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Abstract

This thesis concerns two problems of robustness in the modeling and control
of nonlinear dynamical systems. First, I examine the problem of selecting a
stable nonlinear state-space model whose open-loop simulations are to match
experimental data. I provide a family of techniques for addressing this problem
based on minimizing convex upper bounds for simulation error over convex sets of
stable nonlinear models. I unify and extend existing convex parameterizations of
stable models and convex upper bounds. I then provide a detailed analysis which
demonstrates that existing methods based on these principles lead to significantly
biased model estimates in the presence of output noise. This thesis contains two
algorithmic advances to overcome these difficulties. First, I propose a bias removal
algorithm based on techniques from the instrumental-variables literature. Second,
for the class of state-affine dynamical models, I introduce a family of tighter
convex upper bounds for simulation error which naturally lead to an iterative
identification scheme. The performance of this scheme is demonstrated on several
benchmark experimental data sets from the system identification literature.

The second portion of this thesis addresses robustness analysis for trajectory-
tracking feedback control applied to nonlinear systems. I introduce a family of nu-
merical methods for computing regions of finite-time invariance (funnels) around
solutions of polynomial differential equations. These methods naturally apply
to non-autonomous differential equations that arise in closed-loop trajectory-
tracking control. The performance of these techniques is analyzed through simu-
lated examples.
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Chapter 1

Introduction and Motivation

Nonlinear dynamics are at the heart of a number of engineering and scientific
endeavors such as the design and analysis of robotic systems [29, 94], experimental
and theoretical electro-physiology [58], and computer-aided design for high-speed
electronics [115]. The explosive growth of computing power over the last 50 years
has revolutionized the role that simulation models of dynamical systems play in
these disciplines. For nonlinear dynamical systems, however, there remains a
strong demand for computational techniques to effectively identify models from
experimental data and describe their behavior in a sense that is more informative
than examining individual solutions.

This thesis looks at two problems dealing with summarizing the behavior of
nonlinear dynamical systems and their robustness to variations in initial condi-
tion. The first three chapters of this thesis study a fundamental problem in system
identification which is easy to state, but surprisingly challenging to address: find
a simple dynamical model whose simulations match, as closely as possible, avail-
able experimental data. Several issues contribute to the difficulty of this task.
First, when a model is to be used for open-loop simulations it is crucial to ensure
that the identified dynamics are insensitive to small changes in initial conditions,
but for nonlinear models general techniques do not exist for testing this form of
stability, [76, 119]. Second, while it is natural to desire a model whose open-
loop simulations match the experimental data, minimization of such simulation
errors leads to challenging nonlinear programming problems for both linear and
nonlinear models. The second problem addressed in the remainder of this the-
sis is quantifying the effectiveness of trajectory-tracking feedback controllers for
nonlinear systems. This task is cast in terms of reachability analysis of closed
loop systems, i.e. identifying a set of initial conditions which are guaranteed to
reach a goal region. This thesis uses a common set of computational tools based
on Lyapunov analysis and convex optimization to make algorithmic progress on
these two challenging topics.

11



12 CHAPTER 1. INTRODUCTION AND MOTIVATION

� 1.1 State-of-the-Art in Stable System Identification

System identification concerns transforming experimental data into models of
dynamical systems suitable for control design, prediction, and simulation. The
breadth of system-identification applications can hardly be overstated, yet a core
set of theories and algorithms has been successfully applied to diverse fields such
as parameter estimation for flight vehicles ([57]) and robotic manipulators ([64]),
and approximate modeling in process control [35].

The existing literature on nonlinear system identification is extremely broad
(see, for example, [75] Chapter 4, [96], [73], [53] Chapter 2, [119], [35]), owing
both to the diversity of systems that nonlinear dynamics encompasses and the
wide range of applications for which models need to be identified. This section,
however briefly, provides a summary of the most popular modern approaches for
nonlinear system identification followed by an overview of existing techniques for
providing stability guarantees when performing system identification.

� 1.1.1 Model Identification Criteria

Maximum-Likelihood and Prediction-Error Methods

Maximum-likelihood (ML) estimators are extremely popular for addressing a
broad range of statistical parameter identification problems (see, for example,
[21] Chapter 7). Applying the ML principle involves first positing a parametric
probabilistic model for how the observed data was generated, and then selecting
the model parameters that maximize the likelihood of the actual observations.
Identifying global maxima can be a difficult task and is frequently approached
through local gradient-based search methods (assuming the likelihood is differ-
entiable) or the EM algorithm (see [21] for discussion). Under the simplifying
assumption that the model class is correctly specified, i.e. that the experimental
data observed is generated by a model in the given model class, a number of desir-
able properties can be established for the maximum likelihood estimate (MLE),
including asymptotic normality and strong consistency (see [75]).

The assumption of a correctly specified model is generally unrealistic. This,
in part, inspired the development of the prediction error method (PEM) in the
seminal papers [74], [18], and [79]. In the PEM, again a parametric family of prob-
abilistic models is specified. A sequence of “one-step-prediction” errors are then
formed. Each such error is the difference between an actual observation and the
expected value for that observation conditioned on all past data. A weighted cost
function is then constructed from these errors and minimized. Under relatively
weak assumptions on the mechanism that generates the experimental data, it has
been shown that the models arrived at using the PEM provide nearly optimal
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one-step-ahead predictions as the amount of available data tends to infinity (see
[74]). Such a framework can naturally be extended to k-step-ahead predictions as
well. While these results are encouraging, finding the model which minimizes the
prediction error is challenging for the same reasons that complicate ML estima-
tion. For correctly specified linear time-invariant (LTI) models, recently published
work has examined how careful design of inputs can improve the convergence of
local optimization of the PEM to the true model parameters (see [37]).

In the dynamical systems context, probabilistic models as above are naturally
parameterized implicitly in terms of dynamical equations by specifying distribu-
tions for measurement and process noises (see [75], Chapter 5). When working
with nonlinear dynamical models, this creates additional challenges for both the
ML method and the PEM. For linear-Gaussian models, computation of likelihood
function and/or one-step ahead predictions can often be reduced to a Kalman-
filtering problem (see [75]). In the nonlinear setting, however, even evaluating
likelihood function or computing one-step ahead prediction densities can be chal-
lenging in the presence of process noise, leading several authors to consider ap-
proximation techniques based on extended Kalman filters and particle filters (e.g.
[44, 116, 140]).

Simulation Error Minimization

Identifying models for which open-loop simulations accurately predict the experi-
mental system’s long-term behavior is often approached by minimizing the mean
square simulation error (MSSE) (i.e. the difference between open loop simula-
tions and recorded data). See, for example: [75] Chapter 5, [96] Chapter 17,
[11] Chapter 5, or [137]. Under the assumption of i.i.d. Gaussian output noise
with a fixed covariance, minimization of the MSSE corresponds to ML identifi-
cation and is a familiar topic in texts on numerical optimization and parameter
identification (e.g. [137] or [11] Chapter 5). Similarly, assuming i.i.d. output
noise and a quadratic cost on one-step-ahead prediction errors, minimization of
the MSSE corresponds to the prediction error method associated with nonlinear
output error problems (see [75] or [96]). For nonlinear models, simulation error
minimization has the computational advantage of not requiring approximation of
prediction densities. This comes at at a cost as simulation error models do not
directly account for possible process noise.

If the true system agrees with the model and noise assumptions, the global
minimizers of the MSSE often have desirable properties associated with ML and
PEM techniques, such as consistency, statistical efficiency, and asymptotic nor-
mality ([18, 74, 79]). When the model is not correctly specified, one can still
connect the asymptotic performance of these minimizers to the best approximate



14 CHAPTER 1. INTRODUCTION AND MOTIVATION

model in the model class for the system being studied (see, for example, Section V
of [74]). Exploiting these results in practice can be difficult, however, as the MSSE
generally has many local minima (as noted in [121] and [75]) and minimization is
usually pursued via direct search or gradient descent methods.

The model-order reduction (MOR) community has also examined the problem
of identifying low order dynamical models to match simulation or experimental
data. The MOR methods proposed in [88], [13], and [123] are closely related
to the approach proposed in this work (in referencing [123], I specifically mean
Algorithm 2 contained in that work). Each of these works proposes a convex
parameterization of a set of stable systems and an upper bound for simulation
error which is convex in these parameters. Specifically, [88] and [13] propose pa-
rameterizations of stable nonlinear systems with [13] providing an upper bound
for an approximation of simulation error. The reference [123] proposes an itera-
tive method for discrete-time frequency domain fitting technique for stable LTI
models. The relationship of this thesis to these papers is discussed further below.

Subspace Identification Methods

Subspace identification methods (see [54] and [98]) provide a notable alternative
to the ML and PEM approaches given above. These methods exploit basic facts
from LTI realization theory to find state-space model estimates from input-output
data using only basic numerical linear algebra. Easily interpreted model-order
estimates are generated as an additional benefit. These methods are most fully
developed for identifying LTI models, though some progress has been made on
modeling bilinear systems (see [33, 39]) and other nonlinear systems (as in [46] or
[107]).

Set-Membership Identification

Set-membership (SM) identification refers to a family of system identification
techniques whose development began in the robust control community during
the 1980s and 1990s (see [25, 26, 90]). The object of study for these methods
is the set of “unfalsified models”, i.e. those models which are consistent with
the given observations and certain a-priori assumptions on model structure and,
usually, bounded-noise assumptions. In [77], Ljung provides an interesting dis-
cussion relating these approaches to classical statistical “model quality” tests.
These techniques are generally interested in both a “nominal model” as well as
outer approximations of the entire set of unfalsified models. The majority of
the SM literature has been focused on LTI systems, [23, 25], with extensions to
nonlinear models with “block-oriented” structure, [24, 127], and models whose
simulation response is linear in the parameters (see [8]). The works [23] and [24]
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address errors-in-variables problems with bounded noise assumption for LTI and
Hammerstein systems with stability assumptions.

� 1.1.2 Identification of Stable Models

Identification of stable LTI models has been studied in the system identification
community for many decades. Early work was focused on conditions required of
the data to guarantee that least-squares (or equation error) fitting would gener-
ate stable models, despite potential under-modeling, (as in [109, 110, 120, 135]).
Other work was aimed at ensuring model stability irrespective of the nature of the
input data. In [95], stability guarantees for ARX identification are enforced via
Jury’s criterion. This constraint is necessary and sufficient for stability of scalar
LTI difference equations, but is non-convex and requires careful handling to allow
for efficient optimization. In [22], Jury’s criterion was used to tighten a-posteriori
parameter bounds in set-membership identification using moment-relaxation tech-
niques. Conditions that are merely sufficient for stability but convex with respect
to a difference equation’s coefficients have been pursued in filter design (for ex-
ample, in [28, 36]), and model-order reduction (see [123]). For linear state-space
models, stability issues have repeatedly been addressed in the subspace identifi-
cation literature: [136] uses regularization to ensure model stability at the cost of
biasing estimates, whereas [70] provides a convex parameterization of all stable
linear state-space models.

The results on identification of stable nonlinear models are substantially more
limited. The most common way to guarantee model stability is to approximate
the output response of a system via linear combinations of a fixed basis of stable
system responses, as in Volterra series methods (see, for example, [15, 35]). A
common challenge for these methods is that accurately approximating systems
with a “long memory” can require an intractable number of basis elements or
information about the system that is generally unavailable, as discussed in [40] and
[7]. This has motivated the development of non-parametric approaches including
kernel-based methods, [40], and output-interpolation schemes, [6, 67, 114]. One
complication in employing these methods is that the complexity of evaluating the
resulting models generally scales with the amount of available data (for example,
see [40]). Accuracy of the resulting models can also depend heavily on the choice
of kernel parameters, as in [40], or measures of distance between regressors, as in
[67] and [6].

Methods guaranteeing stability for general nonlinear models with state in-
clude [89]. That work combined a fixed LTI system approximation with a non-
parametric nonlinear function estimation scheme based on considerations from
set-membership identification. Stability of the resulting models was guaranteed
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by constraining the gradient of the nonlinearity based on bounds specific to the
given LTI approximation. The present work is closely related to [88], and [13],
which constructed large classes of stable nonlinear models and will be discussed
below.

� 1.1.3 Relationship to [88] and [13]

This work takes as its starting point an approach to system identification sug-
gested in [88]. In that paper, a convex parameterization of stable nonlinear dif-
ference equations was provided and several convex upper bounds for simulation
error were suggested based on passivity analysis. An approach in a similar spirit
was presented in [13], which provided an alternative parameterization of stable
nonlinear models and upper bounds for a linearized approximation of simulation
error. This second paper then provided a number of example applications drawn
from model-order reduction of nonlinear circuits.

This thesis begins by unifying and extended the model classes presented in
these previous works with an eye toward applications in system identification.
Through a detailed analysis, it is shown that serious limitations arise when these
previous approaches are applied to noisy data or systems which are “lightly
damped” (i.e. nearly marginally stable). The main contribution of the system
identification portion of this thesis is in addressing these issues through noise-
removal algorithms and new upper bounds for simulation error.

� 1.2 Existing Approaches to Reachability Analysis

Reachability analysis refers to the dual problems of characterizing the flow of
solutions starting from a fixed initial condition set (forward reachability) and
the problem of identifying which initial conditions lead to solutions which flow
through a fixed set (backwards reachability). Using this terminology, the tra-
jectory robustness problem we consider is a problem of backwards reachability.
This section briefly reviews some of the most popular computational techniques
for approximating backwards reachable sets (a recent overview of more general
reachability problems and computational methods can be found in [69]).

For linear dynamical systems, a large number of techniques are available which
exploit the fact that certain families of sets are closed under linear maps (e.g. poly-
topes [71], ellipsoids [68], parallelotopes [65], zonotopes [45]). The review below,
however, will focus exclusively on techniques applicable to nonlinear dynami-
cal systems. The most popular techniques can be grouped as level-set methods,
barrier-certificate methods, discretization methods, and trajectory-sampling tech-
niques. The algorithms proposed in Chapter 6 combine barrier certificates with
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trajectory-sampling techniques.
Level-set methods approximate backwards reachable sets as sub-level sets of

a scalar valued function, usually an approximate solution to a Hamilton-Jacobi-
Isaacs (HJI) partial differential equation (PDE), [66, 91]. This concept has been
extended to hybrid systems in papers such as [83] and [91]. These techniques
have fairly weak requirements of the underlying vector-field and, in certain cases,
generate candidate state-feedback control laws. However the scalability of these
approaches is limited as approximate solution of the HJI equations is generally
accomplished through discretization of the state-space (see, for example, the dis-
cussion in [92]).

Barrier certificates solve a similar, though in some ways simpler, problem
by replacing partial differential equations with partial differential inequalities
([104, 106]), and have close connections to Lyapunov analysis (an introduction
to Lyapunov analysis can be found in many texts on nonlinear systems, such as
[63]). Modern optimization tools such as sums-of-squares (SOS) programming
have, in many situations, made the computational search for Lyapunov functions
satisfying such differential inequalities tractable (for examples, see [101]). Finding
functions satisfying such inequalities generally leads to computation of inner ap-
proximations of backwards reachable sets. These techniques have been applied to
both deterministic and stochastic safety analysis (e.g. [105]). In [105], the guar-
antees referenced above are computed via SOS programming, and are extended
to probabilistic guarantees for stochastic models of a disturbance.

The most popular alternatives to level-set and barrier-certificate methods in-
volve, to varying degrees, approximating the continuous dynamics of a system
through a discrete graph structure. Explicitly partitioning the state-space into
“cells” and examining the cell-to-cell mapping induced by the dynamics was pro-
posed in [56]. The set of publications based on similar state-space partitions is
quite large (e.g. [1, 2, 100, 112, 128, 141]). These methods primarily differ in
terms of how approximate the resulting reachability and safety analysis is, rang-
ing from formal equivalence, as in [2], to asymptotic guarantees as the partition
grows arbitrarily fine (for example, [1]).

Trajectory-based methods, that is methods based on iterative simulation of
a system, are a popular alternative to “gridding” or other state-space decompo-
sitions. Notable amongst these methods is the Rapidly-Exploring Random Tree
(RRT) algorithm of LaValle and Kuffner [72], which incrementally fills the back-
wards reachable set with an interconnected tree of trajectories. This algorithm
has been extended both to address hybrid dynamics in [16] and to asymptotically
recover optimal control laws on the backwards reachable set in [62]. These algo-
rithms have the disadvantage that their approximation of the backwards reach-
able set has no volume. In particular, the set of trajectories that lie on the tree is
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measure zero, and for any initial condition off the tree it is unclear what control
strategy to use. Several recent works have attempted to address this deficiency
through additional robustness analysis. The works [60] and [61] propose bound-
ing the rate at which solutions of an autonomous dynamical system diverge from
one another on a fixed domain by identifying Lyapunov-like functions using SOS
optimization. By contrast, the work in [129] and [130], which this thesis extends,
derives time-varying barrier certificates, initialized through a linearized analysis
about a sample trajectory. This barrier certificate is then iteratively optimized to
enclose more solutions. The key distinctions between these approaches are that
this latter method requires no a-priori domain to design the barrier certificate
and searches over time-varying Lyapunov functions. These two features can po-
tentially greatly reduce the conservatism of the resulting approximations of the
backwards reachable set.

� 1.3 Chapter Outline

� 1.3.1 Part I: Robust Convex Optimization for Nonlinear System Identifi-

cation

The next three chapters of this thesis are dedicated to system identification with
robustness guarantees. Chapter 2 introduces the notion of stability, formal def-
inition of simulation error, and class of models that is studied throughout this
portion of the thesis. This is followed by an overview of existing convex parame-
terizations of stable nonlinear models, as well as the introduction of several novel
parameterizations provided by this work. A family of convex upper bounds for
simulation error, referred to as robust identification error (RIE), is then reviewed,
followed by a detailed analysis of these upper bounds when applied to LTI models.

Chapter 3 discusses a limitation of these existing upper bounds on simulation
error that leads to biased estimates in the presence of measurement noise. These
difficulties are explained in terms of the errors-in-variables problem from classical
regression and statistics. A scheme is proposed for eliminating this bias when
a pair of repeated experiments is available. The scheme is demonstrated on a
simulated example.

Chapter 4 next introduces robust simulation error (RSE), a family of tighter
convex upper bounds for the simulation error of state-affine systems. A simple ex-
ample is given to demonstrate how these tighter upper bounds aid in overcoming
the bias of the previously proposed approaches, at the cost of additional com-
putational complexity. A frequency domain interpretation of this upper bound
is given for single-input single-output (SISO) LTI models. Finally, a new iter-
ative scheme is suggested for identifying state-affine models. The improvement
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achieved by applying this scheme is demonstrated on several benchmark system
identification data sets.

� 1.3.2 Part II: Robustness Analysis of Dynamic Trajectories

Part II of this thesis considers the problem of evaluating the robustness of local
feedback controllers applied to nonlinear dynamical systems. Chapter 5 describes
the general problem setting and how Lyapunov functions can be used to construct
“funnels” — approximate geometric descriptions of the flow of solutions of a
differential equation. Chapter 6 then introduces a methodology for searching
for Lyapunov functions which define funnels and optimizing their size. Finally,
Chapter 7 provides a pair of simulated examples demonstrating the effectiveness
of the proposed optimization scheme.

� 1.4 Notation and Terminology

For an arbitrary complex matrix A ∈ Ck×n, denote by [A]ab the scalar element
in the a-th row and b-th column of A. Let [A;B] denote vertical concatenation
of matrices. When dimensions are unambiguous, I and 0 will denote the identity
matrix and the zero matrix of appropriate size. Table 1.1 lists frequently used
symbols specified for an arbitrary matrix A ∈ Ck×n, vector v ∈ Cn, and pair
of matrices P,Q ∈ Cn×n that are Hermitian (i.e. P = P ′ and Q = Q′). For
derivatives of functions we at times use the notation of [124], which indicates the
derivative of a function f with respect to its k-th argument by ∂kf . The spectral
radius of a matrix A ∈ Cn×n will refer the magnitude of the largest eigenvalue of
A.



Table 1.1. Frequently Used Symbols

C The set of complex numbers.

T The unit circle in C (i.e. z ∈ C such that |z| = 1).

R The set of real numbers.

Z The integers.

Z+ The non-negative integers, {0, 1, 2, . . .}.
N The positive integers, {1, 2, 3, . . .}.
`(Rn) The space of functions x : Z+ → Rn.

`T (Rn) The space of functions x : {0, 1, . . . , T} → Rn, for T ∈ N.

x(T ) The restriction of x ∈ `(Rn) to {0, 1, . . . , T} for T ∈ N.

In The n-by-n identity matrix.

0k×n The all zeros matrix of dimension k-by-n.

A′ The complex conjugate transpose of A.

A† Moore-Penrose pseudo-inverse of A.

tr(A) The trace of A, tr(A) =
∑n

i=1[A]ii (assuming k = n).

‖A‖2 The largest singular value of A.

‖A‖F The Frobenius norm of A, ‖A‖F =
√

tr(A′A).

‖v‖1 The `1 norm of v, ‖v‖1 =
∑n

i=1 |vi|.
|v| The `2 norm of v, |v| =

√∑n
i=1 |vi|2.

|v|2P |v|2P = v′Pv.

P ≥ Q P −Q positive semidefinite.

P > Q P −Q positive definite.
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Chapter 2

Stability and Robust Identification
Error

This chapter describes a family of regression techniques for identifying stable
nonlinear state-space models. Section 2.1 provides the basic problem setup and
terminology. Section 2.2 contains relevant facts about state-space models defined
by implicit equations. This is followed by Section 2.3 which reviews methods
for guaranteeing model stability and presents several new parameterizations of
stable nonlinear models. Finally, Section 2.4 presents and analyzes a family of
convex upper bounds for simulation error. Unless otherwise noted, proofs that
do not immediately follow the statement of a proposition, lemma or theorem are
contained in Section 2.5.

� 2.1 Preliminaries

The following general definitions will be used throughout this chapter and the
two that follow.

� 2.1.1 State Space Models

Definition 2.1. A state-space model is determined by a function a : Rnx×Rnw →
Rnx via

x(t) = a(x(t− 1), w(t)) (2.1)

where x(t) and x(t− 1) denote the next and current state of the system and w(t)
denotes the input. By Ga : Rnx × `(Rnw) → `(Rnx) we denote the solution map
which takes an initial condition ξ ∈ Rnx and an input signal ŵ ∈ `(Rnw) to the
solution x = Ga(ξ, ŵ) of (2.1) which satisfies x(0) = ξ and w(t) ≡ ŵ(t).

