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Abstract
Planning dynamic motions for a legged robot entails addressing both the continuous

question of how its joints should move and the combinatorial question of which hand or

foot should touch which surface and in what order. Fortunately, these two questions are

linked by the centroidal dynamics of the robot, which we can express either in terms of

its joint angle trajectories or in terms of its foot placements and applied forces. Based on

this insight, I formulate a pair of mathematical programs for planning highly dynamic

motions for legged robots. The first is a mixed-integer convex program, specifically, a

mixed-integer quadratic program (MIQP), that yields a sequence of footholds/handholds

as well as center of mass (COM) and angular momentum trajectories. The second is a

trajectory optimization, formulated as a nonlinear program (NLP), that returns trajectories

for the COM, angular momentum, and joint angles subject to the footholds/handholds

chosen by the MIQP step. While any number of trajectory optimization schemes could

be used here, we present one which is particularly useful in this case, as it enforces

the system’s dynamics directly in terms of its COM motion and angular momentum.

As a result, the solution to the MIQP provides constraints (where each end-effector is

required to make contact with the environment) for the NLP and also gives seeds for

the decision variables corresponding to the robot’s centroidal motion. Thus, the three

primary contributions of this thesis are: an MIQP-based approach to gait selection over

irregular terrain, a trajectory optimization formulation for floating-base systems subject

to external forces and kinematic constraints, and a planning methodology that integrates

both of those to generate highly dynamic motions in challenging environments. I apply

these techniques to models of a quadruped and a humanoid (Boston Dynamics’ LittleDog

and Atlas respectively) to generate motion plans for running, jumping, and other dynamic

behaviors.

Thesis Supervisor: Russ Tedrake

Title: Associate Professor

3



4



Acknowledgments

Sure playing with robots every day is fun, but it’s the people that make coming into

work every day worth it. I’ve been blessed to work with so many brilliant, generous, and

just plain fun people during my time at MIT. Many thanks to all my colleagues in the

Biomimetic Robotics Lab and the Robot Locomotion Group. I’d like to especially thank my

fellow VRC/DRC planners, Hongkai Dai and Robin Deits for their sharing their insights,

expertise, and sense of humor.

Being part of the MIT DRC Team was an amazing experience, and I’m incredibly

grateful to Russ and Seth for letting me be a part of it. Thanks to the whole team for all

their hard work, fantastic engineering, and the countless Foodler dinners we shared.

Thank you to Russ for giving me the chance to join the Robot Locomotion Group — I

can’t imagine what my MIT experience would have been like otherwise. You opened my

eyes to a new world of robotics research and I’m eternally grateful. Thanks also to the

rest of my committee — Nevile Hogan, Tomás Lozano-Pérez, and Alberto Rodriguez —

for your comments, direction, and advice.

Finally, my most profound thanks to my family. Without them I definitely wouldn’t

be here today. Thank you, Mom and Dad, for your love, generosity, and endless support

for me, Christina and the kids. Thank you, kiddos, for putting up with all of Daddy’s

“working late” days and “working at home” days. Thank you for your drawings, your

dances, your stories and your joy. And finally, thank you, Christina, my rock, my muse,

my bride. Thank you for keeping me talking me down, cheering me up, and making me

laugh so many times over the last six years.

+AMDG+

5



6



Contents

1 Introduction 13

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 What makes this problem hard? . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Related Work 17

2.1 Kinematic footstep-planning followed by dynamically feasible whole-body

planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.1 Kinematic footstep planning . . . . . . . . . . . . . . . . . . . . . . . 18

Graph-based approaches . . . . . . . . . . . . . . . . . . . . . . . . . 18

Optimization-based approaches . . . . . . . . . . . . . . . . . . . . . 19

2.1.2 Dynamically feasible whole-body planning . . . . . . . . . . . . . . . 20

Sampling-based approaches . . . . . . . . . . . . . . . . . . . . . . . . 20

Trajectory optimization-based approaches . . . . . . . . . . . . . . . 21

Simplified-model based approaches . . . . . . . . . . . . . . . . . . . 23

2.2 All-at-once approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 General Formulation of Legged Locomotion Planning Problem 27

3.1 Kinematics of legged robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Dynamics of a Floating-base Multi-body System . . . . . . . . . . . . . . . . 29

3.3 Environment model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Contact Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5 Legged robot planning problem . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7



4 Mixed-Integer Convex Planning for Locomotion Over Irregular Terrain 33

4.1 End-effector placement as a mixed integer constraint . . . . . . . . . . . . . . 33

4.2 MIQP formulation of dynamic motion planning . . . . . . . . . . . . . . . . 37

4.2.1 Centroidal Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.2 Planar single-body model . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Convex relaxation of bilinear terms . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3.1 Piecewise McCormick Envelopes . . . . . . . . . . . . . . . . . . . . . 42

4.3.2 Multiparametric Disaggregation Technique . . . . . . . . . . . . . . . 45

4.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4 Cost function and full MIQP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.5 Tools and implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.6.1 Separated Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.6.2 Comparing MIQP and MINCP solutions . . . . . . . . . . . . . . . . 50

4.6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5 Centroidal-Dynamics Full-Kinematics Planning 53

5.1 A middle ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2 Centroidal Dynamics of a Floating Base System . . . . . . . . . . . . . . . . . 53

5.3 Full-Kinematic Model and Constraints . . . . . . . . . . . . . . . . . . . . . . 54

5.3.1 Position constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3.2 Orientation constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.3.3 Gaze constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.3.4 Collision avoidance constraints . . . . . . . . . . . . . . . . . . . . . . 56

5.4 Trajectory Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.4.1 Decision variables and cost . . . . . . . . . . . . . . . . . . . . . . . . 57

5.4.2 Basic constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Time integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

8



Contact constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Joint limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Full problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.5 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.6.1 Humanoid Running . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.6.2 Quadrupedal Gaits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Trot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Gallop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6 Combining MI-convex Planning and Centroidal-Dynamics Full-Kinematics Plan-

ning 67

6.1 Translating Footstep-Planning Results into Kinematic Constraints . . . . . . 68

6.2 Seeding Trajectory Optimization with Centroidal Quantities from MIQP . . 68

6.3 Constraints based on MIQP solution . . . . . . . . . . . . . . . . . . . . . . . 69

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.4.1 Negotiating irregular terrain . . . . . . . . . . . . . . . . . . . . . . . 69

7 Final Discussion and Future Work 73

7.1 Trajectory stabilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.2 Three-dimensional MIQP-based planning . . . . . . . . . . . . . . . . . . . . 74

7.3 Seeding trajectory optimization with full dynamics . . . . . . . . . . . . . . 75

7.4 Comparisons to other approaches . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

9



10



List of Figures

1-1 A quadrupedal robot prepares to cross a set of staggered platforms . . . . . 15

2-1 Approaches to planning for legged robots . . . . . . . . . . . . . . . . . . . . 17

4-1 Schematic of the simplified planar model . . . . . . . . . . . . . . . . . . . . 39

4-2 Surface defined by w = uv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4-3 MI-convex approximations of w = uv: (a) McCormick envelope. (b) Piece-

wise McCormick envelope (M = 2). (c) Piecewise McCormick envelope

(M = 4). (d) Bivariate piecewise McCormick envelope (M = 4) . . . . . . . . 43

4-4 Snapshots from a motion plan for ascending platforms with gaps . . . . . . 49

4-5 Snapshots from a motion plan for staggered platforms with gaps . . . . . . 50

5-1 Snapshots from a half-stride of simulated running at 2 m/s. (a) Touch-down,

(b) mid-stance, (c), toe-off, (d) mid-flight . . . . . . . . . . . . . . . . . . . . . 62

5-2 Snapshots from a simulated jump. (a) Starting posture, (b) heel-off, (c)

toe-off, (d) mid-flight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5-3 Snapshots from a motion plan for jumping off a cinder block. (a) Starting

posture, (b) toe-off, (c) Apex, (d) avoiding collision, (e) touch-down, (f) final

posture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5-4 Snapshots from a motion plan for a running trot. . . . . . . . . . . . . . . . . 65

5-5 Gait graph for a running trot . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5-6 Gait graph for a rotary gallop . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6-1 Snapshots from a motion plan for ascending platforms with gaps . . . . . . 70

6-2 Snapshots from a motion plan for staggered platforms with gaps . . . . . . 71

11



6-3 COM trajectories for traversing stairsteps with gaps . . . . . . . . . . . . . . 71

6-4 COM trajectories for traversing staggered platforms . . . . . . . . . . . . . . 72

12



Chapter 1

Introduction

1.1 Motivation

A humanoid robot has been deployed to shut down a nuclear power plant that is in danger

of melting down after an earthquake. To reach the controls it must cross the rubble-strewn

control room. How would we choose a path for the robot to navigate this environment

that it has never encountered previously?

A quadrupedal robot stands on one side of a rocky plain. On the other side are a group

of soldiers who need the supplies that the robot is carrying. To reach them, however, the

robot must not only cross the irregular terrain — it must do so at high speed to avoid

exposing itself to enemy fire. How would we choose a trajectory for the robot to follow

across the terrain? If the terrain includes a wide gap, how would we determine whether

the robot can simply step over it or whether it needs to jump?

Current motion-planning techniques do not address these sorts of scenarios, in which

careful selection of footsteps needs to be considered alongside the dynamics of the robot.

Both of these scenarios demonstrate a need for planning techniques that let us determine

the appropriate course of action for a robot in situations where “appropriateness” depends

on the dynamics of the robot and the geometry of obstacles and available supports in its

environment. This is what I will refer to as “dynamic motion planning.” It is an extremely

challenging problem.

In this thesis, rather than try to find a universal solution method for the dynamic
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motion planning problem, I treat the special case of legged robots. While still a broad

class of robots, legged robots share certain characteristics that we can leverage to our

advantage. These allow us to solve simplified versions of the planning problem that

still provide useful results. Moreover, we can use our domain knowledge to split the

problem into pieces more easily digested by numerical methods. These simplifications

and decompositions form the primary theme of this thesis.

1.2 What makes this problem hard?

At first glance, getting a legged robot over rough terrain does not appear to be such a hard

problem. We see robots like Boston Dynamics’ BigDog, LS3, Spot, and Atlas walk and

even run outdoors. The MIT Cheetah 2 can clear obstacles up to 80% of its leg-length [1].

Many contestants in the DARPA Robotics Challenge walked over slanted cinderblocks and

stairs [2, 3]. Several other groups have demonstrated quadrupedal locomotion over rough

terrain [4–10]. Despite how impressive these accomplishments are, however, they do not

fully address the scenarios raised in the previous section.

One approach to legged locomotion on irregular terrain, perhaps best demonstrated by

BostonDynamics’ robots, is to rely on a robust controller — start out across the terrain and

give little consideration to foot placement. If the terrain is complex though, this may lead

us to dead ends where the robot cannot make any further progress. This is inadequate for

the proposed scenarios, as we will not know that the robot is going to fail until it is in the

middle of executing its task. We would like our planning methods to give us an a priori

indication of whether the task is achievable.

