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ABSTRACT

The success of machine learning relies heavily on massive amounts of data, which
are usually generated and stored across a range of diverse and distributed data
sources. Decentralized learning has thus been advocated and widely deployed
to make efficient use of the distributed datasets, with an extensive focus on su-
pervised learning (SL) problems. Unfortunately, the majority of real-world data
are unlabeled and can be highly heterogeneous across sources. In this work,
we carefully study decentralized learning with unlabeled data through the lens
of self-supervised learning (SSL), specifically contrastive visual representation
learning. We study the effectiveness of a range of contrastive learning algorithms
under decentralized learning setting, on relatively large-scale datasets including
ImageNet-100, MS-COCO, and a new real-world robotic warehouse dataset. Our
experiments show that the decentralized SSL (Dec-SSL) approach is robust to the
heterogeneity of decentralized datasets, and learns useful representation for ob-
ject classification, detection, and segmentation tasks, even when combined with
the simple and standard decentralized learning algorithm of Federated Averaging
(FedAvg). This robustness makes it possible to significantly reduce communi-
cation and to reduce the participation ratio of data sources with only minimal
drops in performance. Interestingly, using the same amount of data, the repre-
sentation learned by Dec-SSL can not only perform on par with that learned by
centralized SSL which requires communication and excessive data storage costs,
but also sometimes outperform representations extracted from decentralized SL
which requires extra knowledge about the data labels. Finally, we provide theo-
retical insights into understanding why data heterogeneity is less of a concern for
Dec-SSL objectives, and introduce feature alignment and clustering techniques to
develop a new Dec-SSL algorithm that further improves the performance, in the
face of highly non-IID data. Our study presents positive evidence to embrace un-
labeled data in decentralized learning, and we hope to provide new insights into
whether and why decentralized SSL is effective and/or even advantageous.1

1 INTRODUCTION

The success of machine learning hinges heavily on the access to large-scale and diverse datasets. In
practice, most data are generated from different locations, devices, and embodied agents, and stored
in a distributed fashion. Examples include a fleet of self-driving cars collecting a massive amount of
streaming images under various road and weather conditions during everyday driving, or individuals
using mobile devices to take photos of objects and scenery all over the world. Besides being large-
scale, these datasets have two salient features: they are heterogeneous across data sources, and
mostly unlabeled. For instance, images of road conditions, which are expensive to label, vary across
cars driving on highways vs. rural areas, and under sunny vs. snowy weather conditions (Figure 19).

Methods that can make the best use of these large-scale distributed datasets can significantly advance
the performance of current machine learning algorithms and systems. This has thus motivated a
surge of research in decentralized learning/learning from decentralized data2 (Konečnỳ et al., 2016;
Hsieh et al., 2017; McMahan et al., 2017; Kairouz et al., 2021; Nedic, 2020), where usually a global
model is trained on the distributed datasets using communication between the local data sources and

1Code is available at https://github.com/liruiw/Dec-SSL
2Hereafter, we often use decentralized learning as a shorthand for learning from decentralized data.
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a centralized server, or sometimes even only among the local data sources. The goal is typically
to reduce or eliminate the exchanges of local raw data to save communication costs and protect
data privacy. How to mitigate the effect of data heterogeneity remains one of the most important
research questions in this area (Zhao et al., 2018; Hsieh et al., 2020; Karimireddy et al., 2020;
Ghosh et al., 2020; Li et al., 2021a), as it can heavily downgrade the performance of decentralized
learning. Moreover, most existing decentralized learning studies focused on supervised learning
(SL) problems that require data labels (McMahan et al., 2017; Jeong et al., 2020; Hsieh et al., 2020).
Hence, it remains unclear whether and how decentralized learning can benefit from large-scale,
heterogeneous, and especially unlabeled datasets typically encountered in the real world.

On the other hand, people have developed effective methods of learning purely from unlabeled
data and demonstrated impressive results. Self-supervised learning (SSL), a technique that learns
representations by generating supervision signals from the data itself, has unleashed the power of
unlabeled data and achieved tremendous successes for a wide range of downstream tasks in com-
puter vision (He et al., 2020; Chen et al., 2020; He et al., 2021b), natural language processing
(Devlin et al., 2018; Sarzynska-Wawer et al., 2021), and embodied intelligence (Sermanet et al.,
2018; Florence et al., 2018). These SSL algorithms, however, are usually trained in a centralized
fashion by pooling all the unlabeled data together, without accounting for the heterogeneous nature
of the decentralized data sources. Very recently, there have been a few contemporaneous/concurrent
attempts (He et al., 2021a; Zhuang et al., 2021; 2022; Lu et al., 2022; Makhija et al., 2022) that
bridged unsupervised/self-supervised learning and decentralized learning, with focuses on design-
ing better algorithms that mitigate the data heterogeneity issue. In contrast, we revisit this new
paradigm and ask the question:

Does learning from decentralized non-IID unlabeled data really benefit from SSL?

We focus on understanding the use of SSL in decentralized learning when handling unlabeled data.
We aim to answer whether and when decentralized SSL (Dec-SSL) is effective (even combined with
simple and off-the-shelf decentralized learning algorithms, e.g., FedAvg (McMahan et al., 2017));
what are the unique inherent properties of Dec-SSL compared to its SL counterpart; how do the
properties play a role in decentralized learning, especially with highly heterogeneous data? We also
aim to validate our observations on large-scale and practical datasets. We defer a more detailed
comparison with these most related works to §A.

In this paper, we show that unlike in decentralized (supervised) learning, data heterogeneity can be
less concerning in decentralized SSL, with both empirical and theoretical evidence. This leads to
more communication-efficient and robust decentralized learning schemes, which can sometimes
even outperform their supervised counterpart that assumes the availability of label information.
Among the first studies to bridge decentralized learning and SSL, our study provides positive ev-
idence to embrace unlabeled data in decentralized learning, and provides new insights into this
setting. We detail our contributions as follows.

Contributions. (i) We show that decentralized SSL, specifically contrastive visual representation
learning, is a viable learning paradigm to handle relatively large-scale unlabeled datasets, even when
combined with the simple FedAvg algorithm. Moreover, we also provide both experimental evi-
dence and theoretical insights that decentralized SSL can be inherently robust to the data heterogene-
ity across different data sources. This allows more local updates, and can significantly improve the
communication efficiency in decentralized learning. (ii) We provide further empirical and theoretical
evidences that even when labels are available and decentralized supervised learning (and associated
representation learning) is allowed, Dec-SSL still stands out in face of highly non-IID data. (iii) To
further improve the performance of Dec-SSL, we design a new Dec-SSL algorithm, FeatARC, by
using an iterative feature alignment and clustering procedure. Finally, we validate our hypothesis
and algorithm in practical and large-scale data and task domains, including a new real-world robotic
warehouse dataset.

2 PRELIMINARIES AND OVERVIEW

Consider a decentralized learning setting with K different data sources, which might correspond
to different devices, machines, embodied agents, or datasets/users that can generate and store data
locally. The goal is to collaboratively solve a learning problem, by exploiting the decentralized
data from all data sources. More specifically, consider each data source k ∈ [K] has local dataset
Dk = {xk,i}|Dk|

i=1 , and xk,i ∈ X ⊆ Rd are identically and independently distributed (IID) samples
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from probability distribution Dk, i.e., xk,i ∼ Dk. Note that the distributions Dk is in general
different across data sources k, yielding an overall heterogeneous (i.e., non-IID) data distribution
for the data from all the sources. Let D =

⋃
k∈[K]Dk denote the set of all data samples. Moreover,

we are interested in situations where no label is provided alongside the data x. To effectively utilize
the large-scale unlabeled data, we resort to self-supervised learning approaches.

Specifically, SSL approaches extract representations from these unlabeled data, by finding an em-
bedding function fw : X → Rm, where w is the parameter of the embedding function. z = fw(x)
is the representation vector that can be useful for downstream tasks, e.g., classification or segmenta-
tion. We summarize several popular SSL approaches here that will be used later in the paper.

Self-supervised representation learning. Now consider a given data source k ∈ [K]. There are two
popular methods in the SSL community. In contrastive learning (Chen et al., 2020; He et al., 2020)
specifically, a sample x is used to provide supervision signals along with two generated positive
samples x+ and x (overloaded for notational simplicity) and (possibly multiple) negative samples
x− sampled from the training batch. The goal of SSL is to find an embedding fw that makes x and
x+ close, while keeping x and x−s apart, if negative samples are used.

One commonly used loss for SSL is the InfoNCE loss (Oord et al., 2018), which has been used in
popular SSL approaches as SimCLR (Chen et al., 2020) and MoCo (He et al., 2020):

Lk(w) :=
1

|Dk|

|Dk|∑
i=1

− log

(
exp(−D(fw(xk,i), fw(x+k,i))/τ)

exp(−D(fw(xk,i), fw(x+k,i))/τ) +
∑

j exp(−D(fw(xk,i), fw(x−k,j))/τ)

)
(2.1)

where τ > 0 is a temperature hyperparameter, j is the index for negative samples, D(·, ·) is a dis-
tance function such as the cosine distance, i.e., D(z1, z2) = − z1·z2

||z1||||z2|| . Some other effective SSL
approaches, such as BYOL (Grill et al., 2020) and SimSiam (Chen & He, 2021), remove the terms
related to negative samples in (2.1). These methods also add an additional function g, the feature
predictor, which only applies to x to create an asymmetry and to avoid the collapsed solutions. This
usually leads to the following objective: Lk(w) := 1

|Dk|
∑|Dk|
i=1 D

(
g(fw(xk,i)), fw(x+

k,i)
)
. In our

experiments, we make use of both losses and the SSL approaches associated with them.

Decentralized SSL. To exploit the heterogeneous data distributed at different locations/devices,
decentralized SSL optimizes the following global objective:

min
w

∑
k∈[K]

|Dk|
|D|
Lk(w), (2.2)

which can be solved using many existing decentralized learning algorithms. For instance, FedAvg
(McMahan et al., 2017) is one of the most representative, easy-to-implement, and communication-
efficient decentralized learning algorithms which optimizes this objective without data-sharing
among data sources. At each iteration t, the server first samples a set of data sources Mt with
size |Mt| = ρK and run δ local update steps on each of the local dataset. Then, each data source
k ∈ Mt sends back the updated local model weight wt,δk to the central server, and the server aver-
ages them to be the global model wt+1 = 1

|Mt|
∑
k∈Mt

wt,δk for the next round t + 1. The server

then broadcasts the global model to each data source to reset wt+1,0
k as wt+1. The number of local

updates (δ) determines the communication efficiency (larger δ means less communication); in the
experiments, we use E to denote the number of epochs of local updates (as a surrogate for δ). Both
E and the participation rate ρ are important factors that determine the efficiency of decentralized
learning. The learned representation fw(x) can then be used in downstream supervised learning
tasks. There are many real-world applications of decentralized SSL, including self-driving cars,
warehouse robots, and mobile devices. A further discussion can be found in Appendix §D.

2.1 OVERVIEW OF OUR STUDY

Terminology & setup. We separate our experiment pipeline into representation learning (pre-
training phase) and downstream evaluation (evaluation phase). Our main focus is on the afore-
mentioned Dec-SSL approach. We use FedAvg (McMahan et al., 2017) with SimCLR (Chen et al.,
2020) as the default method. Moreover, we will also compare with settings where the label in-
formation is available, i.e., the classical decentralized (supervised) learning, which should be more
favorable for learning. See Figure 1 for a summary of different settings. The first setting is Dec-
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SL: we simply run FedAvg on the decentralized labeled data, for end-to-end classification.Dec-SL
does not learn representations explicitly, and serves as a natural baseline when labels are available.
The second setting is representation learning from Dec-SL, where we train supervised learning with
FedAvg, and then use the feature extractor network as the backbone for downstream tasks. This
way, we can also learn the representation from decentralized labeled data, and make the comparison
with Dec-SSL more fair, since both are learning features for various downstream tasks. We term this
setting as Dec-SLRep.

Pretraining

Evaluation

Dec-SL
Labeled Data

Downstream Task

...

