
Evaluating Robustness of Neural Networks with
Mixed Integer Programming

by

Vincent Tjeng

B.S., Massachusetts Institute of Technology (2017)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2018

c© Massachusetts Institute of Technology 2018. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 25, 2018

Certified by. .
Russ Tedrake

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Katrina LaCurts

Chair, Master of Engineering Thesis Committee

2

Evaluating Robustness of Neural Networks with Mixed

Integer Programming

by

Vincent Tjeng

Submitted to the Department of Electrical Engineering and Computer Science
on May 25, 2018, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Neural networks have demonstrated considerable success on a wide variety of real-world
problems. However, neural networks can be fooled by adversarial examples — slightly
perturbed inputs that are misclassified with high confidence. Verification of networks
enables us to gauge their vulnerability to such adversarial examples. We formulate
verification of piecewise-linear neural networks as a mixed integer program. Our verifier
finds minimum adversarial distortions two to three orders of magnitude more quickly
than the state-of-the-art. We achieve this via tight formulations for non-linearities,
as well as a novel presolve algorithm that makes full use of all information available.
The computational speedup enables us to verify properties on convolutional networks
with an order of magnitude more ReLUs than had been previously verified by any
complete verifier, and we determine for the first time the exact adversarial accuracy of
an MNIST classifier to perturbations with bounded l∞ norm ε = 0.1. On this network,
we find an adversarial example for 4.38% of samples, and a certificate of robustness for
the remainder. Across a variety of robust training procedures, we are able to certify
more samples than the state-of-the-art and find more adversarial examples than a
strong first-order attack for every network.

Thesis Supervisor: Russ Tedrake
Title: Professor of Electrical Engineering and Computer Science

3

4

Acknowledgments

None of this work would have been possible without the unceasing support of my

advisor, Russ Tedrake. His knack for asking the right questions and discerning where

the largest potential impact would be has ensured that I remain focused on what is

most important.

I’d also like to thank the members of the Robot Locomotion Group for their

insights and friendship. I spend every day at work surrounded by an incredible group

of brilliant people, and I am continuously inspired by the work they do. Best of all,

everyone in the group is incredibly generous with their time.

Finally, I would like to thank my family for a lifetime of love and support. Thanks

to my mom and dad for their constant encouragement, and my sister for always being

there to lend an ear.

Funding Acknowledgement This work was partially supported by Lockheed Martin

Corporation under award number RPP2016-002.

5

6

Contents

1 Introduction 13

1.1 Contributions . 14

1.2 Related Work . 15

2 Verification as solving an MILP 19

2.1 Preliminaries . 19

2.2 Evaluating Adversarial Accuracy . 20

2.3 Evaluating Mean Minimum Adversarial Distortion 21

2.4 Expressing lp Norms as the objective of an MIP Model 22

2.4.1 l1 . 22

2.4.2 l∞ . 22

2.4.3 l2 . 23

2.5 Formulating piecewise-linear Functions 23

2.5.1 Formulating ReLU . 23

2.5.2 Formulating the Maximum Function. 24

2.6 Presolve to Determine Bounds . 25

2.6.1 Procedures to Determine Bounds 26

2.6.2 Progressive Bounds Tightening 28

3 Experimental Results 31

3.1 Performance Comparisons . 33

3.1.1 Verification Times . 33

3.1.2 Bounds on Minimum Targeted Adversarial Distortions 34

7

3.2 Determining Adversarial Accuracy of Robust Networks 34

3.3 Ablation Testing . 37

4 Discussion 41

8

List of Figures

3-1 Average times for determining exact values or bounds on the minimum

targeted adversarial distortion. We improve on the speed of the state-of-

the-art complete verifier Reluplex by two to three orders of magnitude.

Results for methods other than ours are from [40]; results for Reluplex

were only available in [40] for the l∞ norm. 34

3-2 Average of exact values or bounds on the minimum targeted adversarial

distortion. The gap between the true minimum adversarial distortion

and the best lower bound is significant and increases for deeper networks.