Alternatively, we can specialize our planning to the point of performing a single

maneuver. The MIT Cheetah team has done this to great success [1]. For running jumps

over obstacles, their method provides excellent solutions very quickly. In order to do this,

however, they restrict their approach to that specific task. Our goal here, however is to

provide an approach that is more general — that works across a wider array of terrains

and robots.

A third, more general approach, is to enforce conservative constraints on the motions

14



that the robot is allowed to perform. This allows for planning approaches that can treat a

variety of terrains. Some of these approaches use quasi-static motion planning, in which

we require the robot’s center of mass (COM) to lie within the support polygon of its feet

at all times [4, 5, 11], while others use a dynamic stability criterion which requires that

the Zero Moment Point (ZMP) exist and lie inside the support polygon at all times [6, 7,

9, 10]. In more challenging scenarios, however, there may simply be no path that satisfies

those constraints.

One of the key difficulties in treating this problem in a general way is that it combines

both discrete and continuous aspects. Consider the scenario shown in Fig. 1-1. The choice

Figure 1-1: A quadrupedal robot prepares to cross a set of staggered platforms

of which platform to step on and with which foot will be instrumental in determining

whether our robot makes it to the other side. Such discrete choices do not fit well into the

continuous techniques usually used for trajectory optimization. Some approaches treat

this difficulty by solving the discrete problem of end-effector placement prior to kinematic

or dynamic planning for the rest of the robot [9, 10]. However, for more difficult terrain, we

cannot rely on a purely discrete approach to choosing footholds. Which support sequences

are feasible depends on the robot’s kinematics and dynamics. Unfortunately, the dynamics

and kinematics of a legged robot are nonlinear and even non-convex. These considerations

place the dynamic motion planning problem for legged robots into mixed-integer non-

convex programming — the farthest reaches of the Mathematical Programming realm, a

place where there be dragons.

15



1.3 Approach

In this introduction, I have showed that there is a gap between the problems solvable

with the current state-of-the-art in locomotion planning and the general dynamic motion

planning problem for legged robots. This thesis demonstrates how we can diminish

that gap by using some of the characteristic elements of that problem to our advantage.

Chapter 2 gives a more thorough review of existing planning techniques for legged robots.

In Chapter 3 I set out the general form of the planning problem we wish to solve. This

general form is a large MINCP, that does not readily admit solution. In the chapters that

follow, I present a series of approximations and decompositions that break this problem

into more tractable chunks. In Chapter 4, we focus our attention on the discrete problem of

searching for an appropriate sequence of contacts between the robot and the environment,

and only as much of the dynamics as is necessary to inform that search. The result is a

smaller MINCP, whose mixed-integer quadratic programming (MIQP) relaxation can be

used to resolve the discrete planning problem.

I then take the results of that optimization and use them to formulate a continuous non-

linear program (NLP) that fills in the joint-angle trajectories. This problem is continuous

because the footstep assignment problem was solved in the previous step — that result is

incorporated into the NLP as kinematic constraints on the robot’s end-effectors. Chapter 5

presents a solution method that I developed with H. Dai for trajectory optimization on

legged-robots. In Chapter 6, I detail how the solutions found in Chapter 4 can be used

to formulate a problem of the form treated in Chapter 5. Examples using the humanoid

robot Atlas and the quadrupedal robot LittleDog are given throughout.
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Chapter 2

Related Work

I frame this discussion of the related work in terms of the flowchart shown in Fig. 2-

1. On the left of Fig. 2-1 are the components that make up the planning scenario: the

Figure 2-1: Approaches to planning for legged robots

models of the robot and its environment, the robot’s initial state, and the goals for the

planned motion (e.g. final position, total duration, minimizing energy expenditure). The

planning problem is then to generate a robot trajectory based on the given scenario. I

divide approaches to this planning problem into three tracks:

• Kinematic footstep-planning followed by dynamically feasible whole-body planning

• Simultaneous solution of whole-body planning and footstep planning

17



• Footstep-planning with centroidal dynamics + dynamically feasible whole-body

planning

The first two of these tracks cover most of the strategies for legged-robot motion planning

in the literature.

2.1 Kinematic footstep-planning followed by dynamically

feasible whole-body planning

Methods following the first track start by computing end-effector placements without

considering the dynamics of the robot. They then use those end-effector placements to

generate dynamically feasible motion, either through another planning step or through

a controller. To ensure that the end-effector placements chosen in the first step can be

achieved, these methods typically enforce conservative constraints on the relative position

of those placements. This restricts the set of motions that such methods can generate. We

now consider approaches to each of the two steps on this track.

2.1.1 Kinematic footstep planning

As noted by Deits and Tedrake [12], these can be roughly divided into two camps: graph-

based approaches that plan over a discrete set of actions (e.g. [5, 7, 9–11, 13–16]), and

continuous approaches that optimize end-effector placements within a continuous space

(e.g. [12, 17, 18]). Another crucial distinction is between methods that seek to satisfy a

quasi-static criterion [4, 5, 11, 13], and those that use a dynamic balancing criterion based

on the ZMP [6, 7, 9, 10, 17].

Graph-based approaches

Beyond the distinctions mentioned above, the graph-based approaches differ from one

another in their action sets and the search algorithm used. For some, each action is

a transition between complete configurations of the robot [13, 14, 16]. For others, each

action is a transition between poses of the robot’s floating base, in which case the remaining
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configuration variables are filled in either by a post-processing step or by the controller [9–

11]. For still others, each action is a transition between “stances” — tuples containing the

position of each foot [15]. Most of the graph-based approaches use a heuristic-guided

search, such as A* [13, 14] or one of its sub-optimal variants, such as ARA* [7, 9, 10] or

R* [15]. Other search algorithms used include value iteration [5] and RRT [16].

Optimization-based approaches

In contrast to these graph-based techniques, some approaches optimize the positions of

the robot’s end-effectors in continuous space. Fallon et al. [18] present a footstep planning

method that uses local non-convex optimization. Herdt et al. [17] present a method that

employs linear model-predictive control (LMPC), but in order to do so they assume the

orientations of the robot’s feet are pre-specified, as including the orientation of the feet

makes the planning problem non-convex. Herdt, Perrin, and Wieber [19] propose an

additional quadratic program (QP) to solve for those foot orientations given a desired

yaw-rate. Solving this QP followed by the LMPC problem gives a footstep plan that

includes rotations of the feet. This line of work [17, 19] is an outlier in this section, as

it does consider the dynamics of the robot (through a simplified model). However, like

the method presented by Fallon et al. [18], it does not consider footstep placement in the

context of obstacle avoidance — it presumes that the entire ground-plane can be stepped

on safely. The approach I present in Chapter 4 also considers a simplified model of the

robot’s dynamics, but does so in a way that accounts for obstacles in the environment.

Deits and Tedrake [12] incorporate both foot orientation and obstacle avoidance into

their method by formulating the problem as a mixed-integer convex program (MICP).

They treat the orientation of the feet by approximating sin(·) and cos(·) with piecewise-

linear functions. To ensure that the footsteps avoid obstacles, they restrict them to lie in

the union of a pre-computed set of convex configuration space regions. My approach to

footstep planning in Chapter 4 builds on both of these ideas, while adding consideration

of the robots’ dynamics.
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2.1.2 Dynamically feasible whole-body planning

This thesis treats motion planning as it relates to dynamical systems. As such, we are

interested in planning algorithms whose outputs are dynamically feasible trajectories. We

discuss the three main classes of approaches to this problem in the literature: sampling-

based, trajectory-optimization-based, and simplified-model-based.

Sampling-based approaches

Sampling-based planners vary widely both in their applications and the particulars of

their algorithms, but the common thread is exploration of a search space through random

sampling. These planners can be split into two primary groups: single-query and multi-

query. Members of the former group attempt to solve a single planning problem, while

members of the latter attempt to maintain data-structures that allow multiple planning

problems to be solved. In situations where the environment may change substantially

between planning problems, the former may be more efficient.

Variations on the rapidly-exploring random tree (RRT) algorithm introduced by LaValle

and Kuffner [20] form the basis of many single-query probabilistic planners, e.g. [21–26].

All of these algorithms generate a tree in the configuration space of the robot. In each

iteration a sample point is chosen in the configuration space. If the sample point is feasible

(not in collision with the environment and satisfying all applicable constraints) then an

attempt is made to extend the tree in the direction of that point. First the node in the

tree closest to the sample point is chosen as the parent for the new node. Then a new

node is added at some point between the parent and the sample point. The distinction

between the different variants of RRT lies mainly in the methods of selecting samples and

generating the new point between the parent and the sample.

In the case of systems with differential constraints, LaValle and Kuffner propose finding

the new node by simulating the system forwards from the parent node with some control

input [20]. While this approach successfully solves some kinodynamic planning problems,

as noted by several authors [22–24], this can cause difficulties when only a small portion

of the configuration space is accessible by the robot subject to dynamics. In that case, the
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majority of sample points chosen will be in portions of the configuration space that the tree

cannot reach [22]. Shkolnik, Walter, and Tedrake address this by adding reachability nodes

to the tree [23]. New sample points are accepted only if they are closer to a reachability

node than to one of the primary nodes. This focuses the search on portions of the state

space towards which the tree can actually expand. Yershova et al. [22, 24] present a similar

approach, the Dynamic Domain RRT (DDRRT) which maintains a representation of the

explored portion of the free space. Sample points are drawn from this region, which is

constructed such that there is more space at the edges of the tree. Though this approach

was originally implemented to address kinematic constraints, the authors of [22] state that

it could be used for differential constraints as well. Jaillet and Porta have taken this idea

further, constructing an explicit map of the accessible portion of the space with techniques

from differential geometry [26].

Trajectory optimization-based approaches

Another approach to planning dynamically-feasible trajectories is through trajectory op-

timization [27–30], in which the planning problem is formulated as the minimization of

some objective function subject to a set of constraints. This set includes, at a minimum,

the differential and algebraic constraints encoded in the equations of motion. The objec-

tive function depends on the state and control trajectories of the robot. This approach to

motion planning is closely tied to optimal control, and trajectory optimization methods

have their roots in that discipline.

A basic distinction between trajectory optimization methods is whether they are direct

or indirect [27, 29]. Indirect methods formulate the optimality conditions of the optimal

control problem (OCP) as a set of nonlinear equations which are then solved numeri-

cally [31, 32]. In contrast, direct methods discretize the OCP itself and then solve the

nonlinear resulting program that corresponds to the discretized OCP [27, 33]. Direct

methods possess several advantages over indirect methods that have led them to become

the norm in trajectory optimization in the past decades[29]. Indirect methods require

the formulation of the adjoint equations for the system under consideration which can

require an expert user. Furthermore, if the OCP contains path inequality constraints,
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indirect methods require a priori knowledge of when those constraints are active. Direct

methods have neither of these restrictions. For these reasons, indirect methods are no

longer widely used in trajectory optimization and therefore we will restrict our attention

to direct methods for the remainder of this section.