Dec-SLRep

Downstream Task

Labeled Data
Dec-SSL

Unlabeled Data

Downstream Task

D1
<latexit sha1_base64="1FmKYud7l2s/IuooLOZaJQ61tLU=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9FjUg8eK9gPaUDbbSbt0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nZXVtfWNzcJWcXtnd2+/dHDY1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8HoZuq3nlBpHstHM07Qj+hA8pAzaqz0cNvzeqWyW3FnIMvEy0kZctR7pa9uP2ZphNIwQbXueG5i/Iwqw5nASbGbakwoG9EBdiyVNELtZ7NTJ+TUKn0SxsqWNGSm/p7IaKT1OApsZ0TNUC96U/E/r5Oa8MrPuExSg5LNF4WpICYm079JnytkRowtoUxxeythQ6ooMzadog3BW3x5mTSrFe+8Ur2/KNeu8zgKcAwncAYeXEIN7qAODWAwgGd4hTdHOC/Ou/Mxb11x8pkj+APn8we9t41w</latexit>

D2
<latexit sha1_base64="1tTqgpLzBVEfPMDyxfNgv5V7ULY=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiHjxWsB/QhrLZbtqlu5uwOxFK6V/w4kERr/4hb/4bkzYHbX0w8Hhvhpl5QSyFRdf9dgpr6xubW8Xt0s7u3v5B+fCoZaPEMN5kkYxMJ6CWS6F5EwVK3okNpyqQvB2MbzO//cSNFZF+xEnMfUWHWoSCUcyku36t1C9X3Ko7B1klXk4qkKPRL3/1BhFLFNfIJLW267kx+lNqUDDJZ6VeYnlM2ZgOeTelmipu/en81hk5S5UBCSOTlkYyV39PTKmydqKCtFNRHNllLxP/87oJhtf+VOg4Qa7ZYlGYSIIRyR4nA2E4QzlJCWVGpLcSNqKGMkzjyULwll9eJa1a1buo1h4uK/WbPI4inMApnIMHV1CHe2hAExiM4Ble4c1Rzovz7nwsWgtOPnMMf+B8/gD0II2F</latexit>
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<latexit sha1_base64="sxOBlb7xMNPqzZ2XhpGXaM09eks=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexGQY9BPQheIpoHJEuYnUySIbOzy0yvEJZ8ghcPinj1i7z5N06SPWhiQUNR1U13VxBLYdB1v53cyura+kZ+s7C1vbO7V9w/aJgo0YzXWSQj3Qqo4VIoXkeBkrdizWkYSN4MRtdTv/nEtRGResRxzP2QDpToC0bRSg833btuseSW3RnIMvEyUoIMtW7xq9OLWBJyhUxSY9qeG6OfUo2CST4pdBLDY8pGdMDblioacuOns1Mn5MQqPdKPtC2FZKb+nkhpaMw4DGxnSHFoFr2p+J/XTrB/6adCxQlyxeaL+okkGJHp36QnNGcox5ZQpoW9lbAh1ZShTadgQ/AWX14mjUrZOytX7s9L1assjjwcwTGcggcXUIVbqEEdGAzgGV7hzZHOi/PufMxbc042cwh/4Hz+AOUfjYo=</latexit>

D
<latexit sha1_base64="WoflC9OsYADNdO+14nzcYBdCAmo=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexGQY9BPXhMwDwgWcLspDcZMzu7zMwKIeQLvHhQxKuf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGtzO/9YRK81g+mHGCfkQHkoecUWOl+l2vWHLL7hxklXgZKUGGWq/41e3HLI1QGiao1h3PTYw/ocpwJnBa6KYaE8pGdIAdSyWNUPuT+aFTcmaVPgljZUsaMld/T0xopPU4CmxnRM1QL3sz8T+vk5rw2p9wmaQGJVssClNBTExmX5M+V8iMGFtCmeL2VsKGVFFmbDYFG4K3/PIqaVbK3kW5Ur8sVW+yOPJwAqdwDh5cQRXuoQYNYIDwDK/w5jw6L86787FozTnZzDH8gfP5A5i3jMw=</latexit>

fw
<latexit sha1_base64="jTtRk2mETrRGdoTY9o3/YWzMLBE=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2lM120y7dbMLuRCmhP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXJtRKwecJxwP6IDJULBKFrpPuw99Uplt+LOQJaJl5My5Kj3Sl/dfszSiCtkkhrT8dwE/YxqFEzySbGbGp5QNqID3rFU0YgbP5udOiGnVumTMNa2FJKZ+nsio5Ex4yiwnRHFoVn0puJ/XifF8MrPhEpS5IrNF4WpJBiT6d+kLzRnKMeWUKaFvZWwIdWUoU2naEPwFl9eJs1qxTuvVO8uyrXrPI4CHMMJnIEHl1CDW6hDAxgM4Ble4c2Rzovz7nzMW1ecfOYI/sD5/AFbqo3Y</latexit>
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<latexit sha1_base64="jTtRk2mETrRGdoTY9o3/YWzMLBE=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2lM120y7dbMLuRCmhP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXJtRKwecJxwP6IDJULBKFrpPuw99Uplt+LOQJaJl5My5Kj3Sl/dfszSiCtkkhrT8dwE/YxqFEzySbGbGp5QNqID3rFU0YgbP5udOiGnVumTMNa2FJKZ+nsio5Ex4yiwnRHFoVn0puJ/XifF8MrPhEpS5IrNF4WpJBiT6d+kLzRnKMeWUKaFvZWwIdWUoU2naEPwFl9eJs1qxTuvVO8uyrXrPI4CHMMJnIEHl1CDW6hDAxgM4Ble4c2Rzovz7nzMW1ecfOYI/sD5/AFbqo3Y</latexit>
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<latexit sha1_base64="jTtRk2mETrRGdoTY9o3/YWzMLBE=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2lM120y7dbMLuRCmhP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXJtRKwecJxwP6IDJULBKFrpPuw99Uplt+LOQJaJl5My5Kj3Sl/dfszSiCtkkhrT8dwE/YxqFEzySbGbGp5QNqID3rFU0YgbP5udOiGnVumTMNa2FJKZ+nsio5Ex4yiwnRHFoVn0puJ/XifF8MrPhEpS5IrNF4WpJBiT6d+kLzRnKMeWUKaFvZWwIdWUoU2naEPwFl9eJs1qxTuvVO8uyrXrPI4CHMMJnIEHl1CDW6hDAxgM4Ble4c2Rzovz7nzMW1ecfOYI/sD5/AFbqo3Y</latexit>

LK(x, y;w)
<latexit sha1_base64="OpYv9VhjkjDoc/d2mO6eS0YymrQ=">AAAB/3icbVDLSsNAFJ3UV62vqODGzWARKkhJqqDgpuhG0EUF+4A2hMl02g6dTMLMRA2xC3/FjQtF3Pob7vwbJ20W2npg4HDOvdwzxwsZlcqyvo3c3PzC4lJ+ubCyura+YW5uNWQQCUzqOGCBaHlIEkY5qSuqGGmFgiDfY6TpDS9Sv3lHhKQBv1VxSBwf9TntUYyUllxzp+MjNcCIJdcj96r0cBif3R/AgmsWrbI1BpwldkaKIEPNNb863QBHPuEKMyRl27ZC5SRIKIoZGRU6kSQhwkPUJ21NOfKJdJJx/hHc10oX9gKhH1dwrP7eSJAvZex7ejJNK6e9VPzPa0eqd+oklIeRIhxPDvUiBlUA0zJglwqCFYs1QVhQnRXiARIIK11ZWoI9/eVZ0qiU7aNy5ea4WD3P6siDXbAHSsAGJ6AKLkEN1AEGj+AZvII348l4Md6Nj8lozsh2tsEfGJ8/TneU+Q==</latexit>

LK(x, x+, x�;w)
<latexit sha1_base64="DzdYrnx5NXI+8aCABwGHJ6wUKA0=">AAACCXicbVDLSsNAFJ3UV62vqEs3g0WoqCWpgoKbohtBFxXsA9oYJtNJO3QyCTMTbQnZuvFX3LhQxK1/4M6/MWmzUOuBGQ7n3Mu99zgBo1IZxpeWm5mdm1/ILxaWlldW1/T1jYb0Q4FJHfvMFy0HScIoJ3VFFSOtQBDkOYw0ncF56jfviJDU5zdqFBDLQz1OXYqRSiRbhx0PqT5GLLqK7cvScH94G+3F6X8Qn97vwoKtF42yMQacJmZGiiBDzdY/O10fhx7hCjMkZds0AmVFSCiKGYkLnVCSAOEB6pF2QjnyiLSi8SUx3EmULnR9kTyu4Fj92REhT8qR5ySV6d7yr5eK/3ntULknVkR5ECrC8WSQGzKofJjGArtUEKzYKCEIC5rsCnEfCYRVEl4agvn35GnSqJTNw3Ll+qhYPcviyIMtsA1KwATHoAouQA3UAQYP4Am8gFftUXvW3rT3SWlOy3o2wS9oH9+upZkE</latexit>

Figure 1: Comparisons among Dec-SL, Dec-SLRep, and Dec-SSL.

The evaluation phase tests the
representations from Dec-SSL
or Dec-SLRep. We consider
two protocols in the evaluation
phase: linear probing for
image classification (Zhang
et al., 2016) and finetuning for
object detection/segmentation
(Doersch et al., 2015). For
classification, we train a linear
classifier on top of the frozen
pretrained network and evaluate
the top-1 classification accuracy.
For object detection/segmentation, we finetune the network by using the pretrained weights as
initialization and training in an end-to-end fashion, and then we evaluate the mean Average
Precision (mAP) metric. Downstream tasks are performed on centralized train and test dataset.
Please refer to Appendix §C.1 for implementation details and Table 3 for experiment setups.

Questions of interest. Through extensive experiments on large-scale datasets, and theoretical anal-
ysis in simplified settings, we seek to answer the following questions: (i) How well can decentralized
SSL, even instantiated with the simple FedAvg algorithm, rival the performance of its centralized
counterpart, and handle the non-IIDness of decentralized unlabeled data? (ii) Is there any unique
and inherent property of Dec-SSL, compared to its supervised learning counterpart; how and why
may the property benefit decentralized learning, even when the label information is available? (iii)
Is there a way to further improve the performance of Dec-SSL in face of highly non-IID data? Our
hypothesis is that SSL, whose objective is not particularly dependent on the x to y mappings, learns
a relatively uniform representation across decentralized and heterogeneous unlabeled datasets, thus
leading to more efficient and robust decentralized learning schemes. We aim to validate this hypoth-
esis and answer these questions in the following sections.

3 DEC-SSL IS EFFICIENT AND ROBUST TO DATA HETEROGENEITY

We first seek to address question (i) in §2.1 – how well decentralized SSL performs, in face of non-
IID and decentralized unlabeled data. To this end, we first introduce the notion of data heterogeneity
in decentralized learning, which is usually categorized as input heterogeneity, label distribution het-
erogeneity, and the heterogeneity in the relationships between the features and labels, respectively
(Hsieh et al., 2020). We create label heterogeneity by distributing each data source with different
proportion of classes; we construct the heterogeneity via either sampling from a Dirichlet process
with hyperparameter α or via skewness partitioning (Hsieh et al., 2020) with hyperparameter β. We
also create input heterogeneity by leveraging the feature space of a pretrained network on the data.
See §C.2 for more details on how we create data heterogeneity across data sources.

3.1 EXPERIMENTAL OBSERVATIONS

CIFAR classification under different types of non-IIDness. In this experiment, we construct input
and label non-IIDness using 5 data sources in the CIFAR-10 (Krizhevsky et al., 2009) dataset based
on the Dirichlet Process. The sources of non-IIDness are the feature clusters and labels, respectively.
We control parameter α to create datasets from very IID (each data source has roughly a uniform
distribution over 10 classes / 5 feature clusters) to very non-IID (each data source has data from
2 classes / 1 feature clusters). Recall that E denotes the number of epochs for local updates and ρ
denotes the participation ratio of data sources at each round. We useE = 50 epochs of local updates
in this experiment, which is equivalent to around δ = 1000 iterations, i.e., each local data source
updates 50 epochs independently before averaging. The results are shown in Figure 2. Surprisingly,
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Feature Non-IIDness (X) [𝜌 = 1, 𝐾 = 5, 𝐸 = 50] Label Non-IIDness (Y) [𝜌 = 1, 𝐾 = 5, 𝐸 = 50]

Figure 2: SSL objective is robust to different types of X and Y heterogeneity on the CIFAR-10 dataset.
In the pie chart below, each pie denotes one data source, and color denotes the sample number of one source of
non-IIDness (left to right, more non-IID). We observe that Dec-SSL is surprisingly robust to the non-IIDness
in both input (X) and label (Y ) and also behaves closer to its centralized counterpart. Y-axis denotes accuracy.

the performance of downstream classification, with representations trained using decentralized SSL,
is very insensitive to the non-IIDness across the datasets and only bears a slight performance drop.
This robustness over data non-IIDness is encouraging, and stands in sharp contrast with most exist-
ing decentralized supervised learning algorithms, which are known to suffer from the data hetero-
geneity in general (Hsieh et al., 2020). As a baseline, we consider the classical decentralized SL
approach of FedAvg, trained over the same non-IID data, but with label information. Indeed, the
performance of decentralized SL can drop significantly as the non-IIDness increases. Finally, we
note that the simple use of FedAvg in SSL can achieve performance comparable to the centralized
SSL, showing that Dec-SSL is an effective decentralized learning scheme to handle unlabeled data.

Finetuning ImageNet representation for COCO detection. In this experiment, we finetune the
representations learned from ImageNet to COCO detection benchmark (Lin et al., 2014) with the
Detectron pipeline (Girshick et al., 2018). Specifically, we use ImageNet-100 with ResNet-18 and
1× training schedule for Mask R-CNN (He et al., 2017) with a ResNet18 FPN being the back-
bone. Compared to the contemporary works (Zhuang et al., 2022; Lu et al., 2022) on federated
self-supervised learning, our setup is more relevant to real-world applications, as it works on larger-
scale and more practical datasets and tasks.

We run Dec-SSL on ImageNet-100 dataset with 5 data sources, and with E = 1 epoch of local
updates, which corresponds to around δ = 500 local updates, to learn the global representation
using FedAvg. On Table 1 left, we observe that the representation from Dec-SSL almost reaches the
performance of the representation from centralized SSL and improves upon baselines that train the
model from scratch, i.e., the no pretrain row. This conveys that SSL can learn useful representations
in decentralized settings, avoiding the heavy communication cost of centralized learning.

Decentralized SSL for real-world package segmentation. The issue of data heterogeneity and
communication efficiency is significant for real-world applications such as those in Amazon ware-
houses, whose fleets of working robots can generate millions of images per day (see Figure 21 for
an illustration). We provide details about the Amazon dataset in §D.1. We use data from one sample
warehouse site at Amazon, and split the data based on the session ID (which is usually a sequence
of days). Each decentralized learner is only allowed to access the local data at one session, which is
equivalent to the non-IID case where skewness β = 0. We then deploy decentralized self-supervised
learning on a subset of the enormous warehouse data, which has around 80000 images with contour
labels output by the Amazon work-cells. We use SimCLR with FedAvg and communication effi-
ciency E = 1 number of local update epochs, as the pretraining method.

On the right subtable of Table 1, we compare different ways to initialize weights for finetuning,
and show that the representations learned from decentralized SSL outperforms training from scratch
and even matches centralized SSL on the Amazon dataset. We also experiment with finetuning
segmentation task using Mask R-CNN on different fractions of the data, and show that Dec-SSL can
further improve the performance of training from scratch, when there is no as much labeled data.