23
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� 2.1.2 Observed Data

In this chapter, the observed data is assumed to be a pair of signals (w̃, x̃) ∈
`T (Rnw)×`T (Rnx) for some positive integer T . The signal w̃ represents a recorded
excitation applied to the experimental system whereas x̃ is assumed to be an
approximation of the state of the system. One choice of x̃ which will be examined
throughout the paper is constructed from an initial data set consisting of an
input signal ũ and an output signal ỹ as follows. For a given k ∈ Z+ and (ũ, ỹ) ∈
`T+k(Rnu)× `T+k(Rny) take

w̃(t) =

ũ(t+ k)
...

ũ(t)

 , x̃(t) =

ỹ(t+ k)
...

ỹ(t)

 , (t ∈ {0, . . . , T}) (2.2)

so that nw = (k + 1)nu, and nx = (k + 1)ny.
The following loss function will serve as an important measure of how well a

state-space model agrees with the observed data.

Definition 2.2. Let Q ∈ Rnx×nx be a fixed, symmetric positive-semidefinite
weight matrix. For every function a : Rnx × Rnw → Rnx defining a state-space
model (2.1) and pair of signals (w̃, x̃) ∈ `T (Rnw)×`T (Rnx), define the mean-square
simulation error (MSSE) JSE

Q to be

JSE
Q (a, w̃, x̃) :=

1

T

T−1∑
t=0

|x̃(t)− x(t)|2Q,

where x is the solution of (2.1) with w(t) ≡ w̃(t) and x(0) = x̃(0).

The role of the matrix Q above is to select particular components of the
state-signal which are to be accurately reproduced. It should also be noted that
more general definitions of simulation error treat the initial condition, x(0), as
an additional decision parameter. As an alternative, which is explained below,
we require models to be stable in a sense that ensures solutions “forget” initial
conditions asymptotically.

� 2.1.3 Stability

The notion of stability considered in this work is that of “`2-incremental stability”
which is sketched by Figure 2.1, and defined below.

Definition 2.3. We say a state-space model (2.1) is `2-incrementally stable (here-
after stable) if for all input signals w ∈ `(Rnw) and pairs of initial conditions



Sec. 2.1. Preliminaries 25

S

S

ξ

ξ̂

w(t)

x̂(t)

x(t)

−

∆(t)

1

Figure 2.1. A schematic diagram describing incremental stability. Two copies of a system are
subjected to the same input, but differing initial conditions. The difference in the state, ∆(t),
is required to be square summable (thus tend to zero).

ξ, ξ̂ ∈ Rnx ,
∞∑
t=1

|x(t)− x̂(t)|2 <∞,

where x = Ga(ξ, w) and x̂ = Ga(ξ̂, w).

Example 2.1.1. Consider an LTI state-space model defined by (2.1) with

a(x,w) ≡ Ax+Bw, (2.3)

for some pair of matrices A ∈ Rnx×nx and B ∈ Rnx×nw . It is easy to see that such
a model is `2-incrementally stable if and only if spectral radius of A is less than
one.

� 2.1.4 Objectives, Contribution, and Discussion

The nominal objective of this chapter is selection of a stable nonlinear state-
space model (of limited complexity) which minimizes the MSSE. This task is
challenging both due to the complexity of representing stable nonlinear systems
and the difficulty of minimizing simulation error. To partially address these issues,
we take an approach which has been adopted in works such as [88], [13], and [123].
These works provide convex parameterizations of stable models combined with a
convex upper bound for simulation error (or approximations of simulation error).
This chapter reviews and extends those parameterizations and upper bounds.

Our choice to require `2-incremental stability is to ensure that models asymp-
totically “forget” their initial conditions in a sense that is compatible with min-
imizing mean square simulation error. Alternative conditions encoding such for-
getting of initial conditions or “fading memory” appear frequently in the system
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identification literature, both as a desirable property for models (e.g. [38, 74, 89]),
and as an assumption on the theoretical system generating observations, (e.g.
[6, 15, 30, 74, 142]). Incremental input-output stability and passivity are covered
in detail in classic texts such as [32], and have seen a recent resurgence in interest
(e.g. [3, 10, 42, 43, 80, 111, 122]). Physical systems that are `2-incrementally sta-
ble arise, for example, from the feedback interconnection of passive LTI systems
and strictly monotone memoryless nonlinearities. Such systems occur frequently
in structural dynamics and circuit modeling, a fact which has recently been ex-
ploited for model-order reduction in [111] and [10].

� 2.2 Implicit State-Space Models

This work generally examines implicit state-space models. The most general such
systems considered are defined by a pair of functions h : Rnv ×Rnx ×Rnw → Rnv

and ā : Rnx × Rnw → Rnx−nv according to

0 = h(v(t), x(t− 1), w(t)),

x(t) =

[
v(t)

ā(x(t− 1), w(t))

]
,

(2.4)

where it is required that v 7→ h(v, x, w) be a bijection for every x ∈ Rnx and
w ∈ Rnw . In applications, the function ā will represent some portion of dynamical
equations which are fixed a-priori, whereas the function h is to be identified
through optimization. This additional fixed structure will exploited in subsequent
sections of this chapter to simplify certain optimization problems. The following
matrix will be used to simplify notation:

Πnv =
[
Inv×nv 0nv×nx−nv

]
.

When such structure is not present (or ignored), we will examine implicit state-
space models of the form

0 = h(x(t), x(t− 1), w(t)), (2.5)

where h is defined as above with nv = nx.
A natural example of when the structure (2.4) might arise is given below.

Example 2.2.1. Consider a nonlinear difference equation of the form

0 = q(y(t), y(t− 1), . . . , y(t− n), u(t), u(t− 1), . . . , u(t− n)), (2.6)

with u(t) ∈ R representing an input signal, y(t) ∈ R representing an output signal,
and v 7→ q(v, y1, . . . , yn, u0, u1, . . . , un) being a bijection for all y1, . . . , yn ∈ R and
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u0, u1, . . . , un ∈ R. The above system can naturally be associated with a model
of the form (2.4) by taking nv = 1, nx = n, nw = n+ 1,

h(v, x, w) = q(v, x1, . . . , xn, w1, . . . , wn+1),

and

ā(x,w) =


x1

x2
...

xnx−1

 .
The interpretation here is that

x(t− 1) ≡

y(t− 1)
...

y(t− n)

 , w(t) ≡


u(t)

u(t− 1)
...

u(t− n)

 .
A similar correspondence can be made when the signals y(t) and u(t) are vector-
valued.

Another subclass of implicit state-space models which are in some ways simpler
to work with are separable implicit state-space models. These are models of the
form

e(x(t)) = f(x(t− 1), w(t)) (2.7)

defined by a bijection e : Rnx → Rnx and a function f : Rnx × Rnw → Rnx .
Such systems can always be put in the form of (2.5) by taking h(v, x, w) =
e(v)− f(x,w). Clearly (2.7) is equivalent to (2.1) with a = e−1 ◦ f .

� 2.2.1 Terminology and Motivations for the Use of Implicit Functions

First, we define some additional terminology. We say the equations (2.4) or (2.5)
are well-posed when h satisfies the previously mentioned invertibility requirement
(similarly we say (2.7) is well posed if e is invertible). When (2.4) is well-posed,
we will denote by use the notation ah to denote the unique function satisfying

0 = h(ah(x,w), x, w), ∀ x ∈ Rnx , w ∈ Rnw . (2.8)

When working with implicit dynamics we will frequently have need to talk about
equivalence of models. We say a well-posed implicit state-space model (2.4) is
equivalent a state-space model (2.1) when

a(x,w) ≡
[
ah(x,w)
ā(x,w)

]
.
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Similarly, two well-posed implicit state-space models, say defined by (h, ā) =
(h1, ā1) and (h, ā) = (h2, ā2) respectively, are equivalent when ah1 ≡ ah2 and
ā1 ≡ ā2. In practice, it is also important that ah can be evaluated with limited
computational effort (this topic will be discussed below).

Example 2.2.2. Consider the linear function

h(v, x, w) = Ev − Fx−Kw (2.9)

with E,F ∈ Rnx×nx and K ∈ Rnx×nw For such a function, (2.5) is well-posed iff
E is invertible. When E is invertible, (2.9) defines a model that is equivalent to
a state-space model defined by (2.3) if and only if1

F = EA, K = EB.

The choice to use implicit equations has several motivations related to the
optimization strategies detailed later in this chapter. One such motivation regards
the representation of stable systems. It is well known that the set

S = {A ∈ Rnx×nx : the spectral radius of A is less than one}

is not convex. For example, both of the following matrices,

A0 =

[
0 10
0 0

]
, and A1 =

[
0 0
10 0

]
,

have repeated eigenvalues at zero, but the eigenvalues of their average, 1
2
(A0+A1),

are 5 and −5. Despite this fact, there is a convex set C ⊂ Rnx×nx × Rnx×nx of
matrix pairs such that

S = {E−1F : (E,F ) ∈ C}.

— the construction of this parameterization will be given in Section 2.3.2. Thus,
by examining implicit dynamics such as (2.9), one can conveniently represent all
stable LTI models (this topic is discussed in more detail in Section 2.3).

A second motivation for implicit equations regards nonlinear models. To apply
certain convex optimization techniques, it will be important to select h from an
affinely parameterized family of functions. Such a family is described in terms of
a basis, {φi}nθi=0, of vector-valued functions, φi : Rnv×Rnx×Rnw → Rnv by means
of

hθ(v, x, w) ≡ φ0(v, x, w) +

nθ∑
i=1

θiφi(v, x, w), (θ ∈ Rnθ). (2.10)

1Recall that equivalence is stated in terms of state signals. Issues of minimality or input/out-
put equivalence are not part of this definition.
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Here θ is a parameter vector to be identified. The use of implicit functions allows
for an affine parameterization as above to represent general rational polynomial
functions which are known to have significant advantages over polynomial func-
tions in performing function approximation (see, for example, [97] or [81], Chapter
6). The following example makes the construction of such rational functions more
explicit.

Example 2.2.3. Fixing nx = 1, let {ψi}nψi=1 be a collection of continuous functions
ψi : R× Rnw → R. Taking nθ = 2nψ, define as above via

φ0(v, x, w) = 0,

φi(v, x, w) = ψi(x,w)v, (i ∈ {1, . . . , nψ}),
φi(v, x, w) = ψi(x,w), (i ∈ {1 + nψ, . . . , 2nψ}).

Then
hθ(v, x, w) = qθ(x,w)v − pθ(x,w) (θ ∈ Rnθ)

where

qθ(x,w) :=

nψ∑
i=1

θiψi(x,w), and pθ(x,w) := −
nψ∑
i=1

θi+nψψi(x,w).

If qθ is bounded away from zero, (2.5) with h = hθ defined by (2.10) is well-posed
and

ah(x,w) =
pθ(x,w)

qθ(x,w)
.

� 2.2.2 Invertibility of Implicit Models

We next discuss convex conditions for ensuring a continuous function c : Rn → Rn

is invertible and that an efficient method for approximating its inverse is available.
For separable implicit state-space models, i.e. models of the form (2.7), requiring
any of these conditions to hold for the function e : Rnx → Rnx ensures well-
posedness. For an implicit state-space model of the form (2.4) showing these
conditions hold for c(·) = h(·, x, w) for every (x,w) ∈ Rnx × Rnw is sufficient to
guarantee well-posedness.

We make use of the following definitions and results from the study of mono-
tone operators.

Definition 2.4. A function c : Rn → Rn is said to be strictly monotone if there
exists a δ > 0 such that

(v − v̂)′(c(v)− c(v̂)) ≥ δ|v − v̂|2, ∀ v, v̂ ∈ Rn. (2.11)
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Theorem 2.5. Let c : Rn → Rn be a function that is continuous and strictly
monotone. Then c is a bijection.

A proof can be found in [103], Theorem 18.15. The following simple proposi-
tion will also be used below.

Proposition 2.6. A continuously differentiable function c : Rn → Rn satisfies
(2.11) iff

1

2
(C(v) + C(v)′) ≥ δI, ∀v ∈ Rn (2.12)

where C(v) = ∂1c(v).

This claim can be easily verified by analyzing the following relationship:

2∆′(c(v + ∆)− c(v)) =

∫ 1

0

2∆′C(v + θ∆)∆ dθ ∀∆, v ∈ Rn. (2.13)

The following proposition provides a family of convex sets of invertible non-
linear functions.

Proposition 2.7. Let e and e0 be continuous functions such that e0 is a bijection.
Then e is a bijection if either of the following two conditions holds:

(i)

2(e0(x)− e0(x̂))′(e(x)− e(x̂)) ≥ |e0(x)− e0(x̂)|2, ∀ x, x̂ ∈ Rn. (2.14)

(ii) e and e0 are continuously differentiable, E0(x) = ∂1e0(x) is invertible for all
x ∈ Rnx, and

E0(x)′E(x) + E(x)′E0(x) ≥ E0(x)′E0(x), ∀x ∈ Rn, (2.15)

where E(x) = ∂1e(x).

Furthermore if (ii) holds e−1 is continuously differentiable.

Note that both (2.14) and (2.15) are families of linear inequalities in e. Clearly
(2.14) holds whenever e ≡ e0 and similarly (2.15) holds when e ≡ e0 and e is
continuously differentiable. In this sense, the above proposition parameterizes
convex sets of invertible nonlinear functions “centered” on e0.
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Solution via the Ellipsoid Method

We briefly point out the results of [82] which establish that equations of the form
c(v) = z can be efficiently solved via the ellipsoid method when c is a strictly
monotone function. Given an initial guess v0 ∈ Rn the initial ellipse for the
method can be taken to be

{v : δ|v − v0|2 ≤ |c(v0)− z|},

as, by Cauchy Schwarz, (2.11) implies

|c(v + ∆)− c(v)| ≥ δ|∆| ∀ v,∆ ∈ Rn.

� 2.3 Model Stability

This section details methods for ensuring a nonlinear state-space model (2.1) is
stable beginning with a review of conditions for verifying incremental stability of
a model determined by a fixed function a. This is followed by a review of joint
parameterizations of model dynamics and stability certificates which are amenable
to convex optimization and the presentation of a new convex parameterization of
stable models.

� 2.3.1 Conditions For Guaranteeing Model Stability

The following lemma closely follows the developments of [3].

Lemma 2.8. For any function a : Rnx × Rnw → Rnx, if there exists a positive
constant δ and a non-negative function V : Rnx × Rnx → R such that

V (x, x̂) ≥ V (a(x,w), a(x̂, w)) + δ|x− x̂|2 ∀ x, x̂ ∈ Rnx , w ∈ Rnw , (2.16)

then the state-space model (2.1) is `2-incrementally stable.

The function V in this context is known as an incremental Lyapunov function.
When a is continuously differentiable, the principle of contraction analysis can

be applied to enforce `2-incremental stability (for variations of this result, see [80]
or [43]).

Lemma 2.9. For any continuously differentiable function a : Rnx × Rnw → Rnx,
if there exists a positive constant δ and a function M : Rnx → Rnx×nx such that

M(x) = M(x)′ ≥ 0, ∀ x ∈ Rnx , (2.17)
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and

|∆|2M(x) ≥ |A(x,w)∆|2M(a(x,w)) + δ|∆|2 ∀ ∆, x ∈ Rnx , w ∈ Rnw , (2.18)

where A(x,w) = ∂1a(x,w), then the state-space model (2.1) is `2-incrementally
stable.

The function (∆, x) 7→ |∆|2M(x) will be referred to as a contraction metric.

The inequalities (2.17), (2.16), and (2.18) are linear in V and M respectively.
As a result, the above lemmas can be combined with convex optimization tech-
niques to analyze the stability of a system (2.1) determined by a fixed function a.
The added challenge addressed in the next two sections is applying these lemmas
to the identification of stable models by jointly optimizing over the function a
and either an incremental Lyapunov function or a contraction metric.

� 2.3.2 Existing Convex Parameterizations of Stable State-Space Models

This section recalls several existing convex parameterizations of stable models
in greater detail than given in the Section 1.1 to facilitate comparison with the
results to be presented in Section 2.3.3.

Parameterization of Stable LTI Models ([70])

In [70] it was noted that a standard technique for jointly searching over Lyapunov
functions and observer / state-feedback-controller gains (attributed to [9]) could
be applied to provide a convex parameterization of stable LTI systems. The
parameterization is given in terms of a separable, linear implicit dynamics as in
(2.9):

e(v) = Ev, f(x,w) = Fx+Kw,

where E,F ∈ Rnx×nx and K ∈ Rnx×nw . These matrices are constrained to satisfy

E = E ′ > 0

and
E ≥ F ′E−1F + I. (2.19)

Defining A = E−1F one sees this latter inequality immediately implies that

E ≥ A′EA+ I

which is a standard Lyapunov inequality for demonstrating stability of a LTI
system. By Lyapunov’s Theorem (for example, [143] Lemma 21.6), for any stable
matrix A (i.e. with spectral radius less than one) there exists an E = E ′ > 0 such
that E − A′EA = I. Thus this parameterization includes all stable LTI models.
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Parameterization of Stable Nonlinear Models ([88] and [13])

The next parameterization is based on the work in [88] and provides a family of
stable nonlinear state-space models.

Lemma 2.10. Let h : Rnv × Rnx × Rnw → Rnv and ā : Rnx × Rnw → Rnx−nv

be continuous functions. If there exists a positive constant δ and a non-negative
function V : Rnx × Rnx → R such that V (x, x) = 0 for all x ∈ Rnx and

2(v − v̂)′(h(v, x, w)− h(v̂, x̂, w)) + V (x, x̂) (2.20)

−V
([

v
ā(x,w)

]
,

[
v̂

ā(x̂, w)

])
− δ|x− x̂|2 ≥ 0

holds for all v, v̂ ∈ Rnv , x, x̂ ∈ Rnx , and w ∈ Rnw , then the implicit state-space
model (2.4) is well-posed and `2-incrementally stable.

The next lemma is based on ideas contained in [13] which provided a convex
parameterization of stable nonlinear models based on contraction analysis.

Lemma 2.11. Let h : Rnv×Rnx×Rnw → Rnv and ā : Rnx×Rnw → Rnx−nv be con-
tinuously differentiable functions and let H1(v, x, w) = ∂1h(v, x, w), H2(v, x, w) =
∂2h(v, x, w), and Ā(x,w) = ∂1ā(x,w). If there exists a positive constant δ and a
function M : Rnx → Rnx×nx such that

M(x) = M(x)′ ≥ 0 ∀ x ∈ Rnx (2.21)

holds and

2ν ′(H1(v, x, w)ν +H2(v, x, w)∆) + |∆|2M(x) (2.22)

−
∣∣∣∣[ ν
Ā(x,w)∆

]∣∣∣∣2
M([v;ā(x,w)])

− δ|∆|2 ≥ 0,

holds for all ν, v ∈ Rnv , ∆, x ∈ Rnx , and w ∈ Rnw , then (2.4) is well-posed and
`2-incrementally stable.

Note that Lemma 2.10 involves a system of inequalities that guarantee model
stability and are linear in h and V . Similarly, Lemma 2.11 involves inequalities
which are linear in h and M . Thus, these lemmas define convex sets of stable
implicit models. The above lemmas generalize the presentations given in [88] and
[13] to allow for a more flexible notion of “fixed structure” determined by ā.
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� 2.3.3 New Convex Parameterizations of Stable Nonlinear Models

This section presents two families of alternative convex parameterizations of sta-
ble nonlinear models related to those above. These parameterizations of stable
nonlinear models rely on the fact that, for every symmetric positive definite ma-
trix Q ∈ Rn×n,

|c|2Q−1 ≥ 2c′d− |d|2Q ∀ c, d,∈ Rn. (2.23)

This holds due to the trivial inequality |c−Qd|2Q−1 ≥ 0.

Lemma 2.12. For any pair of continuous functions e : Rnx → Rnx and f :
Rnx × Rnw → Rnx, if there exists a positive constant δ and a positive definite
matrix P = P ′ ∈ Rnx×nx such that

2(x− x̂)′(e(x)− e(x̂))− |x− x̂|2P ≥ |f(x,w)− f(x̂, w)|2P−1 + δ|x− x̂|2 (2.24)

holds for all x, x̂ ∈ Rnx and w ∈ Rnw , then the state-space model (2.7) is well-
posed and `2-incrementally stable.

Proof. Clearly e satisfies the conditions for invertibility described in Theorem 2.5
so that (2.7) is well-posed. Examining (2.23) with d = x− x̂, c = e(x)− e(x̂) and
Q = P yields

|e(x)− e(x̂)|2P−1 ≥ 2(x− x̂)′(e(x)− e(x))− |x− x̂|2P .

Thus (2.24) implies the hypothesis of Lemma 2.8 with V (x, x̂) = |e(x)− e(x̂)|2P−1

and a = e−1 ◦ f .

Lemma 2.13. For any pair of continuously differentiable functions e : Rnx → Rnx

and f : Rnx × Rnw → Rnx, if there exists a positive constant δ and a positive
definite matrix P = P ′ ∈ Rnx×nx such that

2∆′E(x)∆− |∆|2P ≥ |F (x,w)∆|2P−1 + δ|∆|2, ∀ x,∆ ∈ Rnx , w ∈ Rnw , (2.25)

where E(x) = ∂1e(x) and F (x,w) = ∂1f(x,w), then the state-space model (2.7)
is `2-incrementally stable.

Proof. Combining Theorem 2.5 with Proposition 2.6 and the fact that E(x) +
E(x)′ ≥ δI ensures that e is invertible. Examining (2.23) with d = ∆, c = E(x)∆
and Q = P yields

|∆|2E(x)′P−1E(x) ≥ 2∆′E(x)∆− |∆|2P .
Thus (2.25) implies the hypothesis of Lemma 2.9 with a = e−1 ◦ f and M(x) =
E(x)′P−1E(x), as ∂1a(x,w) = E(x)−1F (x).
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A z−1

P e(·)−1b
w(t) + x(t)

1
Figure 2.2. A schematic diagram of the models described by Proposition 2.14 (here z−1

denotes a unit delay).

The inequalities described in both of these lemmas define convex sets of func-
tion pairs (e, f) defining stable nonlinear models. When e and f are continuously
differentiable functions, then (2.24) implies (2.25) (this can be seen by taking
limits with x approaching x̂). For the remainder of this section we will therefore
focus on Lemma 2.13.

It is interesting to note that the parameterization defined by Lemma 2.13
contains models whose incremental stability cannot be verified using contraction
metrics where M (as defined in Lemma 2.9) is a constant function. The following
example demonstrates this fact.

Example 2.3.1. Consider Lemma 2.9 in the case where nx = 1. In this setting all
choices of M which are constant functions imply that

1 > |∂1a(x,w)|2 ∀ x ∈ R, w ∈ Rnw ,

i.e. each a(·, w) must be a contraction map. Consider the pair of functions
e : R→ R and f : R→ R given by

e(v) = v +
1

5
v5, f(x,w) =

1

3
x3.