One can also categorize trajectory optimization methods by the solution technique that

they use. By “solution technique” we mean how the infinite dimensional OCP is reduced

to a finite dimensional nonlinear program (NLP) and solved.

Shooting methods parameterize the differential equations in the OCP or BVP and use

numerical integration of the ODEs (or DAEs) in the problem to evaluate any functions

that depend on the state, control, and adjoint variable trajectories. In single-shooting, the

parameters include only the initial conditions and whatever parameters are necessary for

the control. Thus, the differential equations must be integrated over the entire time span.

This produces an unfortunate numerical effect, wherein small variations in the control

input at the beginning of the trajectory cause large variations in state in the latter parts of

the trajectory. In an effort to avoid this phenomenon, multiple-shooting methods split the

time span into segments, the initial conditions of which are added to the list of parameters.

Additional constraints are introduced to ensure that the end-points of adjacent segments

match. The resulting NLPs are larger than those for single-shooting, but are sparse and

have significant structure that solvers can exploit [34].

Transcription methods can be thought of as the extension of multiple-shooting to the

point where each segment contains exactly one integration step. The state and control

trajectories are discretized, and their values at each knot-point form the decision variables

of the NLP. The differential equations defining the system’s dynamics are converted

to constraints on these variables [29]. The form of these constraints differs according

to the discretization scheme used. This discretization scheme can be thought of as the

definition of the continuous trajectory associated with the discrete knot-points. Various

discretization schemes, analogous to different integration methods, are employed in the

trajectory optimization community [29]. In direct transcription methods, path constraints

can be enforced directly on the state and control values at the knot-points.

While most of the theoretical underpinnings of trajectory optimization have their roots
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in the aerospace community, there have been many applications to motion planning for

legged robots. Mombaur [28] optimizes self-stable running for a planar humanoid model

using direct multiple-shooting, while Schultz and Mombaur [35] optimize running gaits

for a three-dimensional humanoid model with the same method. Remy, Buffinton, and

Siegwart [36] use direct collocation to find energetically efficient gaits for planar hoppers.

Some researchers have applied these techniques to humanoids, but with substantially

simplified dynamics. El Khoury, Lamiraux, and Taïx [30] use direct multiple-shooting

to generate minimum jerk trajectories for HRP-2. They treat the joint-space dynamics of

the robot as a triple integrator and impose a constraint on the Zero Moment Point (ZMP).

The planning techniques I present in Chapters 4 and 5 are direct transcription methods

applied to specific simplifications of the robot model.

Simplified-model based approaches

The complications arising from the multi-body dynamics of legged robots can be mitigated

by planning on a simplified model of the robot’s dynamics, e.g. [37–40]. The best known

approaches in this vein employ the concept of the Zero Moment Point (ZMP) — the point

inside the robot’s support polygon through which the resultant ground reaction force

passes [41]. The ZMP can be used as a criterion to ensure dynamic balance during a robot’s

motion: as long as the ZMP exists (or equivalently, as long as the robot’s center of pressure

lies in the interior of its support polygon) the robot is dynamically-balanced [42]. Thus,

dynamically-balanced motion plans can be synthesized by specifying a trajectory of the

robot’s ZMP that lies in the interior of its support polygon at all times. For example, Kajita

et al. combine such ZMP trajectories with a simplified model of a robot’s dynamics (the

cart-table model) and preview control to generate a corresponding COM trajectory [37].

This COM trajectory is then converted to a full-body trajectory through inverse kinematics.

The simplified models used in these ZMP-based approaches treat the robot as a point

mass and ignore angular momentum about the robot’s center of mass, which limits the

situations in which they can be employed. In response to this limitation, other criteria

for dynamic balance have been proposed, such as maintaining the total wrench on the

robot within the cone of wrenches that can be generated by the robot’s contacts with the
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environment [39]. This approach summarizes the robot’s dynamic state by its momenta

(linear and angular). While this and other approaches based on momentum [38, 40] allow

for the generation of a wider class of motions, they still lack the ability to incorporate

arbitrary kinematic constraints in the planning process, as the reference trajectories they

output are for body-level properties only (momenta and center of mass positions). The

method proposed in Chapter 5 can be seen as an augmentation of these momentum-based

approaches to incorporate the full kinematics of the robot during planning.

2.2 All-at-once approaches

In contrast to the methods described in the previous section, methods following the second

track in Fig. 2-1 do not separate the selection of end-effector placements and whole-body

planning. Rather, they treat both aspects of the planning problem simultaneously [43, 44].

Posa, Cantu, and Tedrake [44] incorporate end-effector placement into the whole-body

planning problem through complementarity constraints. The quintessential example of

such a constraint is that the fact that the product of the distance between an end-effector

and a support surface, φ, and the contact force, λ must always be zero:

φλ = 0.

With this and other similar constraints, Posa, Cantu, and Tedrake express the combined

problem of whole-body planning with dynamics and end-effector placement as a sin-

gle, constrained NLP. This allows them to plan walking and running motions without

specifying the sequence of footfalls a priori.

Mordatch, Todorov, and Popović [43] take another approach and express the combined

problem as an unconstrained NLP. They do this by allowing, but penalizing, contact forces

between end-effectors and contact surfaces that are still separated. By pushing this and all

other constraints (such as the robot’s kinematics) into the objective function, they obtain a

single, unconstrained NLP for the combined planning problem. They use this approach

to plan a variety of dynamic maneuvers for humanoid and non-humanoid characters.
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The downsides of these methods stem from the fact that they require the solution

of large nonlinear programs. The size and non-convexity of these problems means that

local methods are the only effective techniques for solving them. As a result, proper

initialization of the optimization is very important — what answer the solver gives will

depend on the initial guess, or seed, that the user supplies. In addition to the difficulties of

working with large NLPs, this formulation presents the challenge of choosing appropriate

weights for the various terms of the objective function. Additionally, local NLP solvers may

return with an “infeasible” status in cases where the solver cannot make further progress,

but where the actual problem is not infeasible. This makes interpreting the solver’s

results more difficult, as one is never entirely sure whether the issue is with the planning

problem itself or merely with the seed. The unconstrained method presented by Mordatch,

Todorov, and Popović [43] is further complicated by the fact that all constraints in the

problem are replaced with terms in the objective function. This introduces additional

parameters (weights between the different terms in the objective) that the user must tune.

25



26



Chapter 3

General Formulation of Legged

Locomotion Planning Problem

In this chapter we develop a mathematical description of the sort of problem described in

Section 1.1 in which a robot must move quickly through its environment, using different

portions of the environment for support. This problem has several components:

• a model of the robot’s kinematics

• a model of the robot’s dynamics

• a model of the environment

• a cost function to define performance.

3.1 Kinematics of legged robots

The purpose of a kinematic model is to convert between joint angles and link positions.

In this work we treat all legged robots as kinematic trees with a floating base. This lets

us use a single model to represent all of the contact modes of the system, rather than

having to formulate a separate model for each mode. For a robot with njoint joints, the

generalized position of the robot, q, lies in the space SE(3) × Rnjoint
, where SE(3) is the

space of three-dimensional rigid body transformations. Let Q ⊆ SE(3) ×Rnjoint
be the set
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of allowable positions. When dealing with algorithms that work on vector spaces, we will

often use an alternative definition: q ∈ Q ⊆ Rnq
where nq is the total number of variables

needed to describe the configuration of the robot.

The generalized velocity of a floating-base robot consists of the angular and linear

velocity of the floating-base and the joint-velocity for each joint. We denote this as

v ∈ V ⊆ Rnv
, where nv = 6 + njoint is the number of velocity variables and V is the

set of allowable velocities.

The kinematics of such robots are well understood - see for example [45]. Each link

has an associated coordinate frame. We denote the expression of a vector, v ∈ R3
, in

coordinate frame A by a leading super script:
Av. The transform of A relative to B,

BTA

maps a vector expressed in frame A to the same vector expressed in frame B

Bv =
BTA

Av.

Each link is connected to its parent by a joint, which constrains the relative motion of the

two links. Joints have associated generalized positions that parameterize that constraint.

To find the transformation between the coordinate frames of arbitrary links A and B, one

concatenates the joint transforms from link A up to the common ancestor of the two links

and then back to link B. This defines the forward kinematics

FK(q,A, B) =
BTA(q)

The primary kinematic quantities of interest are the location of the robot’s end-effectors.

We denote these positions as ri(q) for i = 1, . . . , nee.

FKee,i(q) = FK(q,Ai ,O)
Ai ri (3.1)

where, Ai is the link to which the i-th end-effector belongs, O is the world link, and
Ai ri is

the fixed position of the i-th end-effector in body Ai .
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3.2 Dynamics of a Floating-base Multi-body System

The dynamics of a floating-base robot can be expressed by the well-known manipulator

equation

H(q)v̇ + C(q, v) = Bu +

nee∑
i=1

Ji(q) ′fi , (3.2)

where q is the generalized position vector, v is the vector of generalized velocities, and u

is the vector of generalized inputs. H is the generalized mass-matrix, C is the joint-space

bias force, composed of the joint-friction, Coriolis, and gravitational forces on the robot,

and B maps the generalized inputs to joint torques. We consider nee end-effectors of the

robot each of which has an associated external force, fi . In general, each end-effector is

also subject to an external torque, but in this thesis we will consider point contacts, in

which case that external torque is identically zero. The end-effector Jacobian, Ji , which

maps fi into joint coordinates is defined by

Ji(q) =



∂ri ,1
∂q1

· · ·
∂ri ,1
∂qn

∂ri ,2
∂q1

· · ·
∂ri ,2
∂qn

∂ri ,3
∂q1

· · ·
∂ri ,3
∂qn



We can use efficient, recursive techniques to compute H, C, and B for any robot defined

by a kinematic tree [46]. However, (3.2) is a nonlinear system of ordinary differential

equations (ODEs) due to the complicated dependence of H, C and Jee on q and v.

3.3 Environment model

Let the available contact regions in the environment be given by R j ⊂ R3
, for j =

1, . . . ncontact. Similarly, let the available obstacle-free regions in the environment be given

by R j ⊆ R3
, for j = ncontact + 1, . . . , nregions where nregions = ncontact + nfree. In this chapter,

we place no restrictions on the R j — they may be non-convex. Thus, in this general for-

mulation of the problem, one could have a single region comprised of all the obstacle-free

space, in which case nfree would be one. Given these definitions,

⋃nregions

j=1
R j is the set of

29



all admissible positions for the robot’s end-effectors — at any time, each end-effector must

lie in at least one R j . Thus,

ri(t) ∈
nregions⋃

j=1

R j ∀ i ∈ {1, . . . , nee}, t ∈ [0, T]. (3.3)

3.4 Contact Constraints

Since (3.2) imposes no constraints on the end-effector forces, it is not, by itself, sufficient

to specify the motion of the robot. In order to complete this picture, we must connect

the end-effector forces and positions (3.2) and (3.3). To that end, consider the space of

end-effector positions and forces together: X = R3
× R3

. Each R j has an associated set

Kj ⊆ R3
which is the set of admissible forces for an end-effector that lies only in that

region. For example, if R j is a non-contact region, Kj = {0}, whereas if R j represents

a unilateral contact with normal, n, and coefficient of friction, µ, Kj is the friction cone

defined by

Kj =

{
f ∈ R3

| ‖f‖ ≤
�
1 + µ2

� 1

2 f · n
}
. (3.4)

Thus, for each j, we can define the set of positions and forces that are admissible for an

end-effector contained in the j-th region as

Sj = R j ×Kj ⊆ X. (3.5)

The full admissible set for end-effector positions and contact forces is given by

⋃nregions

j=1
Sj .