Again, results for methods other than ours are from [40]. 35

9

10

List of Tables

3.1 Adversarial accuracy of classifiers to perturbations with l∞ norm-bound

ε. In every case, we improve both 1) the lower bound on the adversarial

error found by PGD and 2) the previous state-of-the-art (SOA) for the

upper bound in the cited paper. For classifiers marked with a X, we

have a guarantee of robustness or a valid adversarial example for every

test sample. Gaps between our bounds correspond to samples for which

the solver reached the time limit. Error is over the full MNIST test set

of 10,000 samples; mean verification time includes solves reaching the

time limit. † The PGD error we report differs significantly from that in [32] since

we impose the constraint that x′ ∈ Xvalid. 36

3.2 Mean verification time for determining adversarial accuracy of classifiers

over the full MNIST test set of 10,000 samples, includes solves reaching

the time limit but excluding samples that are incorrectly classified

(since determining that these samples are not robust is trivial). The

fraction of samples reaching the time limit is noted as ‘fraction timed

out’. 37

3.3 Number of labels that can be eliminated from consideration, and average

number of ReLUs in each phase when the input domain is restricted to

the l∞ ball of radius ε = 0.1 around test input. Results are aggregated

over the full MNIST test set. Mean verification time is inversely

proportional to number of labels eliminated and proportional to number

of possibly unstable ReLUs. 38

11

3.4 Results of ablation testing for our verifier. The task was to determine

the adversarial accuracy of LPd-cnn to perturbations with l∞ norm-

bound ε = 0.1. In each case, we removed a single optimization made

in our verifier. Build time refers to time used to determine bounds,

while solve time refers to time used to solve the feasibility problem in

Equation 2.2. †For Some bounds are reusable across different input since input

domain is no longer restricted; we exclude the initial build time required (3593s) for

these bounds. ‡Ablation test run only on first 100 samples. 39

12

Chapter 1

Introduction

Neural networks represent the state-of-the-art for classification of images [18, 39] and

object localization in images [33]. However, networks that are trained only to optimize

for training accuracy have been shown to be vulnerable to adversarial examples:

perturbed inputs that are very similar to some regular input but for which the output

is radically different [36]. In the context of image classification, the perturbed image

is often visually indistinguishable from the original but can be misclassified with high

confidence.

There is now a large body of work proposing defense methods to produce classifiers

that are more robust to adversarial examples. However, as long as a defense is

evaluated only via attacks that find local optima (such as the Fast Gradient Sign

Method (FGSM) [17] or Carlini and Wagner’s attack (CW) [8]), we have no guarantee

that the defense actually increases the robustness of the classifier produced. Defense

methods thought to be successful when published have often been later found to

be vulnerable to a new class of attacks. For instance, multiple defense methods are

defeated in [7] by constructing defense-specific loss functions and in [1] by overcoming

obfuscated gradients.

Fortunately, we can evaluate robustness to adversarial examples in a principled

fashion. One option is to determine the minimum adversarial distortion for each input

[6]. An increase in mean minimum distortion indicates an improvement in robustness.

Alternatively, we can determine adversarial test accuracy [2] with respect to a bounded

13

class of attacks. A classifier is considered robust for an input only if we can certify

that no bounded perturbation causes a misclassification.1

We present an efficient implementation of a mixed-integer linear programming

(MILP) verifier for properties of piecewise-linear feed-forward neural networks. Our

tight formulation for non-linearities and our novel presolve algorithm combine to

minimize the number of binary variables in the MILP problem and dramatically

improve its numerical conditioning. On a representative task of finding minimum

adversarial distortions, we are two to three orders of magnitude faster than the

state-of-the-art Satisfiability Modulo Theories (SMT) based verifier, Reluplex [26].

1.1 Contributions

We make the following key contributions:

• We demonstrate that, despite considering the full combinatorial nature of the

network, our verifier can succeed on deeper neural networks — including those

with convolutional layers — when evaluating the robustness of these networks to

bounded perturbations. Furthermore, we identify why we can succeed. Despite

the large total number of non-linear units, as long as the input domain is bounded,

1) a large fraction of the non-linear units are provably active or provably inactive;

2) many labels can be efficiently eliminated from consideration.

• We determine — for the first time — the exact adversarial accuracy for MNIST

classifiers with bounded l∞ norm ε. For example, for ε = 0.1, we guarantee

an adversarial test accuracy for the classifier of 95.62%, and provide a valid

adversarial example for the remaining test inputs. This accuracy represents an

increase of 1.44 percentage points over the highest previous guarantee found in

[27].

• We are able to certify more samples than the state-of-the-art and find more

1The two measures are related: a solver that can find certificates for bounded perturbations can
be used iteratively (in a binary search process) to find minimum distortions.