One can verify that with P = 1 and δ ≤ 1 these functions satisfy (2.25). However,
|∂1a(5/4)|2 > 1, where a = e−1 ◦ f .

Relationship to [70]

The following proposition demonstrates how the model class defined by Lemma
2.13 is a strict generalization of the stable model class proposed in [70].
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Proposition 2.14. Let A ∈ Rnx×nx be a matrix with spectral radius less than
one, b : Rnw → Rnx be an arbitrary continuous function, and P ∈ Rnx×nx be a
positive-definite matrix satisfying the Lyapunov inequality

P − A′PA > 0.

Then for any continuously differentiable function e : Rnx → Rnx whose Jacobian,
E(x) = ∂1e(x), satisfies

E(x) + E(x)′ ≥ 2P ∀ x ∈ Rnx ,

(2.25) holds with
f(x,w) = PAx+ Pb(w).

The proof is straightforward and omitted. The model described in the above
proposition is diagrammed in Figure 2.2. Examining the case where e(v) ≡ Pv
on sees that the above proposition generalizes the fact that for every stable LTI
state-space model there is an equivalent model of the form (2.7) which satisfies
(2.25).

Relationship to [88]

Next we show that (2.25) is actually a special case of (2.22) with nv = nx. For
any (e, f) in the hypothesis of Lemma 2.12, let

h(v, x, w) = e(v)− f(x,w), M(x) = E(x) + E(x)′ − P.

Then

2ν ′(H1(v, x, w)ν +H2(v, x, w)∆)+|∆|2M(x) − |ν|2M(v) − δ|∆|2

=

2ν ′(E(v)ν − F (x,w)∆) + |∆|2E(x)+E(x)′−P − |ν|2E(v)+E(v)′−P − δ|∆|2

=

−2ν ′F (x,w)∆ + |∆|2E(x)+E(x)′−P + |ν|2P − δ|∆|2.

When P = P ′ > 0, this last expression can be minimized explicitly w.r.t ν, which
yields the lower bound

|∆|2E(x)+E(x)′−P − |F (x,w)∆|2P−1 + δ|∆|2.

Thus if (2.22) holds globally for this choice of δ, h, and M , then (2.25) holds.
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While the parameterization provided by Lemma 2.10 is apparently more flexi-
ble, Lemma 2.12 provides some advantage in terms of simplicity. In particular, the
result of Lemma 2.12 replaces the need to parameterize a general matrix valued
function M(x) with the need to parameterize a single additional positive definite
matrix P without sacrificing representing systems with highly nonlinear behavior
(e.g. functions which are not contraction maps).

� 2.4 Robust Identification Error

In this section we introduce the robust identification error (RIE), a convex upper
bound for simulation error based on dissipation inequalities. This upper can be
viewed as, in some sense, bounding the amount which errors in one-step predic-
tions are amplified by the system dynamics. To provide some intuition for later
results, we first present a related upper bound specifically for LTI systems. Next
the RIE is presented, and some analysis is provided for the quality of this upper
bound.

� 2.4.1 A Preliminary Upper Bound for LTI Systems

The following section describes in detail a simple and easily interpreted scheme
for upper bounding the simulation error of implicit LTI state-space models by a
convex function. This scheme will provide some intuition as to the behavior of
upper bounds for nonlinear systems presented in the remainder of this chapter.

Consider the error dynamics defined by

E∆(t) = F∆(t− 1) + ε(t), ∆(0) = 0, (2.26)

where E,F ∈ Rnx×nx are fixed matrices such that E is invertible and ε(t) is
a perturbation signal. Our interest in these dynamics is due to the following
observation. Fix a pair of signals w̃ ∈ `(Rnw), x̃ ∈ `(Rnx) and let

h(v, x, w) = Ev − Fx−Gw
for some matrix G ∈ Rnx×nw . The solution of (2.26) with

ε(t) ≡ Ex̃(t)− Fx̃(t− 1)−Gw̃(t),

satisfies
∆(t) = x(t)− x̃(t),

where x = Gah(x̃(0), w̃) is the result of simulating the system (2.5) with the input
w̃(·). Thus,

1

T

T−1∑
t=0

|∆(t)|2Q = JSE
Q (ah, w̃

(T ), x̃(T )), ∀ T ∈ N,
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E − z−1F

G

x̃(t)

w̃(t)

−
E−1

z−1F

+

∆(t)

1
Figure 2.3. A block diagram of the error dynamics analyzed in Proposition 2.15 (here z−1

denotes a unit delay).

where, again, JSE
Q is the mean square simulation error defined on page 24. The

next proposition describes a convex upper bound for JSE
Q derived from this obser-

vation.

Proposition 2.15. Let R ∈ R(2nx+nw)×(2nx+nw), E,F,Q ∈ Rnx×nx and G ∈
Rnx×nw be matrices such that E = E ′ > 0, Q = Q′ ≥ 0 and R = R′. If∣∣∣∣∣∣

ξ+

ξ
w

∣∣∣∣∣∣
2

R

+ |∆|2E ≥ |F∆ + Eξ+ − Fξ −Gw|2E−1 + |∆|2Q (2.27)

holds for every ξ, ξ+,∆ ∈ Rnx and w ∈ Rnw , then (2.5) with h(v, x, w) = Ev −
Fx−Gw is well-posed and

1

T

T∑
t=1

∣∣∣∣∣∣
 x̃(t)
x̃(t− 1)
w̃(t)

∣∣∣∣∣∣
2

R

≥ JSE
Q (ah, w̃, x̃), ∀ T ∈ N, w̃ ∈ `T (Rnw), x̃ ∈ `T (Rnx).

The proof of this proposition is based on standard techniques from the study
of dissipation inequalities (see [139]) and is omitted (a more general result is
provided in the next section). Note that the constraint (2.27) is jointly convex in
E,F,G, and R. This proposition can be interpreted in terms of the block diagram
in Figure 2.3. The error dynamics are viewed as a system transforming the input
data signals into the error signal ∆(t). In the above proposition, a dissipation
inequality is used to establish a generalized “gain bound” from these input signals
to the simulation error.
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� 2.4.2 Upper Bounds for Nonlinear Models

This section presents a family of upper bounds for simulation error, based on [88],
which are convex in the function h and an auxiliary function V . For any functions
ā and h as in (2.4) and V : Rnx × Rnx → R define

q(h,V )(x, v, ξ, ξ
+, w) = |x− ξ|2Q − 2(v − Πnvξ

+)′h(v, x, w) (2.28)

+ V

(
ξ+,

[
v

ā(x,w)

])
− V (ξ, x),

where Πnv is defined as on page 26. Additionally, define

EQ(h, V, ξ, ξ+, w) = sup
x∈Rnx ,v∈Rnv

{
q(h,V )(x, v, ξ, ξ

+, w)
}
,

and

JRIE
Q (h, V, w̃, x̃) = V (x̃(0), x̃(0)) +

T∑
t=1

EQ(h, V, x̃(t− 1), x̃(t), w̃(t)).

where (w̃, x̃) ∈ `T (Rnw)× `T (Rnx) for an arbitrary positive integer T .

Lemma 2.16. Let h, V , be functions defined as above. If (2.4) is well-posed and
V is non-negative then

(1/T )JRIE
Q (h, V, w̃, x̃) ≥ JSE

Q (a, w̃, x̃), ∀ T ∈ N, w̃ ∈ `T (Rnw), x̃ ∈ `T (Rnx),

where a(x,w) ≡ [ah(x,w); ā(x,w)].

Proof. Fix T ∈ N and (w̃, x̃) ∈ `T (Rnw) × `T (Rnx). Letting x(t) and v(t) be the
solutions of (2.4) with x(0) = x̃(0) and w(t) ≡ w̃(t),

EQ(h, V, x̃(t− 1), x̃(t), w̃(t)) ≥ q(h,V )(x(t− 1), v(t), x̃(t− 1), x̃(t), w̃(t))

= |x(t− 1)− x̃(t− 1)|2Q
+ V (x̃(t), x(t))− V (x̃(t− 1), x(t− 1)),

for t ∈ {1, . . . , T}. Summing these inequalities over t yields

V (x̃(0), x̃(0)) +
T∑
t=1

EQ(h, V, x̃(t− 1), x̃(t), w̃(t)) ≥
T∑
t=1

|x(t− 1)− x̃(t− 1)|2Q,

as V (x̃(T ), x(T )) is non-negative.
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� 2.4.3 Analysis for the LTI Case

This section provides new analysis of the upper bound suggested by Lemma 2.16
for the case of LTI models. In particular, we examine models of the form (2.4)
with

h(v, x, w) = Ev − Fx−Gw,
for fixed matrices E,F ∈ Rnx×nx and G ∈ Rnx×nw such that E is invertible. The
behavior of the upper bound for such models will be related back to the explicit
model (2.1) defined by

a(x,w) = Ax+Bw.

where A = E−1F and B = E−1G. We will also specialize to the case where the
function V : Rnx × Rnx → R is of the form

V (x, x̂) = |x− x̂|2P
for some symmetric positive-semidefinite matrix P ∈ Rnx×nx .

For an arbitrary constant r ∈ R,

r ≥ q(h,V )(x, v, ξ, ξ
+, w) ∀ x, v ∈ Rnx

is equivalent to the linear matrix inequality r h(ξ+, ξ, w)′ 0′n
h(ξ+, ξ, w) E + E ′ − P −F

0n −F ′ P −Q

 ≥ 0.

This observation has the following consequences.

Claim 2.17. If the matrix

SQ(E,F, P ) :=

[
E + E ′ − P −F
−F ′ P −Q

]
has any negative eigenvalues then EQ(h, V, ξ, ξ+, w) = +∞ for all ξ, ξ+ ∈ Rnx and
w ∈ Rnw . Otherwise, if (A,Q) is observable then A = E−1F has spectral radius
less than one.

Proof. Substituting x = ξ + ∆ and v = ξ+ + ν,

EQ(h, V, ξ, ξ+, w) = sup
∆,ν∈Rnx

{
|∆|2Q − 2ν ′(Eν − F∆ + h(ξ+, ξ, w)) + |ν|2P − |∆|2P

}
= sup

∆,ν∈Rnx

{
−2ν ′h(ξ+, ξ, w)−

∣∣∣∣[∆ν
]∣∣∣∣2
SQ(E,F,P )

}
.
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This establishes that SQ(E,F, P ) ≥ 0 is required for EQ to be finite. Next,[
A
Inx

]′
SQ(E,F, P )

[
A
Inx

]
= P − A′PA−Q.

Thus SQ(E,F, P ) ≥ 0 implies a Lyapunov inequality which establishes the sta-
bility of A when (A,Q) is observable (for example, [143] Lemma 21.6).

The next claim and proposition establish a partial relationship between EQ and
the equation errors. Given a pair of data signals, x̃ ∈ `T (Rnx) and w̃ ∈ `T (Rnw),
the equation errors are defined by

ε(t) = x̃(t)− Ax̃(t− 1)−Bw̃(t),

and can be viewed as the error of a “one-step-ahead” prediction (i.e. predicting
x̃(t) from x̃(t− 1) and w̃(t)).

Claim 2.18. Let E,F, and P be matrices as above for which SQ(E,F, P ) is
positive semidefinite. If the vector[

h(ξ+, ξ, w)
0n

]
does not lie in the range of SQ(E,F, P ), then EQ(h, V, ξ, ξ+, w) = +∞. Otherwise,

EQ(h, V, ξ, ξ+, w) = |ξ+ − Aξ −Bw|2E′ΓE
where A = E−1F , B = E−1G and Γ is equal to

(E +E ′ − P )†
(
E + E ′ − P + F (P −Q− F ′(E + E ′ − P )†F )†F ′

)
(E +E ′ − P )†.

Recall that (·)† denotes the Moore-Penrose pseudoinverse. This second claim,
whose proof is also omitted, follows from first-order optimality criteria and the
formula for block pseudo-inverses of Hermitian positive semidefinite matrices (see
[113]).

The next proposition suggests that the upper bound derived from EQ can be
particularly conservative to situations where the matrix A has eigenvalues near
the unit circle in the complex plane, T.

Proposition 2.19. Let E,F, and G be matrices as above such that the spectral ra-
dius of A = E−1F is less than one. Then for any symmetric positive semidefinite
matrix P ∈ Rnx×nx one has

EQ(h, V, ξ, ξ+, w) ≥ sup
{
|(zI − A)−1(ξ+ − Aξ −Bw)|2Q : z ∈ T

}
,

where B = E−1G, and h and V are defined as above.
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Proof. We briefly recall the fact that a quadratic function

g(∆) = ∆′H∆ + 2b′∆ (∆ ∈ Rnx)

with H = H ′ ∈ Rnx×nx and b ∈ Rnx can be naturally extended to a real-valued
function of complex arguments by taking

g(∆) = ∆′H∆ + 2Re{b′∆} (∆ ∈ Cnx).

Furthermore,

sup{g(∆) : ∆ ∈ Rnx} = sup{g(∆) : ∆ ∈ Cnx}.

Thus, for every z ∈ T and ∆ ∈ Cnx ,

EQ(h, V, ξ, ξ+, w) ≥ q(h,V )(ξ + ∆, ξ+ + z∆, ξ, ξ+, w)

= |∆|2Q − 2Re{(z∆)′((zE − F )∆− h(ξ+, ξ, w))},

where the equality holds as V (ξ, ξ + ∆) = |∆|2P = |z∆|2P = V (ξ+, ξ+ + z∆).
Letting ∆̄ = (zE − F )−1h(ξ+, ξ, w),

q(h,V )(ξ + ∆̄, ξ+ + z∆̄, ξ, ξ+, w) = |(zE − F )−1h(ξ+, ξ, w)|2Q
= |(zI − A)−1E−1(Eξ+ − Fξ −G)|2Q
= |(zI − A)−1(ξ+ − Aξ −Bw)|2Q.

� 2.5 Proofs

.

Proof of Proposition 2.7. The proof follows from Theorem 2.5 with c = e ◦ e−1
0

and δ = 1/2. If (2.14) holds, then for any v, v̂ ∈ Rn taking x = e−1
0 (v) and

x̂ = e−1
0 (v̂) implies that (2.11) holds. Thus c and e0 are both bijections, implying

e is a bijection. Assuming (2.15) holds, note that C(v) = ∂1c(v) = E(x)E0(x)−1,
where e0(x) = v. Multiplying (2.15) on the left and right by E0(x)′−1 and E0(x)−1

respectively yields (2.12) with δ = 1/2. Proposition 2.6 then implies that (2.11)
holds.

Proof of Lemma 2.8. For any w ∈ `(Rnw) and ξ, ξ̂ ∈ Rnx , let x = Ga(ξ, w) and
x̂ = Ga(ξ̂, w). Then (2.16) implies

V (x(t), x̂(t)) ≥ V (x(t+ 1), x̂(t+ 1)) + δ|x(t)− x̂(t)|2, ∀ t ∈ Z+.
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Summing these inequalities w.r.t. t yields

V (x(0), x̂(0)) ≥ V (x(T + 1), x̂(T + 1)) + δ
T∑
t=0

|x(t)− x̂(t)|2, ∀ T ∈ Z+.

As V (x(T + 1), x̂(T + 1)) is non-negative this yields the result.

Proof of Lemma 2.9. For any w ∈ `(Rnw) and ξ0, ξ1 ∈ Rnx let x(θ, ·) = Ga(θξ1 +
(1 − θ)ξ0, w) for all θ ∈ [0, 1]. Then each x(θ, t) is a continuously differentiable
function of θ and ∆θ(t) = ∂1x(θ, t) satisfies

∆θ(0) = ξ1 − ξ0, ∆θ(t) = A(x(θ, t− 1), w(t))∆θ(t− 1).

Applying (2.18) one has

|∆θ(t)|2M(x(θ,t)) ≥ |∆θ(t+ 1)|2M(x(θ,t+1)) + δ|∆θ(t)|2, ∀ θ ∈ [0, 1], t ∈ Z+.

Summing these inequalities over t yields

|ξ1 − ξ0|2M(x(θ,0)) ≥ δ
T∑
t=0

|∆θ(t)|2, ∀ θ ∈ [0, 1], T ∈ Z+,

as each M(x(θ, T + 1)) is positive definite. Finally, integrating both sides w.r.t.
θ yields the result as∫ 1

0

|∆θ(t)|2dθ ≥
∣∣∣∣∫ 1

0

∆θ(t)dθ

∣∣∣∣2 = |x(1, t)− x(0, t)|2

due to Jensen’s inequality and the Fundamental Theorem of Calculus.

Proof of Lemma 2.10. Assume that (2.20) holds globally. Examining (2.20) for
v = v̂ = 0 yields

V (x, x̂) ≥ δ|x− x̂|2.
Next, for any x ∈ Rnx , examining (2.20) with x = x̂ leads to

2(v−v̂)′(h(v, x, w)−h(v̂, x, w)) ≥ V

([
v

āh(x,w)

]
,

[
v̂

āh(x,w)

])
≥ δ|v−v̂|2. (2.29)

By Theorem 2.5, the map v → h(v, x, w) is invertible for every (x,w) ∈ Rnx×Rnw

so that (2.5) is well-posed.
Next, examine (2.20) with v = ah(x,w) and v̂ = ah(x̂, w), where ah is again

the unique function satisfying

0 = h(ah(x,w), x, w) ∀x,∈ Rnx , w ∈ Rnw .

One sees that, with a(x,w) = [ah(x,w); ā(x,w)], the conditions of Lemma 2.8 are
implied guaranteeing `2-incremental stability of (2.5).
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Proof of Lemma 2.11. First we show that for every (x,w) ∈ Rnx ×Rnw the func-
tion h(·, x, w) is a bijection. Examining (2.22) with ν = 0 yields M(x) ≥ δI.
Instead taking ∆ = 0 yields

2ν ′H1(v, x, w)ν ≥ δ|ν|2,

which implies that h(·, x, w) is invertible in light of Theorem 2.5 and Proposi-
tion 2.6. The implicit function theorem implies

∂1ah(x,w) = −H1(ah(x,w), x, w)−1H2(ah(x,w), x, w).

Examining (2.22) with

v = ah(x,w) and ν = −H1(ah(x,w), x, w)−1H2(ah(x,w), x, w)∆

demonstrates that δ,M, and ah meet the hypothesis required by Lemma 2.9 to
ensure `2-incremental stability.



Chapter 3

Bias Elimination for Robust
Identification Error Methods

This chapter analyzes the effects of measurement noise on model estimates ob-
tained by minimizing the robust identification error (RIE). It is shown that sig-
nificant bias can result when attempting to identify systems which are nearly
marginally stable, even for a moderately low signal-to-noise ratio (SNR). This
observation is explained in terms of the concept of errors-in-variables (EIV) in
detail in Section 3.2. The remainder of the chapter provides a method for elimi-
nating the bias due to measurement noise, assuming access to a pair of repeated
experiments with suitably independent measurement noise. Section 3.4 provides
an upper bound on the RIE that depends on the data through empirical mo-
ments, i.e. time-averages of polynomial functions. This then allows us to apply
results from the nonlinear instrumental variables (IV) literature, specifically [50],
to remove the effect of noise on the RIE in Section 3.5. A simulated example is
examined in Section 3.6.

� 3.1 Additional Notation

For α, β ∈ Zn+, the relation β ≤ α holds iff βk ≤ αk for each k. For v ∈ Cn and
α ∈ Zn+,

vα :=
n∏
d=1

vαdd

is the monomial function of v with vector degree α, and total degree ‖α‖1. For
any v ∈ `(Rn) and α ∈ Zn+, let vα : Z+ → R be defined by

vα(t) := v(t)α.

45
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For any v ∈ `(Rn) and positive integer T define

ST [v] :=
1

T

T∑
t=1

v(t).

� 3.2 The Effects of Noise on Equation Error Minimizers

At the end of the previous chapter it was shown that, when identifying LTI
models, the robust identification error amounts to a weighted equation error (see
Claim 2.18 on page 41). For this reason, we recall the difficulties associated
with identifying LTI models via minimizing equation error when output noise
is present. Consider the problem of choosing A ∈ Rnx×nx and B ∈ Rnx×nw to
minimize

JEE
T = (1/T )

T∑
t=1

|x̃(t)− Ax̃(t− 1)−Bw̃(t)|2

where the signals x̃(t) ∈ Rnx and w̃(t) ∈ Rnw satisfy

x̃(t) = x̄(t) + η(t), x̄(t) = A?x̄(t− 1) +B?w̃(t), x̄(0) = 0,

for some A? ∈ Rnx×nx with spectral radius less than one, B? ∈ Rnx×nw , and noise
signal η(t). Here x̄(t) denotes some underlying process driven by w̃(t), whereas
the measurements x̃(t) are corrupted by the output noise η(t).

For simplicity, assume that w̃(t) is a realization of an i.i.d., zero mean normal
stochastic process with covariance I. Similarly, assume that η(t) is an i.i.d. normal
stochastic process with zero mean and covariance σ2

ηI and is independent of w̃(t).
Then

lim
T→∞

JEE
T = σ2

η(I + ‖A‖2
F ) + ‖B? −B‖2

F + tr((A? − A)′Σ(A? − A)),

almost surely, where Σ is the positive semidefinite solution of the Lyapunov equa-
tion

Σ = AΣA′ +BB′

(see, for example, [19]). This expression is minimized by B = B? and the mini-
mizing choice of A,

A = (σ2
ηI + Σ)−1ΣA?,

can be found by completing the squares. Thus, one only expects minimization
of JEE

T to result in an unbiased estimate of A? when the output noise variance
σ2
η is identically zero. Furthermore, as σ2

η tends to ∞, the minimizing choice for
A tends to zero. This result is known as an attenuation bias in the statistics
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literature, and the term errors-in-variables is used to refer to the situation of
regressors (here specifically x̃(t − 1)) themselves being noise corrupted (see [21],
Chapter 12).

� 3.2.1 Analysis of the RIE in the First Order LTI Case

We next demonstrate that minimization of the RIE for LTI models leads to biased
estimates in the presence of output noise. This is unsurprising in light of the
discussion above and the previously mentioned observation that the RIE is a
weighted form equation error. This section establishes that the bias incurred by
minimizing the RIE can be much more severe than that which occurs for equation
error minimization when the true system is nearly marginally stable.

