstacle Seeding (IOS).

In the following, all experiments are implemented in
Drake [28], and all computations are performed on a
single desktop computer with an Intel Core i9-10850K
CPU and 32 Gb of RAM. We solve all MAXCLIQUE
instances to global optimality using Gurobi [29].

We evaluate VCC and IOS on four environments:
Village, 3DOF Flipper, 5DOF UR5, and 7DOF
IIWA. The dimension n of these environments ranges
from 3 to 7. For each environment, we run the two
algorithms ten times and report their performance in
Table I. The Village environment from [8] contains
only convex obstacles and is compatible with the origi-
nal IRIS [10]. All other examples involve the configura-
tion spaces of robotic manipulators and therefore IRIS-
NP [12] is employed. The number of samples used in
the convergence check in Algorithm 1 is M = 5000.

VCC meets the required coverage threshold with
significantly fewer regions and in a substantially shorter
amount of time. Notably, in the most challenging bench-
mark, 7DOF IIWA, VCC requires 10 times fewer re-
gions and meets the required coverage of 70% around 16
times faster. This substantial speedup can be attributed
to two key factors. First, the region inflation in VCC is
parallelized. Second, IRIS is the most computationally
expensive step. While VCC only requires a single iter-
ation of IRIS per region, IOS can require up to around
five IRIS iterations per region, due to the initialization
with a potentially uninformative spherical metric.

https://wernerpe.github.io/files/Village.html
https://wernerpe.github.io/files/3dofflipper.html
https://wernerpe.github.io/files/5DOFUR5_arxiv.html
https://wernerpe.github.io/files/7DOF_IIWA_arxiv.html
https://drake.mit.edu/

ε
1

Fig. 5: Maximum cliques of infinitely dense visibility graphs
can enclose holes, and do not necessarily correspond to
collision-free convex sets. The largest collision-free convex
region (green trapezoid) has a smaller area than the union of
red parallelograms when 0 < ε ≤ 1−

√
5/6. In this case, the

convex hull of the maximum clique must enclose the hole.

VI. LIMITATIONS OF APPROXIMATING CONVEX
SETS WITH CLIQUES

Despite the strong performance of our algorithm, the
hardness of solving MIN α-APPROXCONVEXCOVER
makes it possible to construct simple examples that high-
light pitfalls of our heuristic approach. In this section,
we discuss holes in Cfree which leads to one such pitfall
that is particularly insightful.

While every convex set in Cfree naturally corresponds
to a clique in the visibility graph, a clique in the visibility
graph does not necessarily correspond to a convex set
in Cfree. The convex hull of a clique can enclose holes.
This problem persists even if we sample arbitrarily
dense visibility graphs, and if we restrict the analysis to
maximum cliques. A visual proof is shown in Figure 5,
which illustrates a triangular configuration space with a
triangular hole of size ε. As ε goes to zero, the largest
convex subset of Cfree is the green trapezoid, whose
area approaches 5/9 of the total area of Cfree. On the
other hand, a larger subset of mutually visible points
is given by the union of the three red parallelograms,
whose area approaches 6/9 of the total area. Therefore,
if configurations are sampled uniformly at random, an
optimum solution of MAXCLIQUE will almost surely
enclose a hole as the number of samples goes to infinity.
A similar construction can be used to show an analogous
discrepancy between the minimum convex cover of Cfree
and MINCLIQUECOVER.

In principle, this problem can be addressed by solving
a modified version of MAXCLIQUE that better captures
the notion of a convex set. In short, we require that every
vertex of the visibility graph that is contained in the
convex hull of the maximum clique must be a member
of the clique. For an infinitely dense visibility graph, this
ensures that the maximum clique cannot enclose holes.

We enforce the contrapositive of the latter condition
through linear constraints that separate all non-clique
members qi, with i ∈ {1, . . . ,K}, from the points in
the clique with a hyperplane Hi = {q | cTi q + di = 0},
parameterized by the decision variables (ci, di) ∈ Rn+1.

Fig. 6: A visibility graph with 100 random vertices in the
triangular environment from Figure 5. Solving the maximum
clique problem (1) with the additional constraints (2) yields a
clique with 56 vertices (shown in green), that closely approx-
imates the corresponding convex set in Figure 5. Solving only
problem (1), yields a clique with 63 vertices (shown in red)
that, however, encloses the central hole.