3.2 THEORETICAL INSIGHTS

We now provide some theoretical insights into why the objective of Dec-SSL leads to more robust
performance in face of data heterogeneity. In particular, we analyze the property of the solutions to
the local and global objectives of Dec-SSL in a simplified setting, and show that the global objective
is not affected significantly by the heterogeneity of local datasets. Our setup is inspired by the very
recent work (Liu et al., 2021), where the effect of imbalanced data in centralized SSL was studied
in a simplified setting. In particular, we generalize the centralized and 3-way classification setting
to a decentralized and 2K-way one, carefully design the generation of data distribution across data
sources, and establish analyses for both local and global objectives in decentralized SSL. We also
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Figure 3: The learned feature space of SSL is more insensitive to heterogeneity under the linear settings.
In §3.2, we consider a decentralized learning setting where each local dataset has a skewed distribution with
most data points (each color is a class) concentrated on one axis. Each basis vector inside the sphere denotes
how well it is represented in the learned subspace. For contrastive objectives, the learned feature space (green
sphere) of the local model is more uniform and close to the global model. On the other hand, the SL objective
(red sphere) tends to overfit to local dataset, and the learned feature spaces become heterogeneous.

ImageNet-100 MS-COCO
Pretrain APbb APmk

no pretrain 20.5 19.4
Central-SLRep 21.2 (+0.7) 20.1 (+0.7)

Central-SSL 23.2 (+2.7) 22.1 (+2.7)

Dec-SLRep 19.8 (−0.7) 19.7 (+0.3)

Dec-SSL 22.1 (+1.6) 20.7 (+1.3)

Amazon Amazon (APmk)
Pretrain 100% 10% 1%

no pretrain 60.8 59.2 47.0
Central-SSL 61.6 (+0.8) 60.4 (+1.2) 49.5 (+2.5)

Dec-SSL 61.2 (+0.4) 60.1 (+0.9) 48.8 (+1.8)

Table 1: Left: Object detection and semantic segmentation finetuned on COCO: The model is pretrained
on ImageNet-100 (Tian et al., 2020a) dataset and then finetune on MS-COCO with metrics bounding-box
mAP (APbb) and mask mAP (APmk). Right: Finetuning results on the Amazon package segmentation
dataset with representations pretrained on the Amazon dataset. We observe that Dec-SSL reaches similar
performance (APmk) as centralized SSL and also outperforms training from scratch. Note that 100%, 10%, 1%
denote the portion of the data used for finetuning.

improve some analysis therein, and design new metrics to characterize the performance adapted to
the decentralized setting. Due to space limitation, we include an abridged introduction here, and
defer more details to Appendix §E.

Setup. Consider a Dec-SSL problem with K data sources. Similar to the SimSiam approach, we
first augment x, an anchor sample from the dataset, by sampling ξ, ξ′ ∼ N (0, I) IID from the
Gaussian distribution. Consider the linear embedding function fw(x) = wx, where w ∈ Rm×d and
m ≥ 2K. The SSL objective for data source k is given by

Lk(w) := −Ê
[
(w(xk,i + ξk,i))

>(w(xk,i + ξ′k,i))
]

+
1

2
‖w>w‖2F , (3.1)

where Ê is taken expectation over the empirical dataset xk,i ∼ Dk, and the randomness of ξk,i and
ξ′k,i. Moreover, recall the global objective is given in (2.2). Note that (3.1) instantiates SimSiam loss
with the negative inner-product 〈a, b〉 as the distance function D(a, b) and no feature predictor, and
with a regularization term for mathematical tractability, as in Liu et al. (2021).

Data heterogeneity. The K data sources collaboratively solve (2.2) to learn a representation for a
2K-way classification task. The K local datasets are generated in a way that for each fixed k ∈ [K],
the labels are skewed in that data from classes 2k − 1 and 2k constitute the majority of the data,
while other classes are rare, or even unseen. More details on the specifications of data heterogeneity
can be found in §E.1. We visualize the heterogeneity of the data distributions in Figure 3.

To compare the representations learned across data sources and that learned from jointly solving
(2.2), we introduce the following definition on the representability of the representation space.
Definition 3.1 (Representability vector). Let S ⊆ Rd be the subspace spanned by the rows of the
learned feature matrixw ∈ Rm×d, where the embedding function fw(x) = wx. The representability
of S is defined as a vector r = [r1, · · · , rd]> ∈ Rd , such that ri = ‖ΠS(ei)‖22 for i ∈ [d], where
ΠS(ei) ∈ Rd is the projection of standard basis ei onto S , and thus ri =

∑s
j=1〈ei, vj〉2 where

s = dim(S) and {v1, · · · , vs} is a set of orthonormal bases for S.

The intuition of this definition is that a good feature space should have the property that many
standard unit bases among e1, · · · , ed, which can be used to represent any vectors in Rd, can be
represented well by the feature space, i.e., have large projections onto it. Note that as a vector, r
provides a quantitative way to compare the representability of two feature spaces across different
directions (i.e., different unit basis). In the following theorem, we compare the representability
learned by local objectives and the global one, for Dec-SSL.
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Comm. Efficiency [𝜌 = 1, 𝐾 = 5, 𝛽 = 0.1] Partial Participation [𝐾 = 20, 𝐸 = 5, 𝛽	 = 0.1]

Figure 4: Dec-SSL performance on ImageNet-100 dataset. Compared to supervised learning, we observe
that under non-IID settings, decentralized SSL can perform better under communication constraints (left) and
partial participation constraints (right).

Theorem 3.2 (Representability of local v.s. global objectives for Dec-SSL). For decentralized SSL
in the setting described above, with high probability, the representability vector learned from any
local objective of source k, denoted by rk = [rk1 , · · · , rkd ]>, satisfies that 1 − O(d−4/5) ≤ rki ≤ 1
for all i ∈ [K]\{k}. Moreover, the representability vector learned from the global objective, denoted
by r̄ = [r̄1, · · · , r̄d]>, satisfies that 1−O(d−4/5) ≤ r̄i ≤ 1 for all i ∈ [K].

Theorem 3.2 states that the feature spaces learned from local SSL objectives are relatively uniform,
in the sense that for the K basis directions e1, · · · , eK that generate the data, any two data sources
have similar representability in all of them but two directions, especially when the dimension d of
the data is large. Furthermore, when solving the global objective (2.2), the learned representation
is also uniform, and its representability differs at most one direction from that of each local data
source. Note that the results hold with highly heterogeneous data across data sources. In other
words, Dec-SSL is not affected significantly by the non-IIDness of the data, justifying the empirical
observations in §3.1. Illustration of the results can also be found in Figure 3.

Intuition & implication. The main intuition behind Theorem 3.2 is that, the objective of SSL is not
biased by the heterogeneous distribution of labels at each local dataset, and tends to learn uniform
representations. Related arguments have also been made in the recent works on the theoretical un-
derstanding contrastive learning/SSL (Wang & Isola, 2020; Liu et al., 2021). In the decentralized
setting, this insensitivity to data heterogeneity becomes even more relevant, as it potentially allows
each local data source to perform much more local updates, without drifting the iterates signifi-
cantly. This enables more communication-efficient decentralized learning schemes, in contrast to
most existing ones that are vulnerable to data non-IIDness. We validate these points next.

4 DEC-SSL CAN BE FAVORABLE EVEN WHEN LABELS ARE AVAILABLE

We here seek to address question (ii) in §2.1 – how does the unique property of Dec-SSL, such as
the robustness to data heterogeneity, benefit decentralized learning? While lack of labels seems a
limitation, we show that this might not be the case in decentralized learning with heterogeneous
data. First, it is known that decentralized SL in general performs poorly when the data is highly het-
erogeneous (Zhao et al., 2018; Hsieh et al., 2020). Further, even in the decentralized representation
learning setting when labels are available, Dec-SSL still stands out in face of highly non-IID data.

To make a fair comparison, we mainly compare Dec-SSL with Dec-SLRep (recall the definition in
§2.1), which are both decentralized representation learning approaches. We defer the comparison
with Dec-SL to Appendix §B. We conduct experiments on both ImageNet and CIFAR-10 datasets,
and evaluate the performance of the learned representations in terms of the variations of two com-
monly used metrics in decentralized learning – the number of local updates epochs E, and the
participation ratio of data sources ρ. We observe consistently that Dec-SSL indeed outperforms
Dec-SLRep in learning representations in terms of communication efficiency and participation ra-
tio, especially with highly non-IID data. We remark that such observations are also consistent with
those on object detection and semantic segmentation given in Table 1.

4.1 EXPERIMENTAL OBSERVATIONS

In this experiment, we train and evaluate the feature backbone on ImageNet-100 in a decentralized
setting. We create non-IIDness across the local datasets based on label skewness and use β = 0.1
(each data source has only 10% of its data coming from the uniform class distributions).

Communication efficiency under high non-IIDness. In Figure 4, we show that under the non-
IID scenario, averaging weights with an infrequent communication schedule causes less trouble to
Dec-SSL than to Dec-SLRep. In FedAvg, the idea of averaging weights after multiple epochs
might sound sub-optimal, but we notice that decentralized SSL is very robust with respect to this
parameter. Intuitively, the robustness of Dec-SSL allows each local model to drift longer, leading to
a lower communication frequency for decentralized learning.
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Algorithm Ablation Study	[𝜌 = 1, 𝐾 = 5, 𝐸 = 5]

Algorithm Comm. 	[𝜌 = 1, 𝐾 = 5, 𝛼 = 0.02]

Figure 5: Ablation study on the FeatARC algo-
rithm. We observe that under non-IIDness and com-
munication constraints, FeatARC outperforms the
baseline variants of the algorithm and FedAvg.

Method / Setting IID non-IID
FURL (Zhang et al., 2020a) 71.25 68.01
EMA (Zhuang et al., 2022) 86.26 83.34
Per-SSFL (He et al., 2021a) N/A 83.10
FEDU (Zhuang et al., 2021) 83.96 80.52

FeatARC (Ours) 86.74 84.63
CIFAR-100 CIFAR-10

Pretrain 100% 10% 1%
no pretrain 0.31 0.27 0.25

Dec-SLRep IID 0.65 0.60 0.47
Dec-SSL IID 0.71 0.67 0.57

Dec-SLRep Non-IID 0.43 0.35 0.32
Dec-SSL Non-IID 0.70 0.66 0.57

Table 2: Top). Algorithm performance com-
parison. Bottom). CIFAR-10 Linear probing
on the representation of CIFAR-100. Our al-
gorithm surpasses previous works on federated
SSL both in the IID and non-IID settings.

Participation ratio under high non-IIDness. In this experiment, we split ImageNet-100 into 20
data sources and use local update E = 5 epochs. We measure the performance of decentralized
learning algorithms with respect to the participation ratio of data sources at each round. For instance,
when ρ = 1, at each round, all data sources update their local weights and upload to the server, while
ρ = 0.05 means that each round a single random data source is selected for update. On the right
of Figure 4, we show that with non-IID data, the convergence of Dec-SSL is more stable to less
participants compared to Dec-SLRep. This allows more efficient decentralized learning, especially
when deployed with extremely large number of data sources and unstable communication channels.

4.2 THEORETICAL INSIGHTS

To shed light on the above observations, we provide analysis for the feature spaces learned by the
local objective of Dec-SLRep, under the same setup as in §3.2. For Dec-SLRep and each data
source k, we consider learning a two-layer linear network guk,vk(x) := vkukx as classifier, where
uk ∈ Rm×d and vk ∈ Rc×m, and use ukx as the learned representation for downstream tasks. The
network is learned by minimizing ‖(uk)>uk‖2F + ‖(vk)>vk‖2F subject to the margin constraint that
[guk,vk(x)]y ≥ [guk,vk(x)]y′ + 1 for all data (x, y) in the local dataset k with all y′ 6= y. . We now
have the following proposition on the representations learned by Dec-SLRep across data sources.

Proposition 4.1 (Representations learned by Dec-SLRep across heterogeneous data sources). With
high probability, the features uk = [uk,1, · · · , uk,m]> ∈ Rm×d learned from the local dataset Dk

satisfies that
∑m
i=1〈uk,i, ej〉2 ≤ O(d−

1
10 ), for j ∈ [K]\{k}; while

∑m
i=1〈uk,i, ek〉2 ≥ 1−O(d−

1
20 ).

In other words, the correlation between the learned features in wk and ej is small for all j ∈ [K] \
{k}, while the correlation between the features and ek is large.

The proposition suggests that the feature spaces learned by Dec-SLRep differ significantly across
local data sources, given the highly heterogeneous data. More specifically, we show that most of
the unit bases in {e1, · · · , eK} have small correlations with the features learned at each local data
source, while these feature spaces themselves vary significantly across data sources. The unit bases
that are not learned might be significant for various other downstream tasks, making the learned
representations less favorable. This heterogeneity among local solutions is not in favor of local
updates, as too many local updates would drift the iterates towards its local solution, and the iterates
would become too far away from each other, hurting the convergence of decentralized learning.
Hence, compared with the Dec-SSL case and Theorem 3.2, Dec-SLRep can be less robust to data
heterogeneity and less communication-efficient. We note that the advantage of Dec-SSL does not
come from using more data, since we use exactly the same data for training Dec-SLRep and Dec-
SSL. The intuition is also illustrated in Figure 3. Finally, we remark that the uniformity of features,
which is believed to be the key to better transfer performance in SSL (Wang & Isola, 2020; Caron
et al., 2020), is not always preferred given specific learning tasks (Burgess et al., 2018).

5 OUR ALGORITHM – FeatARC (FEATURE ALIGNMENT AND CLUSTERING)
Although Dec-SSL tends to learn relatively uniform features that are robust across datasets, the uni-
formity itself might not imply the alignment of features across datasets: the representation network
from different local data sources can still map the same data point to different regions in the feature
space. This misalignment becomes more significant when the data is highly non-IID and can have
an adverse effect on the model aggregation process in decentralized learning (Zhang et al., 2020a).
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To mitigate this issue and address question (iii) in §2.1, we propose to use the same feature distance
loss as an auxiliary local objective to align the local models with the global model. The alignment
between two features is defined as the negative cosine distance metric D(z1, z2) = − z1·z2

||z1||||z2|| .