14

adversarial examples than a strong attack across different networks trained with

a variety of robust training procedures.

Our code is available at https://github.com/vtjeng/MIPVerify.jl

1.2 Related Work

Our work relates most closely to other work on verification of piecewise-linear neural

networks; [5] provides a good overview of the field.

Verification procedures can be categorized as complete or incomplete. To understand

the difference between the two, we consider the example of evaluating adversarial

accuracy. As in [27], we call the exact set of all final-layer activations that can be

achieved by applying a bounded perturbation to the input the adversarial polytope.

Incomplete verifiers reason over an outer approximation of the adversarial polytope.

This means that the answer to some queries about the adversarial polytope may not

be decidable using incomplete verifiers. In particular, incomplete verifiers can only

certify robustness for a fraction of input that is robust; the status for the remaining

input is undetermined.

In contrast, complete verifiers reason over the exact adversarial polytope. Given

sufficient time, a complete verifier can provide a definite answer to any query about

the adversarial polytope. In the context of adversarial accuracy, complete verifiers will

obtain a valid adversarial example or a certificate of robustness for every input. When

a time limit is set, complete verifiers behave like incomplete verifiers, and resolve

only a fraction of queries. However, complete verifiers allow users to answer a larger

fraction of queries by extending the set time limit.

Incomplete verifiers for evaluating network robustness employ a range of techniques,

including duality [13, 32], layer-by-layer approximations of the adversarial polytope

[41], discretizing the search space [23], abstract interpretation [16], bounding the local

Lipschitz constant [40], or bounding the activation of the ReLU with linear functions

[40]. We highlight in particular the verifier presented by [27], which expresses an

outer approximation of the adversarial polytope using a set of linear constraints, and

15

https://github.com/vtjeng/MIPVerify.jl

generates robustness certificates by solving a linear program. Any certificate generated

by this verifier will be quickly generated by our verifier, since we solve the same linear

program as the first step of our verification procedure.

Complete verifiers typically employ either MILP solvers [10, 12, 15, 28] or SMT

[6, 14, 26, 34]. Our approach improves upon existing MILP-based approaches with a

tighter formulation for non-linearities and a novel presolve algorithm that makes full

use of all information available. The impact of these optimizations is revealed through

our ablation testing. When compared to SMT-based approaches, our verifier is two to

three orders of magnitude faster than the state-of-the-art verifier, Reluplex, on the

task of finding minimum adversarial distortions.

Other authors have used complete verifiers to verify properties of MNIST classifiers,

determining minimum adversarial distortions [6] or verifying robustness to bounded

perturbations [10, 15]. However, the largest MNIST classifiers that any of these papers

verify has only 200 units. In contrast, our efficiently implemented verifier is able to

handle a network with more than 4,000 units.

A complementary line of research to complete verification is in training networks

that are designed to be robust to bounded perturbations. Rather than simply optimiz-

ing over the loss at each input, robust training procedures optimize over an estimate

of the worst-case loss over all bounded perturbations of the input.

Adversarial training [17] optimizes over a lower bound of the loss provided by a

valid adversarial example generated by heuristic attacks. Adversarial training has

shown some promise, but networks trained to be robust to weaker attacks such as the

FGSM [17] have been shown to remain vulnerable to stronger attacks [37].

In contrast, certified training approaches [22, 27, 32] optimize over an upper bound

of the loss (or a surrogate for the upper bound). At the end of the training procedure,

the upper bound at a given input (if it is below a threshold) can be used as a certificate

for the robustness of the network at that input. Unfortunately, the conservatism of

the upper bound means that some input that is robust to bounded perturbations

cannot be certified.

Complete verifiers such as ours can augment robust training procedures by resolving

16

the status of input for which heuristic attacks cannot find an adversarial example but

incomplete verifiers cannot find a certificate. This enables more accurate comparisons

between different training procedures.

17

18

Chapter 2

Verification as solving an MILP

2.1 Preliminaries

We denote a neural network by the function f(·; θ) : Rm → Rn that is parameterized

by a (fixed) vector of weights θ. For a classifier, the output layer has a neuron for

each target class the network is designed to predict.