The resulting mixed-integer linear optimization ex-
tends (1) by adding the additional separation constraints

cTi qi + di ≥ 1− bi, ∀ i = 1, . . . ,K, (2a)

cTi qj + di ≤M(1− bj), ∀i, j = 1, . . . ,K, (2b)

where M is a large enough constant (e.g. the maximum
distance between all pairs of vertices).

When the point qi is not in the clique (bi = 0) and
the point qj is in the clique (bj = 1), these constraints
read cTi qi + di ≥ 1 and cTi qj + di ≤ 0. Therefore, the
hyperplane Hi separates qi from qj . On the other hand,
these constraints are seen to be redundant for all other
possible values of the binaries bi and bj . In Figure 6,
we demonstrate how this extension prevents a maximum
clique from enclosing holes in a finite-sample regime.

In practice, solving (1) with constraints (2) is too
expensive for the problems in Table I. Nonetheless, we
observed that in the first MAXCLIQUE problem (1) only
an average of 0.1% of the vertices were excluded from
the clique that could not be separated from it with a
hyperplane. Subsequent cliques, and improvements to
the formulation (2), demand a more nuanced discussion
and are subject to future work.

VII. CONCLUSIONS

We have proposed an algorithm for approximately
decomposing complex configuration spaces into small
collections of polytopes. Our algorithm uses clique
covers of visibility graphs as an effective heuristic for
obtaining local information about Cfree, and for seeding
a region-inflation algorithm. The parallels between con-
vex sets in Cfree and cliques in visibility graphs have also
been discussed. Our experiments demonstrate that VCC
reliably finds approximate convex covers of Cfree with
fewer regions and in less time than previous approaches.

ACKNOWLEDGEMENTS

The authors would like to thank Steven M. LaValle,
Thomas Cohn, Annan Zhang, and Fabian Dickhardt for
the many fruitful discussions.

REFERENCES

[1] C. M. Bishop and N. M. Nasrabadi, Pattern recognition and
machine learning. Springer, 2006, vol. 4, no. 4.

[2] M. Pharr, C. Kolb, R. Gershbein, and P. Hanrahan, “Rendering
complex scenes with memory-coherent ray tracing,” in Proceed-
ings of the 24th annual conference on Computer graphics and
interactive techniques, 1997, pp. 101–108.

[3] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi, “A fast procedure
for computing the distance between complex objects in three-
dimensional space,” IEEE Journal on Robotics and Automation,
vol. 4, no. 2, pp. 193–203, 1988.

[4] T. Marcucci, J. Umenberger, P. A. Parrilo, and R. Tedrake,
“Shortest paths in graphs of convex sets,” arXiv preprint
arXiv:2101.11565, 2021.

[5] T. Marcucci, M. Petersen, D. von Wrangel, and R. Tedrake,
“Motion planning around obstacles with convex optimization,”
arXiv preprint arXiv:2205.04422, 2022.

[6] T. Cohn, M. Petersen, M. Simchowitz, and R. Tedrake, “Non-
euclidean motion planning with graphs of geodesically-convex
sets,” arXiv preprint arXiv:2305.06341, 2023.

[7] V. Kurtz and H. Lin, “Temporal logic motion planning with
convex optimization via graphs of convex sets,” arXiv preprint
arXiv:2301.07773, 2023.

[8] T. Marcucci, P. Nobel, R. Tedrake, and S. Boyd, “Fast path
planning through large collections of safe boxes,” arXiv preprint
arXiv:2305.01072, 2023.

[9] J.-C. Latombe, Robot motion planning. Springer Science &
Business Media, 2012, vol. 124.

[10] R. Deits and R. Tedrake, “Computing large convex regions
of obstacle-free space through semidefinite programming,” in
Algorithmic Foundations of Robotics XI. Springer, 2015, pp.
109–124.

[11] A. Amice, H. Dai, P. Werner, A. Zhang, and R. Tedrake, “Finding
and optimizing certified, collision-free regions in configuration
space for robot manipulators,” in Algorithmic Foundations of
Robotics XV: Proceedings of the Fifteenth Workshop on the
Algorithmic Foundations of Robotics. Springer, 2022, pp. 328–
348.