To further improve the Dec-SSL algorithm, we propose to learn multiple models using clustering-
based approach. In particular, instead of learning a single global model as in (2.2), we learn C
models and separate theK data sources into C clusters. The update of C models and the assignment
of data sources to C clusters are conducted alternatively. When C = K, the algorithm reduces to
learning K local models; when C = 1, it reduces to learning a single global one. The clustering
approach intuitively learns multiple models to interpolate the performance between learning a single
global model andK local models, thus achieving a good bias-variance tradeoff when testing on each
local dataset (Mansour et al., 2020; Ghosh et al., 2020). However, unlike the supervised learning
case, we do not use the loss of the decentralized learning (i.e., (2.1)) as the metric for clustering. This
is because for contrastive learning, it has been observed that the SSL loss might not be indicative
enough for the performance of the representation on downstream tasks (Robinson et al., 2021).
Hence, we here again use the feature alignment distance D(·, ·) as the metric for clustering.

We adopt the alignment regularization and clustering techniques, and developed a new Dec-SSL
algorithm FeatARC, summarized in Algorithm 1 and Algorithm 2 in Appendix. We show the per-
formance of FeatARC in Figure 5, in comparison with different baselines including FedAvg, under
different levels of data heterogeneity and communication frequency. It is shown that FeatARC out-
performs the baselines consistently, including the variants that only uses alignment (“Align Only”)
or clustering (“Cluster Only”). Moreover, on the top of Table 2, we show that FeatARC also out-
performs other recent decentralized self-supervised learning algorithms on CIFAR-10 dataset.

6 EXTENSIONS

In this section, we discuss a few extended experiments of our framework. Please see Appendix §B
for a thorough set of experiments and ablation studies with visualizations.

6.1 FULLY DECENTRALIZED CASE AND DIFFERENT NETWORK TOPOLOGY

We conduct experiments on the fully decentralized learning in Appendix §B.5, where the local data
sources are only allowed to communicate with their neighbors over a peer-to-peer network, without
a centralized server. In short, most observations we had regarding Dec-SSL in the setting with a
centralized server still hold, even under several different network topologies. This aligns with our
theoretical insight provided in Section 3, which came from the benign properties of the solution to
the Dec-SSL objective, instead of the properties of specific algorithms (averaging the iterates via a
star or other network topologies) that achieves the solution.

6.2 EXTREMELY HETEROGENEOUS CASE FOR DECENTRALIZED LEARNING

In Figure 13, we show that even in the extremely heterogeneous case where each local source only
owns one class, the Dec-SSL framework is still robust to the non-IIDness of the data. This also
holds true when we scale to more clients, as shown in Figure 15. The Dec-SSL objective would not
be biased by the highly heterogeneous class labels at each local dataset, while the Dec-SL objective
could be biased by it. This is also consistent with our theoretical insights in Section §3.2 and the key
reason for the success of Dec-SSL is that, despite only having one single class, the information of
features obtained from local datasets may still be useful for the jointly classifying of all the classes.

6.3 COMPARISON OF FEATARC WITH OTHER ALGORITHMS

We also compare our algorithm with the Dec-SSL algorithms that are combined with other feder-
ated learning algorithms, including Li et al. (2020a) (FedProx) and Li et al. (2020b) (FedBN). In
Figure 16 (Left), we show that our proposed FeatARC can outperform these two baselines.

7 CONCLUSION

We propose the framework of decentralized SSL that learns representations from non-IID unlabeled
data and conduct an empirical study on the robustness of Dec-SSL to different types of heterogene-
ity, communication constraints, and participation rates of data sources. We also provide findings
and theoretical analyses of Dec-SSL compared to its supervised learning counterpart, as well as
developing a new algorithm to further address the high heterogeneity in decentralized datasets.
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A DETAILED RELATED WORK

We here provide a more detailed review of the literature.

Self-supervised learning. Self-supervised learning aims to learn useful representations from data
without human annotations. A breadth of methods has been proposed such as colorization (Larsson
et al., 2016), impainting (Pathak et al., 2016), and denoising autoncoder (Vincent et al., 2008). One
promising approach is contrastive learning, where the core idea is to find a representation space
that makes positive pairs close and negative pairs apart. (Oord et al., 2018; Wu et al., 2018; Tian
et al., 2020a; Chen et al., 2020; He et al., 2020; Chen & He, 2021; Grill et al., 2020; Caron et al.,
2020) used a self-supervised pretraining objective for transformation-invariant representation, and
demonstrated good performance on standard datasets such as ImagetNet classification (Krizhevsky
et al., 2012), COCO detection and segmentation (Lin et al., 2014), and uncurated dataset (Caron
et al., 2019). Despite that no label is needed, the representation learned by SSL has been shown
to be robust to distribution shift (Liu et al., 2021), generally applicable in embodied agent tasks
(Florence et al., 2018; Hendrycks et al., 2019), and adapt quickly in low-data regime (Tian et al.,
2020b). More importantly, SSL models have been deployed in many large systems (foundation
models (Bommasani et al., 2021)) in NLP (Brown et al., 2020) and intersection of language and
vision (Radford et al., 2021; Jia et al., 2021). Other significant examples of SSL include masked
auto-encoding in language (Devlin et al., 2018) and vision (He et al., 2021b). There has also been
a growing literature on the theoretical understandings of SSL, with representative examples (Arora
et al., 2019; Lee et al., 2021; Tosh et al., 2021; HaoChen et al., 2021). Very recently, (Liu et al.,
2021) observed that self-supervised learning is more robust to dataset imbalance, more specifically,
the data label imbalance. Interestingly, their observations are aligned with ours with decentralized
heterogeneous data (though we focus on not only the label skewness among data sources), and
their analysis also provide important insights into our observations. While all these works consider
SSL in a centralized setting, our goal is to further understand and unlock the power of SSL in a
decentralized setting, a practical while relatively underexplored one where large-scale unlabeled
data is more relevant.

Decentralized machine learning. With massive amounts of data generated in a distributed fash-
ion, decentralized learning has achieved increasing attention in the literature (Konečnỳ et al., 2016;
Lian et al., 2017; McMahan et al., 2017; Hsieh et al., 2017; 2020; Karimireddy et al., 2020; Kairouz
et al., 2021; Nedic, 2020), where a global model is trained over distributed data sources, address-
ing research questions on communication-efficiency (between the worker and the server or among
workers) and privacy of the data. In addition, addressing the heterogeneity/non-IIDness of data dis-
tributions across sources has been, and remains to be the most important and challenging research
question in the area (Zhao et al., 2018; Hsieh et al., 2020; Karimireddy et al., 2020; Ghosh et al.,
2020; Li et al., 2020a;b; 2021a). Most existing decentralized learning studies have extensively fo-
cused on supervised learning setting, where the labels of the data samples are required.

Federated unsupervised/self-supervised learning. To the best of our knowledge, there have only
been a few contemporaneous/concurrent attempts (Zhang et al., 2020a; He et al., 2021a; Zhuang
et al., 2021; 2022; Lu et al., 2022; Makhija et al., 2022) that bridged unsupervised/self-supervised
learning with unlabeled data and decentralized learning, more specifically federated learning (FL),
and proposed various algorithms to mitigate the effect of data heterogeneity. In particular, the works
He et al. (2021a); Zhuang et al. (2021; 2022); Lu et al. (2022); Makhija et al. (2022) are closest to
ours. He et al. (2021a), also motivated by the label-deficiency issue in federated learning, developed
a series of self-supervised FL algorithms that incorporated the advances of supervised FL, especially
those algorithms with personalization, to handle the heterogeneity in data. Zhuang et al. (2021) de-
veloped unsupervised representation learning algorithms from unlabeled data, mainly with the moti-
vation of privacy-preserving, by designing communication protocol and divergence-aware predictor
update rules that are specific to Siamese architecture. Zhuang et al. (2022) further improved the re-
sults by generalizing to other SSL approaches, proposing a new divergence-aware update rule, and
ablating on how the components of these SSL approaches affect the performance. Later, Lu et al.
(2022) also aimed to address the data-deficiency issue in FL, by training a modified model using
supervised FL over the surrogate labeled data transformed from the unlabeled ones. The transfor-
mation requires knowledge of the class priors at each data source, and the approach is not relevant
to self-supervised/contrastive learning, the focus of our paper. Finally, Makhija et al. (2022) pro-
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Experiment Pretrain K E ρ α β Evaluation
Figure 2 CIFAR-10 5 50 1 * − CIFAR-10

Table 1 Left ImageNet-100 5 1 1 0.2 − MS-COCO
Table 1 Right Amazon 5 1 1 − 0 Amazon
Figure 4 Left ImageNet-100 5 * 1 − 0.1 ImageNet-100

Figure 4 Right ImageNet-100 20 5 * − 0.1 ImageNet-100
Figure 5 Left Top CIFAR-10 5 * 1 0.02 − CIFAR-10

Figure 5 Left Bottom CIFAR-10 5 5 1 * − CIFAR-10
Table 2 Top CIFAR-10 5 5 1 − − CIFAR-10

Table 2 Bottom CIFAR-100 5 5 1 − − CIFAR10
Figure 8 (a,b) CIFAR-10 5 * 1 0.02 − CIFAR-10
Figure 8 (c) CIFAR-10 5 50 * 0.02 − CIFAR-10
Figure 8 (d) CIFAR-10 5 * 1 0.02 − CIFAR-10
Figure 8 (e) CIFAR-100 5 * 1 − 0.1 CIFAR-100
Figure 8 (f) TinyImageNet 5 * 1 − 0.1 TinyImageNet
Figure 8 (g) CIFAR-10 5 50 1 * − CIFAR-10
Figure 8 (h) CIFAR-10 5 50 1 − * CIFAR-10
Figure 6 (a) CIFAR-10 5 50 1 * − CIFAR-10
Figure 6 (b) CIFAR-10 5 50 1 − * CIFAR-10
Figure 6 (c) CIFAR-10 5 * 1 0.02 − CIFAR-10
Figure 6 (d) CIFAR-10 20 5 * 0.02 − CIFAR-10
Figure 7 (c) CIFAR-10 5 5 1 * − CIFAR-10
Figure 7 (d) CIFAR-10 5 * 1 0.02 − CIFAR-10

Table 4 CIFAR-10 5 5 1 − − STL-10

Table 3: Table of experiment setups. Note that the full experiment pipeline has two steps: pretrain and
evaluate. There are two datasets, the pretrain dataset, and the evaluation dataset. For detection tasks on MS-
COCO and Amazon, the pretrained encoder is also updating through the transfer learning procedure and for
other datasets, only a single linear layer is trained with the pretrained encoder being frozen. ∗ denotes the
control variable in each experiment and − denotes the variables that are not used.

posed a self-supervised federated learning algorithm to handle the heterogeneity in data, by adding
a proximal term that measures the distance between the local representations and those obtained on
other clients in the local objective. The algorithm requires the server to directly access the unlabeled
datasets, and also requires some datasets for representation alignment to be transmitted between the
server and the clients.

Our focus. To be specific, our focus is not on finding better algorithms to handle/mitigate data
heterogeneity in decentralized learning with unlabeled data, but on understanding the use of
self-supervised learning approaches, in particular contrastive learning, in decentralized learning –
whether and when decentralized SSL is effective and/or even advantageous (even combined with
simple and off-the-shelf decentralized learning algorithms, e.g., FedAvg); what are the unique and
inherent properties of decentralized SSL (compared to its SL counterpart); how may the properties
play a role in decentralized learning (especially with highly heterogeneous unlabeled data)? More-
over, except Lu et al. (2022); Makhija et al. (2022), which contained some convergence analysis
for the algorithms they developed, these contemporaneous works usually did not provide theoretical
insights about why decentralized SSL is used to handle decentralized unlabeled data, and when it is
effective/advantageous (even sometimes the labels are available). Finally, our goal is to advocate the
Dec-SSL framework, and the approach is not specific to certain network architecture (as e.g., Zhuang
et al. (2021; 2022)), and does not require transmitting datasets (e.g., Makhija et al. (2022)). Finally,
our empirical observations are thoroughly verified on larger-scale datasets compared to these works,
e.g., ImageNet, MS-COCO, and real-world robotic warehouse datasets, which are more relevant to
practical applications.

B ADDITIONAL EXPERIMENTS

B.1 ADDITIONAL CIFAR-10 EXPERIMENTS

We present the experiment details of Dec-SSL on CIFAR-10, similar to those in Section §4 on
ImageNet with implementation details in the section §C.1 Note that we also include the baseline
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(b) CIFAR 10 Skewness [𝜌 = 1, 𝐸 = 5, 𝐾 = 5](a) CIFAR 10 Non-IIDness [𝜌 = 1, 𝐾 = 5, 𝐸 = 5]

(c) CIFAR 10 Comm. [𝜌 = 1, 𝐾 = 5, 𝛼 = 0.02] (d) CIFAR 10 Partial Participation [𝐸 = 5, 𝐾 = 20, 𝛼 = 0.02]

Figure 6: CIFAR-10 Experiments. SSL is more robust to non-IIDness, communication efficiency,
and participation ratios on CIFAR-10 Dataset.

(b) MAE Comm. [𝜌 = 1, 𝛼 = 0.02, 𝐾 = 5](a) MAE Non-IIDness [𝜌 = 1, 𝐾 = 5, 𝐸 = 5]

Figure 7: Masked Autoencoder (MAE) Experiments. We show that the more recent SSL ap-
proaches based on masked autoencoder (He et al., 2021b) and vision transformer (Dosovitskiy et al.,
2020) are also robust to data non-IIDness and communication constraints. This supports that the ad-
vantages of Dec-SSL is not restricted to contrastive approaches and convolutional networks.