Therefore, the constraint that the contact forces be consistent with the robot’s end-effector

positions can be written as

(ri , fi) ∈
nregions⋃

j=1

Sj ∀ i ∈ {1, . . . , nee} (3.6)
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3.5 Legged robot planning problem

Let

q: [0, t f ]→ Rnq , v: [0, t f ]→ Rnv , u: [0, t f ]→ Rnu ,

and

fi : [0, t f ]→ R3

for i = 1, . . . , nee,

be the configuration, velocity, input and end-effector force trajectories respectively. Define

the cost functional

q, v, u, f1, . . . , fnee
7→ J(q, v, u, f1, . . . , fnee

). (3.7)

Then we can combine (3.2), (3.6), and (3.7) to yield a formulation of the legged robot

dynamic motion planning problem:

minimize

q,v,u,fi
J(q, v, u, fi)

subject to H(q(t))v̇(t) + C(q(t), v(t)) = Bu(t) +

nee∑
i=1

Ji(q(t)) ′fi(t)

(ri(q(t)), fi(t)) ∈
nregions⋃

j=1

Sj ∀ i ∈ {1, . . . , nee}

q(t) ∈ Q

v(t) ∈ V

u(t) ∈ U




∀ t ∈ [0, T]

(P0)

We can apply existing trajectory optimization techniques to (P0), but the resulting problem

is likely to be intractable because of the complexity of the constraint relating end-effector

positions and forces, (3.6). To address this problem, I develop an approach that uses

the combinatorial structure of (3.6) and a simplified model of the robot to formulate

a relaxation of (P0) that can be solved through mixed-integer convex programming in

Chapter 4.
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Chapter 4

Mixed-Integer Convex Planning for

Locomotion Over Irregular Terrain

Equation (3.3) specifies that each end-effector of our legged robot must always lie in the

union of a collection of (possibly) disjoint regions. This is the combinatorial aspect of

the planning problem — which region should each end-effector be in at each point in

time? As discussed in Section 2.1.1, footstep-planning methods choose a sequence of

positions for the stance-feet of the robot subject to kinematic constraints. Because these

constraints do not consider the robot’s dynamics, they must be conservative to ensure that

the generated footstep plan can be achieved by the robot. In this chapter, I develop an

approximation to (P0) that, given constraints on the initial and final position of the robot’s

COM, lets us solve for end-effector placements consistent with those constraints while also

considering a key-subset of the robot’s dynamics. This lets us address the combinatorial

aspect of legged-locomotion planning in cases that require aggressive maneuvers, such as

running or jumping. The results of the method I present here will then be used to guide

whole-body planning as described in Chapter 6.

4.1 End-effector placement as a mixed integer constraint

My approach to this problem is inspired by Deits and Tedrake’s [12] treatment of footstep

planning for a humanoid robot. By segmenting the space of safe footholds into large
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convex regions and then explicitly assigning each footstep to a particular region, they

convert the nonlinear constraint

x ∈
R⋃

r=1

{x | Arx ≤ br } (4.1)

to the mixed-integer implications

Hr =⇒ Arx ≤ br for r = 1, . . . , R (4.2a)

R∑
r=1

Hr = 1 (4.2b)

Hr ∈ {0, 1} ∀ r ∈ {1, . . . , R} (4.2c)

where the notation H =⇒ c means that if H = 1, constraint c must hold. The binary

variables H1, . . . ,HR are called indicator variables — they indicate to which region the

footstep belongs.

The constraints in (4.2) can be converted to a set of mixed-integer constraints through

either a Big-M or convex-hull reformulation [47, 48]. The Big-M reformulation requires

that x belong to a bounded set, X. It converts (4.2a) to

Arx ≤ br + Mr · (1 − Hr) · 1
m×1

for r = 1, . . . , R, (4.3)

where 1m×1
is an m-element column vector of all ones and Mr is a constant large enough

that (4.3) holds for any x ∈ X when Hr = 0. In contrast, the convex-hull reformulation

replaces (4.2a) with the constraints

x =

R∑
r=1

xr (4.4a)

Axr ≤ Hr br (4.4b)

Hrxlb ≤ xr ≤ Hrxub. (4.4c)

This formulation disaggregates x into the new auxiliary variables x1, . . . , xR. Equa-
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tions (4.4b) and (4.4c) constrain xr either to be zero, if Hr = 0, or to lie in the r-th region,

if Hr = 1. The Big-M approach yields a problem with fewer decision variables, but the

convex-hull approach yields a tighter formulation [48]. Deits and Tedrake [12] use a Big-M

reformulation, which yields a problem with fewer decision variables, but we will use the

convex-hull reformulation later in this chapter, as it yields a tighter formulation and does

not require selecting Mr values.

Deits and Tedrake then solve the footstep planning problem with a mixed-integer con-

vex quadratically-constrained quadratic programming (MIQCQP) solver [12]. The ability

to frame the problem as a mixed-integer convex program is significant, as solvers for mixed-

integer non-convex programs have fewer theoretical guarantees and are computationally

more expensive [49]. Deits and Tedrake can use a mixed-integer convex approach here

because the safe regions were chosen to be convex, which makes the continuous relaxation

of either (4.3) or (4.4) a set of convex constraints.

What we would like to do here is very much akin to footstep planning, indeed (4.1)

is reminiscent of (3.3). We therefore set out to use a mixed-integer convex quadratic

programming (MIQP) based approach to tackle the question of end-effector placement.

Now, however, we need to consider not only the placement of each stance-foot, but also

the position of all the robot’s end-effectors at each point in time, as well as the external

forces acting on those end-effectors. If we consider the robot’s end-effector positions as

decision variables rather than nonlinear functions of the robot’s generalized position, then

(3.3) becomes

(ri , fi) ∈
nregions⋃

j=1

Sj

If theSj are convex, then the mixed-integer convex reformulations available for the footstep

planning problem will also be available here. Recall that Sj = R j × Kj , and therefore, Sj

is convex if R j and Kj are convex. The set of admissible forces for a free region, {0}, and

for a unilateral contact, (3.4), are both convex. Thus, for these classes of regions (as well as

some others) the Kj are convex. Only the R j are potentially non-convex. However, these

regions were chosen as part of an initial segmentation step. If, as in Deits and Tedrake’s

[12] work, that segmentation is restricted to finding convex polyhedral regions, then the
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R j have the form

R j =

{
x ∈ R3

| A jx ≤ b j where, A j ∈ R
m×3, b j ∈ R

m
}

for j = 1, . . . , nregions.

Thus all the Sj are convex, and (3.3) is equivalent to the following disjunction over convex

constraints

nregions∨
j=1

�(ri , fi) ∈ Sj
�
, (4.5)

We can apply a convex-hull reformulation [47, 48] to (4.5) to convert it to constraints

that can be added to an MIQP. Define the indicator variables zi j ∈ {0, 1}. We will enforce

that if zi j = 1 then (ri , fi) ∈ Sj . We introduce nregions copies of ri and fi which we denote r̂i j

and
^fi j respectively. These new decision variables are subject to the following constraints,

which enforce the disjunction (4.5):

�
r̂i j , ^fi j

�
∈ Sj ∀ i ∈ {1, . . . , nee}, j ∈ {1, . . . , nregions} (4.6a)

zi j ∈ {0, 1} ∀ i ∈ {1, . . . , nee}, j ∈ {1, . . . , nregions} (4.6b)

nregions∑
j=1

r̂i j = ri ∀ i ∈ {1, . . . , nee} (4.6c)

nregions∑
j=1

^fi j = fi ∀ i ∈ {1, . . . , nee} (4.6d)

nregions∑
j=1

zi j = 1 ∀ i ∈ {1, . . . , nee} (4.6e)

zi jri ,lb ≤ r̂i j ≤ zi jri ,ub ∀ i ∈ {1, . . . , nee}, j ∈ {1, . . . , nregions} (4.6f)

zi jfi ,lb ≤ ^fi j ≤ zi jfi ,ub ∀ i ∈ {1, . . . , nee}, j ∈ {1, . . . , nregions} (4.6g)

Note that these constraints to not preclude (ri , fi) from lying in more than one region.

Rather, they require that (ri , fi) satisfy the constraints for at least one region. We can

add basic collision avoidance for an end-effector by additionally requiring that the line

segment defined by the end-effector’s position at adjacent knot-points lie entirely within

one region. This is similar to the approach used by Deits and Tedrake [50] for collision
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avoidance with un-manned aerial vehicles.

4.2 MIQP formulation of dynamic motion planning

We showed in Section 4.1 that the constraints on end-effector position and forces could be

formulated as part of an MIQP. However, for a quickly moving robot, which sequences of

footsteps are feasible depends not only on the distribution of potential support surfaces

and the robot’s kinematics but also on its dynamics — the robot must be able to reach the

next footstep at the time it is expected to make contact. The dynamics of a legged robot,

(3.2), are decidedly non-convex. Our goal, therefore, is to include enough of the dynamics

for our planning problem to yield reasonable end-effector placements while ensuring that

it remains an MIQP.

4.2.1 Centroidal Dynamics

We first need to find an approximation of the robot’s dynamics that fits into the MIQP

framework. The mass-matrix, H, and bias force, C, both contain trigonometric functions

of q, and therefore cannot be used. However, (3.2) is not the only available representation

of the robot’s dynamics. An alternative that captures key elements of the robot’s dynam-

ics is its centroidal dynamics, that is, the evolution of its linear and centroidal angular

momentum over time. This captures the relationship between the momenta of the whole-

robot system and the external forces and moments acting on that system. The centroidal

momentum of a multi-body system is a vector, hG ∈ R6
representing the system’s linear

momentum and angular momentum about its center of mass, expressed in an inertial

frame O.

hG =



Ok
O`


(4.7)

While the multi-body dynamics of a legged robot are complicated, the centroidal dynamics

of that system are quite simple. Newton’s Second Law applied to the robot as a whole
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yields

˙` = fext (4.8)

˙k = Text, (4.9)

where Text is the total external moment exerted on the system by its environment. In the

framework presented in Chapter 3, fext and Text can be expanded to yield

˙` =

∑
i

fi + mg (4.10a)

˙k =

∑
i

(ri − r) × fi . (4.10b)

The definition of linear momentum allows us to rewrite (4.10a) as

r̈ =

1

m

∑
i

fi + g. (4.11)

Thus, the translational portion of the robot’s centroidal dynamics is linear.