We examine first order LTI models of the form

ex(t) = fx(t− 1) + gw(t) (3.1)

with e, f, g ∈ R and e > 0. This corresponds to (2.5) with

h(v, x, w) = ev − fx− gw
in the notation of the previous chapter. We begin by analyzing the robust iden-
tification error, EQ(h, V, ξ, ξ+, w), when Q = 1 and V (x, ξ) = p|x − ξ|2 for some
p ≥ 0. We assume that

SQ(e, f, p) =

[
2e− p −f
−f p− 1

]
> 0

which guarantees that EQ is finite (see Claim 2.17 of the previous chapter). From
Claim 2.18 on page 41 it can be seen that

EQ(h, V, ξ, ξ+, w) =
|eξ+ − fξ − gw|2

2e− p− f 2/(p− 1)
.

The following proposition relates the above cost function back to explicit LTI
state-space models of the form

x(t) = âx(t− 1) + b̂w(t).

Proposition 3.1. Fix â ∈ (−1, 1) and b̂ ∈ R. Then,

min

{
|eξ+ − eâξ − eb̂w|2

2e− p− (eâ)2/(p− 1)
: e, p ∈ R s.t. SQ(e, eâ, p) ≥ 0

}
=

|ξ+ − âξ − b̂w|2
(1− |â|)2

.



48 CHAPTER 3. BIAS ELIMINATION FOR ROBUST IDENTIFICATION ERROR METHODS

Proof. We demonstrate that the optimizing (e, p) are e = p = 1
1−|â| . For an

arbitrary e > 0, the choice of p ≥ 1 that maximizes 2e − p − (eâ)2/(p − 1)
is p = |eâ| + 1 (this can be concluded from first and second order optimality
conditions). For this choice of p,

|eξ+ − eâξ − eb̂w|2
2e− p− (eâ)2/(p− 1)

=
e2

2e(1− |â|)− 1
|ξ+ − âξ − b̂w|2.

The minimum of this expression over all e > 0 is attained by e = 1
1−|â| , and the

minimum is the desired expression (for this choice e = p).
Finally, we show that SQ(e, eâ, p) ≥ 0. The diagonal entries of this matrix are

non-negative as 2e− p = p ≥ 1. The determinant can then be computed to be

(2e− p)(p− 1)− e2â2 = e(e− 1)− e2â2 = e(e(1− â2)− 1) = e|â|2.

Let w̃(t), x̃(t), and η(t) be as in the previous section with nx = nw = 1,
A? = a ∈ (−1, 1) and B? = b ∈ R. Then

lim
T→∞

1

T

T∑
t=1

EQ(h, V, x̃(t− 1), x̃(t), w̃(t)) =
1

(1− |â|)2
lim
T→∞

JEET

=
σ2
η(1 + â2) + (a− â)2Σ

(1− |â|2)
.

Proposition 3.2. The quantity

σ2
η(1 + â2) + (a− â)2Σ

(1− |â|)2

is minimized by

â =

{
sign(a) |a|σ

2(1−|a|)−1
1+σ2(1−|a|) σ2 ≥ 1

|a|(1−|a|)

0 o.w.

where σ2 is the signal to noise ratio, Σ/σ2
η.

The proof requires tedious calculations and is omitted. Figure 3.1 plots the
relationship between a (the true pole) and â (the estimated pole) for various
SNRs. Two features of the graph are particularly noteworthy, both having to do
with the bias of the estimate â toward zero. First, note for low SNRs â is zero
irrespective of the true dynamics. In particular, as the function 1

|a|(1−|a|) achieves
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Figure 3.1. A comparison of the true system pole, a, to the pole â of the model found by
minimizing the RIE for various SNRs. For low SNRs (specifically less than approximately 6
dB) the estimate is zero irrespective of the true pole location. Even for high SNRs the estimate
is zero if the true pole location is near ±1 (i.e. the true system is nearly marginally stable).

a minimum of 4 for a ∈ [−1, 1]\{−1, 0, 1}, the estimate is zero whenever σ is less
than 2 (an SNR of 6 dB). Second, note that even for a high SNR, â is nearly zero
when |a| approaches 1 (that is, when the dynamics are nearly marginally stable).

The bias for robust identification error minimization can be much more severe
than for equation error minimization, especially for values of a near ±1. This is
illustrated in Figures 3.2 and 3.3 which fix a = 0.9 and plot both the simulation
error, equation error, RIE and associated estimates for varying SNRs.

� 3.3 Problem Setup

The remainder of this chapter examines the following problem setup.
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â

 

 

Simulation Error

RIE

EE

(b) SNR= 30dB

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

5

10

15

C
o
s
t
F
u
n
c
t
i
o
n
V
a
l
u
e

â
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Figure 3.2. Comparison of the asymptotic values of simulation error, equation error, and
RIE when fitting a first order linear model (3.1) to data from a first order system with output
noise and a pole at 0.9. Figures (a)-(d) plot the cost functions for increasing noise levels. The
optimizers of the RIE and equation error shift toward zero as noise levels increase, whereas
the simulation error optimum remains at the true value of a. While the RIE is a reasonable
approximation of the simulation error for high SNRs, the bias at low SNRs is considerably worse
that that of equation error.
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Figure 3.3. Comparison of bias that results from fitting a first order linear model (3.1) to
data from a first order system with output noise and a pole at 0.9. The above plot provides
the values of â which minimize the simulation error, equation error and RIE for varying SNRs.
Note that â = 0 minimizes the RIE for a large range of SNRs, indicating severe bias.
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S
w̄i(t)

ηxi (t)

x̄i(t)

ηwi (t)

+

+ x̃i(t)

w̃i(t)

1

Figure 3.4. A schematic diagram of the manner in which the observed data is assumed to be
generated. Here i ∈ {1, 2} is the experiment number, w̄i(t) is the unobserved noiseless excitation
and x̄i(t) is the corresponding noiseless response. The signals ηxi (t) and ηwi (t) are additive noise
which corrupts the actual recorded signals.

� 3.3.1 Observed Data and Noiseless Process

An input/state signal pair will refer to a tuple (w̃, x̃) ∈ `(Rnw)× `(Rnx), where w̃
represents an excitation signal and x̃ represents a system response. While system
identification is always performed on finite data sets, our definitions are given in
terms of signals of infinite duration to facilitate asymptotic analysis of the system
identification procedures proposed in Section 3.5.

The observed data consists of two input/state signal pairs, (w̃i, x̃i) ∈ `(Rnw)×
`(Rnx) for i ∈ {1, 2}. It is assumed there exists another two unmeasurable in-
put/state signal pairs, (w̄i, x̄i) ∈ `(Rnw)× `(Rnx), which will be referred to as the
noiseless process. The meaning here is that the observed data is a noise corrupted
measurement of the underlying noiseless process. Figure 3.4 provides a diagram
describing these signals in terms of additive noise processes, ηxi (t) and ηwi (t).

For convenience, we additionally define

z̄i(t) =

 x̄i(t)
x̄i(t− 1)
w̄i(t)

 , and z̃i(t) =

 x̃i(t)
x̃i(t− 1)
w̃i(t)

 = z̄i(t) +

 ηxi (t)
ηxi (t− 1)
ηwi (t)

 (3.2)

for t ≥ 1 and i ∈ {1, 2}. Naturally, nz = 2nx + nw.

� 3.3.2 Properties of the Noiseless Process

The following condition is assumed to hold.
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(A1) The signals w̄1, w̄2, x̄1, x̄2, are bounded and satisfy

lim
t→∞

w̄1(t)− w̄2(t) = 0, and lim
t→∞

x̄1(t)− x̄2(t) = 0.

That is, the two underlying noiseless processes are bounded and identical except
for some initial transients. This assumption is motivated by the scenario where
the observed signals are the response of a stable system to some other excitation
the experimenter controls.

The following definition will be used to describe the persistence of excitation
of the signals (x̄1, w̄1) in the sequel.

Definition 3.3. Let Ω ⊂ Rnx × Rnw denote those pairs (x̂, ŵ) for which there
exists a compact neighborhood, K, and a positive constant c satisfying

lim inf
T→∞

1

T

T∑
t=1

ρ(x̄1(t), w̄1(t)) ≥ c

∫ ∫
K

ρ(x,w) dx dw

for all non-negative continuous functions ρ : Rnx × Rnw → R.

� 3.3.3 Relation Between the Observed Data and the Noiseless Process

The following additional assumptions are made:

(A2) The signals z̃1, z̃2 are bounded.

(A3) For all α, β, γ ∈ Znz+ ,

lim
T→∞

ST

[
z̄α1 ζ

β
1 ζ

γ
2

]
− ST

[
z̄α1

]
ST

[
ζβ1

]
ST

[
ζγ2

]
= 0,

and
lim
T→∞

ST [ζ1] = lim
T→∞

ST [ζ2] = 0,

where

ζi = z̃i − z̄i =

 ηxi (t)
ηxi (t− 1)
ηwi (t)

 (i ∈ {1, 2}).

This condition holds almost surely, for example, if z̄1(t), ζ1(t), and ζ2(t) are in-
dependent, bounded vector random processes such that: (i) ζ1 and ζ2 are zero
mean, (ii) the processes are ergodic in the sense that

ST [ρ(z̄1(·), ζ1(·), ζ2(·))],
converges to the mean of ρ(z̄1(0), ζ1(0), ζ2(0)) almost surely for any continuous
function ρ.
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� 3.3.4 System Identification Procedures and Loss Functions

In this chapter a system identification procedure will refer to a function mapping
elements of

D = {(w1, x1, w2, x2) : wi ∈ `T (Rnw), xi ∈ `T (Rnx), i ∈ {1, 2}, T ∈ N}

to functions a : Rnx × Rnw → Rnx defining state-space models (2.1).
The following definition will be used to characterize classes of approximations

of the MSSE JSE
Q (see Definition 2.2 on page 24).

Definition 3.4. For a given set A = {a} of functions defining state-space models
as in (2.1), we say a real-valued function J is a correct upper bound for JSE

Q on
A if it satisfies

J(a, w̃, x̃) ≥ JSE
Q (a, w̃, x̃)

for all a ∈ A, positive integers T , and (x̃, w̃) ∈ `T (Rnx)× `T (Rnw) and

J(a, w̃, x̃) = 0

whenever x̃(t) = a(x̃(t− 1), w̃(t)) for all t ∈ {1, . . . , T}.

� 3.3.5 Contributions

We provide a sequence of system identification procedures {Aκ}∞κ=1 and sets
{Āκ}∞κ=1, with Āκ ⊂ Aκ(D), which have the following properties:

(a) every a ∈ Aκ(D) defines a stable state-space model;

(b) Āκ ⊂ Āκ+1 for each κ ≥ 1 and Ā =
⋃∞
κ=1 Āκ is sufficiently broad in that

every linear function a such that (2.1) is stable belongs to Ā, as well as some
non-linear functions.

Furthermore, fixing κ and taking

aT := Aκ(w̃(T )
1 , x̃

(T )
1 , w̃

(T )
2 , x̃

(T )
2 ) ∀ T ∈ N

we show that:

(c) when conditions (A1), (A2), and (A3) hold and there exists a a? ∈ Āκ such
that

x̄1 = Ga?(x̄1(0), w̄1)

then
lim
T→∞

aT (x,w) = a?(x,w)

for each (x,w) ∈ Ω (as defined in Definition 3.3).
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We also provide a function Jκ that is an upper bound for JSE
Q on Aκ(D) and show

that:

(d) Jκ is a correct upper bound for JSE
Q on Āκ;

(e) when conditions (A1), (A2) and (A3) hold,

lim inf
T→∞

Jκ(a, w̄
(T )
1 , x̄

(T )
1 )− Jκ(aT , w̄(T )

1 , x̄
(T )
1 ) ≥ 0

for each a ∈ Aκ(D).

Furthermore, computing the estimates aT is computationally tractable. It consists
of a calculation whose complexity grows linearly with T , followed by solution of
a semidefinite program (SDP) whose size is independent of T and κ.

Property (c) is a statement about consistency of the generated estimates,
whereas property (e) can be interpreted as saying that the above algorithms gen-
erate estimates which asymptotically optimize the upper bound Jκ as if one had
access to the unobserved noiseless process.

� 3.4 Regression Algorithm

This section presents a regression algorithm based on the stability constraints
and upper bounds for simulation error presented in the previous chapter. As
mentioned, a similar strategy for fitting nonlinear dynamical models is pursued
in [88], [13], and [132]. By construction, the upper bound presented here depends
on data sets only through empirical moments. This provides two advantages
compared to these related works. First, the complexity of solving the regression
problem scales linearly with the amount of available data. Second, this property
of the upper bound enables the bias removal schemes used in later sections of this
paper to mitigate the effects of measurement noise.

� 3.4.1 Convex Model Parameterization and Loss Function

In this section we describe a convex parameterization of stable state-space models
of the form (2.7), where e and f are affinely parameterized vector polynomial
functions. Additionally, an upper bound on the MSSE is provided that is convex
in the model parameters. These constructions combine Lemmas 2.10 and 2.16
with the semidefinite representation of sum-of-squares (SOS) polynomials, [101].
A polynomial (with real coefficients) is said to be SOS if it is equal to a sum
of squares of other polynomials (such polynomials are obviously non-negative for
real-valued arguments). For an affinely parameterized family of polynomials, the
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set of coefficients that correspond to SOS polynomials can be represented via a
linear matrix inequality (LMI).

For notational simplicity, we make use separable implicit state-space models,
i.e. models of the form

e(x(t)) = f(x(t− 1), w(t)), (3.3)

where e : Rnx → Rnx is required to be a continuous bijection. For any fixed
function pair (e, f), this is equivalent to (2.1) taking a ≡ e−1 ◦ f .

Notation For Dissipation Inequalities

The following two definitions will help simplify the presentation of the regression
technique. For any δ > 0, pair of functions (e, f) as in (3.3), and function V :
Rnx × Rnx → R, let

p(δ,e,f,V )(x1, x
+
1 , x2, x

+
2 , w)

= V (x1, x2)− V (x+
1 ,x

+
2 )− δ|x1 − x2|2

+2(x+
1 − x+

1 )′(e(x+
1 )− f(x1, w))

−2(x+
1 − x+

2 )′(e(x+
2 )− f(x2, w)).

Note that p(δ,e,f,V ) is an affine function of e, f, and V . This definition should be
compared to Lemma 2.10. Non-negativity of p will be used to guarantee model
stability and well-posedness.

For any triple (e, f, V ) as above and any function r : Rnz → R define

q(e,f,V,r)(x, x
+, ξ, ξ+, w) = r([ξ+; ξ;w])− |x− ξ|2Q

+ V (x, ξ)− V (x+, ξ+)

+ 2(x+ − ξ+)′(e(x+)− f(x,w)).

Note that q(e,f,V,r) is an affine function of e, f, V, and r. This definition should
be compared to Lemma 2.16. In particular, global non-negativity of q will imply
that

r([ξ+; ξ;w]) ≥ EQ(h, V, ξ+, ξ, w) ∀ ξ, ξ+ ∈ Rnx , w ∈ Rnw ,

with h(v, x, w) = e(v)− f(x,w).

Model Class Definition

Let Ψ = {ψi}nψi=0 and Φ = {φi}nφi=0 be two sequences of vector polynomial functions
ψi : Rnx → Rnx , φi : Rnx ×Rnw → Rnx , and take nθ = nψ +nφ. For each θ ∈ Rnθ ,
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define

eθ(x) = ψ0(x) +

nψ∑
i=1

θiψi(x), (3.4)

fθ(x,w) = φ0(x,w) +

nφ∑
i=1

θ(i+nψ)φi(x,w). (3.5)

Additionally, for every ω ∈ Rnψ , define Vω : Rnx × Rnx → R via

Vω(x1, x2) = (x1 − x2)′
nψ∑
i=1

ωi (ψi(x1)− ψi(x2)) .

Optimization Problem

Let λ : Rnz → Rnλ be any vector polynomial function whose components:

{λk([x+;x;w])}nλk=1

form a maximal linearly independent subset of the polynomials

{[eθ(x+)− fθ(x,w)]j1 | θ ∈ Rnθ , j ∈ {1, . . . , nx}}.

Fix δ > 0 and κ ∈ (0,∞], and consider the optimization problem:

minimize
θ,ω,R

tr(RM) (3.6)

subj. to R = R′ ≥ 0, ‖R‖F ≤ κ, (3.7)

p(δ,eθ,fθ,Vω) is SOS, (3.8)

q(eθ,fθ,Vω ,|λ(·)|2R) is SOS, (3.9)

where the decision variables are θ ∈ Rnθ , ω ∈ Rnψ and R ∈ Rnλ×nλ , and the
symmetric positive definite matrix M ∈ Rnλ×nλ is problem data. The small,
positive constant δ will be considered fixed for the remainder of the paper. Define
Fκ ⊂ Rnθ × Rnψ × Rnλ×nλ to be

Fκ = {(θ, ω,R) : (3.7), (3.8), and (3.9) hold.},

i.e. the feasible set of the above optimization problem. Lemma 2.10 immediately
implies the following.

Claim 3.5. For each (θ, ω,R) ∈ Fκ, eθ is a bijection and the system (2.1) with
a = e−1

θ ◦ fθ is stable.
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The next several definitions relate the optimization problem above to the
explicit state-space models, (2.1), which can be obtained as model estimates.
Define Aκ via

Aκ = {e−1
θ ◦ fθ : (θ, ω,R) ∈ Fκ}

and define Ĵκ : Aκ × Rnλ×nλ → R by

Ĵκ(a,M) := inf{tr(RM) : ∃ (θ, ω,R) ∈ Fκ s.t. a = e−1
θ ◦ fθ}.

Finally, for each a ∈ Aκ, T ∈ N, and (w̃, x̃) ∈ `T (Rnw)× `T (Rnx) let

Jκ(a, w̃, x̃) = Ĵκ (a,M)

where

M =
1

T

T∑
t=1

λ(z̃(t))λ(z̃(t))′ (3.10)

with z̃(t)=[x̃(t); x̃(t− 1); w̃(t)].

Claim 3.6. Jκ ≥ JSE
Q on Aκ.

This follows from Lemmas 2.10 and 2.16, and the observation that, for all
symmetric matrices R ∈ Rnλ×nλ ,

tr(RM) ≡ 1

T

T∑
t=1

r([x̃(t); x̃(t− 1); w̃(t)])

where r(·) ≡ |λ(·)|2R.
The role of κ is explained by the following simple proposition.

Proposition 3.7. For any κ ∈ (0,∞), and a ∈ Aκ, the function Ĵκ(a, ·) is
Lipschitz with constant κ.

Proof. For any symmetric matrices R,N,M ∈ Rnλ×nλ one has

|tr(RM)− tr(RN)| ≤ ‖R‖F‖N −M‖F

by Cauchy-Schwarz. Each Ĵκ(a, ·) thus has a Lipschitz constant of κ as it is the
infimum of a family of functions with Lipschitz constant κ.

Remark 3.4.1. For fixed bases, Φ and Ψ, computation of the matrix M in (3.10)
requires time time linear in T . Minimization of Ĵκ(·,M) can then be accomplished
by solving an SDP whose size is independent of κ.
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� 3.4.2 Correctness

The following definition is used to characterize the set of models for which the
upper bound Jκ is correct (see Definition 3.4 on page 54).

Definition 3.8. For κ ∈ (0,∞] define Āκ to be those functions a : Rnx ×Rnw →
Rnx for which there exists a tuple (θ, ω,R) ∈ Fκ satisfying a = e−1

θ ◦ fθ and

|λ([a(x,w);x;w])|2R = 0 ∀ (x,w) ∈ Rnx × Rnw . (3.11)

The functions a ∈ Āκ are those for which J(a, w̃, x̃) = 0 whenever the data
signals w̃ ∈ `T (Rnw) and x̃ ∈ `T (Rnw) satisfy

x̃(t) = a(x̃(t− 1), w̃(t)), ∀t ∈ {1, 2, . . . , T}.

Claim 3.9. For 0 < κ ≤ κ̂ ≤ ∞ one has Āκ ⊂ Āκ̂, and Jκ is a correct upper
bound for each a ∈ Āκ.

The next lemma partially describes the behavior of the upper bound Jκ and
the sets Āκ when the bases Φ and Ψ each span all linear functions.

Lemma 3.10. Let A ∈ Rnx×nx and B ∈ Rnx×nw be matrices such that the spectral
radius of A is less than one. Additionally, assume that Ψ and Φ span all linear
functions and let κ ∈ (0,∞), Γ = Γ′ ∈ Rnx×nx be such that

κ ≥ ‖
[
I −A −B

]′
Γ
[
I −A −B

]
‖F

and
|ε|Γ ≥ |(zI − A)−1ε|δI+Q ∀ ε ∈ Cnx , z ∈ T. (3.12)

Then the function a(x,w) = Ax+Bw belongs to Āκ and

Jκ(a, w̃, x̃) ≤ 1

T

T∑
t=1

|x̃(t)− Ax̃(t− 1)−Bw̃(t)|2Γ.

for all positive integers T and (w̃, x̃) ∈ `T (Rnw)× `T (Rnx).

The proof of this lemma is in the Section 3.7. The following corollary is
immediate.

Corollary 3.11. For every pair of matrices (A,B) ∈ Rnx×nx ×Rnx×nw such that
A has spectral radius less than one, there exists a κ ∈ (0,∞) such that such that
the function a(x,w) = Ax+Bw belongs to Āκ̂ for all κ̂ ≥ κ.
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� 3.5 Identification Algorithm

In this section, we propose a system identification algorithm based on the regres-
sion technique described in Section 3.4 and a method for estimating empirical
moments derived from the work of Hausman et al. [50]. We consider the choice of
bases Φ,Ψ, the function λ : Rnz → Rnλ , and the constant κ ∈ (0,∞] to be fixed.

� 3.5.1 Empirical Moment Approximation

For each positive integer T define the function µ̃T : Znz+ × Znz+ → R via

µ̃T (β, ι) := ST

[
z̃β1 z̃

ι
2

]
and for k ∈ {1, . . . , nz} let ιk be the k-th column of the identity matrix, Inz . For
each α ∈ Znz+ let

Bα = {β ∈ Znz+ : β ≤ α} × {0, ι1, . . . , ιnz} ⊂ Znz+ × Znz+ .

and let µ̃T |Bα denote the restriction of µ̃T to Bα.

Lemma 3.12. For every α ∈ Znz+ there exists a continuous real-valued function
mα : Bα → R such that

lim
T→∞

ST

[
z̄α1

]
−mα(µ̃T |Bα) = 0

whenever conditions (A1), (A2), and (A3) hold.

The proof of this lemma, and an explicit construction of the functions mα is
given in Section 3.7.