Dec-SL where the algorithm directly runs FedAvg on the downstream classification tasks, without
explicitly learning a representation. It is known (Hsieh et al., 2020) that the non-IIDness is partic-
ularly challenging to deal with in decentralized supervised learning, and we also confirm it in our
experiments.

Decentralized SSL with non-IID data. On Figure 6 (a), we show that Dec-SSL is more robust than
Dec-SLRep when we apply Dirichlet label shift to create non-IIDness at different levels. We also
observe that Dec-SLRep outperforms Dec-SL in this decentralized setting. This observation on the
CIFAR-10 dataset is consistent with the ImageNet-100 dataset in Section §4.

Decentralized SSL can have better communication efficiency under non-IIDness. We use α =
0.02 in this experiment. Under two different notions of non-IIDness, Dec-SSL is much more robust
to communication efficiency compared to Dec-SLRep and Dec-SL. While the idea of averaging
weights after multiple steps sounds challenging, it is surprising to see how robust Dec-SSL is with
respect to the communication frequencies E in Figure 6 (b,c). Similar to the ImageNet experiments,
Dec-SLRep is less robust to the communication frequencies, and Dec-SL is more brittle to less
communication. For CIFAR-10 experiments, each epoch has around 50 iterations.

Decentralized SSL allows less participation under non-IIDness. We use α = 0.02 in this exper-
iment and fix the total number of epochs to be 500. We use K = 20 data sources in this experiment
and want to measure the convergence of decentralized algorithms with respect to the participation
of data sources at each round. In Figure 6 (d), we show that with non-IID data, SSL is much more
robust to less participant each round compared to Dec-SL.

Learning representation transferable to different data sources. The idea of transfer learning
has been used in the self-supervised learning literature (He et al., 2020; Pathak et al., 2016) and we
apply similar ideas to the decentralized learning setting. In this case, the new data distribution could
be treated as a new user/data source, which we want to perform well and adapt quickly on. We
have additional results of linear probing from CIFAR-10 dataset to STL-10 dataset (Coates et al.,
2011) in Table 4. We found a strong correlation of the downstream classification performance and
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(e) CIFAR100 Communication
[𝜌 = 1, 𝐾 = 5, 𝛽 = 0.1]

(g) CIFAR10 Non-IID
[𝐸 = 5, 𝜌 = 1, 𝐾 = 5]

(c) CIFAR10 Partial Participation
						[𝐸 = 50, 𝐾 = 20, 𝛼 = 0.02]

(b) SimSiam Communication
						[𝜌 = 1, 𝐾 = 5, 𝛼 = 0.02]

(a) BYOL Communication	
						[𝜌 = 1, 𝐾 = 5, 𝛼 = 0.02]

(f) TinyImageNet Communication
					[𝜌 = 1, 𝐾 = 5, 𝛽 = 0.1]

(d) CIFAR10 Comm.
						[𝜌 = 1, 𝐾 = 5, 𝛼 = 0.02]

(h) CIFAR10 Skewness
[𝐸 = 5, 𝜌 = 1, 𝐾 = 5]

Figure 8: SSL method and dataset ablation study. We conduct ablation study on SSL methods SimSiam
and BYOL, as well as on datasets CIFAR-10, CIFAR-100, and TinyImageNet.

CIFAR-10 STL-10
Pretrain 100% 10% 1%

no pretrain 0.25 0.24 0.13
Dec-SSL IID 0.65 0.61 0.48

Dec-SLRep IID 0.65 0.60 0.47
Dec-SSL Non-IID 0.60 0.54 0.36

Dec-SLRep Non-IID 0.31 0.30 0.25
Dec-SSL Non-IID Less Comm. 0.33 0.28 0.17

Table 4: Linear Probing from CIFAR-10 to STL10. We observe that pretraining on non-IID data can negatively
affect the performance of transfer learning with different amounts of data. The learned representation from
Dec-SSL can improve both the downstream tasks on the same dataset and help transfer to a new dataset.

the transfer learning performance, as they both rely on the representation capacity of the pretrained
network.

Dec-SSL with masked autoencoder. In this experiment, we run the more recent SSL approach,
masked autoencoder, on the CIFAR-10 dataset to investigate its robustness to data non-IIDness as
well as communication efficiency. We use Vit-Tiny (Dosovitskiy et al., 2020) with the AdamW
(Loshchilov & Hutter, 2018) optimizer for 1000 epochs with batch size 256. We note that the linear
probing performance of MAE is not as good as contrastive learning. However, as shown in Figure 7,
we still observe a similar stable trend in terms of the downstream performance, as the non-IIDness
and the number of local updates increase. This indicates that the advantage of Dec-SSL is not
restricted to contrastive approaches and convolutional neural networks.

B.2 ABLATION STUDY ON DATASET AND ALGORITHMS

Ablation on SSL algorithms. We ablate on the learning algorithms in the Dec-SSL setting. We
experiment with SSL methods SimSiam (Chen & He, 2021) and BYOL (Grill et al., 2020) in addi-
tion to SimCLR to learn representations. From Figure 8 (a,b), we have consistent observations on
the robustness to data non-IIDness, and the stable performance when reducing the communication
frequency. These observations confirm that the SSL objectives are in general leading to relatively
uniform features, and are less vulnerable to data heterogeneity with communication constraints.

Ablation on dataset. Furthermore, we ablate decentralized learning on standard datasets such as
CIFAR-100 and Tiny-ImageNet (Le & Yang, 2015) and observe that Dec-SSL outperforms Dec-
SLRep with communication constraints and non-IIDness (Figure 8 (e,f)). For CIFAR-10, we also
found similar robustness to non-IIDness and skewness (Figure 8 (g,h)) as well as partial participation
and communication constraints (Figure 8 (c,d)). On Table 2 Bottom, we show that the learned
representations from Dec-SSL on one data source (CIFAR-100) can transfer to other data sources
(CIFAR-10). Additional ablation study can be found in §B.

B.3 FEATURE VISUALIZATION AND DISTANCE

In Figure 9, we show that the feature generated by three different models: global model wg , local
model w1 on data source 1, and local model w3 on data source 3, for both Dec-SSL and Dec-SLRep.
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Figure 9: Visualization of feature space and distance. Visualization of the feature space of the local and
global models learned from Dec-SSL and Dec-SLRep.

We use 5 local data sources with Dirichlet parameter α = 0.1 on CIFAR-10 with 500 rounds with
E = 50 epochs for this experiment. At the final communication round, we have local models
w1, ..., w5, and we average to be the global model wg . For Dec-SSL and Dec-SLRep respectively,
we first concatenate the features of the three local datasets to plot these three feature sets on the same
space. We then use principal component analysis (PCA) to project these features in 512 dimensions
to 20 dimensions and use UMap (McInnes et al. (2018)) to visualize these features in 2 dimension.

We observe that in Dec-SSL, the features learned by the local data source are closer to the global
model and the features between the local models are also surprisingly similar to each other; On the
other hand, in Dec-SLRep, each data source is learning a drastically misaligned feature space (which
can be seen as a visualization of the model itself as well), which matches our theoretical insights in
Sections 3.2 and 4.2.

We also compute the summation of the `2-norm difference for each layer of the network weights,
denoted as dw(·, ·) as the surrogate for model drift. For Dec-SSL, the weight difference between the
global model wg and local model w1 is dw(wg, w1) = 17.16, and the weight difference between
w1 and w3 is dw(w1, w3) = 20.27, where w1 and w3 correspond to the weights of data source 1
and 3, respectively. For Dec-SL or Dec-SLRep, the weight difference is much larger: the weight
difference between the global model and the local model 1 is dw(wg, w1) = 178.92, and the weight
difference between w1 and w3 is dw(w1, w3) = 202.69, which is of order larger. For FeatARC,
the feature spaces also look aligned and the weight difference (local model 1 and 3 are clustered to
global model 1) are dw(wg, w1) = 17.24 and dw(w1, w3) = 19.71.

B.4 X -DISTRIBUTION SHIFT AMONG LOCAL DATA SOURCES

Specifically, in addition to the label and feature distribution shifts in Section 3, in this section, we
show that under very non-IID features of the local datasets, the performance of Dec-SSL is still
robust and stable.

In Figure 11, we apply rotation and stylization augmentation to the raw dataset to create more
different characteristics of the features. For rotation, we would manually alter the dataset input x
by rotating it (Ghosh et al., 2020). The source of the heterogeneityM is therefore the orientation
of the images. We split the data into 5 different datasets D1, ..., D5 and apply 0, 2π

5 ,
4π
5 ,

6π
5 ,

8π
5

radians of rotations to the images in each local data source (see Figure 10 as an illustration). For
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stylization Geirhos et al. (2019), we similarly apply 5 different stylizations to the data in each of
the local datasets. As shown in Figure 11, the same robustness to non-IIDness even when the local
dataset has very different features as above.

2𝜋/5 Rotation0 Rotation 4𝜋/5 Rotation 6𝜋/5 Rotation 8𝜋/5 Rotation

Figure 10: Visualization of the input distribution shift for CIFAR-10, created with rotation augmenta-
tion. We apply 5 different rotation augmentation to create the non-IID data sources (Ghosh et al., 2020), which,
as the subfigures illustrate, have very different characteristics.

Style ShiftRotation Shift

Figure 11: Dec-SSL performance under additional X-distribution heterogeneity. We experiment with
two different kinds of input distribution heterogeneity by applying different rotation and stylization distribution
heterogeneity to each local data source, as examples of different feature characteristics of the dataset.

B.5 FULLY DECENTRALIZED CASE AND DIFFERENT NETWORK TOPOLOGY

In this section, we conduct experiments on the fully decentralized learning, where the local data
sources are only allowed to communicate with their neighbors over a peer-to-peer network, without
a centralized server. In short, the observations we had regarding Dec-SSL in the setting with a
centralized server still hold, even under several different network topologies.

In particular, we show that under several different network topologies of the communication net-
works that connect the local data sources, the performance of Dec-SSL is stable to the Non-IIDness
of the data. In Figure 12, we compare the results with the “star topology” (the “federated learning”
setting with a centralized server and multiple local data sources), the “cycle topology”, the “binary
tree topology” with K = 10 and K = 20 agents and full participation with E = 50 epochs, and a
random graph with edge probability 0.7, i.e. there is 0.7 probability for one edge to appear between
two nodes.

These generalization results further validate the main argument in our main paper, and also align with
our theoretical insight provided in Section 3, which came from the benign properties of the solution
to the Dec-SSL objective, instead of the specific algorithm (averaging the iterates via a star or other
network topologies) that achieves the solution. These results demonstrate that it is indeed promising
to incorporate self-supervision in decentralized learning, even in this peer-to-peer communication
case. We hope to further generalize the results to more complicated “fully decentralized” setting in
later versions of the paper.

Cycle [𝜌 = 1, 𝐾 = 10, 𝐸 = 50]
,

Tree [𝜌 = 1, 𝐾 = 20, 𝐸 = 50]

Random Graph [𝜌 = 1, 𝐾 = 20, 𝐸 = 50]

Star [𝜌 = 1, 𝐾 = 10, 𝐸 = 50]

Figure 12: Performance with different topology of the communication networks. We experiment with
four different kinds of network topology in the decentralized learning setting, and observe a similar behavior
of robustness to the data non-IIDness for Dec-SSL.
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[𝜌 = 1, 𝐾 = 10, 𝐸 = 50] Extreme Data Distribution

[𝛽 = 0, 𝐾 = 10, 𝐸 = 50]

Figure 13: Dec-SSL performance in an extreme case. In the extremely non-IID case (CIFAR-10) where
each local data source owns only one class (Right), Dec-SSL still has a robust performance (Left).

Figure 14: Relationship of performance and data amounts. The performance of the Dec-SSL depends on
the amount of data for each local data source.

B.6 EXTREMELY HETEROGENEOUS CASE FOR DECENTRALIZED LEARNING

In Figure 13, we show that even in the extremely heterogeneous case where each local source only
owns one class, the Dec-SSL framework is still robust to the non-IIDness of the data. This is in
stark contrast, to the decentralized supervised learning case, which might face an even degenerate
classification problem at each local data source with only one class, and its performance is known to
degrade. This is also consistent with our theoretical insights in Section 3.2 and Section 4.2, and the
key reason for the success of Dec-SSL is that, although in terms of “class”, each local data source
only contains a “unique” one, but in terms of the information of “features” that may be used for
the jointly classifying all the classes, the local data can be rich. In this case, the Dec-SSL objective
would not be biased by the highly heterogeneous class labels at each local dataset, while the Dec-SL
objective could be very much biased by it. See our Figure 3 for the intuition in a simplified setting.

B.7 THE EFFECTS OF DATA AMOUNTS FOR DECENTRALIZED LEARNING

We show that the generalization performance depends on the sample size of the local dataset, which
is a motivation for joining federation in training and is covered in the theoretical formulation. Specif-
ically, In Figure 14, we gradually change the data size of the each local data source from 10% to
100%, and observe that the performance (representation power of Dec-SSL) decreases. However, it
still maintains 50% accuracy even when each client only owns 10% of the data (in total 50%).

B.8 THE EFFECTS OF DATA SOURCE NUMBER FOR DECENTRALIZED LEARNING

We illustrate the results for the experiment with 100 local data sources in Figure 15. We observe
that the training performance is still robust to the data non-IIDness on CIFAR-100 (with only 20%
of the participants) and to different levels of partial participation rates on CIFAR-10.