Borrowing from the notation in [5], the general problem of verification is to

determine whether some property P (·) : Rn → {F, T} on the output of a neural

network holds for all input in a bounded input domain C ⊆ Rm. For the verification

problem to be expressible as solving an MILP, the property P must be expressible as

the conjunction or disjunction of linear properties Pi,j over some set of polyhedra Ci,

where C = ∪Ci.

In addition, f(·) must be composed of piecewise-linear layers. This is not a

particularly restrictive requirement: piecewise-linear layers include layers that are

linear transformations (such as densely-connected, convolution, and average-pooling

layers) and layers that use piecewise-linear functions (such as ReLU or maximum-

pooling layers). We provide details on how to express these non-linearities in Section 2.5.

[5] observes that batch normalization [25] or dropout [35] are also linear transformations

at evaluation time, and we note that the "shortcut connections" used in architectures

such as ResNet [21] are also linear.

Finally, we note that the perturbed inputs must always remain in the domain of

19

valid inputs Xvalid. For example, for normalized images with pixel values ranging from

0 to 1, Xvalid = [0, 1]m.

2.2 Evaluating Adversarial Accuracy

Let G(x) denote the region in the input domain corresponding to all allowable pertur-

bations of a particular input x. As in [27, 29], we say that a neural network is robust

to perturbations on x if the predicted probability of the true label λ(x) exceeds that

of every other label for all perturbations in G(x):

∀x′ ∈ (G(x) ∩ Xvalid) : argmaxi(fi(x
′)) = λ(x) (2.1)

Equivalently, the network is robust to perturbations on x if and only if Equation 2.2

is infeasible.

(x′ ∈ (G(x) ∩ Xvalid)) ∧
(
fλ(x)(x

′) < max
µ∈[1,n]\{λ(x)}

fµ(x
′)

)
(2.2)

For conciseness, we call x robust (with respect to the network) if f(·) is robust to

perturbations on x. If x is not robust, we call any x′ satisfying the constraints a valid

adversarial example (to x).

As long as G(x) (and Xvalid) can be expressed as the union of a set of polyhedra, this

feasibility problem can be expressed as an MILP. In our case, the three robust training

procedures we consider [27, 29, 32] are all designed to be robust to perturbations

with bounded l∞ norm, and the l∞-ball of radius ε around each input x can indeed

be succinctly represented by the set of linear constraints G(x) = {x′ | ∀i : −ε ≤

(x− x′)i ≤ ε}.

20

2.3 Evaluating Mean Minimum Adversarial Distor-

tion

Let d(·, ·) denote a distance metric that measures the perceptual similarity between

two input images. The minimum adversarial distortion under d for input x with true

label λ(x) corresponds to the solution to the optimization:

minx′ d(x
′, x) (2.3)

subject to argmaxi(fi(x
′)) 6= λ(x) (2.4)

x′ ∈ Xvalid (2.5)

More generally, we can also find the minimum targeted adversarial distortion, where

we attempt to generate an adversarial examples that is classified in one of a set of

target labels T .1 The minimum targeted adversarial distortion is the solution to the

optimization:

minx′ d(x
′, x) (2.6)

subject to argmaxi(fi(x
′)) ∈ T (2.7)

x′ ∈ Xvalid (2.8)

The most prevalent distance metrics in the literature for generating adversarial

examples are the l1 [8, 9], l2 [36], and l∞ [17, 31] norms. All three can be expressed in

the objective without adding any additional integer variables to the model [4]; full

details can be found in Section 2.4.

1 We note that the minimum adversarial distortion is simply a special case of the minimum
targeted adversarial distortion, with T = [1, n]\{λ(x)}.

21

2.4 Expressing lp Norms as the objective of an MIP

Model

2.4.1 l1

When d(x′, x) = ‖x′ − x‖1, we introduce the auxiliary variable δ, which bounds the

elementwise absolute value from above: δj ≥ x′j − xj, δj ≥ xj − x′j. The optimization

in Equation 2.3-2.5 is equivalent to

min
x′

∑
j

δj (2.9)

subject to argmaxi(fi(x
′)) 6= λ(x) (2.10)

x′ ∈ Xvalid (2.11)

δj ≥ x′j − xj (2.12)

δj ≥ xj − x′j (2.13)

2.4.2 l∞

When d(x′, x) = ‖x′ − x‖∞, we introduce the auxiliary variable ε, which bounds the

l∞ norm from above: ε ≥ x′j − xj, ε ≥ xj − x′j. The optimization in Equation 2.3-2.5

is equivalent to

min
x′

ε (2.14)

subject to argmaxi(fi(x
′)) 6= λ(x) (2.15)

x′ ∈ Xvalid (2.16)