� 3.5.2 Proposed Algorithm

(i) Let B be the minimal subset of Znz+ such that for each k ∈ {1, . . . , nλ} there

exist real coefficients {Λkα}α∈B satisfying λk(z) =
∑

α∈B Λkαz
α. Compute

µ̃T (γ, ι) = ST

[
z̃γ1 z̃

ι
2

]
for all (γ, ι) ∈ {γ ∈ Znz+ : γ ≤ α + β, α, β ∈ B} × {0, ι1, . . . , ιnz}.

(ii) Compute an approximate moment matrix M̃T ∈ Rnλ×nλ with coefficients

[M̃T ]jk =
∑
α∈B

∑
β∈B

ΛjαΛkβmα+β(µ̃T |Bα+β),

where each mα+β(·) is defined as in Lemma 3.12.
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(iii) Let M̂T be the projection of M̃T onto the closed convex cone of symmetric

positive semidefinite matrices.

(iv) Take aT = e−1
θ ◦ fθ where (θ, ω,R) is an optimal solution of (3.6) with M =

M̂T . Note that is equivalent to taking aT ∈ argmina∈Aκ
{Ĵκ(a, M̂T )}.

The remainder of this section analyses this algorithm.

� 3.5.3 Asymptotic Optimality of Estimates

The following lemma provides a general statement about the effectiveness of the
proposed bias elimination scheme.

Lemma 3.13. Assume that κ ∈ (0,∞), and conditions (A1), (A2), and (A3)
hold. Let aT be a sequence of estimates generated by applying the algorithm defined
above. Then, for all a ∈ Aκ,

lim inf
T→∞

Jκ(a, w̄
(T )
1 , x̄

(T )
1 )− Jκ(aT , w̄(T )

1 , x̄
(T )
1 ) ≥ 0.

That is to say, as T grows, the estimates aT generated by the above algorithm
are nearly optimal for minimizing the upper bound on simulation error that is
described by Proposition 3.6 evaluated on the unmeasurable noiseless data. The
proof of this lemma is in the Section 3.7.

� 3.5.4 Consistency Analysis

The following theorem provides a consistency result for the estimates provided by
the above algorithm.

Theorem 3.14. Assume that κ ∈ (0,∞), conditions (A1), (A2), and (A3) hold,
and that there exists a function a? ∈ Āκ such that

x̄1 = Ga?(x̄1(0), w̄1).

Then for every (x,w) ∈ Ω (defined in Definition 3.3 on page 53)

lim
T→∞

aT (x,w) = a?(x,w).

The proof of this result is contained in Section 3.7..
The additional assumption for applying this theorem is that there exist a

function a? such that the underlying noiseless process should exactly satisfies
x̄1(t) = a(x̄1(t−1), w̄1(t)) for every t ∈ {1, 2, . . .}. When this condition is satisfied,
the estimates aT converge point-wise to a? on the set Ω.
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ϕ(·)−1

G

w̄(t) ȳ(t)

−

1
Figure 3.5. Schematic of the noiseless dynamics for the simulated example.

� 3.6 Simulated Example

This section compares the proposed method to two natural alternatives, one based
on least squares and the other based on minimization of simulation error. Simu-
lations were conducted on a computer with 24 GB of RAM and two six-core Intel
Xeon 3.33 GHz CPUs. Computational times are reported in CPU seconds, rather
than real-time. Programs were run in MATLAB R2012b, and semidefinite pro-
grams were solved using the commercial solver MOSEK 7.0.0.70. SOS programs
were prepared using a custom software toolbox.

� 3.6.1 Data Set Generation

Consider the nonlinear dynamical system defined by the feedback interconnection
pictured in Figure 3.5. Here ϕ is a monotone nonlinearity in feedback with a
single-input single-output, finite impulse response LTI system, G, leading to the
overall dynamics

ϕ(ȳ(t)) = w̄(t)−
∞∑
k=0

g(k)ȳ(t− k). (3.13)

In our example, ϕ(y) = 3
2
y + 3

2
y2 + y3 and g(·) is defined by

g(0) =
5

4
, g(1) = −4

5
, g(8) = g(15) = − 1

10
,

and g(t) = 0 otherwise. This defines a 15 state nonlinear system. Strict passiv-
ity of this LTI system and the strict monotonicity of ϕ−1 ensure this system is
incrementally stable.

Two input sequences were computed, w̄train : {1, . . . , 50000} → [−1, 1] and
w̄test : {1, . . . , 50000} → [−1, 1], to be realizations of i.i.d random variables, uni-
formly distributed on [−1, 1]. Next, ȳtest(t) = ȳ(t) was taken to be the solution of
(3.13) with w̄(t) ≡ w̄test(t) and zero initial conditions. To examine the statistical
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performance of the compared methods, we produced 100 Monte Carlo simulations
using the following specification.

For i ∈ {1, 2}, the solution ȳi(t) = ȳ(t) of (3.13) was computed with w̄(t) ≡
w̄train(t) and random initial conditions [ȳ(−1); . . . ; ȳ(−15)] chosen according to a
zero mean normal distribution with covariance σ2

noiseI (here σnoise = 0.05). Next,
we defined ỹi(t) = ȳi(t) + vi(t), where vi(·) were realizations of i.i.d. zero mean
normal random variables with variance σ2

noise, and w̃i(t) = w̄train(t). Finally,
we took x̃i(t) =

[
ỹi(t); ỹi(t− 1); . . . ; ỹi(t− nx + 1)

]
, where the choice of nx is

explained below.

� 3.6.2 Model Structure

We examined a family of related model classes designed to cover both the mis-
specified and correctly specified modeling scenarios, and to explore how well the
proposed method scales. For each fixed model order nx, the identified models
were of the form

ēθ(y(t)) = f̄θ([y(t− 1); . . . ; y(t− nx)], w(t)). (3.14)

We took ēθ to be an arbitrary cubic polynomial with root at zero, i.e.

ēθ(y) =
3∑

k=1

θky
k.

The function f̄θ was parameterized as an arbitrary affine function (this yields
nθ = 5 + nx).

When applying alternatives to the proposed method, additional constraints
were imposed to ensure that the above equations are well-posed (i.e. that ēθ is
invertible). We required ∂ēθ

∂y
to be positive so that ēθ is strictly monotone. Note

that the constraint that ∂ēθ
∂y
≥ c can be represented by the LMI

Wc(θ) :=

[
θ1 − c θ2

θ2 3θ3

]
≥ 0,

via a straightforward application of the SOS representation of non-negative uni-
variate polynomials. The equation (3.14) can then be solved via by bisection
accelerated by Newton’s method.

� 3.6.3 Alternative Methods Compared

Proposed Method

When identifying models using the proposed method, we took κ = ∞ and δ =
1 × 10−3. The weight matrix Q used in the definition of MSSE is taken to have
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[Q]11 = 1 an [Q]ij = 0 otherwise.

Least Squares Method

The least squares methods will refer to minimization of

2∑
i=1

T−1∑
t=0

|ēθ(ỹi(t+ nx))− f̄θ([ỹi(t+ nx − 1); . . . ; ỹi(t)], w̃i(t+ nx))|2

subject to W1/2(θ) ≥ 0. This constrained least squares problem can be posed as
an SDP.

Simulation Error Minimization

Minimization of the simulation error JSE
Q is attempted using MATLAB’s fmincon

function, in particular its interior point algorithm. The model parameteriza-
tion is normalized by fixing θ1 = 1. The condition that W1/2(θ) ≥ 0 is repre-
sented by a constraint function taking the value ∞ when W1/2(θ) is indefinite
and − det(W1/2(θ)) otherwise. Cost function and cost gradient evaluations were
implemented in C to provide a more relevant comparison of execution times. Zero
initial conditions were used for each simulation.

We make use of two initial parameter choices:

(i) θ1 = θ3 = 1 and θ2 = 0 otherwise.

(ii) The model derived from the least squares method, appropriately normalized.

The first choice corresponds to a system that lies in the interior of the feasible
set (i.e. W1/2(θ) > 0) and has zero output response, whereas the second choice is
a commonly adopted heuristic for multi-stage optimization of models [75].

� 3.6.4 Results

For each method and model order nx ∈ {1, 8, 15, 22} a model was fit based on
the first 500, 5000 and 50000 data points of the given experiments. The quality
of the models was judged by the validation error, i.e. the simulation error on a
held-out data set, computed as

·

√
1

50,000

∑50,000
t=1 |ȳtest(t)− ŷ(t)|2√

1
50,000

∑50,000
t=1 |ȳtest(t)− µ̄test|2

,

where µ̄test := 1
50,000

∑50,000
t=1 ȳtest(t), and ŷ corresponds to the model simulation

given zero initial conditions and input w̄test.
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Table 3.1. Mean % Validation Error (Standard Deviation) for T = 5× 104

Model Order (nx)

Method 1 8 15 22

Proposed 6.9 (0.3) 5.0 (0.5) 1.3 (0.94) 1.4 (1.1)

SEM 10.9 (0.02) 10.1 (0.01) 9.0 (0.01) 9.1 (0.1)

LS 51.8 (0.02) 51.8 (0.02) 51.9 (0.02) 52.2 (0.1)

SEM (LS Init.) 13.3 (0.01) 12.5 (0.01) 11.7 (0.01) 11.6 (0.08)

Figure 3.6 contains a plot of the run time and validation error for all methods
and 100 trials when T = 50, 000 and nx = 8. Note that the scales are log− log.
One sees that the least squares approach produces a model with very large val-
idation error (∼ 52%), which is anticipated due to the presence of output noise.
Two sets of errors are reported for simulation error minimization: the first cor-
responds to minimization initialized from a zero model and achieves an error of
approximately 10% but generally takes about 8 seconds to compute. The second
set of models are initialized with the least squares fit and terminate very quickly
at a local minimum (the validation error is approximately 12.5%). The proposed
method generates models with ∼ 5% validation error, generally in under a sec-
ond. Table 3.1 presents a similar comparison of the mean validation errors for
each method and model order when T = 50, 000.

Table 3.2 presents the performance of the proposed method in terms of both
convergence of the validation error and computation time. For reference, a single
fit is computed given access to a noiseless data set (σnoise = 0) of duration T =
50, 000. For each model order one sees the gradual convergence of the validation
error toward the performance achieved based on fits to noiseless data. The time
in CPU seconds required to compute these examples is reported in Table 3.2(b),
and demonstrates the scalability of the algorithm as T grows.

� 3.7 Proofs

� 3.7.1 Proof of Lemma 3.10

As A has spectral radius less than one and (A, I) is trivially controllable, the
inequality (3.12) implies the existence of a positive semidefinite matrix P = P ′ ∈
Rnx×nx such that

|ε|2Γ + |∆|2P ≥ |A∆ + ε|2P + |∆|2Q+δI ∀∆, ε ∈ Cnx (3.15)
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Figure 3.6. Comparison of the proposed method to the alternative methods. Points indicate
the simulation error on a validation data set and computation time on log scales. Black markers
indicate medians of the distributions. The true system does not belong to the model class.

Table 3.2. Performance of the Proposed Method for Varying Model Order and Experiment
Length

(a) Mean % Validation Error (Standard Deviation)

Model Order (nx)

T σnoise 1 8 15 22

5× 102 0.05 9.1 (3) 8.0 (3) 6.7 (2) 7.7 (2.5)

5× 103 0.05 7.3 (1) 5.9 (1) 3.0 (2) 3.5 (1.9)

5× 104 0.05 6.9 (0.3) 5.0 (0.5) 1.3 (1) 1.4 (1.1)

5× 104 0.0 6.7 4.5 0.0 0.0

(b) Mean CPU Time in seconds (Standard Deviation)

Model Order (nx)

T 1 8 15 22

5× 102 0.05 (0.009) 0.23 (0.03) 2.4 (0.3) 11.8 (1.7)

5× 103 0.05 (0.008) 0.25 (0.02) 2.5 (0.3) 11.9 (1.7)

5× 104 0.08 (0.009) 0.69 (0.04) 4.0 (0.3) 15.0 (0.6)
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by the the Kalman-Yakubovich-Popov Lemma (see, for example, [108] Theo-
rem 2). Let

e(x) = Px, f(x,w) = PAx+ PBw, V (x1, x2) = |x1 − x2|2P ,

r([ξ+; ξ;w]) = |ξ+ − Aξ −Bw|2Γ,
so that a ≡ e−1 ◦ f . Then

p(δ,e,f,V )(x1, x
+
1 , x2, x

+
2 , w) =|∆|2P − δ|∆|2 + |∆+|2P − 2(P∆+)′(A∆)

≥|∆|2P − |A∆|2P − δ|∆|2 ≥ 0,

where ∆ = x1 − x2, ∆+ = x+
1 − x+

2 , and the first inequality follows from explicit
minimization w.r.t. ∆+. Similarly,

q(e,f,V,r)(x, x
+, ξ, ξ+, w) = |ε|2Γ + |∆|2P − |∆|2Q + |∆+|2P − 2(P∆+)′(A∆ + ε)

≥ |ε|2Γ + |∆|2P − |A∆ + ε|2P − |∆|2Q ≥ 0,

where ∆ := x− ξ, ∆+ = x+ − ξ+ and ε = ξ+ − Aξ −Bw.
As Ψ and Φ span all linear functions, there exist choices of θ, and ω, such that

e = eθ, f = fθ, and Vω = V . Additionally, taking λ([ξ+; ξ;w]) = [ξ+; ξ;w], and

R =
[
I −A −B

]′
Γ
[
I −A −B

]
one has R = R′ ≥ 0, ‖R‖F ≤ κ and r(·) ≡ |λ(·)|2R. As every non-negative
quadratic polynomial is also a SOS, (θ, ω,R) belongs to Fκ, and it follows that
a ∈ Āκ.

� 3.7.2 Proof of Lemma 3.12

The following additional notation will aid in the discussion of multi-variable poly-
nomials. For α, β ∈ Znz+ with β ≤ α, let(

α

β

)
=

n∏
k=1

(
αk
βk

)
.

With this notation, for any u, v ∈ Rn and α ∈ Zn+, one has

(u+ v)α =
∑
β≤α

(
α

β

)
uβvα−β.
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For any of functions µ : Znz+ → R and ν : Znz+ → R satisfying

µ(0) = ν(0) = 1, (3.16)

let µ̄(µ,ν) : Znz+ × Znz+ → R be defined by

µ̄(α, ι) = µ̄(µ,ν)(α, ι) :=
∑
β≤α

(
α

β

)
µ(α− β + ι)ν(β). (3.17)

Clearly, (3.16) and (3.17) provides a recursive system on nonlinear equations al-
lowing one to calculate µ(α) and ν(α) from the values of µ̄(β, ι) and ν(ι) for
(β, ι) ∈ Bα. Specifically, when αk > 0 equation (3.17) provides an explicit equa-
tion for µ(α) as a function of µ̄(α − ιk, ιk), and the values of µ(β) and ν(β) for
β < α. Next, one can solve for ν(α) as a function of µ(α), µ̄(α, 0), and the
values µ(β) and ν(β) for β < α. The above argument describes a (non-unique)
real-valued polynomial function m̂α that satisfies

µ(α) = m̂α(µ̄(µ,ν)|Bα , [ν(ι1); . . . ; ν(ιnz)])

for any pair of functions µ, ν satisfying (3.16). We next demonstrate that, for
each α ∈ Znz+ , the function mα defined by

mα(·) = m̂α(·, [0; 0; . . . ; 0])

has the properties required by the lemma.
For each positive integer T , define µ̄T : Znz+ × Znz+ → R to be

µ̄T (α, ι) :=
∑
β≤α

(
α

β

)
ST

[
z̄α−β+ι

1

]
ST

[
ζβ1

]
.

For every α ∈ Znz+ , the definition of mα implies that

ST

[
z̄α1

]
= m̂α

(
µ̄T |Bα ,ST

[
ζ1

])
.

Assumption (A3) implies that limT→∞ ST

[
ζ1

]
= 0. We next show that µ̃T con-

verges to µ̄T point-wise. This will complete the proof by a uniform continuity
argument based on the boundedness of each sequence {µ̃T (α, ι)}∞T=1 (assumption
(A2)) and the continuity of m̂α.

Take (α, ι) ∈ Znz+ × {0, ι1, . . . , ιnz}. Recall that ζi(t) := z̃i(t)− z̄i(t), and

z̃1(t)α =
∑
β≤α

(
α

β

)
z̄1(t)α−βζ1(t)β.
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Thus, assumption (A3) immediately implies µ̃T (α, 0)− µ̄T (α, 0) converges to zero.
For ι = ιk, one has

µ̃T (α, ι) = ST

[
z̃α1 z̃

ι
2

]
=
∑
β≤α

(
α

β

)(
ST

[
z̄α−β1 ζβ1 z̄

ι
2

]
+ ST [z̄α−β1 ζβ1 ζ

ι
2]
)
.

As limT→∞ ST [ζ2] = 0, assumptions (A2) and (A3) guarantee that ST [z̄β1 ζ
α−β
1 ζ ι2]

converges to zero for each β ≤ α. By assumption, z̄1 and ζ1 are bounded and
limt→∞ z̄1(t)− z̄2(t) = 0, so condition (A3) implies ST [z̄α−β1 ζβ1 (z̄ι1 − z̄ι2)] converges
to zero. This completes the proof.

� 3.7.3 Proof of Lemma 3.13

For each positive integer T define M̄T ∈ Rnλ×nλ via

M̄T :=
1

T

T∑
t=1

λ(z̄1(t))λ(z̄1(t))′,

so that Jκ(a, w̄
(T )
1 , x̄

(T )
1 ) = Ĵκ(a, M̄T ) for each a ∈ Aκ. As aT is optimal, for any

a ∈ Aκ one has
Ĵκ(a, M̂T ) ≥ Ĵκ(aT , M̂T ).

As noted in Proposition 3.7, Ĵκ is a κ-Lipschitz function of its second argument,
so that

Ĵκ(a, M̄T )− Ĵκ(aT , M̄T ) ≥ −2κ‖M̂T − M̄T‖F .
To complete the proof we show that limT→∞ ‖M̂T − M̄T‖F = 0.

Let Π : Rnλ×nλ → Rnλ×nλ denote projection onto the positive semidefinite
cone. Lemma 3.12 implies that M̃T − M̄T converges to zero. As z̄1 and z̃1 are a
bounded signals (assumption (A1) and (A2)), M̃T and M̄T lie in a compact set
for sufficiently large T . As Π is a continuous function, it is uniformly continuous
on this set. Thus the desired result follows from the face that each M̄T is positive
semidefinite so that Π(M̄T ) = M̄T .

� 3.7.4 Proof of Theorem 3.14

For each positive integer T there exists a tuple (θT , ωT , RT ) feasible for (3.6) such
that aT = e−1

θT
◦ fθT and

Ĵκ(aT , M̄T ) = tr(RTM̄T ). (3.18)
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For all positive integers T and (x,w) ∈ Rnx × Rnw , one has

0 ≤ q(eθT ,fθT ,VωT ,|λ(·)|2RT )(x, aT (x,w), x, a?(x,w), w) (3.19)

+ p(δ,eθT ,fθT ,VωT )(aT (x,w), 0, a?(x,w), 0, 0)

= |λ([a?(x,w);x;w])|2RT − δ|aT (x,w)− a?(x,w)|2. (3.20)

Thus it is sufficient to show that |λ([a?(x,w);x;w])|2RT converges to zero whenever
(x,w) ∈ Ω.

By definition, a? ∈ Āκ implies the existence of a (θ?, ω?, R?) feasible for (3.6)
such that a? = e−1

θ? ◦ fθ? and |λ([a?(x,w);x;w])|2R? ≡ 0. Since

tr(R?M̄T ) =
1

T

T∑
t=1

|λ([a?(x̄1(t− 1); w̄1(t)); x̄1(t− 1); w̄1(t)])|2R? ,

one has Ĵκ(a
?, M̄T ) = 0. As each Ĵκ(·, M̄T ) is a non-negative function, Lemma 3.13

implies Ĵκ(aT , M̄T ) (and thus tr(RTM̄T )) converges to zero.
Fix (x̂, ŵ) ∈ Ω. Then there exists a compact neighborhood K of (x̂, ŵ) and a

positive constant c such that

tr(RTM̄T ) ≥ c
∫ ∫

K

|λ([a?(x,w);x;w]))|2RT dx dw.

Note that the set of functions

{|λ(·)|2R : R = R′ ∈ Rnλ×nλ , ‖R‖F ≤ κ}

is clearly equicontinuous on any compact set as λ is locally Lipschitz. As a? is
continuously differentiable, this implies that the sequence of functions (x,w) 7→
|λ([a?(x,w);x;w]))|2RT is equicontinuous on K. Thus, for each ε > 0 there exists
an open neighborhood U of (x̂, ŵ) such that U ⊂ K and

|λ([a?(x,w);x;w])|2RT ≥ |λ([a?(x̂, ŵ); x̂; ŵ])|2RT − ε

for all (x,w) ∈ U and positive integers T . As a result,

tr(RTM̄T ) ≥
(
|λ([a?(x̂, ŵ); x̂; ŵ])|2RT − ε

)
· c
∫ ∫

U

dxdw.

As tr(RTM̄T ) converges to zero, it follows that

ε ≥ lim sup
T→∞

|λ([a?(x̂, ŵ); x̂; ŵ])|2RT .

As ε was arbitrary, this completes the proof.



Chapter 4

Robust Simulation Error

This chapter introduces an improved family of convex upper bounds for simulation
error applicable to state-affine models. Section 4.1 provides the definition of
the class of models examined, and defines a weighted notion of simulation error.
Section 4.2 then introduces the robust weighted simulation error (RWSE), a family
of convex upper bounds for the weighted simulation error. These upper bounds
depend on a fixed auxiliary parameter and it is shown that:

(i) For an appropriate choice of this additional parameter, the RWSE is a lower
bound for the simulation error upper bounds of the previous two chapters.

(ii) For every well-posed state-affine model, there is a choice of this additional
parameter such that the RWSE is equal to the weighted simulation error.

This second feature leads to an iterative identification method described in Sec-
tion 4.4, and applied to two examples. Section 4.3 provides a frequency domain
analysis of the RWSE for SISO LTI models.

� 4.1 Preliminaries

� 4.1.1 State-Affine Models

This chapter addresses systems determined by a collection of matrix-valued func-
tions Gk : Rnw → Rny×ny , for k ∈ {0, . . . , n} and a function p : Rnw → Rny

according to

0 = g(y(t), . . . , y(t− n), w(t)) =
n∑
k=0

Gn−k(w(t))y(t− k) + p(w(t)), (4.1)

where w(t) ∈ Rnw represents an input signal, and y(t) ∈ Rny represents an output
signal. Similarly to earlier chapters, well-posedness of (4.1) will refer to global

71
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invertibility of Gn(·). When (4.1) is well-posed one can equivalently write

y(t) = −Gn(w(t))−1

(
n∑
k=1

Gn−k(w(t))y(t− k) + p(w(t))

)
.