The rotational portion is more problematic. The cross product in (4.10b) expands to

(ri − r) × fi =



�
ri ,y − ry

�
fi ,z − (ri ,z − rz) fi ,y

(ri ,z − rz) fi ,x − (ri ,x − rx) fi ,z

(ri ,x − rx) fi ,y −
�
ri ,y − ry

�
fi ,x



. (4.12)

The bilinear terms in (4.12) are non-convex. We can reduce the number of such terms by

introducing new variables, si , that encode the positions of the end-effectors relative to the

robot’s COM:

si = ri − r ∀ i ∈ {1, . . . , nee}. (4.13)

This still leaves us with six bilinear terms. Fortunately, there are multiple techniques

available for approximating bilinear terms within an MIQP [51–53]. We will discuss some

of these approximations in Section 4.3. For now we simply introduce the approximating
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variables, w:

wi ,yz ≈ si ,y fi ,z wi ,zx ≈ si ,z fi ,x wi ,x y ≈ si ,x fi ,y

wi ,z y ≈ si ,z fi ,y wi ,xz ≈ si ,x fi ,z wi ,yx ≈ si ,y fi ,x .
(4.14)

Then the (4.10b) can be modified to yield the approximate rotational dynamics

˙k =



wi ,yz − wi ,z y

wi ,zx − wi ,xz

wi ,x y − wi ,yx



+ τi . (4.15)

Thus, (4.11), (4.14), and (4.15) form a mixed-integer convex approximation of the centroidal

dynamics of the robot.

4.2.2 Planar single-body model

fi

pi ri

θ

m , I

r, ṙ

rhip,i

Figure 4-1: Schematic of the simplified planar model

Since we would like to reason about the position of the end-effectors, we require some

notion of the orientation of the robot. Unfortunately, there is no rotational analog to the

COM. To inform our search over rotations we treat the robot as a single rigid body, with
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moment of intertia I and orientation R ∈ SO(3). For this system, (4.15) becomes

ω̇ = I−1



wi ,yz − wi ,z y

wi ,zx − wi ,xz

wi ,x y − wi ,yx



+ τi .

where ω is the angular velocity of the rigid body expressed in body frame.

The relation between ω and R is given by

˙R = Rω̂ (4.16)

where ω̂ is the skew symmetric matrix

ω̂ =



0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0



From (4.16), we can see that including three-dimensional rotations in our program will

add at least eighteen bilinear terms per knot-point. In fact, there will be even more, to

constrain the end-effector positions relative to the body, we must compute the product

R−1si , which yields an additional 9nee bilinear terms. As we will see in Section 4.3, the

number of auxiliary integer variables increases with the number bilinear terms. This in

turn greatly increases the computational effort required to solve the MIQP. Therefore,

for our initial exploration of this approach we will consider the case where the robot is

constrained to the xz-plane.

Figure 4-1 shows this model for nee = 1. In this case, (4.10b) becomes

¨θ =

1

I

∑
i

si ,z fi ,x − si ,x fi ,z , (4.17)

which is the rotational analog to (4.11).

To express approximate kinematic constraints on the end-effectors, which depend

on θ, we introduce introduce auxiliary variables cθ and sθ, which are piecewise linear
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approximations of cos θ and sin θ respectively. This is the same approach that Deits

and Tedrake [12] take for approximating rotations. We also introduce rhip,i and pi for

i = 1, . . . , nee. rhip,i is the approximate position of the attachment point of the i-th limb

relative to the COM in world coordinates. It is given by

rhip,i =



Brhip,i ,x
Brhip ,i ,z

Brhip,i ,z −
Brhip,i ,x





cθ

sθ


,

where
Brhip,i is the fixed position of the attachment point in the robot’s body frame. pi

is the position of the i-th end-effector relative to the attachment point for the i-th limb in

world coordinates. The approximate kinematic constraints on end-effector position are

then given by bounds on the elements of pi and the linear constraints

ri = r + rhip,i + pi .

Discretizing (4.11) and (4.17) with a backwards Euler scheme and a fixed time-step, h,

gives the dynamic constraints for our simplified model.

r[n + 1] = r[n] + hṙ[n + 1] (4.18a)

θ[n + 1] = θ[n] + hω[n + 1] (4.18b)

ṙ[n + 1] = ṙ[n] + hF[n + 1] (4.18c)

ω[n + 1] = ω[n] +

h
I

T[n + 1] (4.18d)

F[n] = mg +

∑
i

fi[n] (4.18e)

T[n] =

∑
i

wi ,zx[n] − wi ,xz[n] (4.18f)

Note that (4.18) is a set of linear equality constraints, which can be incorporated into an

MIQP. We now address how to treat the approximations to the bilinear terms, w.
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Figure 4-2: Surface defined by w = uv

4.3 Convex relaxation of bilinear terms

Optimization problems containing bilinear terms (bilinear programs) occur in a variety

of real world applications, such as refinery optimization [54], process networks [55],

bidimensional packing [56], and computer vision [57]. As a result, many schemes for

generating convex (or MI-convex) relaxations can be found in the literature [51–53]. In

this chapter we will compare two such techniques: piecewise McCormick envelopes and

the multi-parametric disaggregation technique (MDT).

We describe these relaxations in the context of a single bilinear term

w = uv (4.19)

over the domain [0, 1] x [0, 1]. Through an appropriate linear transformation results for

that domain can be used for any bilinear term. Figure 4-2 shows the three dimensional

surface defined by (4.19).

4.3.1 Piecewise McCormick Envelopes

The simplest convex relaxation for (4.19) is the constraint that (w , u , v) lie within the

convex-hull of the surface shown in Fig. 4-2. This can be expressed as
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w ≤ v

w ≤ u

w ≥ u + v − 1

u , v , u ∈ [0, 1]

(4.20)

This is the McCormick envelope of (4.20) as presented by McCormick [51]. It is shown in

Fig. 4-3a

(a) (b)

(c) (d)

Figure 4-3: MI-convex approximations of w = uv: (a) McCormick envelope. (b) Piecewise

McCormick envelope (M = 2). (c) Piecewise McCormick envelope (M = 4). (d) Bivariate

piecewise McCormick envelope (M = 4)

If one is willing to use a mixed-integer convex relaxation, then a tighter relaxation

may be obtained by partitioning the domain. Let M be the number of segments in a
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partitioning of u and let 0 = u0 ≤ · · · um ≤ · · · ≤ uM = 1 define that partitioning. Then,

for each partition we can define a set of linear constraints that are satisfied iff (u, v, w) lies

within the convex-hull of w=uv over that partition. Our mixed integer convex relaxation

over the entire interval is given by the disjunction:

M∨
m=1



w ≥ uL
m · v

w ≥ uU
m · v + u − uU

m

w ≤ uL
m · v + u − uL

m

w ≤ uU
m · v

uL
m ≤ u ≤ uU

m



(4.21)

This can be rewritten using a convex-hull reformulation [47] to yield

w ≥
M∑

m=1

uL
m · v̂m (4.22a)

w ≥
M∑

m=1

uU
m · v̂m + ûm − uU

m (4.22b)

w ≤
M∑

m=1

uL
m · v̂m + ûm − uL

m (4.22c)

w ≤
M∑

m=1

uU
m · v̂m (4.22d)

u =

M∑
m=1

ûM (4.22e)

v =

M∑
m=1

v̂M (4.22f)

0 ≤ v̂m ≤ zm (4.22g)

zm · uL
m ≤ ûm ≤ zm · uU

m (4.22h)

where the binary variable zi is true iff (u, v, w) lies in the i-th partition. Equation (4.21)

defines a univariate partitioning, but we can also form a bivariate partitioning by splitting
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v as well. An example of the regions resulting from such a partitioning, with M = 2 is

shown in Fig. 4-3d. The number of binary variables required by this approximation grows

exponentially with the power of the desired accuracy [52].

4.3.2 Multiparametric Disaggregation Technique

In order to improve the scaling between the maximum error and the number of binary

variables required by a convex relaxation of a bilinear constraint, researchers have in-

troduced other relaxations. The multiparametric disaggregation technique (MDT) [52,

58] discretizes one variable, but not by dividing it into segments. Rather, the variable is

discretized by considering its representation in a given number system. Our presentation

of this approach follows the treatment of Kolodziej, Castro, and Grossmann [52]. Let

b ∈ Z, b ≥ 0 be the base. Then v can be written as the following double sum

v =

∑
l∈Z

b−1∑
k=0

k · b l
· zkl (4.23)

where

zkl ∈ {0, 1} ∀ k ∈ 0, . . . , b − 1, l ∈ Z
b−1∑
k=0

zkl = 1 ∀ l ∈ Z

Equation (4.23) is exact because the outer sum runs over all the integers. Clearly we cannot

implement such a representation in practice. However, we can represent any v up to an

arbitrary level of precision simply by choosing bounds on l. This approximation is given

by

v′ =

P∑
l=p

b−1∑
k=0

k · b l
· zkl (4.24)
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where

zkl ∈ {0, 1} ∀ k ∈ {0, . . . , b − 1}, l ∈ {p , . . . , P}
b−1∑
k=0

zkl = 1 ∀ l ∈ {p , . . . , P}

The representation in (4.24) is discrete - all potential values of v are separated by at least

bp
. We can regain a continuous representation of v by adding a bounded continuous term,

which yields

vR
=

P∑
l=p

b−1∑
k=0

k · b l
· zkl + Δv (4.25)

0 ≤ Δv ≤ bp
(4.26)

Now we can rewrite (4.19) as

wR
=

P∑
l=p

b−1∑
k=0

u · k · b l
· zkl + u · Δv. (4.27)

Let ûk ,l = u · zk ,l . Then

u =

b−1∑
k=1

ûk ,l (4.28)

Substituting ûk ,l into (4.27) yields

wR
=

P∑
l=p

b−1∑
k=0

k · b l
· ûk ,l + u · Δv. (4.29)

We now bound the final term of (4.27) with its McCormick envelope:

0 ≤ Δw ≤ Δv

bp
· (u − 1) + Δv ≤ Δw ≤ bp

· u
(4.30)
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From its definition, the bounds on ûk ,l , are

0 ≤ ûk ,l ≤ zk ,l (4.31)

Equations (4.28), (4.30), and (4.31) give the MDT approximation of the original bilinear

term. The number of binary variables required for an MDT relaxation grows linearly with

the power of the desired accuracy [52].

4.3.3 Discussion

Which approximation is best depends on a two primary factors: (1) the accuracy required

and (2) the number of bilinear terms. In general, one wants to introduce as few binary

variables as possible, while still maintaining sufficient accuracy. For the problem described

in this chapter, an approximation is sufficiently accurate if the solution to the problem

provides a useful seed to the whole body trajectory optimization that follows. I have

evaluated all of the approximations discussed in Section 4.3 and found that even the

simplest — the McCormick envelope — yields feasible end-effector placements. Therefore,

the results presented in Section 4.6 use this approximation.