[12] M. Petersen and R. Tedrake, “Growing convex collision-free
regions in configuration space using nonlinear programming,”
arXiv preprint arXiv:2303.14737, 2023.

[13] H. Dai, A. Amice, P. Werner, A. Zhang, and R. Tedrake, “Cer-
tified polyhedral decompositions of collision-free configuration
space,” arXiv preprint arXiv:2302.12219, 2023.

[14] T. Siméon, J.-P. Laumond, and C. Nissoux, “Visibility-based
probabilistic roadmaps for motion planning,” Advanced Robotics,
vol. 14, no. 6, pp. 477–493, 2000.

[15] T. Lozano-Pérez and M. A. Wesley, “An algorithm for planning
collision-free paths among polyhedral obstacles,” Communica-
tions of the ACM, vol. 22, no. 10, pp. 560–570, 1979.

[16] M. Abrahamsen, “Covering polygons is even harder,” in 2021
IEEE 62nd Annual Symposium on Foundations of Computer
Science (FOCS). IEEE, 2022, pp. 375–386.

[17] S. J. Eidenbenz and P. Widmayer, “An approximation algorithm
for minimum convex cover with logarithmic performance guar-
antee,” SIAM Journal on Computing, vol. 32, no. 3, 2003.

[18] M. Abrahamsen, W. Bille Meyling, and A. Nusser, “Constructing
concise convex covers via clique covers (cg challenge),” in 39th
International Symposium on Computational Geometry (SoCG
2023). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2023.

[19] K. Mamou and F. Ghorbel, “A simple and efficient approach for
3d mesh approximate convex decomposition,” in 2009 16th IEEE
international conference on image processing (ICIP). IEEE,
2009, pp. 3501–3504.

[20] A. Sarmientoy, R. Murrieta-Cidz, and S. Hutchinsony, “A
sample-based convex cover for rapidly finding an object in a 3-
d environment,” in Proceedings of the 2005 IEEE International
Conference on Robotics and Automation. IEEE, 2005, pp. 3486–
3491.

[21] R. M. Karp, Reducibility among combinatorial problems.
Springer, 2010.

[22] D. Strash and L. Thompson, “Effective data reduction for the
vertex clique cover problem,” in 2022 Proceedings of the Sym-
posium on Algorithm Engineering and Experiments (ALENEX).
SIAM, 2022, pp. 41–53.

[23] F. Schwarzer, M. Saha, and J.-C. Latombe, “Exact collision
checking of robot paths,” Algorithmic foundations of robotics
V, pp. 25–41, 2004.

[24] S. M. LaValle, Planning algorithms. Cambridge university
press, 2006.

[25] S. P. Boyd and L. Vandenberghe, Convex optimization. Cam-
bridge university press, 2004.

[26] J. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient
approach to single-query path planning,” in Proceedings 2000
ICRA. Millennium Conference. IEEE International Conference
on Robotics and Automation. Symposia Proceedings (Cat. No.
00CH37065), vol. 2. IEEE, 2000, pp. 995–1001.

[27] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars,
“Probabilistic roadmaps for path planning in high-dimensional
configuration spaces,” IEEE transactions on Robotics and Au-
tomation, vol. 12, no. 4, pp. 566–580, 1996.

[28] R. Tedrake and the Drake Development Team, “Drake: Model-
based design and verification for robotics,” 2019. [Online].
Available: https://drake.mit.edu

[29] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Man-
ual,” 2023.

https://drake.mit.edu
https://www.gurobi.com/
https://www.gurobi.com/

	Introduction
	Related Works
	Algorithms Requiring Explicit Obstacle Descriptions
	Algorithms Allowing Implicit Obstacle Descriptions

	Convex Covers, Visibility, and Cliques
	Problem Statement
	Visibility Graphs and Clique Covers

	Algorithm
	Sampling the Visibility Graph
	Truncated Clique Cover
	Summarizing Cliques with Ellipsoids
	Inflating Polytopes
	Convergence Check
	Completeness

	Experiments
	Limitations of Approximating Convex Sets with Cliques
	Conclusions
	References