B.9 COMPARISON OF FEATARC WITH OTHER ALGORITHMS

In this section, we compare our algorithm with Dec-SSL algorithms when combined with other
federated learning algorithms, including Li et al. (2020a) (FedProx) and Li et al. (2020b) (FedBN).
We note that FedBN is the underlying implementation for FedAvg in our work, since we simply
did not average the batch norm layer during the communication. In Figure 16 (Left), we show that
FedProx also exhibits robustness to the non-IIDness of the data, and we showed that our proposed
FeatARC. algorithm can outperform FedProx on CIFAR-100 dataset in Figure 16 (Right).
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CIFAR-100 Partial [𝐾 = 100, 𝐸 = 50, 𝛽 = 0.1] CIFAR-10 Non-IIDness [𝜌 = 0.2, 𝐾 = 100, 𝐸 = 50]

Figure 15: Dec-SSL performance with more local data sources. The performance of more data sources
participating in the Dec-SSL framework. We here consider a much larger number of local data sources, K =
100, compared to the 5 and 20 used before in the main paper.

FedProx [𝜌 = 1, 𝐾 = 5, 𝐸 = 50] CIFAR − 100	FedProx	&	FeatARC[𝜌 = 1, 𝐾 = 5, 𝐸 = 50]

Figure 16: Dec-SSL performance when using other federated learning algorithms. The performance of
Dec-SSL when FedProx (Li et al., 2020a) is used in replace of FedAvg, and its comparison with FeatARC.

C METHOD AND EXPERIMENT DETAILS

C.1 IMPLEMENTATION DETAILS

In representation learning, we aim to pretrain a network model on a dataset with some pretext tasks
and transfer the weights to another problem, potentially a new dataset and a specific downstream
task. The most widely and practically used representation is the pretrained weights supervised learn-
ing on ImageNet (He et al., 2016), as an initialization for finetuning or training on downstream tasks
such as classification and detection. Recently, self-supervised representation learning has attracted
increasing attention. It is common to study the performance and behavior of representations through
evaluating on downstream tasks. We follow the same setup and try to understand the visual repre-
sentation learning under the decentralized learning setting. For reference, Table 3 shows a list of
datasets used for different experiments in the paper.

Unless otherwise noted, we use ResNet18 (He et al., 2016) throughout the experiments and train
for 500 epochs with the Adam optimizers(Kingma & Ba, 2014), learning rate 0.001, and batch size
256. We use SimCLR (Chen et al., 2020) as the default SSL algorithm due to its simplicity. For
masked autoencoder (He et al., 2021b) experiment on CIFAR-10, we use Vit-Tiny (Dosovitskiy
et al., 2020) with AdamW optimizer for 1000 epochs with batch size 256. We note that the linear
probing performance of MAE is not as good as contrastive learning. Note that in all experiments, the
unit for local update number is epoch instead of iterations (e.g., E = 5 means each local data source
would update 5 epochs, about 200 iterations, before averaging). Note that each epoch on CIFAR-10
forK = 5 data sources is δ = 50 iterations and we fix the number of total epochs for all experiments.
For ImageNet experiment, we use a learning rate of 0.005 with E = 200/ρ epochs, where ρ is the
participation ratio of data sources. For SimSiam and BYOL, we use a learning rate of 0.03 with
the SGD optimizer. We consider the standard classification benchmark dataset such as CIFAR-10,
CIFAR-100 (Krizhevsky et al., 2009), ImageNet (Krizhevsky et al., 2012), TinyImageNet (Le &
Yang, 2015), STL-10 (Coates et al., 2011) and detection dataset such as COCO (Lin et al., 2014)
and a real-world package detection dataset that comes from Amazon. We only use a subset of the
Amazon dataset which has around 80000 RGB images with contour labels predicted by the Amazon
systems. We use the SimCLR image augmentation for all view augmentation without Gaussian
blurring on CIFAR and the standard version on ImageNet. The temperature for SimCLR is fixed to
be 0.5. For classification tasks, to evaluate the learned representation, we initialize a linear classifier
after the feature encoder and train it until convergence on the centralized training set, and then
evaluate it on the centralized test set.

For finetuning detectron (Girshick et al., 2018) on COCO and Amazon datasets, we use the default
schedule with 90000 iterations and the FPN backbone, batch size 16, and learning rate 0.02. We
use a centralized dataset whose distribution is the union of all local data sources. For Amazon ex-
periments, recall that each session is considered as a local data source, and we run pretrain with
Dec-SSL with each session trained individually and then communicate. For the evaluation phase on
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(a) Dirichlet Parameters:
𝛼 = 5, 𝐸𝑀𝐷 = 0.29 𝛼 = 1, 𝐸𝑀𝐷 = 0.77 𝛼 = 0.5, 𝐸𝑀𝐷 = 0.97 𝛼 = 0.1, 𝐸𝑀𝐷 = 1.27 𝛼 = 0.01, 𝐸𝑀𝐷 = 1.57

(b) Skewness Parameters:
𝛽 = 1, 𝐸𝑀𝐷 = 0.002 𝛽 = 0.7, 𝐸𝑀𝐷 = 0.48 𝛽 = 0.5, 𝐸𝑀𝐷 = 0.79 𝛽 = 0.3, 𝐸𝑀𝐷 = 1.12 𝛽 = 0, 𝐸𝑀𝐷 = 1.62

Dataset 
Size

Client

Figure 17: Visualization of the label distribution shift for CIFAR-10. Each horizontal bar represents the
data for one data source where one color indicates one class in CIFAR-10 (10 classes in total), and the vertical
axis represents different data sources. To study the effect of non-IIDness on decentralized learning, we use
Dirichlet process (with parameter α) and a skewness ratio (with parameter β) to split the data. We can observe
from left to right that the data becomes more and more non-IID as we adjust the parameters. We also compute
the average earth-mover’s distance from the local dataset to the global dataset to quantify the distribution shift.

Amazon package detection / segmentation tasks, we train on a subset of 10000 images of the unla-
beled data for 20000 iterations to show the benefits of representation learning. For this segmentation
task, we use the outputs of the Amazon systems as the “ground-truth”, but we note that they can be
inaccurate. For detection and segmentation tasks, the training and evaluation setups follow those in
the Detectron (Girshick et al., 2018) pipeline, with only the initialization weight being replaced.

For both FedAvg (McMahan et al., 2017) and FeatARC, we use 5 data sources (K = 5) with
evenly split number of data per data source. Each round we use full participation (ρ = 1) with
5 local update epochs (E = 5). We use step scheduler to gradually decay the learning rates and
reset all local optimizer states for each round in the CIFAR-10 experiments, and do not average
the BatchNorm layers (FedBN) (Li et al., 2021b). In FeatARC, we find 2 clusters to be sufficient
to achieve good performance and also use hyperparameter λ = 1. During evaluation, we test on
each local dataset using the corresponding cluster model, and average the best performance as the
classification accuracy. All experiments run on one V100 GPU and finish within a day. We use a
customized ResNet to process the CIFAR image, and these experiments take much less resource and
time. Note that although we typically compare Dec-SLRep and Dec-SSL on the same dataset, in
practice the unlabeled dataset has much larger diversity and quantity.

C.2 DATA HETEROGENEITY CREATION DETAILS

In this section, we discuss how we construct the non-IIDness of datasets on CIFAR-10. The same
procedure applies to other datasets used in the paper. Assume that we split the dataset into N
partitions (Note that it is different from the number of data sources K), and these D1, .., DN are
based on some sources of the heterogeneity. Once we have these N partitions, we use two different
ways to create the data non-IIDness across data sources. The first method is to use a Dirichlet
distribution to split D1, ..., DN (Yurochkin et al., 2019). As a multivariate generalization of the
Beta distribution, Dirichlet distribution generates sample pk ∼ DirN (α) and assigns a portion pk,j
of the class k to data source j. Note that α represents a concentration parameter. When α increases
to the limit of ∞, the distribution becomes more and more IID (each data source has roughly a
uniform distribution). Empirically for CIFAR-10 with 50000 data points and 10 classes (Figure 17),
α = 5 implies a reasonably uniform distribution over 10 classes and α = 0.01 implies an non-IID
case each data source has data from mostly 2 classes and a small amount comes from other uses.
Another way to create non-IIDness is through skewness partitioning (Hsieh et al., 2020). In this
case, we separate the entire dataset into (β) fraction that would split uniformly to each partition
and (1 − β) fraction that would split in a skewed way. Assume we have N partitions, then each
data source would have β fraction of its data coming from the IID distribution of the dataset, and
(1 − β) fraction that comes from bN/Kc of the partitions exclusively. As we decreases β from
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Feature Space Visualization on CIFAR-10

Figure 18: Feature distribution shift. Heterogeneity created with a pretrained feature extractor. We use a
pretrained network to map images to a feature space and then do clustering to split the dataset.

1 to 0, the dataset becomes more heterogeneous. To see this, observe that β = 1 implies that the
data is completely uniform from 10 classes and β = 0 means that each dataset has exclusive data
from bN/Kc of the partitions (2 classes from CIFAR). Note that for these two approaches, the non-
IIDness level is parametrized by α, β and in the experiment, we consider a range of α ∈ [0.01, 5]
and β ∈ [0, 1].

Label distribution shift. This source of data heterogeneity comes from the class labels of the data
samples. Since CIFAR-10 has 10 classes, we can separate the whole datasets intoD1, ...D10 as each
Di contains only the 5000 images from one class. For instance, D1 can be all cat images and D5

can be all truck images. On Figure 17, we visualize the created non-IIDness on the y distribution
(label) by these two approaches.

Feature distribution shift. This source of data heterogeneity comes from the feature space of
a pretrained network (Zhang et al., 2020b). Specifically, we first train a pretrained network on
classification task on CIFAR-10 with a ResNet50 and use the 2048-dimensional latent vector as a
representation of the image feature. After that, we further use Principal Component Analysis (PCA)
to reduce the dimension to 30 and do clustering. Treating each feature space cluster as a partition,
we create 5 clusters and visualize the cluster ID and the class ID, in Figure 18.

C.3 ALGORITHM DETAILS

We here introduce more details about the algorithms we proposed in §5. Our new algorithm
FeatARC is summarized in Algorithm 1; The subroutine of feature alignment regularization in
the local updates is tabulated in Algorithm 2. FeatARC is based on the idea of clustering in decen-
tralized learning (Ghosh et al., 2020; Mansour et al., 2020), which alternates identifying the cluster
identities for each local data source, and using the assigned cluster to do a FedAvg step that aver-
ages local models. In federated learning, clustering-based approach is often used as an interpolation
between learning local (K) models and learning (a single) global model, in order to tradeoff the bias
and variance in learning from heterogeneous datasets (Mansour et al., 2020). In the highly non-IID
scenarios, classic FedAvg with a single global model often fails to capture the heterogeneity of
local data distributions, which motivates the use of multiple models, under the assumption that there
is some underlying clustering structure of the data (e.g. according to geographic regions, ethnic
groups, etc.).

Specifically, we denote the sets of cluster models and local models as {θj}j∈[C] and {θ̃i}i∈[K],
respectively, where C and K denote the number of cluster models and local data sources respec-
tively. At each round, we compute an assignment Ii for each local data source i based on matrix
A ∈ RK×C where Ai,j denotes the “closeness” of data source i to cluster j. This “closeness”
is defined based on how aligned the features are, measured by D(·, ·), between the local feature
fθ̂i(xk) and global feature fθj (xk) for each data point xk in the local dataset Di (Line 8 to 12 in
Algorithm 1). Now to estimate the cluster identity for data source i, we use the argmin over the
cluster of the average of feature distance for all data points in the dataset. The assigned cluster model
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Algorithm 1 Feature Alignment Regularization and Clustering (FeatARC)

1: Input: Cluster number C, initialization of cluster and local models {θj}j∈[C] and {θ̃i}i∈[K]

2: Parameters: Number of local updates E, number of total rounds T , distance function D, learn-
ing rate γ, local datasets D1, ..., DK

3: for t = 0, ..., T − 1 do
4: Central server: Broadcast cluster parameters {θj}j∈[C]; chooseM, a random subset of data

sources to participate at round t
5: for Data source i ∈M in parallel do
6: Initialize local and global feature sets zi,1, ..., zi,C , z̃i
7: for j ∈ [C] do
8: for Data sample xk ∈ Di do
9: Compute global feature: zi,j ← zi,j ∪ {fθj (xk)}

10: Compute local feature : z̃i ← z̃i ∪ {fθ̃i(xk)}
11: end for
12: Compute average feature alignments: Ai,j = 1

|zi,j |
∑|Di|
k=1 D(zi,j,k, z̃i,k)

13: end for
14: Estimate cluster identity: Ii ← arg minj∈[C] Ai,j

15: Update local model: θ̃i ← LocalUpdate-FAR(E, γ, θIi)

16: Send back θ̃i and the one-hot vector si = {si,j}j∈[C] with si,j = 1{j=Ii}
17: end for
18: Central server: Update cluster model θj ←

∑
i∈M si,j θ̃i∑
i∈M si,j

for all j ∈ [C]

19: end for

Algorithm 2 LocalUpdate with Feature Alignment Regularization (LocalUpdate-FAR)
1: Input: Local iteration number E, step size γ, model θ
2: Parameters: SSL objective LSSL, feature distance metric D, random augmentation function

Aug, balance parameter λ, local dataset D
3: Set θ̃ ← θ as the initialization of the local model
4: for t = 0, ..., E − 1 do
5: Sample data pair: x from D and x− from D independently
6: Compute global feature: zg ← fθ(x)
7: Augment views: x+ ← Aug(x)
8: Compute local feature: (z+

l , z
−
l , zl)← (fθ̃(x

+), fθ̃(x
−), fθ̃(x))

9: Predict feature: (p+
l , p

−
l , pl)← (gθ̃(x

+), gθ̃(x
−), gθ̃(x))

10: Compute loss: L(θ̃)← LSSL(p+
l , p

−
l , z

+
l , z

−
l ) + λ · ( 1

2D(p+
l , zg) + 1

2D(pl, zg))

11: Update local model: θ̃ ← θ̃ − γ∇L(θ̃)
12: end for
13: Return: θ̃

would be sent to the local data source, and is locally updated with the subroutine in Algorithm 2.
Throughout the paper, the distance metric (or the alignment as its negative) between features used
in SSL loss, auxiliary loss, and clustering identification, is all defined based on a cosine distance
metric D(z1, z2) = − z1·z2

||z1||||z2|| . We use this distance metric, instead of the SSL loss as the metric,
since it has been shown that the SSL loss might not be indicative enough for the performance on
downstream tasks (Robinson et al., 2021).