ε ≥ x′j − xj (2.17)

ε ≥ xj − x′j (2.18)

22

2.4.3 l2

When d(x′, x) = ‖x′ − x‖2, the objective becomes quadratic, and we have to use a

Mixed Integer Quadratic Program (MIQP) solver. However, no auxiliary variables are

required: the optimization in Equation 2.3-2.5 is simply equivalent to

min
x′

∑
j

(x′j − xj)2 (2.19)

subject to argmaxi(fi(x
′)) 6= λ(x) (2.20)

x′ ∈ Xvalid (2.21)

2.5 Formulating piecewise-linear Functions

Tight formulations of the rectifier and maximum functions are critical to good per-

formance of the MILP solver; we thus present these formulations in detail with

accompanying proofs. For the interested reader, tight formulations for general piece-

wise linear functions are available in [24].

2.5.1 Formulating ReLU

Consider a ReLU with input x and output y. We have y = max(x, 0). In addition, we

assume that we have some bounds on the value of the input, l ≤ x ≤ u.

There are three possibilities for the phase of the ReLU. If u ≤ 0, we have y ≡ 0.

We say that such a unit is stably inactive. Similarly, if l ≥ 0, we have y ≡ x. We say

that such a unit is stably active. Otherwise, the unit is unstable.

For unstable units, we introduce an indicator decision variable a = 1x≥0. The

constraint y = max(x, 0) is then equivalent to the following set of linear and integer

constraints:

23

y ≤ x− l(1− a) (2.22)

y ≥ x (2.23)

y ≤ u · a (2.24)

y ≥ 0 (2.25)

a ∈ {0, 1} (2.26)

The proof is as follows.

When a = 0, the constraints in Equation 2.24 and 2.25 are binding, and together

imply that y = 0. The other two constraints are not binding, since Equation 2.23 is

no stricter than Equation 2.25 when x < 0, while Equation 2.22 is no stricter than

Equation 2.24 since x− l ≥ 0. We thus have a = 0 =⇒ y = 0.

When a = 1, the constraints in Equation 2.22 and 2.23 are binding, and together

imply that y = x. The other two constraints are not binding, since Equation 2.25 is

no stricter than Equation 2.23 when x > 0, while Equation 2.24 is no stricter than

Equation 2.22 since x ≤ u. We thus have a = 1 =⇒ y = 0.

This formulation for rectified linearities is sharp [38] if we have no further informa-

tion about x. This is the case since relaxing the integrality constraint on a leads to

(x, y) being restricted to an area that is the convex hull of y = max(x, 0). However, if

x is an affine expression x = wT z + b, the formulation is no longer sharp, and we can

add more constraints using our bounds on each individual element of z to improve

the problem formulation.

2.5.2 Formulating the Maximum Function.

Consider a unit whose output y is the maximum of its inputs x1, x2, . . . , xm. We have

y = max(x1, x2, . . . , xm). As in the previous section, we assume that we have some

bounds on the value of the input, li ≤ xi ≤ ui.

Proposition 1. Let lmax , max(l1, l2, . . . , lm). We can eliminate from consideration all

24

xi where ui ≤ lmax, since we know that y ≥ lmax ≥ ui ≥ xi.

We henceforth assume without loss of generality that ui > lmax ∀i. We introduce an

indicator decision variable ai for each of our input variables, where ai = 1 =⇒ y = xi.

Furthermore, we define umax,−i , maxj 6=i(uj). The constraint y = max(x1, x2, . . . , xm)

is then equivalent to the following set of linear and integer constraints:

y ≤ xi + (1− ai)(umax,−i − li) ∀i (2.27)

y ≥ xi ∀i (2.28)
m∑
i=1

ai = 1 (2.29)

ai ∈ {0, 1} (2.30)

The proof is as follows.

Equation 2.29 ensures that exactly one of the ai is 1. It thus suffices to consider

the value of ai for a single variable.

When ai = 1, Equations 2.27 and 2.28 are binding, and together imply that y = xi.

We thus have ai = 1 =⇒ y = xi.