For every fixed input signal w(·), (4.1) defines a linear time-varying (LTV) system
dynamics. Note that the absence of delays in the signal w(t) is superficial, as given
an input signal u(t) ∈ Rnu and positive integer du one could take

w(t) =


u(t)

u(t− 1)
...

u(t− du)

 .

� 4.1.2 Error Dynamics

Fix a positive integer N , a pair of signals ỹ ∈ `N+n−1(Rny) and w̃ ∈ `N(Rnw).
For an arbitrary function g such that (4.1) is well-posed, let y(·) be the solution
of (4.1) with y(t) = ỹ(t) for t ∈ {0, . . . , n − 1} and w(t) ≡ w̃(t − n + 1) for
t ∈ {n, n+ 1, . . . , N + n− 1}. Then the vector

∆ =


y(n)− ỹ(n)

y(n+ 1)− ỹ(n+ 1)
...

y(N + n− 1)− ỹ(N + n− 1)

 ∈ RNny

can be seen to satisfy
0 = G(w̃)∆ + ε(w̃, ỹ)

where ε(w̃, ỹ) ∈ RNny is defined by

ε(w̃, ỹ)t =
n∑
k=0

Gn−k(w̃(t))ỹ(t+ n− k − 1) + p(w̃(t)), (4.2)

and G(w̃) ∈ RNny×Nny is given by

G(w̃) =


Gn(w̃(1)) 0 0 . . .

Gn−1(w̃(2)) Gn(w̃(2)) 0 . . .

Gn−2(w̃(3)) Gn−1(w̃(3)) Gn(w̃(3))
. . .

...
. . . . . . . . .

 . (4.3)

Note that when (4.1) is well-posed, G(w̃) is invertible.
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Definition 4.1. Fix N ∈ N and W ∈ RNny×Nny such that W = W ′ is positive-
semidefinite. For any function g defining a well-posed model (4.1) and pair of
signals ỹ ∈ `N+n−1(Rny) and w̃ ∈ `N(Rnw) let the weighted simulation error
be defined by

J̄W (g, ỹ, w̃) = |G(w̃)−1ε(w̃, ỹ)|2W
where G and ε are defined as in (4.3) and (4.2).

� 4.2 A Family of Upper Bounds on Weighted Simulation Error

The following definition provides family of upper bounds for the weighted simu-
lation error.

Definition 4.2. Fix a positive integer N , a symmetric positive-semidefinite ma-
trix W ∈ RNny×Nny , and a function P : `N(Rnw) → RNny×Nny . Then for each
function g as in (4.1) the robust weighted simulation error (RWSE) is
defined by

JRSE
W,P (g, w̃, ỹ) = sup

∆∈RNny

{
|∆|2W − 2(P (w̃)∆)′(G(w̃)∆ + ε(w̃, ỹ))

}
,

for all w̃ ∈ `N(Rnw) and ỹ ∈ `N+n(Rny). Here G and ε are defined as in (4.2)
and (4.3). The robust simulation error will refer to JRSE

I,I .

It should be note that the JRSE
I,I is closely related to an upper bound for

simulation error presented in [88].

� 4.2.1 Analysis of the RWSE

The next two propositions provide some guarantees as to the values taken on by
the RWSE. The first proposition establishes that for any fixed model g there is
a specific choice of P such that the RWSE is equal to the weighted simulation
error.

Proposition 4.3. Letting g be a function such that (4.1) is well-posed, N be
a positive integer, and W ∈ RNny×Nny be a fixed positive semidefinite matrix.
Define P : `N(Rnw)→ RNny by

P (w̃)′G(w̃) = W,

where G is defined as in (4.3). Then

JRSE
W,P (g, w̃, ỹ) = J̄W (g, w̃, ỹ).
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Proof. Note that

|∆|2W − 2(P (w̃)∆)′(G(w̃)∆ + ε(w̃, ỹ)) = − 2∆′WG(w̃)−1ε(w̃, ỹ)− |∆|2W
= − 2∆′WG(w̃)−1ε(w̃, ỹ)− |W∆|2W † ,

where W † is the Moore-Penrose pseudo-inverse of W . Taking Γ = W∆, the
supremum of this expression with respect to ∆ is equivalent to

sup
{
−2Γ′G(w̃)−1ε(w̃, ỹ)− |Γ|2W †

}
= |G(w̃)−1ε(w̃, ỹ)|2W ,

where the supremum is taken over Γ in the range of W .

Next, we note that the form of the equations (4.1) can be cast as a model in
the form (2.4) with nx = nyn. We reproduce (2.4) here:

0 = h(v(t), x(t− 1), w(t)),

x(t) =

[
v(t)

ā(x(t− 1), w(t))

]
.

(4.4)

In particular, take

h(y0, [y1; . . . ; yn], w) ≡ g(y0, y1, . . . , yn, w) (4.5)

and
ā(x,w) =

[
I(n−1)ny 0(n−1)ny×ny

]
x, (x ∈ Rnx , w ∈ Rnw). (4.6)

The interpretation here is that

x(t− 1) =


y(t− 1)

y(t− 2)
...

y(t− n)

 .
The next definition and proposition relates the RWSE to the RIE for a particular
choice of P and W .

Proposition 4.4. Fix a positive integer N and a function g as in (4.1). Let h and
ā be defined as in (4.5) and (4.6). Then for every symmetric positive-semidefinite
matrix Q ∈ Rnx×nx and non-negative function V : Rnx × Rnx → R,

JRIE
Q (h, V, w̃, x̃) ≥ JRSE

W,I (g, w̃, ỹ) ∀ w̃ ∈ `N(Rnw), ỹ ∈ `N+n−1(Rny),

where:
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(i) x̃ ∈ `N(Rnx) is defined by

x̃(t− 1) =


ỹ(t+ n− 2)

ỹ(t+ n− 3)
...

ỹ(t− 1)

 ∀ t ∈ {1, . . . , N + 1},

(ii) W ∈ RNny×Nny is the unique symmetric matrix satisfying∣∣∣∣∣∣∣∣∣∣


∆n+1

∆n+2

...

∆n+N


∣∣∣∣∣∣∣∣∣∣

2

W

=
N−1∑
t=0

∣∣∣∣∣∣∣
∆t+n

...

∆t+1


∣∣∣∣∣∣∣
2

Q

,∀ ∆1, . . . ,∆N+n ∈ Rny ,∆1 = . . . = ∆n = 0.

The proof is contained in Section 4.6.

� 4.2.2 A Simple Example

We provide a computational example as evidence of the benefit of identifying
models by minimizing the RWSE with W = P (w̃) = I. This experiment examines
identification of a model of the form

ex(t) = fx(t− 1) + kw(t),

where e, f, k ∈ R and e > 0, to match a data set x̃, w̃ ∈ `5000(R) generated as
follows. The signal w̃ was taken to be a realization of an i.i.d. standard normal
stochastic process. The signal x̃ was taken to be a solution of

x̄(t) = 0.9x̄(t− 1) + w̃(t), x̄(0) = 0, x̃(t) = x(t) + η(t),

where η(t) is a realization of an i.i.d zero mean Gaussian random process with
variance σ2

η.
A model is then identified by minimizing the RSE over the choice of e and

f with k = e. This process was repeated for 100 Monte Carlo trials with inde-
pendent output noise, but a common input sequence. Figure 4.1 compares the
average estimated pole, â = e/f , with the pole obtained by minimizing the RIE
and equation error (EE) respectively (see Section 3.2). Also provided is a plot
(on log-scale) that compares the average normalized asymptotic simulation error
of the models:

‖H − Ĥ‖2

‖H‖2

, (4.7)
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where H(z) = z
z−a and Ĥ(z) = z

z−â are the transfer functions of the true system
and model system respectively and ‖·‖2 denotes the L2-norm defined for functions
on T.

� 4.3 Frequency Domain Analysis

This section provides a frequency domain interpretation of the RSE for SISO LTI
models.

� 4.3.1 Notation

In this section we introduce the following additional notation. For p ∈ [1,∞), let
Lp denote the standard Lebesgue space of measurable functions f : T → C for
which

‖f‖p =

(∫
T
|f(z)|pdλ(z)

)1/p

<∞,

where dλ denotes the normalized Lebesgue measure on T. Naturally, L∞ is the
space of essentially bounded measurable complex-valued functions on T. For every
a ∈ L1, let {ak}∞k=−∞ be its Fourier coefficients, i.e.

ak =

∫
T
z−ka(z)dλ(z), k ∈ Z.

For a set J , let `2(J) denote the Hilbert space of functions x : J → C which
are square summable, i.e. ∑

t∈J

|x(t)|2 <∞,

equipped with the standard inner product. We generally take J to be Z,N, or
{1, . . . , N} for some N ∈ N. For every a ∈ L∞, let L(a) : `2(Z) → `2(Z) be the
Laurent operator defined by

(L(a)x)(t) =
∞∑

τ=−∞

at−τx(τ) (x ∈ `2(Z))

and let T (a) : `2(N) → `2(N) be the Toeplitz operator defined by the infinite
matrix

T (a) =


a0 a−1 a−2 . . .

a1 a0 a−1
. . .

a2 a1 a0
. . .

...
. . . . . . . . .
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â

 

 

True Pole : a

RSE
RIE
EE
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(b) A comparison of the normalized asymptotic simulation error
(see (4.7)) for models identified at different SNRs.

Figure 4.1. A comparison of first-order LTI models identified by minimizing the equation error
(EE), robust identification error (RIE), and robust simulation error (RSE) for varying SNRs.
Figure (a) compares the identified poles whereas (b) compares the simulation performance. For
SNRs above 10dB (resp. 20dB) the the asymptotic simulation error of the RSE minimizer is
less than one half (resp. one third) of the corresponding EE minimizer.
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in the standard basis for `2(N). Similarly, define

TN(a) =


a0 a−1 . . . a−N+1

a1 a0
. . .

...
...

. . . . . . a−1

aN−1 . . . a1 a0

 ∈ CN×N , (N ∈ Z+, a ∈ L∞).

For all positive integers N , let QN : `2(Z)→ CN be defined by

QNx =


x(1)

x(2)
...

x(N)

 , ∀x ∈ `2(Z).

Finally, let P denote projection of `(Z) onto `(N), viewed as a closed subspace,
and let S denote the right shift operator on `2(Z).

� 4.3.2 Analysis

This section studies the asymptotic behavior of the RSE when applied to a LTI
SISO difference equation,

n∑
k=0

qky(t+ k) =
n∑
k=0

pku(t+ k), (4.8)

with each qk, pk ∈ R and qn 6= 0, or equivalently with

g(y0, y1, . . . , yn, [u0;u1; . . . ;un]) =
n∑
k=0

qkyn−k − pkun−k. (4.9)

Associated with such an equation are the polynomials

q(z) =
n∑
k=0

qkz
k, p(z) =

n∑
k=0

qkz
k.

For the remainder of this section we consider the choice of p and q above to be
fixed.

The following notation will be used to simplify discussion of the RSE. For each
positive integer N , define ĴN : CN → R by

ĴN(ε) := sup
∆∈CN

{
|∆|2 − 2Re{∆′(TN(q∗)∆ + ε)}

}
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where q∗(z) = znq(z−1). This quantity is related to the RSE as follows. Fix N ,
ỹ, ũ ∈ `N+n−1(R) and define w̃ ∈ `N(Rn+1) by w̃(t) = [ũ(t+ n− 1); . . . ; ũ(t− 1)].
Then

ĴN(ε(w̃, ỹ)) = JRWSE
I,I (g, w̃, ỹ)

where g is defined by (4.9) and ε is defined by (4.2) (this follows from the fact
that G(w̃) = TN(q∗)).

The index N will represent the length of the available data and the case of
interest will be as N → ∞. For the remainder of this section we fix a pair
of signals ũ, ỹ ∈ `2(Z) and let Ũ and Ỹ denote their Fourier transforms. The
equation errors, ε̃ ∈ `2(Z), associated with the polynomials p and q and such a
pair of signals are defined by

ε̃(t) =
n∑
k=0

qkỹ(t+ k)−
n∑
k=0

pkũ(t+ k). (4.10)

Upper Bound and Stability

The following fact is a standard result from complex analysis and is stated without
proof.

Lemma 4.5. If q is a polynomial such that the real part q∗(z) = znq(z−1) is
strictly positive on T, then the roots of q lie in the open unit disc.

This observation has been employed in convex optimization approaches to
filter design (e.g. [28],[36]), fixed order LTI controller design (see [52]), and model
order reduction (see [123]).

Let r : T→ R be defined by

r(z) := 2Re{q∗(z)} − 1. (4.11)

We will be establishing a relationship between the behavior of ĴN as N →∞
and certain integrals in the frequency domain. The connection will be made
using the following lemma which is based on the asymptotic analysis of Toeplitz
matrices (e.g. [14]).

Lemma 4.6. If q is a polynomial such that r is positive on T, then each matrix
TN(r) is positive definite, and

lim
τ→∞

lim
N→∞

(S−τQ′NTN(r)−1QNS
τ )x = L(r−1)x, ∀x ∈ `2(Z).
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Proof. As r is continuous and positive, r ≥ δ for some positive constant δ, and

v′TN(r)v =

∫
T
r(z)

∣∣∣∣∣
N∑
k=1

vkz
k

∣∣∣∣∣
2

dλ(z) ≥ δ|v|2, ∀ N ∈ N, v ∈ CN .

As r has a finite number of non-zero Fourier coefficients and is positive, T (r)
is invertible (see [14] Corollary 1.11), and

T (r)−1 − T (r−1) = K

where K : `2(N) → `2(N) is a compact operator (see [14], Propositions 1.2 and
1.3). It is clear that

lim
τ→∞

S−τP ′T (r−1)PSτx = L(r−1)x ∀ x ∈ `2(Z).

Furthermore, as K is compact,

lim
τ→∞

S−τP ′KPSτx = 0 ∀ x ∈ `2(Z),

as Sτx converges weakly to zero as τ → ∞. As QNP = QN , the proof will be
completed by showing that

lim
N→∞

P ′Q′NTN(r)−1QNPx = P ′T (r)−1Px ∀x ∈ `2(N).

For N ∈ N, define T̄N : `2(N)→ `2(N) by the infinite matrix

T̄N =

[
TN(r) 0

0 T (r)

]
,

in the standard basis for `2(N). Let PN denote the orthogonal projection of `2(N)
onto `2({1, . . . , N}). Then

P ′Q′NTN(r)−1QNPx = P ′T̄−1
N PNPx.

Thus it is sufficient to show that T̄−1
N PN converges pointwise to T (r)−1. Clearly

(x, T̄Nx) ≥ δ|x|2 for all x ∈ `2(N), where δ again is defined so that r ≥ δ > 0.
Thus,

|T̄−1
N PNx− T (r)−1x| = |T̄−1

N (I − PN)x− (T̄−1
N − T (r)−1)x|

≤ |T̄−1
N (I − PN)x|+ |(T̄−1

N − T (r)−1)x|
= |T̄−1

N (I − PN)x|+ |T̄−1
N (T (r)− T̄N)T (r)−1x|

≤ 1

δ

(
|(I − PN)x|+ |(T (r)− T̄N)T (r)−1x|

)
.

As I − PN and T (r) − T̄N both converge pointwise to zero, this completes the
proof.
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The next statement is the main result of this section.

Theorem 4.7. If q is a polynomial such that r, defined in (4.11), is positive then

lim
τ→∞

lim
N→∞

ĴN(QNS
τ ε̃) =

∫
T

∣∣∣∣Ỹ (z)− p(z)

q(z)
Ũ(z)

∣∣∣∣2( |q(z)|2
2Re{q∗(z)} − 1

)
dλ(z).

Proof. It can be readily verified that

N∑
t=1

2∆′t+n

(
εt −

n∑
k=0

qk∆t+k

)
+ |∆t+n|2 = 2∆̄′ε− ∆̄′TN(r)∆̄,

for all N ∈ N, ε ∈ Cm, and ∆ = [0n; ∆̄] ∈ LN . As r is strictly positive, TN(r)
is positive definite and the supremum in the definition of ĴN(QNS

τ ε̃) can be
evaluated explicitly:

ĴN(QNS
τ ε̃) = |QNS

τ ε̃|2TN (r)−1 .

It follows from Lemma 4.6, continuity of the inner product and Parseval’s theorem
that

lim
τ→∞

lim
N→∞

ĴN(QNS
τ ε̃) = ε̃′L(r−1)ε̃ =

∫
T
|Ẽ(z)|2 1

r(z)
dλ(z),

where Ẽ is the Fourier transform of ε̃ and satisfies

Ẽ(z) = q(z)Ỹ (z)− p(z)Ũ(z), ∀ z ∈ T.

The desired result follows from simple algebraic manipulations and the definition
of r.

� 4.4 An Iterative Identification Scheme

Propositions 4.3 and 4.4 naturally suggest the following iterative identification
scheme. We fix an affine parameterization of models of the form (4.1), i.e. for
some fixed functions φi,j : Rnw → Rny×ny and ψi : Rnw → Rny we take

gθ(y(t), . . . , y(t−n), u(t), w(t)) =
n∑
k=0

Gθ,n−k(w(t))y(t−k)+pθ(w(t)), (θ ∈ Rnθ)

where

Gθ,j(w(t)) = φi,0(w(t)) +

nθ∑
i=1

θiφi,j(w(t)),

pθ(w(t)) = ψ0(w(t)) +

nθ∑
i=1

θiψi(w(t)).
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.
Fix a positive integer N and weight matrix W ∈ RNny×Nny . For a given data

set ỹ ∈ `N+n−1(Rny) and w̃ ∈ `N(Rnw), we identify a model by performing the
following steps:

(i) Let θ(0) = argminθ
{
JRSE
I,W (gθ, ỹ, w̃)

}
and m = 0.

(ii) Take Pm(w̃) = (G(w̃)−1)′W where G is defined by (4.3) with g = gθ(m) .

(iii) Let θ(m+1) = argminθ{JRSE
Pm,W

(gθ, ỹ, w̃)}.

(iv) If
J̄W (gθ(m) , ỹ, w̃)− J̄W (gθ(m+1) , ỹ, w̃)

|J̄W (gθ(m) , ỹ, w̃)| < tol

terminate, otherwise increment m and repeat steps (ii)-(iv).

From Proposition 4.3 we know the sequence J̄W (gθ(m) , ỹ, w̃) decreases monotoni-
cally and (as it is bounded below) will converge. The termination condition given
in (iv), however, is simply heuristic.

� 4.5 Examples

� 4.5.1 Heat Exchanger Example

This section makes use of a benchmark system identification example from the
DaISy system identification database [31]. The data set is from an experiment
involving a liquid-saturated steam heat exchanger which heats water using pres-
surized steam in a copper tube. The data set consists of 4000 input-output data
samples taken with a sampling rate of 1 Hz. The input time series is the liquid
flow rate and the output time series is outlet liquid temperature. The system is
described in more detail in [12].

The first 1,500 samples are used for model identification whereas the complete
data set is used for model validation. We identify models of the form

qn(w(t))y(t) =
n∑
k=1

qn−ky(t− k) + p(w(t)), w(t) =


u(t)

u(t− 1)
...

u(t− n)

 ,
where qn is parameterized as an arbitrary quadratic polynomial and p is parame-
terized as an arbitrary cubic polynomial. For simplicity, the proposed method is
halted after five iterations.
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Table 4.1. Test Error (%) Comparison for the Heat Exchanger Example

Model Order (n)

Method 2 3 4

nlhw 29.1 76.4 43.9

nlarx (Eqn. Err. Min.) 22.1 21.9 22.0

nlarx (Sim. Err. Min.) 26.7 26.4 26.4

RIE 27.9 24.4 20.5

Proposed (1st Iter.) 20.7 17.7 13.7

Proposed (5th Iter.) 13.7 11.4 9.7

For comparison, several models are computed using MATLAB R© System Iden-
tification ToolboxTM, specifically the nlarx and nlhw functions which compute
nonlinear ARX and nonlinear Hammerstein-Wiener models respectively (see [78]).
The function nlarx has options both for performing simulation error and equa-
tion error minimization. Table 4.1 compares these models based on a normalized
simulation error calculated as√√√√4000∑

t=1

|y(t)− ỹ(t)|2
/√√√√4000∑

t=1

∣∣∣∣∣ỹ(t)− 1

4000

4000∑
t=1

ỹ(t)

∣∣∣∣∣
2

,

where ỹ(t) are output the samples of the data-set and y(t) are the corresponding
model simulations with zero initial conditions For each examined model order, the
best identified models are provided by the final iterate of proposed method and
the second best models are provided by the first iterate. There is also a significant
gap between the performance of the RIE minimizer and the first iterate of the
proposed method (between 25 to 35 percent improvement).

� 4.5.2 Wiener-Hammerstein Benchmark Example

Next, we examine the performance of the proposed iterative scheme on a bench-
mark data set described in [117]. The data set consists of a input and output
time series consisting of 188,000 samples. A random excitation was applied to a
circuit consisting linear filter, cascaded with a passive nonlinear circuit element
followed by another linear filter (see [117] for details). The data is divided into
an estimation portion, consisting of the first 100,000 data samples, and a test
portion which consists of the remaining samples. Model parameters and order
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Figure 4.2. Two plots presenting the fitting results for the heat exchanger example. The best
fitting model (5th iteration of the proposed method with n = 4) is compared to the true data
and models fit via nlarx and minimization of the RIE with the same model order.
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are selected based purely on the estimation data then compared on the test data
in terms of the square root of the MSSE.

Proposed Method

For identifying a model using the proposed method, the estimation data set was
further divided into a training data set consisting of the samples in the range
{10001, 10002, . . . , 14000} and a validation data set consisting of the samples in
the range {80001, 80002, . . . , 100000}. Iterations are performed minimizing the
RWSE for the training data until less than a 1% improvement on MSSE is ob-
served. The iterate with the lowest MSSE on the validation data is taken to be
the final model. The proposed method is used to identify models of the form

n∑
k=0

qn−ky(t− k) = p(u(t), . . . , u(t− n)),

where p is parameterized to be an arbitrary cubic nonlinear function and the
model order, n, is variable.

Alternative Methods

The proposed method is compared with four standard functions from the System
Identification ToolboxTM (using MATLAB R© version R2012b):

(i) oe produces a SISO LTI model by minimizing simulation error.

(iii) nlarx identifies a nonlinear ARX model.

(iv) nlhw identifies a Hammerstein-Wiener model.

(ii) n4sid is an implementation of [98] and produces a linear state-space model.