4.4 Cost function and full MIQP

I use the following cost function for this optimization:

J =

nee∑
i=1

ncontact∑
j=1

Γi j +

N∑
n=1

(
‖fi[n]‖

2

+ ‖r̈i[n]‖
2

)
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where Γi , j is an upper bound on the number of times the indicator variable for end-effector

i and region j changes value. This is implemented with slack variables γi j[n] as

Γi j =

N−1∑
n=1

γi j[n]

−γi j[n] ≤ zi j[n + 1] − zi j[n] ≤ γi j[n]

γi j[n] ∈ [0, 1].

Minimizing

∑
Γi j penalizes frequent switching in and out of contact. The remaining terms

penalize contact force and foot acceleration.

Thus, the mixed-integer convex formulation of the dynamic motion planning problem

for legged robots is given by

minimize J

subject to (4.6) and (4.18)

one of the approximations for bilinear terms described in Section 4.3

task-specific constraints

(P1)

where the task-specific constraints are any linear, or convex quadratic constraints on the

decision variables, such as, for example, initial/final state constraints, average velocity

constraints, or maximum force constraints. The primary choice left to the user is the time

discretization. Equation (4.18) depends on the choice of time-step, or alternatively the

total duration, as well as the number of knot-points, N .

4.5 Tools and implementation

I have implemented (P1) in the Python optimization framework Pyomo [59, 60]. Pyomo

provides a rich symbolic environment for formulating mathematical programs as well as

interfaces to many commercial and open-source solvers. Pyomo also has some utilities

for handling disjunctions built-in, as well as an implementation of the multiparamet-

ric dissaggregation technique. I used the mixed-integer quadratic programming solver
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Gurobi [61] as a backend to solve the optimization problems.

4.6 Results

4.6.1 Separated Platforms

We apply our mixed-integer planning approach to the challenging problem of quadrupedal

bounding over uneven terrain with gaps. The robot starts at the left end of a set of three

platforms and must cross to the right end. This is encoded as constraints on the initial

and final position of the robot’s COM. The top of each platform is a contact region, while

the space above each platform and extending to the edge of the adjacent platform is a free

region. Thus nregions = 6 for these examples. Fig. 4-4 shows snapshots from a motion plan

for a set of ascending platforms. Figure 4-4 shows key frames from the first half of a plan

(a) Starting posture (b) Take-off (c) Flight (extended)

(d) Touch-down (e) Flight (gathered) (f) Touch-down

Figure 4-4: Snapshots from a motion plan for ascending platforms with gaps

to cross a set of ascending platforms. In Figs. 4-4c and 4-4e we see that the plan has the

robot execute multiple aerial phases to complete this maneuver.

Figure 4-5 shows frames from the second half of a motion plan that traverses a set

of staggered platforms. We will revisit both of these scenarios when we combine our
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(a) Take-off (b) Flight (extended)

(c) Touch-down (d) Final posture

Figure 4-5: Snapshots from a motion plan for staggered platforms with gaps

MIQP-based planner with a whole body planner in Chapter 6.

4.6.2 Comparing MIQP and MINCP solutions

I attempted to compare the approach to a state of the art mixed-integer non-convex solver,

couenne [62]. However, even for a small problem, comprising the first half of the terrain

shown in Fig. 4-4, couenne was unable to find a feasible solution in an hour, while

our MIQP-based approach solved to optimality in 12 s. This serves to underscore the

performance advantages of using an MIQP-based approach.

4.6.3 Discussion

Qualitatively, working with an MIQP formulation makes solving problems such as these

more straightforward than it would be if an NLP formulation were used. Simply knowing

that the problem actually is infeasible if the solver declares it to be so eliminates much of

the tweaking required in solving trajectory optimization problems as NLPs.

The solution times for problems similar to those discussed in Section 4.6.1 were gener-

ally a few minutes. In most cases, a feasible solution was found in the first two minutes.
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As the number of contact and free-space regions increases, so do the solution times. For

more complicated terrains with upwards of 20 regions, solution can take up to half an

hour.

As mentioned in Section 4.4, the total duration of the motion and the number of knot-

points are user selected quantities. For the examples in this section, I chose N = 25 and

then increased the time interval between knot-points until the problem became feasible.

This process was made much easier by the guarantees of the solver’s feasibility reporting,

which made it straightforward to tell whether a time interval value ought to be rejected.

As a result, the search over time interval durations could be automated if a particular

application required tuning that value without user input.

The segmentation of the space of admissible end-effector positions also needs to be

specified prior to setting up the MIQP. This can have a significant effect on the solution

time, or even the feasibility, of the problem. Larger numbers of regions can provide better

coverage of the available space, but yield programs with more integer variables, which

generally results in longer solve times. An automated method for selecting these regions

would be ideal. While such a method is outside the scope of this thesis, I did perform initial

evaluations of methods employing the IRIS algorithm [63], which efficiently computes

large convex regions of obstacle-free space. It can be applied to the ground surface to

yield safe contact regions and can also be applied to the free-space to yield free-space

regions. These evaluations suggest that this is a viable path to automated segmentation.
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Chapter 5

Centroidal-Dynamics Full-Kinematics

Planning

5.1 A middle ground

As noted in Chapter 2, most approaches to dynamic motion planing for legged robots fall

into one of two camps: (a) trajectory optimization on full robot models and (b) planning

techniques that operate on greatly simplified models, such as the linear inverted-pendu-

lum, or the spring-loaded inverted pendulum. The insight that motivates this chapter

is that both the trajectory optimization based approaches and the simple model based

approaches can be written as nonlinear programs. This means that we can view them

not as two opposing methodologies, but rather as opposite ends of a whole spectrum of

planning methods. In this chapter we develop an alternative (which we first presented

in [64]) that occupies a powerful middle ground — planning with a model that combines

the simple centroidal dynamics of the robot with its full kinematics.

5.2 Centroidal Dynamics of a Floating Base System

As in Section 4.2.1, we use the centroidal dynamics of the robot here, rather than the

joint space dynamics. Recall that (4.10) does not explicitly include the joint positions q.

However, the centroidal angular momentum and linear momentum can both be written
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in terms of the joint positions and velocities through the use of the centroidal momentum

matrix (CMM), AG,

hG = AG(q)v (5.1)

where AG may be computed as described by Orin and Goswami [65].

The validity of (4.10a) and (4.10b) at all times is a necessary condition for a given

trajectory of a robot to be dynamically feasible. If a system has sufficient control authority

it can also be a sufficient condition. In this case, “sufficient control authority” requires

that all joints of the robot be actuated and that the torque limits on those actuators be

large. In that case, given a joint acceleration there is always a set of joint torques that

achieves those accelerations. As a result, the joint-level dynamics may be put aside during

the planning phase. As long as the generated joint trajectory and centroidal momentum

trajectory satisfy (4.10) and (5.1) there will be joint torques such that that joint trajectory is

dynamically feasible.

5.3 Full-Kinematic Model and Constraints

Our kinematic model for the robot is the same as that presented in Section 3.1. Because of

this, we can add any constraint that can be expressed as a differentiable function of link

positions and orientations. This encompasses a rich variety of constraints, the principal

ones of which are described below

5.3.1 Position constraints

A relative-position constraint restricts the position of a point on one body relative to a

coordinate frame on another body to lie within some bounds. Given a point on body A,

Ar, and a frame B
′
attached to body B, a relative-position constraint on

Ar relative to B
′
is

given by

rlb ≤
B
′

TB

BTA(q)
Ar ≤ rub, (5.2)

where rlb and rub are lower and upper bounds on the relative-position respectively and the

inequalities are applied element wise. Equation (5.2) can represent an absolute-position
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constraint if B is taken as the world and
B
′

TB = Id, where Id is the identity transform.

5.3.2 Orientation constraints

A relative orientation constraint requires that the rotation between the body-reference frames

of bodies A and B be within some angular tolerance of a given rotation. This allows for

constraints such as “align the robot’s hand with the drill to within 5°.” If qAB(q) is the

quaternion representing the rotation of body A with respect to body B and qd is the desired

rotation, then the relative orientation constraint is given by

cos(θ) ≤ 2

〈
qAB , qd

〉
2

− 1 ≤ 1

5.3.3 Gaze constraints

A relative-gaze direction constraint specifies that a vector fixed in one body be aligned with

a vector fixed in a second body to within a given tolerance angle. Given a unit vector

expressed in the body-reference frame of body A,
Aû, and a unit vector expressed in the

body-reference frame of body B,
Bv̂, the relative-gaze direction constraint between

Aû and
Bv̂

is given by 〈
Bv̂, BTA

Aû
〉
≤ cos(θ),

where θ is the tolerance angle.

A relative-gaze target constraint specifies that an axis on one link of the robot points

towards a target on another link or in the environment. Specifically it requires that a cone

with a given half-angle, fixed at a point on one body and pointing in a fixed direction

relative to that body contain a point on a different body. This allows us to encode

constraints such as “the robot’s main camera must point at its left hand for the duration

of the task. If
Ar and

Av̂ are vectors fixed in the BRF of body A and
Bp is a point fixed on

body B, then the relative-gaze target constraint is given by

〈
Av̂,

ATB(q)
Bp − Ar





ATB(q)

Bp − Ar




〉
≤ cos(θ).

55



5.3.4 Collision avoidance constraints

One of the more complex kinematic constraints on the motion of a legged robot is that the

motion be collision free. Our collision model consists of nelem convex collision geometries,

each of which is attached to the world or one of the robot’s links at a known transform.

Let di j(q) denote the minimum distance between the i-th and j-th collision geometries

for the configuration vector q. The distance between two collision geometries can be

efficiently computed for many classes of convex geometries with the Gilbert-Johnson-

Keerthi algorithm (GJK) [66]. In this work, we use the implementation of GJK in the Bullet

Physics Software Development Kit [67]. Let dmin denote the minimum allowable distance

between any pair of collision geometries, and let d̄i j(q) be given by

d̄i j(q) = di j(q) − dmin.

Thus, we wish to enforce that

d̄i j(q) ≥ 0 ∀ (i , j) ∈ P (5.3)

where P ⊂ {1, . . . , nelem} × {1, . . . , nelem} is the set of index pairs that correspond to pairs

of potentially colliding geometries. The number of potential collision pairs grows with

the square of the number of collision geometries. In order to decrease the number of

collision avoidance constraints that must be added to the trajectory optimization, we can

combine all of the collision pairs using a hinge-loss-like function. Schulman et al. use a

true hinge-loss function for a similar purpose [68]. Here we use a smooth function γ(x)

that is identically zero for all positive x, greater than zero for all negative x, and whose

slope approaches a negative constant asymptotically as x goes to negative infinity:

γ(x) =




0 x ≥ 0

−x exp

�
1

x

�
x < 0
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This function has the advantage of being infinitely differentiable for all x. The overall

collision constraint is given by

Γ(q) =

∑
(i , j)∈Pi j

γ
�
cd̄i j(q)

�
= 0, (5.4)

where c is a positive scaling factor. In the examples shown in this chapter, c was taken to

be
1

dmin

. Since each term of the sum in (5.4) is non-negative, (5.4) holds if and only if all

terms of that sum are zero, which in turn implies that (5.3) holds.