When ai = 0, we simply need to show that the constraints involving xi are

never binding regardless of the values of x1, x2, . . . , xm. Equation 2.28 is not binding

since ai = 0 implies xi is not the (unique) maximum value. Furthermore, we have

chosen an appropriate constant term such that Equation 2.27 is not binding, since

xi + umax,−i − li ≥ umax,−i ≥ y. This completes our proof.

2.6 Presolve to Determine Bounds

We previously assumed that we had some element-wise bounds on the inputs to non-

linearities. In practice, we have to carry out a presolve step to determine these bounds.

Determining tight bounds is critical for problem tractability: tight bounds strengthen

the problem formulation and thus improve solve times [38]. For instance, if we can

25

prove that the phase of a ReLU is stable, we can avoid introducing a binary variable.

More generally, looser bounds on input to some unit will propagate downstream,

leading to units in later layers having looser bounds.

2.6.1 Procedures to Determine Bounds

Our framework for determining bounds on decision variables is to view the neural

network as a computation graph G. Directed edges point from function input to

output, and vertices represent variables. Source vertices in G correspond to the input

of the network, and sink vertices in G correspond to the output of the network. The

computation graph begins with defined bounds on the input variables (as determined

by the input domain (G(x) ∩ Xvalid)), and is augmented with bounds on intermediate

variables as we determine them. The computation graph is acyclic for the feed-forward

networks we consider.

Since the networks we consider are piecewise-linear, any subgraph of G can be

expressed as an MILP, with constraints derived from 1) input-output relationships

along edges and 2) bounds on the values of the source nodes in the subgraph. Integer

constraints are added whenever edges describe a non-linear relationship.

In our descriptions, we focus on computing an upper bound on v; computing lower

bounds follows a similar process. All the information required to determine the best

possible bounds on a variable v is contained in the subtree of G rooted at v, Gv.

(Other variables that are not ancestors of v in the computation graph cannot affect

its value.) Maximizing the value of v in the MILP Mv corresponding to Gv gives the

optimal upper bound on v.

We can reduce computation time in two ways. Firstly, we can prune some edges

and vertices of Gv. Specifically, we select a set of variables with existing bounds

VI that we assume to be independent (that is, they each can take on any value —

within the existing bounds — independent of the value of the other variables in VI).

We remove all in-edges to vertices in VI , and eliminate variables without children,

resulting in the smaller computation graph Gv,VI . Maximizing the value of v in the

MILP Mv,VI corresponding to Gv,VI gives a valid upper bound on v that is optimal if

26

the independence assumption holds.

We can also reduce computation time by relaxing some of the integer constraints in

Mv to obtain a MILP with fewer integer variables M ′
v. Relaxing an integer constraint

corresponds to replacing the matching non-linear relationship with its convex relaxation.

Again, the objective value returned by maximizing the value of v over M ′
v may not be

the optimal upper bound, but will still be valid.

milp

milp considers the full subtree Gv and does not relax any integer constraints. The

upper and lower bound on v is determined by maximizing and minimizing the value

of v in Mv respectively. This procedure is also used in [10, 15].

If solves proceed to optimality, milp is guaranteed to find the best possible bounds

on the value of a single variable v. The trade-off is that, for deeper layers, using milp

can be relatively inefficient, since solve times in the worst case are exponential in the

number of binary variables introduced.

Nevertheless, contrary to what is asserted in [10], we can terminate solves early

and still obtain useful bounds. For example, to determine an upper bound on v, we

set the objective of the MILP to be to maximize the value of v. As the solve process

proceeds, we obtain progressively better certified upper bounds on the maximum value

of v. We can thus terminate the solve process and extract the best upper bound found

at any time, using this upper bound as a valid (but possibly loose) bound on the value

of v.

lp

lp considers the full subtree Gv but relaxes all integer constraints. This results in a

linear program that can be solved more efficiently than the MILP. lp represents a

good middle ground between the optimality of milp and the performance of ia.

27

ia

ia selects VI to be the parents of v; this is simply interval arithmetic [30]. In other

words, bounds on v are determined solely by considering the bounds on the variables

in the previous layer. This procedure is also used in [10, 12, 27].

Consider the example of computing bounds on the variable ẑi = Wizi−1 + bi. We

have

ẑi ≥ W−
i uzi−1

+W+
i lzi−1

(2.31)

ẑi ≤ W+
i uzi−1

+W−
i lzi−1

(2.32)

W+
i , max(Wi, 0) (2.33)

W−
i , min(Wi, 0) (2.34)

lzi−1
≤ zi−1 ≤ uzi−1

(2.35)

ia is efficient (since it only involves matrix operations for our applications). How-

ever, for deeper layers, using interval arithmetic can lead to overly conservative

bounds.