Details can be found in [78]. The methods were provided with the entirety of
the estimation data set. The first three methods were configured to use y(t −
1), . . . , y(t−n), u(t), u(t−1), . . . , u(t−n) as regressors, whereas the final method
was constrained to produce a state-spaced model of order n.

Results

Table 4.2 provides a comparison of the resulting models in terms of normalized
simulation error: √√√√ 180000∑

t=100001

|y(t)− ỹ(t)|2
/√√√√ 180000∑

t=100001

|ỹ(t)|2,
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where ỹ(t) are the samples of the data-set and y(t) are the corresponding model
simulations with zero initial conditions. For the proposed method, the simulation
error is reported both for the first iteration (minimization of the RSE) and final
iteration. Two aspects of this table should be highlighted. First, the final iteration
of the proposed method outperforms the alternative methods irrespective of their
model order. Second, minimization of the RSE (i.e. the first iteration) actually
performs worse on this data set than any of the alternative methods (particularly
for low model orders).

A further comparison is made between the best performing model (on the
validation data) for the proposed method and eight other studies which have
identified models to fit the benchmark data-set. The relevant comparison is pro-
vided in Table 4.3. The root MSSE on the test data is reported in terms of
volts (as opposed to being normalized). Model orders presented in parenthesis
(dy, du) refer to the number of delays of the input and output respectively used in
a difference equation model. Numbers presented without parenthesis indicate the
number of states in a state-space models. The proposed method outperforms [102]
which performed direct simulation error minimization. It should be noted that
three recently published results ([99], [87], and [118]) achieve much higher accu-
racy than the proposed method or other methods in the comparison. The models
in both [99] and [87] result from carefully initialized simulation error minimiza-
tion. The model found by [118] is more specific to the structure of the identified
system. The method introduced in this chapter optimizes an upper bound for
simulation error which is accurate only at the initial guess and subsequent iter-
ates. It is unavoidable that careful initialization of other general descent methods
can out potentially out perform the proposed method. The proposed method
can also benefit from insight into model initialization, a possibility which was not
explored in this work.

� 4.6 Proofs

Proof of Proposition 4.4. Fix N ∈ Z+, ỹ ∈ `N+n−1(Rnx), and w̃ ∈ `N(Rnw). Re-
call that

JRIE
Q (h, V, w̃, x̃) = V (x̃(0), x̃(0)) +

N∑
t=1

sup
x∈Rnx ,v∈Rny

{
q(h,V )(x, v, x̃(t− 1), x̃(t), w̃(t))

}
,

where q(h,V ) is defined by (2.28) on page 39. This expression can be rewritten as

sup

{
V (x̃(0), x̃(0)) +

N∑
t=1

q(h,V )(x(t− 1), v(t− 1), x̃(t− 1), x̃(t), w̃(t))

}
,



Table 4.2. Test Error (%) Comparison with the System Identification ToolboxTM.

Model Order (n)

Method 3 5 7

n4sid 38.4 23.7 23.2

oe 23.9 23.2 23.2

nlarx 49.7 16.4 16.2

nlhw 10.8 8.9 9.0

Proposed (First Iter.) 99.9 66.0 31.0

Proposed (Final Iter.) 6.5 4.9 5

Table 4.3. Test Error for Wiener-Hammerstein Benchmark

Citation Order RMSE (V)

Ase et al. 2009 ([5]) (3,3) 0.0335

Han et al. 2012 ([49]) (3,3) 0.0345

Truong et al. 2009 ([134]) (6,6) 0.0145

Piroddi et al. 2012 ([102]) (4,9) 0.0131

Proposed Method (5,5) 0.0119

dos Santos et al. 2012 ([34]) 5 0.0109

Paduart et al. 2012 ([99]) 10 0.0027

Marconato et al. 2012 ([87]) 6 0.0026

Paduart et al. 2012 ([99]) 6 0.0004

Sjöberg et al. 2012 ([118]) 6 0.0003
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where the supremum is now taken over all pairs of signals x ∈ `N−1(Rnx), v ∈
`N−1(Rny). Substituting in the definition of q(h,V ) yields

JRIE
Q (h, V, w̃, x̃) = sup

{
V (x̃(0), x̃(0)) +

N∑
t=1

|x(t− 1)− x̃(t− 1)|2Q

− 2(v(t− 1)− ỹ(t+ n))′h(v(t− 1), x(t− 1), w̃(t))

− V (x̃(t− 1), x(t− 1)) + V (x̃(t), )

}
.

where the supremum is again taken over all pairs of signals x ∈ `N−1(Rnx), v ∈
`N−1(Rny). We now restrict the supremum to be taken over only those x ∈
`N−1(Rnx) for which x(0) = x̃(0) and

x(t) =

[
v(t− 1)

ā(x(t− 1), w̃(t))

]
∀t ∈ {0, . . . , N − 1}.

For ā defined by (4.6), this is equivalent to taking the supremum over signals
y ∈ `N+n(Rny) with

v(t− 1) ≡ y(t+ n), x(t− 1) ≡

y(t+ n− 2)
...

y(t− 1)

 .
and y(t) = ỹ(t) for t ∈ {0, . . . , n− 1}. It is then immediate that

JRIE
Q (h, V, w̃, x̃)

≥

sup

{
V

x̃(N),

y(N + n)
...

y(N + 1)


+

N∑
t=1

|x(t− 1)− x̃(t− 1)|2Q

− 2(y(t+ n)− ỹ(t+ n))′h(y(t), x(t− 1), w̃(t))

}
,

≥
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sup

{
N∑
t=1

∣∣∣∣∣∣∣
y(t+ n− 2)− ỹ(t+ n− 2)

...

y(t− 1)− ỹ(t− 1)


∣∣∣∣∣∣∣
2

Q

− 2(y(t+ n)− ỹ(t+ n))′h

v(t),

y(t+ n− 1)

. . .

y(t)

 , w̃(t)

},
where the first inequality holds due to algebraic cancellations and the second
inequality holds due to the non-negativity of V . Letting

∆ =

 y(n)− ỹ(n)
...

y(n+N)− ỹ(n+N)


and examining the definitions of G, ε, P, and W establishes the result.





Part II:

Robustness Analysis of Dynamic
Trajectories





Chapter 5

Introduction

Trajectory libraries have recently emerged as a powerful and flexible methodology
for tackling highly dynamic motion planning and control tasks such as robotic
juggling [17], acrobatic autonomous helicopter maneuvers [41], quadrapedal and
bipedal robot locomotion [125, 138], and aggressive post-stall flight maneuvers for
unmanned aerial vehicles [93]. These techniques sequentially compose a small set
of basic control actions to achieve higher level goals. In practice, the open-loop
plans contained in such a library must be combined with feedback controllers
to overcome state and model uncertainty and provide disturbance rejection. A
practical question arises when applying these techniques: how close to a nominal
trajectory must the state of a system be for a feedback controller to successfully
“capture” it?

This chapter addresses this question by providing algorithms for computing
“funnels” around trajectories of a dynamical system: that is a set of initial condi-
tions whose solutions are guaranteed to enter a certain goal region at a particular
time. More formally, consider the time-varying ordinary differential equation

ξ̇(t) = f(t, ξ(t)), (5.1)

where t ∈ [t0, tf ] denotes time, ξ(t) ∈ Rnx denotes the system state, and the
function f is assumed to be piecewise continuous in its first argument and locally
Lipschitzian in its second argument (see, for example, [48] Section 1.3). A funnel
is defined as follows.

Definition 5.1. Given a dynamical system (5.1) we say a function F mapping
times t ∈ [ta, tb] ⊂ [t0, tf ] to sets F(t) ⊂ Rnx is a funnel if the following condition
is satisfied. For each t ∈ [ta, tb] and x ∈ F(t) the solution of (5.1) with ξ(t) = x
can be extended to the whole interval [t, tb], and

ξ(τ) ∈ F(τ), ∀ τ ∈ [t, tb].

The intuition behind this definition is sketched in Figure 5.1. Solutions are
allowed to “enter” a funnel at any time, but can never exit. There is also no

93
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Figure 5.1. Schematic representation of a funnel. Solutions can enter the funnel at any time,
but are guaranteed never to exit.

guarantee that solutions starting outside of a funnel should ever enter. This
chapter presents algorithms for constructing such funnels and maximizing their
size subject to the constraint that

F(tf ) ⊂ E

for some “target set” E ⊂ Rnx (generally an ellipse). The proposed algorithm
exploits access to approximate solutions of (5.1) and uses sum-of-squares (SOS)
optimization to optimize time-varying quadratic Lyapunov functions.

� 5.1 Constructing Funnels with Lyapunov Functions

For any continuously differentiable function V : [ta, tb]× Rnx → R define

FV (t) = {x ∈ Rnx : V (t, x) ≤ 1}, t ∈ [ta, tb].

This section describes constraints that can be placed on V to ensure that FV is
a funnel. The basic approach is to require that for each trajectory of (5.1) the
function t 7→ V (t, ξ(t)) must decrease near the boundary of FV (t) (i.e. when
V (t, ξ(t)) = 1). The lemmas in this section are stated without proof. Variants of
these results can be found in texts on nonlinear systems such as [63].
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Lemma 5.2. Let V : [ta, tb]×Rnx → R be a continuously differentiable function.
If the set

{(t, x) ∈ [ta, tb]× Rnx : V (t, x) ≤ 1}
is bounded and

∂V

∂t
(t, x) +

∂V

∂x
(t, x)f(t, x) < 0 ∀ (t, x) : V (t, x) = 1, (5.2)

then FV defines a funnel.

The boundedness requirement above is primarily to preclude finite escape.
Note that the above result establishes very little about the behavior of solutions
inside of FV (t), other than the fact that they remain there. It is tempting to
to replace the strict equality of (5.2) with a non-strict inequality. However, this
revised claim would not hold, as demonstrated by the following example.

Example 5.1.1. Consider the first-order dynamical system and Lyapunov function
given by

f(t, x) = 1, V (t, x) = 1 + (|x|2 − 1)3, (x ∈ R, t ∈ [0, 3]).

Here V (t, x) = 1 holds only for x ∈ {1,−1}. Furthermore, ∂V
∂t

(t, x) ≡ ∂V
∂x

(t, 1) ≡
∂V
∂x

(t,−1) ≡ 0. Thus (5.2) holds with a non-strict inequality. However, any
solution of (5.1) with ξ(0) ∈ FV (0) has ξ(t) /∈ FV (t) for t > 1− ξ(0).

The following alternative theorem provides stronger guarantees about the be-
havior of solutions.

Lemma 5.3. Let V : [ta, tb]×Rnx → R be a continuously differentiable function.
If the set

{(t, x) ∈ [ta, tb]× Rnx : V (t, x) ≤ 1}
is bounded and there exist constants λ > 0 and σ ∈ [0, 1) such that

∂V

∂t
(t, x) +

∂V

∂x
(t, x)f(t, x) ≤ λ(σ − V (t, x)) ∀ (t, x) : V (t, x) ≤ 1, (5.3)

then the following holds:

(i) The function F(V/r) is a funnel for every r ∈ (σ, 1].

(ii) For each solution ξ(·) of (5.1), if V (τ, ξ(τ)) ∈ (σ, 1] for some τ ∈ [ta, tb],
then

V (t, ξ(t)) ≤ σ + e−λ(t−τ)(V (τ, ξ(τ))− σ), ∀ t ∈ [τ, tb]. (5.4)
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� 5.1.1 Rational Parameterizations

In later chapters, we consider Lyapunov functions of the form

V (t, x) =
W (t, x)

ρ(t)
,

where W : [ta, tb] × Rnx → R and ρ : [ta, tb] → R are continuously differentiable
functions and ρ is strictly positive. The following proposition, which follows
immediately from the chain rule, provides simple conditions on W and ρ to ensure
V satisfies the hypotheses of Lemmas 5.2 and 5.3.

Proposition 5.4. For the functions V , W and ρ as above, (5.2) is equivalent to

∂W

∂t
(t, x) +

∂W

∂x
(t, x)f(t, x) < ρ̇(t) ∀ (t, x) : W (t, x) = ρ(t). (5.5)

For arbitrary constants λ0 > 0 and σ ∈ [0, 1), if

ρ(t)

(
∂W

∂t
(t, x) +

∂W

∂x
(t, x)f(t, x)

)
− ρ̇(t)W (t, x) ≤ λ0(σρ(t)−W (t, x)) (5.6)

holds for all (t, x) s.t. W (t, x) ∈ (ρ(t)σ, ρ(t)], then (5.3) holds with

λ = min
t

{
λ0

ρ(t)

}
.

� 5.1.2 A Simple Example

The following example illustrates the difference between these two lemmas.

Example 5.1.2. Consider the first-order dynamical system defined by (5.1) with

f(t, x) = −1

2
x+

1

2
sin(t)− x3, (t ∈ [0, 4π], x ∈ R).

Let V (t, x) = W (t, x)/ρ(t) with W (t, x) = x2 and ρ(t) = a0 +ta1−a0
4π

for a0, a1 > 0.

Note that {x : V (t, x) = 1} = {±
√
ρ(t)} and

∂W

∂t
(t, x) +

∂W

∂x
(t, x)f(t, x) = x2 + x sin(t)− 2x4.

It can be verified explicitly that the conditions of Lemma 5.2 are satisfied with
a0 = 2.65 and a1 = 1.1. The conditions of Lemma 5.3 are satisfied, for example,
with ρ(t) = 4, σ = 0.36, and λ = 3. Figures 5.2(a) and 5.2(b) compare the
guarantees provided by these two results.
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Figure 5.2. A comparison of the guarantees provided by applying Lemmas 5.2 and 5.3 to
Example 5.1.2. In (a), solutions are guaranteed never to exit W (t, x) = x2 ≤ 2.65− (1.55/4π)t,
but little is said about their behavior otherwise. In (b), solutions, are guaranteed never to
exit V (t, x) = 1

4x
2 ≤ r for any r ∈ (0.36, 1). Furthermore, V (t, ξ(t)) will approach σ = 0.36

at an exponential rate so long as V (t, ξ(t)) ∈ (σ, 1). This convergence rate, given by (5.4), is
illustrated by dark blue lines for two starting times τ .
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� 5.1.3 Composition and Piecewise Functions

The results of the above lemmas can naturally be extended to the case where both
V and f are defined piecewise with respect to time. To handle these cases, we make
use of the following intuitive “composition” property of funnels. Given a pair of
funnels Fa and Fb defined on [ta, tb] and [tb, tc] respectively, with ta < tb < tc, if

Fa(tb) ⊂ Fb(tb),

then the function

F(t) =

{
Fa(t) t ∈ [ta, tb)

Fb(t) t ∈ [tb, tc]

is also a funnel.
To see how this fact can be applied, say the time interval [t0, tf ] has been

divided into a sequence of intervals defined by t0 < t1 < t2 < . . . < tk = tf . Let
f be defined by

f(t, x) =

{
fi(t, x) t ∈ [ti−1, ti), i ∈ {1, . . . , k − 1}
fk(t, x) t ∈ [tk−1, tk]

,

where each fi : [ti−1, ti] × Rnx → Rnx is continuous in its first argument and
locally Lipschitzian in its second1. Similarly, assume there exists a function V :
[t0, tf ]× Rnx → R defined by

V (t, x) =

{
Vi(t, x) t ∈ [ti−1, ti), i ∈ {1, . . . , k − 1}
Vk(t, x) t ∈ [tk−1, tk]

,

where the functions Vi : [ti−1, ti] × Rnx → R are continuously differentiable. If
the conditions of Lemma 5.2 hold for each fi and Vi individually, then each FVi
defines a funnel. If in addition,

{x ∈ Rnx : Vi(ti, x) ≤ 1} = FVi(ti) ⊂ FVi+1
(ti) = {x ∈ Rnx : Vi+1(ti, x) ≤ 1}

for i ∈ {1, . . . , k − 1}, then the composition property implies that FV (t) defines
a funnel.

1A “solution” of (5.1) in this setting will mean that (5.1) is satisfied by ξ(t) for t ∈ [t0, tf ] \
{t0, t1, t2, . . . , tk}.



Chapter 6

Optimization of Funnels

This chapter takes up the question of automatically searching for Lyapunov func-
tions which certify the existence of a funnel. Our interest will be in funnels which
are constrained to satisfy a terminal condition:

F(tf ) ⊂ Ef ,

where Ef is a target set or goal region. In applications, this target region will be
taken to be an ellipsoid. In terms of the definitions given in the previous chapter,
the optimization problem addressed in this section is

maximize
V

ν(V )

subj. to FV (tf ) ⊂ Ef ,
∂V

∂t
(t, x) +

∂V

∂x
(t, x)f(t, x) < 0, ∀ (t, x) : V (t, x) = 1.

Here ν denotes a cost function representing the “size” of the funnel FV and will
be defined later. The function V will be drawn from a fixed class of functions
whose one-sublevel sets are bounded.

The remainder of this chapter first provides a parameterization of time-varying
quadratic candidate Lyapunov functions. Several natural measures of size for fun-
nels defined by time-varying quadratic functions are defined. Finally, we propose
an iterative optimization procedure based on sums-of-squares programming for
finding as large a funnel as possible. This procedure is initialized based on a
linearized analysis of a sample trajectory.

� 6.1 Time-Varying Quadratic Candidate Lyapunov Functions

This section makes simple observations about time-varying quadratic Lyapunov
candidates. This class of functions has a number of distinct advantages over more
general classes, including connections to basic analytical tools available from linear
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systems theory and the availability of explicit expressions for the volume of sub-
level sets.

In particular, we will examine the following parameterization of time-varying
quadratic Lyapunov functions. Let ξ0 : [ta, tb]→ Rnx be a differentiable function
(in applications it will generally be an approximate solution of (5.1)). For any
pair of functions P : [ta, tb]→ Rnx×nx , and ρ : [ta, tb]→ R such that

P (t) = P (t)′ > 0 and ρ(t) > 0 ∀ t ∈ [ta, tb],

define
W (t, x) = W(ξ0,P )(t, x) = |x− ξ0(t)|2P (t),

and

V (t, x) = V(ξ0,P,ρ)(t, x) :=
W (t, x)

ρ(t)
.

� 6.1.1 Quantifying Size

The following two statements are used in the later sections of this chapter to
quantify the size of funnels defined by a function V given as above:

(i)

vol(FV (t)) ∝
√

ρ(t)nx

det(P (t))
, (6.1)

where the constant of proportionality is the volume of the unit nx-sphere.

(ii) For any function P0 : [ta, tb]→ Rnx×nx s.t. P0(t) = P0(t)′ > 0 and r > 0,

{x ∈ Rnx : |x− ξ0(t)|2P0(t) ≤ r} ⊂ FV (t), ∀ t ∈ [ta, tb]

if and only if
ρ(t)P0(t) ≥ rP (t) ∀ t ∈ [ta, tb].

� 6.1.2 Linearized Analysis

Part of our interest in time-varying quadratic Lyapunov functions is their con-
nection to analysis tools available from linear systems theory. We briefly recall
a result describing how (potentially very conservative) funnels can be related to
the solution of a time-varying Lyapunov differential equation.

Let ξ0 : [ta, tb]→ Rnx be a solution of (5.1) and define

A(t) =
∂f

∂x
(t, ξ0(t)).
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For any symmetric positive-definite matrices Q ∈ Rnx×nx and Pf ∈ Rnx×nx let
P0 : [ta, tb]→ Rnx×nx be the solution of the Lyapunov differential equation

Ṗ (t) = −A(t)′P (t)− P (t)A(t)−Q, (6.2)

that satisfies P (tf ) = Pf (a unique solution exists as this is a linear differential
equation). The following proposition shows that such a solution provides a nat-
ural, albeit conservative, method for generating funnels. The proof is relatively
standard and omitted.

Proposition 6.1. For ξ0 and P0 as above, there exists a positive constant function
ρ sufficiently small such that FV(ξ0,P0,ρ) defines a funnel.

It is important to note that no immediate formula is available for calculating
the positive constant value of ρ. The above proposition only establishes that such
a value should exist.

The following similar statement will be used below:

Proposition 6.2. Let ξ0 and P0 be given as above. There exists a c > 0 such
that FV(ξ0,P0,ρ) defines a funnel where

ρ(t) = exp

(
−c tf − t

tf − t0

)
. (6.3)

� 6.1.3 Parameterizations of Quadratic Lyapunov Functions

This section describes a well-known parameterization of matrix-valued functions
P : [t0, tf ]→ Rnx which guarantee that

P (t) = P (t)′ > 0 ∀ t ∈ [t0, tf ].

The provided parameterization is convex, and in particular can be represented
via LMIs involving the coefficients that determine the function P .

If P is parameterized as a general polynomial function, a sufficient condition
is to ensure the above positivity is to require that

∆′P (t)∆ = s0(t,∆) + s1(t,∆)(t− ta)(tb − t), ∀ t ∈ R,∆ ∈ Rnx

where s0 and s1 are SOS polynomials that are quadratic in ∆. The set of ma-
trix polynomials in a single indeterminate that are positive definite on all of R are
contained in this representation (see [20]). When P is a constant function, this re-
quirement can obviously be simplified to testing that P (0) is positive semidefinite.
Additionally, if P is a linear function it is sufficient to require P (0) and P (1) both
be symmetric positive semidefinite (due to the convexity of the cone of positive
semidefinite matrices). These parameterizations also have clear generalizations
for defining functions which are piecewise polynomial in t.
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� 6.2 Optimization Approach

The optimization approach taken up in this chapter hinges on three assumptions:

(P1) The function f defining (5.1) is piecewise polynomial in time and polynomial
in the remaining variables.

(P2) The function ξ0 is piecewise polynomial.

(P3) The functions ρ and P , as in Section 6.1, are to be chosen from an affinely
parameterized family of functions which are piecewise polynomial in time.

Without loss of generality, we assume there is a common set of “knot points”,
t0 < t1 < . . . < tN = tf , on which the pieces of these piecewise functions are
defined. The most burdensome of these assumptions is (P1). In applications one
approach to satisfying (P1) is to approximate the true dynamics, for example by
Taylor expansion. Methods exist for ensuring such an approximation does not
yield incorrect certificates (e.g. [27]).