5.4 Trajectory Optimization

To compute a feasible motion plan we use direct transcription [27, 29, 69] to convert the

differential equations for the centroidal dynamics (4.10) to a set of algebraic equations and

solve the resulting NLP.

5.4.1 Decision variables and cost

The decision variables of the new problem consist of the values of all time-varying quan-

tities in (4.10) at N knot-points as well as the duration of the intervals between the knot-

points, h. Those time-varying quantities are the position vector, q, and velocity vector, v,

the COM position, r, velocity, ṙ, and acceleration, r̈, contact positions, ri , contact forces, fi ,

centroidal angular momentum, k, and its rate,
˙k. The cost function for all of the results in

this chapter is:

J(x) =

N∑
n=1

h[n]

�

q[n] − qnom[n]


2

Qq
+ ‖v[n]‖

2

Qv

+ ‖r̈[n]‖
2

+

nee∑
i=1

(
c1




f j[n]





2

)�
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where x is the full decision variable vector

x = (h[1, . . . ,N], q[1, . . . ,N]
′, v[1, . . . ,N]

′, k[1, . . . ,N]
′, ˙k[1, . . . ,N]

′
,

r[1, . . . ,N]
′, ṙ[1, . . . ,N]

′, r̈[1, . . . ,N]
′,

r1,...,N[1]
′, f1,...,N[1]

′, . . . rnee
[1, . . . ,N]

′, fnee
[1, . . . ,N]

′, ) ′
(5.5)

where x[1, . . . ,N] = (x[1]
′, . . . x[N]

′) ′ and where



y

2

Q = y ′Qy

for some positive-semidefinite matrix Q. The first term penalizes deviation from a pre-

specified joint trajectory. The second term penalizes non-zero joint velocities. The third

term penalizes center of mass acceleration, while the fourth penalizes external forces and

torques.

5.4.2 Basic constraints

Prior to the addition of any task specific constraints, the transcribed nonlinear program

contains several basic constraints on the dynamics and kinematics of the robot. These

ensure dynamic feasibility of the resulting trajectory (ignoring torque limits).

Dynamics

We enforce centroidal dynamics with the following constraints, which correspond to

(4.10a) and (4.10b)

mr̈[n] =

nee∑
i=1

f[n] + mg

˙k[n] =

nee∑
i=1

(ri[n] × fi[n])
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Time integration

Time integration for the generalized positions, angular momentum, and COM is im-

plemented with a backwards-Euler scheme for simplicity and numerical stability in the

following constraints:

q[n] = q[n − 1] + v[n]h[n]

k[n] = k[n − 1] +
˙k[n]h[n].

r[n] = r[n − 1] + ṙ[n]h[n]

ṙ[n] = ṙ[n − 1] + r̈[n]h[n]

Consistency

To ensure consistency between the various components of the decision variable we intro-

duce the following kinematic constraints

k[n] = Ak
G

(q[n])v[n]. (5.6)

r[n] = com(q[n]) (5.7)

ri[n] = FKee,i(q[n]) for i = 1, . . . , nee (5.8)

where Ak
G

is the top half of AG as defined in (5.1), com(·) is a function that computes the

robot’s COM at a given configuration, and FKee,i is the forward kinematics function that

computes the location of the i-th end-effector at a given configuration, as given in (3.1). It

is important to note that (5.6) ensures that the joint angle trajectories are consistent with

the angular momentum trajectory. The result is that any feasible solution to the trajectory

optimization satisfies the dynamics of the robot for some value of the joint torques.
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Contact constraints

In the case where the sequence of end-effector contacts is specified a priori, then for each

desired contact we have



ri

fi


∈ Sji[n]

where ji[n] is the index of the region to which the i-th end-effector’s position and contact

force belong at time n.

Joint limits

Finally, we place bounds on q and v to reflect the position and velocity of the robot’s joints.

qlb ≤ q[n] ≤ qub (5.9)

vlb ≤ v[n] ≤ vub (5.10)

where (5.9) and (5.10) are enforced element-wise for all n ∈ {1, . . . ,N }.
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Full problem definition

The full NLP definition is therefore given by

minimize

x
J(x)

subject to ṙ[n] = ṙ[n − 1] + r̈[n]h[n]



∀ n ∈ {2, . . . ,N }
r[n] = r[n − 1] + ṙ[n]h[n]

k[n] = k[n − 1] +
˙k[n]h[n]

q[n] = q[n − 1] + v[n]h[n]

r̈[n] =

1

m

nee∑
i=1

f[n] + mg 


∀ n ∈ {1, . . . ,N }

r[n] = com(q[n])

˙k[n] =

1

I

nee∑
i=1

(ri[n] × fi[n])

k[n] = Ak
G

(q[n])v[n] .

(ri[n], fi[n]) ′ ∈ Sji[n]

ri[n] = FKee,i(q[n]) for i = 1, . . . , nee

task-specific constraints

(P2)

where the task-specific constraints may include, for example, initial/final state constraints,

total duration constraints, or any of the constraints described in Section 5.3

5.5 Tools

We solve (P2) using the Drake toolbox [70] and the sparse NLP solver SNOPT [71]. Drake

is an open-source planning, control, and analysis toolbox for nonlinear dynamical system

written in MATLAB [72] and C++, and maintained by Tedrake et al. It provides utilities

for kinematics and dynamics of rigid-body manipulators, as well as classes for nonlinear

programming and trajectory optimization. We implemented the approach presented here

as part of Drake’s trajectory optimization class hierarchy and used SNOPT as the solver

for the underlying NLP.
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5.6 Results

We first reported these results in Kuindersma et al. [3] and Dai, Valenzuela, and Tedrake

[64] in the context of our planning and control architecture for Boston Dynamics’ hu-

manoid robot Atlas.

5.6.1 Humanoid Running

To plan a running motion for Atlas, we consider a single half stride starting at the apex of

a flight phase. We fix the contact sequence to be flight, left-stance, left-toe-stance, flight.

By constraining the initial and final conditions of the trajectory such that all quantities are

mirrored about the robot’s sagittal plane, we obtain a trajectory that can be mirrored to

yield a full stride. In addition to enforcing the contact sequence and the periodicity of the

trajectory, we also specify a stride-length and average speed (1.5 m and 2 m/s respectively

for the gait shown in Figure 5-1), require at least 3 cm of clearance between links to avoid

self-collisions, and constrain the gaze of the robot’s head cameras to be no more than 15°

from the direction of travel. Solving for the half-stride motion takes approximately 2.5 min

on a computer with a 3.3 GHz Intel i7 CPU. The controller described by Kuindersma et

al. [3, §4] is used to stabilize the resulting trajectory (mirrored and looped to produce

a ten-stride sequence) on a simulated model of Atlas with accurate torque limits. One

half-stride of the simulated motion is depicted in Figure 5-1. Figure 5-2 shows the first half

(a) (b) (c) (d)

Figure 5-1: Snapshots from a half-stride of simulated running at 2 m/s. (a) Touch-down,

(b) mid-stance, (c), toe-off, (d) mid-flight
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of a jumping motion generated by the whole-body planner and stabilized by the controller

described by Kuindersma et al. [3, §4]. This motion was generated by constraining the

corners of the feet to be at least 5 cm above the ground at the mid-point of the trajectory,

and requiring that the robot’s motion be symmetric about its sagittal plane. Solving for

the jumping motion takes approximately 1.5 min on a computer with a 3.1 GHz Intel i7

CPU. As in the running case, this entire motion was stabilized in a simulation with torque

limits.

(a) (b) (c) (d)

Figure 5-2: Snapshots from a simulated jump. (a) Starting posture, (b) heel-off, (c) toe-off,

(d) mid-flight

Our final example is another jumping motion, this time from a cinder block to the

ground. The robot’s starting posture on top of the cinder block is specified, but its final

posture is not. We require that the feet maintain at least 3 cm of clearance from the cinder

block at all times after take-off and that they be on the ground at the end of the trajectory.

Given these constraints, and the requirement that the robot’s motion be symmetric about

its sagittal plane, the planner finds the motion depicted in Figure 5-3. Solving this problem

takes approximately 10 min on a computer with a 3.1 GHz Intel i7 CPU. The jump down

motion was stabilized by our controller in simulation with torque limits.

5.6.2 Quadrupedal Gaits

With minimal alteration, the program that generated the results in Section 5.6.1 can be

converted to synthesize walking and running gaits for a quadruped. We present here

trotting and galloping gaits for LittleDog, a quadrupedal robot built by Boston Dynamics.
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(a) (b) (c)

(d) (e) (f)

Figure 5-3: Snapshots from a motion plan for jumping off a cinder block. (a) Starting

posture, (b) toe-off, (c) Apex, (d) avoiding collision, (e) touch-down, (f) final posture

To do this, we specify the contact assignments of the feet a priori and allow the spacing

between knot-points to vary.

Trot

To generate a trotting gait, we formulate an optimization program over a single half-stride.

Figure 5-5 shows the gait diagram for a full stride. Unlike a traditional gait diagram [73],

which plots foot stance against percentage of the stride period, Fig. 5-5 plots foot stance

against knot-point number. This is because we do not specify the timing of the knot-points

a priori. As was the case in Section 5.6.1, the trajectory for a full stride can be recovered

by concatenating a mirrored trajectory to the original half stride.
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(a) Take-off (b) Mid-flight (c) Touch-down

Figure 5-4: Snapshots from a motion plan for a running trot.

0 20 42

LH

RF

RH

LF

Knot points

Figure 5-5: Gait graph for a running trot

Gallop

To generate a motion plan for galloping, we enforce the gait shown in Fig. 5-6 over a 41 knot

trajectory. Note that, as before, the graph is in terms of the knot-points, not percentage of

stride duration.

0 20 41

LH

RF

RH

LF

Knot points

Figure 5-6: Gait graph for a rotary gallop
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Chapter 6

Combining MI-convex Planning and

Centroidal-Dynamics Full-Kinematics

Planning

Once we have an approximate plan for the centroidal dynamics of the robot as obtained

through the techniques described in Chapter 4, we are ready to convert it into a whole-body

plan. The purpose of this conversion is two-fold.

Firstly, it ensures that our final plan respects the kinematics of the robot. Recall that

the planning problem in Chapter 4 includes only approximate constraints on the end-

effector positions. While ideally those constraints would be conservative, it may be that

adjustments to the end-effector locations are required in order to make them kinematically

feasible. This also gives us the opportunity to impose other kinematic constraints that

don’t fit within the formulation of Chapter 4, such as collision avoidance.