In Algorithm 2, we propose to add the distance of the features from the local model to the features
from the global model as an auxiliary loss in the local SSL training, which can be viewed as distilling
global model to the local model, or as a trust-region update that restricts the drift of local models.
Note that we here refer to the cluster model as the “global model” in this local subroutine. In
particular, in addition to the original self-supervised learning loss LSSL that takes in positives x+

and potentially negatives x−, we add a weighted auxiliary loss. The loss is defined as the cosine
distance metric on the prediction output p of the local model on data point positives x+, and the
feature output z of the global model on data point x (similar to how SimSiam is implemented). This
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Figure 19: Decentralized self-supervised learning (Dec-SSL). In the real world, large amounts of unla-
beled data are generated and stored in a distributed fashion with high heterogeneity. In this work, we study
decentralized self-supervised learning and apply it to real-world visual representation learning problems.

way, when there are many local updates without explicit communication among local data sources,
the global model features can still regularize the local ones to be close to the global one.

Compared to other concurrent/contemporaneous methods, Zhuang et al. (2022) requires an extra
memory bank and a customized update rule for local model, Makhija et al. (2022) requires access
to an unlabeled public dataset for all models to measure the distance, and requires the communica-
tion of some datasets; He et al. (2021a) experiments with multiple methods to do personalization
in decentralized learning, and our clustering-based approach can be viewed as new instance of it.
In FeatARC, the auxiliary regularization loss and the clustering procedure between global and lo-
cal models are simple to add and are general enough to be compatible with any SSL algorithm
in decentralized n our experiment, we sweep over the hyperparameters and choose the balancing
hyperparameter λ = 1 and the number of cluster to be C = 2.

D REAL-WORLD DECENTRALIZED UNLABELED DATA EXAMPLES

In this section, we enumerate several real-world motivating scenarios where Dec-SSL with heteroge-
neous and unlabeled data is relevant and using unlabeled data can play a significant role (Figure 19).
These examples are naturally related to fleets of devices, where model adaptation and data shar-
ing become a central question, and thus require an efficient way to extract information from the
decentralized datasets. Note that different from the “big and diverse data” motivation for SSL in
the centralized setting, decentralized setting emphasizes that the data come from very distinct data
sources, and the bandwidth in many cases simply cannot afford raw data communications.

Self-driving fleet. Self-driving cars are naturally deployed around the world with very distinct
data distributions. For instance, the traffic rules in Berlin can be very different from the traffic rules
in China. The camera observations on a freeway is very different from those on a crowded city road.
Despite that data sharing might not be a problem, labeling all masks for images can be a prohibitive
tasks and sharing all data can be very inefficient. The data is inherently skewed in terms of quantity
n, features x, as well as labels y. For instance, we can have imbalanced number of classes for an
object detector trained to deploy on the freeway that often sees trucks and one trained to deploy on
the street that often sees people and cyclists.

Mobile edge devices. Decentralized supervised learning on the edge devices such as medical di-
agnosis, object detection, and sentence completion have been used in the real systems. However,
with growing interests and importance, decision making and interactions with the environment in
the wild are more likely to generate unlabeled datasets. With external sensors, one can collect data
for agents participating in some tasks such as cooking, doing sports, and working, but we cannot
easily provide labels for these settings and these settings can sometimes be privacy sensitive. Take
cooking for instance, it can be very difficult to label the masks for all the ingredients and food on the
table. Moreover, the data from only each single user might not be enough to learn a generalizable
representations through self-supervised learning, thus motivating each user to join a federation, and
jointly learn a global model. Thus, it would be very interesting for the community to investigate de-
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Prediction Groundtruth Prediction Groundtruth

Figure 20: Qualitative instance segmentation results on the real world Amazon Data. We applied our
decentralized self-supervised learning (Dec-SSL) framework to the real-world data collected in the Amazon
warehouses. For each pair of images, the left shows the instance segmentation results of Dec-SSL using a
backbone pretrained on the same data, while the right shows the predictions from the Amazon system (used
as the ground-truth labels for finetuning). Our method achieves a decent result and outperforms the baseline
trained from scratch.

centralized self-supervised learning to acquire useful representation from these by nature distributed
and diverse data.

Warehouse/Household robots. A bottleneck in robotics has been the availability of high-quality
and large-scale real-world data. As robotic systems are deployed more and more at scale in both
warehouse and households settings, large-scale datasets are becoming increasingly available. In
Section §D.1, we present a detailed example from the actual Amazon warehouse to motivate decen-
tralized self-supervised learning. Similar to self-driving cars, a single robotic work-cell can generate
millions of images per year; however, it is impractical to label data at this scale. Moreover, each
local data distribution can be narrow and thus the model learned from each local dataset can hardly
generalize. Considering a model trained on data from a warehouse that only sees boxes and then
trying to operate this model in a warehouse that sees a variety of package types. To address the over-
fitting issue, it is useful to learn a common representation that can be quickly specialized for each
local data source. Our Dec-SSL framework provides an efficient and robust way to do representation
learning. In addition, due to the communication budget, it is desirable to have longer local updatesE
and arbitrary participation ratio ρ during the learning process. These methods, taken to full fruition,
can enable local systems to efficiently share information and continually improve with significantly
fewer labels. Similarly, a fleet of home robots that are deployed at diverse homes across the world
can generate terabytes of raw data that are infeasible to share on cloud databases, due to limits on
both the privacy and the network bandwidth. Moreover, the data that is commonplace for robots
at one place can be out-of-distribution for robots at other places, causing challenges on deploying
robots in homes, warehouses, and other human environments. In the next section, we provide more
details about the robotics dataset example from Amazon warehouse.

D.1 A REAL-WORLD NON-IID DATASET IN ROBOTICS

Robin is a robotic manipulation work-cell at Amazon designed to induct packages into a sortation
system. Packages are fed to the robot by means of a conveyor belt and other up-stream material
handling equipment. An advanced sensing and perception system on Robin acquires images of the
scene, detects and segments packages, and determines what package to pick and how. A custom
End of Arm Tool (EoAT) and motion planning and control software robustly execute the pick and
place the package on an outbound drive unit. The large-scale deployment of Robin in production
provides millions of visual and interaction data. These data are largely unlabeled. As deployments
of systems like Robin scale, centrally aggregating data from the entire fleet becomes costly if not
infeasible due to bandwidth limits. An additional challenge to continual learning on Robin is that
distributions shift at both the individual work-cell level as well as the facility (or site) level, and
these shifts present trade-offs in generalization vs. specialization. Said differently, its not clear
simply pooling the data is advantageous. The following are some notable ways the Robin dataset is
diverse along with several factors that drive this diversity.

Package mix. Robin handles many different types of parcels; for example, cardboard boxes, paper
bags, poly bags, jiffy mailers, items shipped in their own packaging, etc. A particular facility may
see a particular distribution of package types based on its purpose in the network. For example,
many sites handle a diversity of package types, weights, and sizes; whereas, other sites may handle
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Average Package Density On Robotic Sites on Amazon

Single Site
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Figure 21: Heterogeneity naturally occurs in real-world unlabeled data. In real-world robotic settings such
as those in Amazon warehouses, data distribution shifts emerge as a result of differences in location and type of
facility, time of year (e.g. holidays), upstream material handling systems, and robotic work-cell configuration
(e.g., arm, gripper, and sensor types), etc. The plot shows two axis of non-IIDness across different sites in
Amazon: the density of the packages among scenes and the package type distribution within scene compared
to the average.

predominately only one or two package types or have restrictions based on weight or size. There are
also temporal factors that produce shifts in package type distribution. For example, the introduction
of recyclable materials or the use of less packaging material over time.

Package density. As is notable in Figure 20, the density of package presentation varies between
facilities and over time. Different sites may have different up-stream material handling systems (e.g.
conveyance) that feed Robin packages in different ways. On one extreme, scenes can consist of a
single package, and on the other extreme packages are presented in a dense pile with significant
overlap and occlusion. During certain times of year (e.g., holiday season) there is increased volume
in the network and this can produce denser scenes.

Hardware configuration. Robin work-cells can vary in arm, EoAT, and sensor types throughout
the network. Additionally, the size and types of collision geometry in the work-cell area can change
at both the work-cell and facility level. These differences mean that even if the input distribution
(scenes) are the same, robots may see and move in different ways to accomplish the same task. This
further contributes to diversity in both visual and interaction data.

E THEORETICAL ANALYSIS

Notation. For any positive integer k, we use [k] to denote the set {1, 2, · · · , k}. We use N (µ,Σ)
to denote the Gaussian distribution with mean µ and covariance matrix Σ. We use 〈x, y〉 to denote
the inner product of two vectors x, y ∈ Rd. For two non-negative integers k, n, we use k mod n to
denote the arithmetic remainder of k divided by n. For positive integer d > 0, we use ei with i ∈ [d]
to denote the d basis vectors in Rd Euclidean space. For a real x ∈ R, we use bxc and dxe to denote
the floor and ceiling integers of x, i.e., bxc = max{k ∈ Z | k ≤ x} and dxe = min{k ∈ Z |x ≤ k}.
In this section, we aim to shed some lights on the robustness of decentralized SSL approaches to
data heterogeneity, and their comparison to decentralized supervised learning.

E.1 DEFERRED DETAILS AND PROOF IN SECTION §3.2

Setup. Consider a decentralized SSL problem with K data sources. To model non-IIDness across
them, we use a common type of data heterogeneity, i.e., the label heterogeneity (see our discussions
in §C.2). Indeed, label heterogeneity has been recognized as a fundamental and pervasive problem
for decentralized learning, causing significant performance loss across many applications (Hsieh
et al., 2020). This setting also corresponds to one non-IIDness we used in previous subsections (see
e.g., §3.1). Similar to the SimSiam approach (Chen et al., 2020), we first augment x, an anchor
sample from the dataset to have two positive samples, by sampling ξ, ξ′ ∼ N (0, I) IID from the
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Gaussian distribution. Consider the linear embedding function fw(x) = wx, where w ∈ Rm×d and
m ≥ 2K. The local SSL objective for data source k is given by

Lk(w) := −Ê
[
(w(xk,i + ξk,i))

>(w(xk,i + ξ′k,i))
]

+
1

2
‖w>w‖2F , (E.1)

where Ê is taken expectation over the dataset x ∼ Dk, and the randomness of ξk,i and ξ′k,i. More-
over, recall the global objective is given in (2.2). Note that (E.1) instantiates the SimSiam loss with
the negative inner-product 〈a, b〉 as the distance function D(a, b) and no feature predictor for sim-
plicity. We also add a regularization term ‖w>w‖2F /2 to improve the mathematical tractability of
the objective (which in practice corresponds to weight decay in the optimizer). The K data sources
collaboratively minimize (2.2), and evaluate the learned representation on a 2K-way classification
task.

Data heterogeneity. Choose K = Θ(d1/20). The K local datasets are generated as follows. For
a fixed data source k, the labels are skewed in that data from classes 2k − 1 and 2k constitute
the majority of the data, while other classes are rare, or even unseen. Specifically, let e1, · · · , ed
denote the standard unit basis of Rd, and let nk,j for j ∈ [2K] denote the number of data for
class j ∈ [2K] in this dataset k. For class 2k − 1, data is generated following x(2k−1) = ek −∑K
i 6=k,i=1 q

(2k−1,i)τei + µξ(2k−1), where q(2k−1,i) are sampled uniformly from {0, 1}, ξ(2k−1) ∼
N (0, I), and both τ = d1/5 and µ = d−1/5 are positive hyperparameters. Similarly, for class 2k,
x(2k) = −ek −

∑K
i6=k,i=1 q

(2k,i)τei + µξ(2k). The amounts of data from classes 2k − 1 and 2k are
equal and both of order poly(d). For classes 2i− 1 with i 6= k, x(2i−1) = ei + µξ(2i−1), and there
is no data for classes 2i in data source k. The amounts of data in classes 2i − 1 with i 6= k are the
same and of order sublinear in d, i.e., O(dβ) for some β ∈ (0, 1), such that O(Kdβ) ≤ O(d1/5).
Note that this leads to that O(Kdβ/(2nk,2k)) ≤ O(d−4/5) ≤ O(1), and implies that the sum of the
data from all the infrequent classes 2i − 1 and 2i for i 6= k are less than the data in the frequent
classes 2k − 1 and 2k. All K local datasets are assumed to contain the same amount of data, i.e.,
|D1| = |D2| = · · · = |DK |. We visualize the heterogeneous data distribution in Figure 3.

Proof of Theorem 3.2:

For local dataset k. We first analyze the solution to minimizing the local objective (E.1), using
only local dataset Dk. Define

Xk := Êx∼Dk
(xx>) =

1

|Dk|

|Dk|∑
i=1

xk,ix
>
k,i

to be the empirical data covariance matrix for dataset k. Notice that
E(Xk) (E.2)

= diag
(
τ2 +O(d−2/5), τ2 +O(d−2/5), · · · , 1 +O(d−2/5)︸ ︷︷ ︸

k-th term

, · · · , τ2 +O(d−2/5)

︸ ︷︷ ︸
K terms

, O(d−2/5), · · · , O(d−2/5)︸ ︷︷ ︸
d−K terms

)

= diag
(
d2/5 +O(d−2/5), · · · , 1 +O(d−2/5), · · · , d2/5 +O(d−2/5), O(d−2/5), · · · , O(d−2/5)

)
.