Specifically, we examine searching for a continuous piecewise polynomial ρ
for a fixed time-varying quadratic function W , where it is assumed that the one
sublevel set of W (tf , ·) belongs to the goal region Ef . Once we restrict ourselves
to piecewise polynomial vector fields and Lyapunov functions, we can approach
our optimization task as a bilinear sum-of-squares program:

maximize
ρ,s0,s1,`0,`1,µ

∫ tf

t0

ρ(t)dt (6.4)

subj. to ρN−1(tf ) ≤ 1,

∀ i ∈ {0, . . . , N − 1} :

ρi(ti+1) = ρi+1(ti+1),

ρi(t) ≡ s0i(t) + s1i(t)(t− ti)(ti+1 − t),[
ρ̇i(t)−

∂Wi

∂x
(t, x)fi(t, x)− ∂Wi

∂t
(t, x)− ε

]
≡
[
`0i(t, x) + `1i(t, x)(t− ti)(ti+1 − t) + µi(t, x)(ρi(t)−Wi(t, x))

]
s0i, s1i, `0i, `1i SOS.

Here ε is a small positive constant and the decision parameters are the coefficients
determining the pieces of ρ and the polynomials s0i, s1i, `0i, `1i, and µi (whose
degrees are fixed). The cost function is a surrogate for the true volume (see
(6.1)). One can verify that the above SOS conditions imply both that each ρi is
non-negative on [ti, ti+1] and that

ρ̇i(t)−
∂Wi

∂x
(t, x)fi(t, x)− ∂Wi

∂t
(t, x) ≥ ε.
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whenever t ∈ [ti, ti+1] and Wi(t, x) = ρi(t).
This optimization problem is bilinear in the decision variables (note the prod-

uct of the multipliers µi with ρi). To address this issue, we take an approach
similar to [59] by solving an alternating sequence of optimization problems hold-
ing some decision variables fixed.

� 6.2.1 The L-Step: Finding Multipliers

For a fixed ρ(t) we can compute the multiplier polynomials via the following
set of optimizations. For each interval [ti, ti+1] we optimize over fixed degree
polynomials `0i, `1i, and µi and a slack variable γi:

minimize
γi,`0i,`1i,µi

γi (6.5)

subj. to
[
γi + ρ̇i(t)−

∂Wi

∂x
(t, x)fi(t, x)− ∂Wi

∂t
(t, x)− ε

]
≡
[
`0i(t, x) + `1i(t, x)(t− ti)(ti+1 − t) + µi(t, x)(ρi(t)−Wi(t, x))

]
`0i, `1i SOS

These programs can be computed in parallel. If all of the γi are negative then
the combination of ρ and the optimized multipliers are feasible for the original
bilinear SOS problem.

An obvious question is how to first obtain a feasible ρ(t). Motivated by Propo-
sition 6.2, we suggest the following search. We search over a positive constant
c ≥ 0, and take ρ(t) to be a continuous piecewise polynomial approximation of:

ρ(t) ≈ exp

(
−c tf − t

tf − t0

)
.

If a given choice of c does not verify a funnel (i.e. if the optimal values of (6.5)
are not all negative), we iteratively increase the value of c, and potentially the
number of knot points of ρ(t).

� 6.2.2 The V -Step: Improving ρ(t).

Having solved (6.5) for each time interval, we now attempt to increase the size
of the region verified by V by optimizing to increase ρ(t). To do so, we pose the
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following optimization with {`0i, `1i, µi}N−1
i=0 fixed from a solution to (6.5):

maximize
ρ,s0,s1

∫ tf

t0

ρ(t)dt (6.6)

subj. to ρN−1(tf ) ≤ 1,

∀ i ∈ {0, . . . , N − 1} :

ρi(ti+1) = ρi+1(ti+1),

ρi(t) ≡ s0i(t) + s1i(t)(t− ti)(ti+1 − t),[
ρ̇i(t)−

∂Wi

∂x
(t, x)fi(t, x)− ∂Wi

∂t
(t, x)− εi

]
≡
[
`0i(t, x) + `1i(t, x)(t− ti)(ti+1 − t) + µi(t, x)(ρi(t)−Wi(t, x))

]
s0i, s1i SOS

Here εi > 0 can be taken, for example, to be a constant satisfying εi < −γi.
So long as the class of ρi(t) includes the ρi(t) used in the optimizations (6.5),
this optimization will be feasible, and can only improve the achieved value of the
objective.

� 6.2.3 Variations

� 6.2.4 Time Sampled Relaxation

In terms of computational complexity, the high degree dependence on t in the
above SOS optimization problems is the most immediate limiting factor. We now
discuss an approximation to verifying the funnels based on sampling in time.

The proposed approximation verifies the conditions of Lemma 5.2 only at
finely sampled times. For each interval [ti, ti+1] from the above formulation, we
choose a finer sampling ti = τi1 < τi2 < . . . < τiMi

= ti+1. We adapt the bilinear
program of the previous section by testing the resulting conditions only at the
time-points τij. As a result, the terms involving the multipliers `1i are no longer
necessary. Furthermore, the functions µi : R × Rnx → R can be replaced by
polynomials µij : Rnx → R (one for each τij).
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We pose the bilinear SOS optimization:

maximize
ρ,s0,s1,`,µ

∫ tf

t0

ρ(t)dt (6.7)

subj. to ρN−1(tf ) ≤ 1,

∀ i ∈ {0, . . . , N − 1} :

ρi(ti+1) = ρi+1(ti+1),

ρi(t) ≡ s0i(t) + s1i(t)(t− ti)(ti+1 − t),
s0i, s1i SOS

∀j ∈ {1, . . . ,Mi} :[
ρ̇i(τij)−

∂Wi

∂x
(τij, x)fi(τij, x)− ∂Wi

∂t
(τij, x)− εi

]
≡
[
`ij(x) + µij(x)(ρi(τij)−Wi(τij, x))

]
`ij SOS.

We use an analogous strategy of bilinear alternation to approach the problem
and the same strategy is used to find an initial feasible ρ(t). This optimization
removes the complicated dependence on t, however it only tests a necessary but
not sufficient condition for Lemma 5.2 to apply. It can be shown that if V (t, x)
does not satisfy the conditions of Lemma 5.2 there exists a sufficiently fine sam-
pling such that the analogous optimization to (6.5) will not be feasible. However,
this statement does not provide constraints based on computable quantities to
ensure the above certificate is exact.

General Quadratic Lyapunov Functions

Our method thus far has been constrained to rescalings of a fixed computed
quadratic function. In this section we present a modification of the method to
search over more general quadratic Lyapunov functions. This will, for n > 1,
increase the number of parameters describing the funnel, but may result in sig-
nificantly larger volumes being verified.

We adapt the previous optimization problem in the following manner. The
function ρ(t) is taken to be a constant, whereas P (t) is now defined to be piecewise
linear:

P (t) = [(t− ti)Pi+1 + (ti+1 − t)Pi](ti+1 − ti)−1, t ∈ [ti, ti+1],

where the matrices Pi are required to be positive-definite. Another important
question is the choice of cost function. Similar to the work in [133], at a set of
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sample times we measure the size of the sub-level set FV (t) by the largest rescaling
of another fixed ellipse (defined by a function P0(t)) that is contained in FV (t).

maximize
P,`0,`1,µ

−
N∑
i=1

σi (6.8)

subj. to PN = Pf ,

∀ i ∈ {0, . . . , N − 1} :

σiP0(ti) ≥ Pi ≥ 0,[
− ∂Wi

∂x
(t, x)fi(t, x)− ∂Wi

∂t
(t, x)− ε

]
≡
[
`0i(t, x) + `1i(t, x)(t− ti)(ti+1 − t) + µi(t, x)(1−Wi(t, x))

]
`0i, `1i SOS.

This optimization problem is then split into a sequence of bilinear alternations as
above.



Chapter 7

Examples and Applications

We first illustrate the general procedure with a one-dimensional polynomial sys-
tem. Our second example is an idealized three degree of freedom satellite model.
For this second example we compare numerically the proposed techniques. For
both examples, the resulting SDPs are solved using SeDuMi version 1.3 ([126]).

� 7.1 A One-Dimensional Example

We examine a one dimensional time-varying polynomial differential equation de-
fined by (5.1) with

f(t, x) = x− 1

2
x2 + 2t− 2.4t3, (t ∈ [−1, 1], x ∈ R). (7.1)

Our goal region is E = [0, 1]. We can solve nearly exact bounds for the backwards
reachable set which flows into the goal by computing the solutions to (7.1) with
final value conditions x(1) = 1 and x(1) = 0. To find our inner approximation of
this set, we compute an approximate numerical trajectory, ξ0(t) with final value
ξ0(1) = xf = 0.5. We take Pf = 4 so that Ef = {x | |x − xf |2Pf ≤ 1} = E . We

numerically solve the Lyapunov equation (6.2).
We use N = 40 knot points, {ti}Ni=1, chosen to be the steps of a the variable

time-step integration of the Lyapunov differential equation. We interpolate ξ0(t)
with a piecewise cubic polynomial and P (t) with a piecewise linear function. To
find our initial candidate Lyapunov function, we begin by taking ρ(t) to be a

piecewise linear interpolation of exp
(
c(t−1)

2

)
, for c ≥ 0. Taking c = 4 provides a

feasible candidate Lyapunov function. This feasible solution is then improved by
bilinear alternation. Both the initial and optimized sets are plotted against the
known bounds in Figure 7.1.

After a single bilinear alternation, a tight region is found. Note that the
symmetry of the Lyapunov function around the trajectory restricts the region
being verified. Additional trajectories could be used to continue to grow the
verified region.
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Figure 7.1. The backwards reachable set and inner approximations calculated by the method.
Surrounding the nominal trajectory (solid blue) are time-varying intervals. An initial candidate
Lyapunov function (red open circle) is improved via the bilinear optimization (solid green circle).
In this case, a single step of alternation provided a certificate tight to the known bounds (black
stars). Note that the certificate is symmetric about the trajectory, and as a result is generally
sub-optimal.
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� 7.2 Trajectory Stabilization of Satellite Dynamics

We next evaluate a time-varying positively invariant region around a feedback sta-
bilized nominal trajectory. In past work, [130], it was demonstrated how trajec-
tory optimization and randomized search can be combined with such certificates
to approximate the controllable region for a smooth nonlinear system.

We examine the stabilization of a nominal trajectory for a rigid body floating
in space subject to commanded torques. The state of the system is x = [σ′, ω′]′

where σ ∈ R3 are the Modified Rodriguez parameters and ω ∈ R3 are the angular
velocities of the body about its principal axes.

The open-loop dynamics,

ξ̇(t) = f0(ξ(t), u(t)), (7.2)

are defined by

f0

([
σ

ω

]
, u

)
=

[
J(σ)ω

−H−1(ω ×Hω − u)

]
(σ, ω, u ∈ R3) (7.3)

where

J(σ) = (1− ‖σ‖2)I + 2σσ′ − 2

 0 σ3 σ2

σ3 0 σ1

σ2 σ1 0

 ,
H = H ′ > 0 is the diagonal, positive-definite inertia matrix of the system and u is
a vector of torques. In our example H = diag([5, 3, 2]). We now design a control
policy u(t) = π(t, x(t)) such that the closed loop system defined by (5.1) with

f(t, x) = f0(x, π(t, x)) (7.4)

satisfies the assumptions of our method.
Our goal region is defined by an ellipse centered on the origin, described by a

positive-definite matrix PG,

PG =



36.1704 0 0 12.1205 0 0

0 17.4283 0 0 7.2723 0

0 0 9.8911 0 0 4.8482

12.1205 0 0 9.1505 0 0

0 7.2723 0 0 7.3484 0

0 0 4.8482 0 0 6.2557


.
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We begin with a nominal command:

u0(t) =
1

100
t(t− 5)(t+ 5)

−1

−1

1

 , (t ∈ [0, 5]).

We compute the solution, ξ0(t) to (7.3) with u(t) ≡ u0(t) and ξ(5) = 0. Next, we
design a time-varying LQR controller around the trajectory based on the dynamics
linearized about the trajectory (see, for example, [47] Chapter 5). Taking R =
10I3 and Q = I6, we solve the Riccati differential equation:

−Ṡ?(t) = A(t)′S?(t) + S?(t)A(t) +Q− S?(t)B(t)R−1B(t)′S?(t), S?(5) = Pf

where Pf = 1.01PG, A(t) = ∂
∂x
f0(ξ0(t), u0(t)), and B(t) = ∂

∂u
f0(ξ0(t), u0(t)).

This procedure gives us a time-varying gain matrix:

K(t) = R−1B(t)′S?(t)

To force π(t, x) to be piecewise polynomial in t and polynomial in x we take a
piecewise constant approximation of K̂ of K and a piecewise cubic interpolation
ξ̂0(t) of ξ0(t). Our control policy is then:

π(t, x) = u0(t)− K̂(t)(x− ξ̂0(t)).

We now examine the closed loop dynamics. We compare three computed
certificates in terms of their computation time and performance (funnel volume).
In particular, we compute an exact certificate using the ρ(t) parameterization.
We then compute time-sampled certificates using both the ρ(t) parameterization
and the more general quadratic parameterization. For the ρ(t) parameterization,
we take P0(t) to be a piecewise linear approximation of S?(t). All of the above
approximations were piecewise with N = 49 knot points chosen by a variable
time-step integration of the Riccati differential equation. For the time-sampled
versions we verify necessary conditions at Mi = 4 points equally spaced in each
interval [ti, ti+1].

For an initial ρ(t) we use a linear interpolation of an exponential weighting
as suggested by Proposition 6.2. In particular c = 3 proved feasible for both
methods. We choose the initial P (t) to agree at the knot points with the Lyapunov
candidates defined by this initial choice of ρ(t).

We use the following stopping criterion. Let F (k) be the funnel on the k-th
iteration. We halt the iteration if:

vol(F (k))− vol(F (k−1))

vol(F (k−1))
< 0.025 (7.5)
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Figure 7.2. Comparison of optimized volumes using the exact and time-sampled methods for
the ρ(t) parameterization and the time-sampled method with the general quadratic form (P (t))
parameterization of Section 6.1.

Figure 7.2 compares the result of the final iteration for all three methods. The
figure plots the volume of Ωt for each t ∈ [0, 5]. We have found that for the
ρ(t) parameterization typically very few iterations are required for the procedure
to converge; both time-sampled and exact methods stopped after two iterations.
The more complicated P (t) parameterization stopped after 9 iterations. For the
ρ(t) formulation, the time-sampled and exact methods produce nearly identical
results. The more general Lyapunov function shows a substantial increase in
funnel volume. However, this comes at higher computational cost.

Table 7.1 compares the run times. The L-Step consisted of 48 independent
SDPs for the exact method and 192 independent SDPs for both time-sampled
computations. These computations were performed on a 12-core 3.33 GHz Intel
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Table 7.1. Runtime comparison of SDPs for exact and time-sampled approaches.

Method Iters L-Step V -Step Total

(sec/iter) (sec/iter) (min:sec)

ρ(t) Exact 2 5336.5 1378.0 223:49

ρ(t) Sampled 2 45.0 220.0 5:50

P (t) Sampled 9 45.5 887.5 139:57

Xeon computer with 24 Gb of RAM. These L-Step programs can be trivially
parallelized for speedup.



Chapter 8

Conclusion

This thesis has provided methods for addressing the identification and analysis
of nonlinear dynamical systems. With regards to system identification, a fam-
ily of algorithms for estimating stable nonlinear discrete time state-space models
was introduced based on convex sufficient conditions for stability and easily min-
imized convex upper bounds for simulation error. Additionally, a computational
approach to analyzing the backwards reachable sets for nonlinear, nonautonomous
ordinary differential equations was provided. Below I discuss the problems which
these techniques are most relevant to, some caveats regarding the scalability of
the proposed approaches, and topics of ongoing research.

� 8.1 Robust Convex Optimization for Nonlinear System Identification

The techniques introduced in Part I of this thesis are of greatest relevance to
“black-box” identification of dynamical models, i.e. matching highly flexible mod-
els to data without exploiting much in the way of a-priori structural information.
Black-box identification is important for situations where parameterizations of
the “true” dynamics governing a system are prohibitively complex, poorly iden-
tifiable, or simply unknown.

One major obstacle to scaling the approaches provided in this work to larger
systems lies in the use of polynomial equations. This arises due to our dependence
on sums-of-squares programming for ensuring model well-posedness and stability.
Using dense polynomials limits scalability as the number of coefficients required
to describe the space of polynomials of degree d in n variables grows exponentially
as both n and d tend to infinity. Using the currently available technologies for
solving semidefinite programs, the problems which are tractable for the methods
introduced in this work either have a limited dimensionality (a state dimension of
at most 6) but potentially a relatively high degree of nonlinearity, or have a very
structured nonlinearity (as in the example of Section 3.6) with potentially higher
dimension.
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� 8.1.1 Extensions and Future Work

A number of extensions of the techniques presented in this thesis are the subject
of ongoing work with collaborators.

Alternative Identification Objectives

While this work focused exclusively on minimizing simulation error, there are
many situations where models are more appropriately chosen by optimizing other
loss functions. Some obvious situations where simulation error minimization may
not be appropriate are:

1. The system being modeled is not `2-incrementally stable (i.e. has large sen-
sitivities to initial conditions).

2. The experimental condition involves substantial process noise, or generally a
noise models is desirable.

3. The final application requires only short term predictions.

The simplest modifications of the techniques described in this work to these situ-
ations might look at fixed simulation horizons or “discounted” versions of simula-
tion error involving geometrically decaying weights. A more palatable alternative
would be to adapt the methods described in Chapters 2 and 4 to other identifi-
cation paradigms such as the maximum-likelihood and prediction-error methods.
Some initial work indicates that joint estimation of output noise spectrum and
open-loop simulation models should be possible in the framework suggested by
Chapter 4.

Continuous Time Identification

Preliminary extensions of the methods described in this thesis to the identification
of stable continuous time models (i.e. defined by ordinary differential equations)
are provided in [132]. In [13] a similar alternative approach was suggested. There
are several open challenges in applying these approaches to practical data sets
arising from experiments. First, the methods assume access to the derivative of
the state signal. Second, the methods require knowledge of the excitation and
response signals on the entire time interval (i.e. simulation error bounds con-
tained in these works are not applicable given only data recorded at finite sample
points without some additional approximations). One approach to overcoming
these difficulties is to approximate data signals by functions for which analytical
derivatives and integrals are available such as splines and trigonometric functions.
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The latter set of functions may be particularly relevant for approximating non-
linear systems from responses to periodic excitations. Another topic for future
research is the identifying an analog to the contribution of Chapter 4 for contin-
uous time systems.

Incremental Passivity and `2-Gain Bounds

There are straightforward ways to modify the dissipation inequalities used to en-
sure stability in Chapter 2 to instead guarantee identified models are incrementally
passive or possess incremental `2 input-output gain bounds (see [32] for defini-
tions of these properties). Coverage of the corresponding classes of LTI systems
with these properties can be readily established via application of the Positive
Real Lemma and the Bounded Real Lemma (see, for example, [143] Chapter 21).
Relating the passivity of discrete time models back to passivity that arises in
physical systems defined by ODEs presents difficulties which have been touched
on for LTI models in [55]. This topic deserves further study in the nonlinear case.
Such incremental input-output properties also allow for establishing simulation
error bounds for feedback interconnections of subsystems identified individually
from closed-loop data. This observation may open the way towards parallelized
applications of the methods described in this thesis to structured systems.

Limit Cycle Stability

Another area of ongoing research is the identification of differential equation mod-
els which admit stable limit cycles (unforced oscillations). Systems with stable
limit cycles naturally cannot be incrementally stable as solutions beginning at
different points of the limit cycle never converge toward one another. In a prelim-
inary paper, [86], collaborators and the author explored adaptations of techniques
discussed in this thesis to relaxed notions of stability more suitable for the identi-
fication of models with such stable oscillations. Figure 8.1, reproduced from [86],
compares open-loop simulations of three ODE models (blue) matched to data
collected from electrical excitation of a live neuron (grey). The model in (a) is
identified by minimizing a cost function similar to equation error. The simulation
of this model eventually becomes unstable and diverges. The model in (b) is fit
using a technique similar to minimization of the RIE. This yields a model which
is excessively damped compared to the experimental system. The final model is
identified using the technique suggested in [86]. This last model very accurately
reproduces the qualitative behavior of the experimental system. Note that the
simulation error for such a model is actually quite large due to the slight differ-
ences in phase between the simulated “spikes” and actual “spikes” generated by
the neuron. These errors are in agreement with the discussion above regarding
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persistence of errors in phase for systems with stable limit cycles. Despite these
facts, the qualitative behavior of the model clearly matches the experimental
system response.

� 8.2 Robustness Analysis of Dynamic Trajectories

Part II of this thesis provided methods for analyzing the behavior of solutions of
polynomial dynamical systems. In practice, the set of systems with polynomial
dynamics is somewhat limited, though there is some progress in applying SOS
techniques to systems determined by semialgebraic or other nonlinear functional
forms (see, for example, [51] Chapter 2 and [4] Chapter 14). In other circum-
stances, polynomial approximations of dynamics (e.g. Taylor approximations)
can be employed. At the expense of additional computational complexity one can
ensure that such approximations are conservative (see [27]). Perhaps the greatest
limitations of the proposed approach are the difficulty of identifying an initial
feasible candidate Lyapunov function, and the lack of systematic methods for
choosing the degrees of multiplier polynomials.

� 8.2.1 Extensions and Future Work

In a straightforward manner the techniques described in this work can be ex-
tended to dynamics which are piecewise polynomials including, for example, the
effects of actuator saturation (see [130]). It is also straightforward to accom-
modate parametric uncertainties and worst case analysis with respect to distur-
bances. Incorporating these extensions, however, rapidly increases the computa-
tional complexity of the verification task.

A number of recent papers have extended or modified the approach suggested
in Part II (portions of this work were published in [131]). In [85], the author and
collaborators demonstrated how ideas similar to Part II of this thesis can be ap-
plied to the analysis of limit cycles arising in hybrid dynamics. A related method
presented in [93] (though with a different optimization objective) was applied to
models of a perching unmanned aerial vehicle. The paper [84] provides an itera-
tive control design strategy based on choosing control laws to maximize the size
of the funnel which can be verified. Most importantly, this last paper examines
experimental applications of the identified control laws and partial experimental
validation of the computed funnels.

Perhaps the most pressing topic for future research is the interaction between
the theoretical guarantees provided by “funnels” and experimental practice. If an
experimental system violates a given funnel at some level one has proven the model
used to compute the funnel invalid. Finding a meaningful way to incorporate such
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(a) Performance of a model identified using least squares.
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(b) Performance of a model identified using a method related to RIE minimization.
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(c) Performance of a model identified using the technique described in [86].

Figure 8.1. A comparison of identification approaches to black-box modeling of the cellular
membrane potential (gray) of a live neuron in response to injected current. Open-loop simula-
tions of three ODE models (blue) identified using competing techniques are compared (see [86]
for details and the text for discussion).
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negative results into improved certificates or models represents a serious challenge
(and potential opportunity) for practical application of these techniques.
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