Secondly, it provides a full set of joint-angle reference trajectories. The controller used

to implement the plan may require these.

67



6.1 Translating Footstep-Planning Results into Kinematic

Constraints

Now that assignment of end-effector regions has been handled in the mixed-integer step,

the constraints on end-effector position are much more straightforward. In the terminol-

ogy introduced in Section 3.4, for the i-th end-effector there is a set of constants, ji[n],

such that the desired constraints on end-effector positions and contact forces are given by

ri[n] ∈ R ji[n] (6.1)

fi[n] ∈ Kji[n] (6.2)

Equation (6.1) must then be composed with the forward kinematics of the end-effectors

to yield

A ji[n]ri(q[n]) ≤ b ji[n] (6.3)

6.2 Seeding Trajectory Optimization with Centroidal Quan-

tities from MIQP

In addition to providing end-effector assignments, the results from Chapter 4 give us

initial guesses for many of the elements of (5.5).

Centroidal dynamics The position of the robot’s center of mass is a decision variable in

both (P1) and (P2). Thus, we have

r[n]
0

P2
= r[n]

∗

P1
.

We can seed the angular momentum terms of (P2) based on the solution to (P1) as

k[n]
0

P2
= Iω[n]

∗

P1
.
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Contact forces The end-effector forces are also shared between (P1) and (P2). Therefore,

fi[n]
0

P2
= fi[n]

∗

P1
for i = 1, . . . , nee

Joint angles To obtain a seed value for the joint angles we solve an inverse kinematics

problem at each knot point. We pose the inverse kinematics problem as an NLP with the

robot’s configuration as the decision variables.

q[n]
0

P2
= arg min

q


q − qnom





subject to com(q) = r[n]
∗

P1

FKi(q) = ri[n]
∗

P1
for i = 1, . . . , nee

Γ(q) = 0

(6.4)

where Γ is the collion avoidance function defined by (5.4).

6.3 Constraints based on MIQP solution

In addition to seeding the optimization as described in Section 6.2, we can restrict the

search space of (P2) to a region near the solution of (P1). This yields a new problem, (P2’),

which includes the objective and constraints of (P2) as well as the additional constraints:

FKi(q) = ri[n]
∗

P1
for i = 1, . . . , nee

6.4 Results

6.4.1 Negotiating irregular terrain

Figures 6-1 and 6-2 show frames from whole-body motion plans we generated by solving

(P2’). Figures 6-3 and 6-4 show the center of mass trajectories for motion plans generated

by (P1) and (P2).

Figures 6-1 and 6-2 show cases in which SNOPT succeeds in solving (P2’). As (P2’) is
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(a) Starting posture (b) Take-off (c) Flight (extended)

(d) Touch-down (e) Flight (gathered) (f) Touch-down

Figure 6-1: Snapshots from a motion plan for ascending platforms with gaps

a non-convex program, there are scenarios in which it fails. These generally fall into two

categories: failure due to constraints on (P2’) that were not present in (P1) and failures

due to the relaxation gap in (P1). The most common cause of the failures in the former

category is the collision-avoidace constraint included in (P2’). In (P1), collision avoidance is

enforced by requiring that if ri[n] ∈ R j , whereR j is a free-space region, then ri[n±1] ∈ R j .

This ensures that each segment of the end-effector trajectories is contained within a convex

region of free-space. in (P2’), however, this constraint is insufficient, as other parts of the

robot might be in collision. Instead, (P2’) incorporates the collision-avoidance constraint

described in Section 5.3.4. In situations with complicated environments, this additional

non-convex constraint can push the solver into regions of the search space in which no

feasible solution can be found.

Failures in the second category are generally due to the solution to (P1) specifying

moments about COM, contact forces, and foot positions that violate the bilinear constraints

discussed in Section 4.3. This can be addressed by using a tighter relaxation, but at the

cost of more expensive footstep planning problems.
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(a) Take-off (b) Flight (extended)

(c) Touch-down (d) Final posture

Figure 6-2: Snapshots from a motion plan for staggered platforms with gaps
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Figure 6-3: COM trajectories for traversing stairsteps with gaps

71



0 0.2 0.4 0.6 0.8 1

Normalized Time

0

0.2

0.4

0.6

0.8

1

1.2

C
O

M
P
o
s
i
t
i
o
n

(
m

)

(P1) x

(P1) z

(P2’) x

(P2’) z

Figure 6-4: COM trajectories for traversing staggered platforms
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Chapter 7

Final Discussion and Future Work

In this thesis I have demonstrated the need for planning approaches that can determine

end-effector placement without prior specification and have developed a framework for

planning aggressive motions of legged robots over irregular terrain. The two main com-

ponents of that framework are: a mixed-integer convex program that selects end-effector

placements as well as the centroidal motion of the robot, and a continuous nonlinear

program that computes the centroidal motion of the robot as well as full joint-angle tra-

jectories. Since both of these work with the centroidal dynamics of the robot, we are able

to connect them by initializing the second optimization with the results of the first. Using

this technique, I have generated plans for a running planar quadruped on stair step terrain

with large gaps, a task which prior to this innovation would have been intractable. Ad-

ditionally, I have applied the continuous portion of this framework to planning problems

with pre-specified end-effector placement on quadrupedal and humanoid robots. I now

present directions for further work that can expand the effectiveness of these techniques.

7.1 Trajectory stabilization

Ultimately, these planning techniques are only useful in so far as their results can be exe-

cuted on robotic hardware. Executing the plans developed by the methods in Chapters 4

and 6 will require a stabilizing controller. Our simulated running and jumping results

on Atlas (Section 5.6) demonstrate that the controller described in Kuindersma et al. [3,
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§4] can be used for this purpose. One interesting aspect of that controller, as well as

other similar QP-based controllers [2, 74, 75] is that it can work either with the full joint

trajectory or with goals for specific links on the robot. This means that we can conceivably

feed the COM and end-effector trajectories produced by our MIQP-based planner, (P1),

directly into the controller, without needing to solve the NLP for joint angles. This will

save time, making it more feasible to use on hardware.

7.2 Three-dimensional MIQP-based planning

Now that we have shown the planar model described in Section 4.2.2 to be effective

in selecting end-effector placements, the logical next step is to use a three-dimensional

version. As noted in Section 4.2.2, this approach will contain many more bilinear terms

than the planar one. This will have a strong impact on the choice of mixed-integer

convex approximation for the bilinear terms, as approximations that introduce more

binary variables will drastically increase the amount of computation required by the

method. While it yields the loosest relaxation of the strategies assessed in Section 4.3,

a McCormick envelope approximation may be the best here, as it does not require the

addition of any bilinear auxiliary variables.

The first consideration in the 3D model will be the representation of orientation. In

Section 4.2.2 we show the beginning of an approach using rotation matrices to encode

orientation, which would introduce nine bilinear terms for each rotated vector. The other

option would be to use quaternions, which would introduce twenty-four third order terms.

These can be converted to bilinear terms recursively [76], but will still result in a higher

number of bilinear terms than a rotation matrix. Thus from this standpoint, rotation

matrices are the superior choice.

The next challenge in a three-dimensional implementation is encoding the rotational

dynamics of the system. Whereas the previous paragraph dealt with the tradeoffs between

different representations of rotation at a single point in time, here we are concerned

with the integration constraints applied to the rotations at adjacent knot points. Both

rotation matrices and quaternions live in a space whose dimension is lower than their
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number of parameters, which means that there are additional constraints that must be

enforced during integration to ensure that they remain in the appropriate space: namely,

orthonormality for rotation matrices and unit norm for quaternions. Lie-group-based

integration methods provide a way to avoid these additional constraints but involve the

exponential map, which is non-convex. However, the first course of action should be to

use a second-order approximation of the exponential map in order to return to a bilinear

model. If that is not successful, we will want to reevaluate the use of quaternions since

they require fewer constraints in order to ensure that they remain in SO(3). The treatment

of the translational dynamics and of the end-effector placement will remain unchanged.

7.3 Seeding trajectory optimization with full dynamics

Another variation of the method presented here would be to pass from the MIQP problem

to a trajectory optimization that incorporates the full dynamics of the robot. This would

allow us to put constraints on the joint torques exerted by the robot. Recall that by opti-

mizing over the dynamics of the unactuated degrees of freedom in Chapter 5, we traded

complexity of the dynamics for the ability to optimize over joint torques. While a trajectory

optimization with torque constraints may not be necessary for high-powered robots with

full actuation on their joints like Atlas, it would be very useful for less powerful robots

where torque constraints are the limiting factor on what motions they can perform. Seed-

ing this optimization would be more challenging than seeding the centroidal dynamics,

full kinematics method because we would need to provide an initial guess for the joint

torques. This could be accomplished by first computing a nominal joint angle trajectory as

in Section 6.2 and then solving the inverse dynamics problem at each time step to generate

a guess for the torques.

7.4 Comparisons to other approaches

It is possible that similar problems could be solved with an expanded version of the

NLP described by Posa, Cantu, and Tedrake [44]. As it is now, this method only allows
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each end-effector to have one potential support surface. An expansion would be needed

to allow for the possibility of end-effectors contacting more than one surface over the

course of a trajectory, for example: ground, cinder block and a stair. With such a change,

a comparison between these two methods would be useful to determine their relative

strengths and weaknesses. This comparison should include the success rates of the two

methods over a common set of planning problems as well as the running times for each

method. The strength of the method proposed by Posa is that it treats the contact selection

and full multi-body dynamics simultaneously, which means that it may be able to find

solutions in cases where the sequential approach presented here fails. That strength is

also its weakness in that the very complex nonlinear program required may prove to be

much more computationally expensive.

7.5 Conclusion

Prior to this thesis, the state of the art in motion planning for legged robots either selected

footsteps first and dynamically-balanced center of mass trajectory second or solved for

joint angles and contact placements as a single NLP. By way of simplification, the first

approach disregards the fact that COM motion and footstep placement are inextricably

linked; in so doing they restrict themselves to solving a smaller subset of motion plan-

ning problems. The second approach yields very large NLPs that are computationally

expensive and sensitive to the initial guess provided. My primary contribution in this

work is a formulation that simultaneously treats both the placement of end-effectors and

the centroidal dynamics of the robot via MIQP. This novel approach to motion planning

for legged robots allows us to solve, in a general way, challenging problems such as run-

ning and leaping over gaps as I have demonstrated on a model of the quadrupedal robot,

LittleDog. Furthermore, I have presented a unique method developed in collaboration

with H. Dai that generates full body trajectories that respect the centroidal dynamics of

the robot as well as end-effector placements chosen either by the user directly or through

the aforementioned MIQP-based planner. We have generated running, jumping and other

aggressive maneuvers by applying this method to the humanoid robot Atlas. These con-
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tributions put us one step closer to a world in which quadrupedal robots come to the aid

of embattled soldiers and humanoids work in dangerous new places so that humans can

stay out of harm’s way.
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