By matrix concentration bounds, e.g., (Vershynin, 2018), we have that with probability at least
1− 1

2e
−d1/10 , ‖Xk−E(Xk)‖ ≤ O(d−2/5). By Weyl’s inequality we have that with high probability,

|λk,i − λi(E(Xk))| ≤ ‖Xk − E(Xk)‖2 ≤ O(d−2/5) (E.3)
for all i ∈ [d], where we denote λk,i := λi(Xk) as the i-th largest eigenvalue of Xk.

On the other hand, as |Dk| ≥ poly(d), for any ej with j ∈ [K]\{k}, we have that with probability
at least 1− 1

2e
−d1/10 , at least 1/3 (where at least 2/3 data come from classes 2k− 1 or 2k, and 1/2
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of them) satisfy that either q(2k−1,j) or q(2k,j) is 1, and
∑|Dk|
i=1 |〈ξk,i, ek〉

∣∣/|Dk| ≤ O(d1/10)3 (see
(Liu et al., 2021, Lemma E.1)). Hence, we have that

e>j Xkej = Êx∼Dk

[
(e>j x)2

]
≥
[
Êx∼Dk (e>j x)

]2 ≥ (1

3
τ − µ

|Dk|∑
i=1

1

|Dk|

∣∣∣e>j ξk,i∣∣∣)2 = Ω(τ2) = Ω(d2/5),

(E.4)

with probability at least 1− 1
2e
−d1/10 , where we use the fact that µ = d−1/5.

Now notice that the local objective in (E.1) can be equivalently re-written as

min
w
‖Xk − w>w‖2F , (E.5)

which, by Eckart-Young-Mirsky theorem (Eckart & Young, 1936), yields that the span of the rows
of optimal w (an m× d matrix) is the span of the eigenvectors of the first m eigenvalues of Xk. Let
{vk,1, · · · , vk,d} denote the set of d orthonormal eigenvectors of Xk, then Xk =

∑d
i=1 λk,ivk,iv

>
k,i,

where recall that λk,i is the i-th largest eigenvalue of Xk. Hence, by (E.4), we have

λk,1

d∑
i=1

(e>j vk,i)
2 ≥ e>j Xkej =

d∑
i=1

λk,i(e
>
j vk,i)

2 ≥ Ω(d2/5) (E.6)

with high probability. In fact, by (E.3) and (E.2), we can have finer bounds of e>j Xkej as

e>j Xkej = e>j E(Xk)ej + e>j
[
Xk − E(Xk)

]
ej

≥ d2/5 +O(d−2/5)− ‖Xk − E(Xk)‖ ≥ d2/5 −O(d−2/5), (E.7)

e>j Xkej = e>j E(Xk)ej + e>j
[
Xk − E(Xk)

]
ej

≤ d2/5 +O(d−2/5) + ‖Xk − E(Xk)‖ ≤ d2/5 +O(d−2/5), (E.8)
where we use the fact that ‖X‖max ≤ ‖X‖ for symmetric X .

Furthermore, by (E.3) and (E.2), we know that

d2/5 −O(d−2/5) ≤ λ1(E(Xk))−O(d−2/5) ≤ λk,1
≤ λ1(E(Xk)) +O(d−2/5) = d2/5 +O(d−2/5) (E.9)

showing that λk,1 = d2/5 ±O(d−2/5). Combining (E.7) and (E.9), we obtain that
d∑
i=1

(e>j vk,i)
2 ≥ d2/5 −O(d−2/5)

d2/5 +O(d−2/5)
≥ 1−O(d−4/5), (E.10)

which completes the proof with α = 4/5.

For global dataset. Recall the global objective given in (2.2):

min
w

∑
k∈[K]

|Dk|
|D|
Lk(w). (E.11)

As the local objective in (E.1) can be equivalently re-written as (E.5), we can also re-write the global
objective as

min
w

g(w) :=
∑
k∈[K]

|Dk|
|D|
‖Xk − w>w‖2F . (E.12)

3Note that we here slightly abuse the notation by denoting the noise in generating the data point xk,i by
ξk,i, which should not be confused with the augmentation noise in the SSL objective (E.1).

32



Published as a conference paper at ICLR 2023

Further, note that the gradient of g(w) in (E.12) at any w is the same as that of the following
objective:

g̃(w) :=

∥∥∥∥ ∑
k∈[K]

|Dk|
|D|

Xk︸ ︷︷ ︸
X̄

−w>w
∥∥∥∥2

F

. (E.13)

Thus, these two objectives share the same minimizer. Note that it is the minimizer that we care about
(as it determines the feature mapping), and minimizing (E.13) is equivalent to minimizing the SSL
objective over the global dataset D =

⋃
k∈[K]Dk, with the empirical data covariance matrix

X̄ := Êx∼D(xx>) =
|Dk|
|D|

∑
k∈[K]

1

|Dk|

|Dk|∑
i=1

xk,ix
>
k,i =

1

|D|

|D|∑
i=1

xix
>
i . (E.14)

Hence, (E.12) is equivalent to solving

min
w

g̃(w) = ‖X̄ − w>w‖2F . (E.15)

We can now follow the analysis above. First, by (E.2) and the linearity of expectation, we have
E(X̄) (E.16)

= diag
(
d2/5 −Θ(d7/20) +O(d−1/20), · · · , d2/5 −Θ(d7/20) +O(d−1/20)︸ ︷︷ ︸

K terms

, O(d−2/5), · · · , O(d−2/5)
)
,

where we have used the fact that
(K − 1) · d2/5 + 1

K
= (1−Θ(d−1/20)) · d2/5 +O(d−1/20) = d2/5 −Θ(d7/20) +O(d−1/20).

Then, by similar arguments from (E.3)-(E.8), we have that for all j ∈ [K] (without excluding any
k),

e>j X̄ej ≥ d2/5 −Θ(d7/20) +O(d−1/20)−O(d−2/5), (E.17)

λ1(X̄) ≤ λ1(E(X̄)) +O(d−2/5) = d2/5 −Θ(d7/20) +O(d−1/20) (E.18)
leading to that

d∑
i=1

(e>j v̄i)
2 ≥ d2/5 −Θ(d7/20) +O(d−1/20)−O(d−2/5)

d2/5 −Θ(d7/20) +O(d−1/20)
≥ 1− 2 ·O(d−4/5),

for large enough d such that 1 − O(d−1/20) ≥ 1/2, where {v̄1, · · · , v̄d} denote the d orthonormal
eigenvectors of X̄ . This completes the proof.

E.2 DEFERRED RESULTS AND PROOF IN SECTION §4

Setup. The data are generated as in §E.1. For each local dataset k, consider a supervised learning
algorithm that uses a two-layer linear network guk,vk(x) := vkukx as classifier, where uk ∈ Rm×d
and vk ∈ Rc×m for some m ≥ c = 2K are weight matrices. Note that ukx can be viewed as
the feature learned by this classifier, which can be used in the downstream tasks. This is exactly
the protocol of Dec-SLRep on the local objective. Following Liu et al. (2021), we consider the
approach of learning the network with minimal norm ‖(uk)>uk‖2F + ‖(vk)>vk‖2F subject to the
margin constraint that [guk,vk(x)]y ≥ [guk,vk(x)]y′ + 1 for all data (x, y) in the local dataset k with
all y′ 6= y. Note that such a solution can be found in direction via gradient descent using logistic
loss (Ji & Telgarsky, 2018). Now we are ready to show the following result, based on the techniques
in Liu et al. (2021).

Proposition E.1 (Representations learned by Dec-SLRep across heterogeneous data sources). With
high probability, the feature matrix uk = [uk,1, · · · , uk,m]> ∈ Rm×d learned from the local dataset
Dk has the following properties:

m∑
i=1

〈uk,i, ej〉2 ≤ O(d−
1
10 ),
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for j ∈ [K] \ {k}; while
m∑
i=1

〈uk,i, ek〉2 ≥ 1−O(d−
1
20 ).

In other words, the correlation between the learned features in wk and ej is small for all j ∈ [K] \
{k}, while the correlation between the features and ek is large.

The proposition suggests that the learned features for each local dataset k overfit the its skewed data,
and does not learn the feature directions, e.g., other unit vector directions ej for j ∈ [K] and j 6= k,
that might generalize well to the data in other datasets. The result can be viewed as a multi-class
generalization of the first part of Theorem 3.1 in Liu et al. (2021) . The intuition is also illustrated
in Figure 3. This way, the feature space learned from various local datasets differ significantly, in
that most of the directions among {e1, · · · , eK} are uninformative, while their possibly informative
feature directions are all different. This heterogeneity between local solutions is not in favor of
local updates, as too many local updates would drift the iterates towards its local optimum, and the
iterates would become too far away from each other, hurting the convergence of classic decentralized
learning algorithms as FedAvg. Hence, compared with the Dec-SSL case and Theorem 3.2, Dec-
SLRep can be less communication-efficient as it does not allow large number of local updates.

Proof of Proposition E.1. Without loss of generality, we show the result for datasetD1, i.e., when
k = 1. The proof follows mostly from the proof of Theorem 3.1 in Liu et al. (2021), and for
conciseness, we only layout the key differences. For convenience, we remove the index k in the
notation whenever it is clear from the context. First, note that the local SL problem is equivalent to
the following one:

min
w

c∑
i=1

‖w̃i‖22 s.t. 〈w̃y, x〉 ≥ 〈w̃y′ , x〉+ 1, ∀ (x, y) ∈ D1, y′ ∈ [2K], y′ 6= y, (E.19)

where w̃ = [w̃1, · · · , w̃c]>. We then establish the following lemma.

Lemma E.2 (Margin & norm bounds). Given the data generated above. Construct a solution to
(E.19) as w∗1 = e1, w

∗
2 = −e1, and for i ∈ {2, · · · ,K}, w∗2i−1 = 1

µd

∑n2i−1

j=1 ξ
(2i−1)
j and w∗2i =

0. Then we have that for large enough d, with probability at least 1 − e−d
1/10

, the margin of
{w∗1 , · · · , w∗2K} is at least 1−O(d−1/10). Moreover, we have ‖w∗j ‖22 ≤ O(d−3/10) for j ∈ [2K] \
{1, 2}.

Proof sketch. The proof follows from the proof of Lemma E.2 in Liu et al. (2021). The argument
for the data in classes 1 and 2 is similar; the argument for that in classes 2i− 1 for i ∈ {2, · · · ,K}
is similar to that for class 3 in the proof therein. Note that the total number of data in the rare
classes here equals that of the rare class 3 therein, which is O(d1/5). So one needs to replace the
n3 therein by O(d1/5)/K = O(d3/20) (recall that K = Θ(d1/20)), which is a smaller number that
validates the arguments in the proof therein, and in fact, makes the norm of ‖w∗j ‖2 smaller, i.e.,
‖w∗j ‖2 ≤ O(d−3/20). Also, note that there is no margin constraints corresponding to classes 2i with
i ∈ {2, · · · ,K}, as there is no data belong to these classes in this local dataset. Finally, note that for
any data (x, y) in the dataset, x>w∗2i = 0, which does not affect the margin between other classes
and 2i. The remaining of the proof follows from the proof therein.

Then, similar to the argument in the proof of Theorem 3.1 in Liu et al. (2021) (supervised learning
part), one can show that by normalizing the solution in Lemma E.2 by its margin, denoted by α ≥
1−O(d−1/10), the solution to (E.19) (which should have no-larger norm) satisfies

2K∑
i=1

‖w̃i‖22 ≤
2K∑
i=1

∥∥∥w∗i
α

∥∥∥2

2
=

2 + (2K − 2) ·O(d−3/10)

α2
≤ 2 +O(d−

1
10 ). (E.20)

On the other hand, continue to follow the argument of Eq. (21)-(28) in the proof of Theorem 3.1 in
Liu et al. (2021), we know that for any ` ∈ [2K] \ {1, 2},

〈w̃1, e1〉2 + 〈w̃2, e1〉2 + 〈w̃`, e1〉2 ≥ 2−O(d−1/10). (E.21)
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Note that this also implies
2K∑
i=1

‖w̃i‖22 ≥ 2−O(d−1/10). (E.22)

By (E.20) and (E.21), we know that
d∑
j=2

(
〈w̃1, ej〉2 + 〈w̃2, ej〉2 + 〈w̃`, ej〉2

)
≤ O(d−1/10)

which further leads to the fact that
d∑
j=2

(
〈w̃1, ej〉2 + 〈w̃2, ej〉2 +

∑
`∈[2K]\{1,2}

〈w̃`, ej〉2
)

(E.23)

≤
∑

`∈[2K]\{1,2}

d∑
j=2

(
〈w̃1, ej〉2 + 〈w̃2, ej〉2 + 〈w̃`, ej〉2

)
≤ 2K ·O(d−1/10) ≤ O(d−1/20).

The rest of the proof follows that of Theorem 3.1 in Liu et al. (2021), with the number of classes 3
therein being replaced by c = 2K (as Lemma E.3 in Liu et al. (2021) still holds). By applying the
argument therein for all ej with j = 2, · · · , d, we have

d∑
j=2

m∑
i=1

〈ui, ej〉2 ≤
d∑
j=2

∑
`∈[2K]

〈w̃`, ej〉2 ≤ O(d−
1
20 ). (E.24)

Furthermore, notice that by Lemma E.3 in Liu et al. (2021), u(u)> = (v)>v at the solution and
‖w̃‖2F = 2 · ‖u(u)>‖2F . Hence( m∑

i=1

‖ui‖22
)2

= ‖u‖4F ≥ ‖u(u)>‖2F = ‖w̃‖2F /2 ≥ 1−O(d−1/10),

where the last inequality uses (E.22). This leads to the final result that
m∑
i=1

〈ui, e1〉2 ≥
m∑
i=1

‖ui‖22 −O(d−
1
20 ) ≥ 1−O(d−1/20),

where we use K = Θ(d1/20) and (E.24). Note that the proof above also holds for other dataset
k 6= 1. This completes the proof.
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