2.6.2 Progressive Bounds Tightening

Faster procedures achieve efficiency by compromising on tightness of bounds. We

thus face a trade-off between higher build times (to determine tighter bounds to

inputs to non-linearities), and higher solve times (to solve the main MILP problem in

Equation 2.2 or Equation 2.3-2.5).

While a degree of compromise is inevitable, our knowledge of the non-linearities

used in our network allows us to reduce average build times without affecting the

strength of the problem formulation. The key observation is that, for piecewise-linear

non-linearities, there are thresholds beyond which further refining a bound will not

improve the problem formulation. For example, once the lower bound on the input to

a ReLU can be shown to be positive, it is guaranteed to be stably inactive, and there

is no need to attempt to prove a stronger lower bound.

28

With this in mind, we adopt a progressive bounds tightening approach: we begin by

determining coarse bounds using fast procedures and only spend time refining bounds

using procedures with higher computational complexity if doing so could provide

additional information to improve the problem formulation. We always use only ia for

the output of the first layer, since the independence of network input implies that ia

is provably optimal for that layer. Finally, we also allow users to specify a maximum

build effort, which is the procedure with the highest computational complexity that

will be used to determine bounds. This is useful in the case that a fast procedure with

low complexity such as lp provides sufficiently strong bounds for quick solves.

29

30

Chapter 3

Experimental Results

Dataset. All experiments are carried out on classifiers for the MNIST dataset of

handwritten digits.

Architectures. We conduct experiments on a range of feed-forward networks. In

all cases, ReLUs follow each layer except the output layer. mlp-m×[n] refers to a

multilayer perceptron with m hidden layers and n units per hidden layer. We further

abbreviate mlp-1×[500] and mlp-2×[200] as mlp-a and mlp-b respectively. cnn

refers to the ConvNet architecture used for the robust MNIST classifier in [27]. The

network has two convolutional layers (stride length 2) with 16 and 32 filters respectively

(size 4× 4 in both layers), followed by a hidden layer with 100 units.

Training Methods. We conduct experiments on networks trained with a regular

loss function and networks trained to be robust. Networks trained to be robust are

identified by a prefix corresponding to the method used to approximate the worst-case

loss: LPd1 when the dual of a linear program is used, as in [27]; SDPd when the dual

of a semidefinite relaxation is used, as in [32]; and Adv when adversarial examples

generated via Projected Gradient Descent (PGD) are used, as in [29]. Full details on

all networks used are provided in Appendix 3.

1This is unrelated to the procedure to determine bounds named lp.

31

Experimental Setup. We construct the MILP models in Julia [3] using JuMP [11],

with the model solved by the commercial solver Gurobi 7.5.2 [19]. All experiments were

run on a KVM virtual machine with modest specifications: 8 virtual CPUs running

on shared hardware, with Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz processors,

and 8GB of RAM. We set the maximum build effort to lp. Unless otherwise noted,

we terminate the optimization and report a timeout if solve time exceeds 1200s.

Additional Details on Networks Used. The source of the weights for each of

the networks we present results for in the paper are provided below.

• Networks not designed to be robust:

– mlp-2×[20] and mlp-3×[20] are the MNIST classifiers in [40], and can be

found at https://github.com/huanzhang12/CertifiedReLURobustness.

• Networks designed for robustness to perturbations with l∞ norm-bound ε = 0.1:

– LPd-cnn is the MNIST classifier in [27], and can be found at https:

//github.com/locuslab/convex_adversarial.

– Adv-cnn was trained with adversarial examples generated by PGD. PGD

attacks were carried out with l∞ norm-bound ε = 0.1, 8 steps per sample,

and a step size of 0.334. An l1 regularization term was added to the

objective with a weight of 0.1 on the first convolution layer and 0.2 for the

remaining layers.

– Adv-mlp-2×[200] was trained with adversarial examples generated by PGD.

PGD attacks were carried out with with l∞ norm-bound ε = 0.15, 200

steps per sample, and a step size of 0.1. An l1 regularization term was

added to the objective with a weight of 0.003 on the first layer and 0 for

the remaining layers.

– SDPd-mlp-1×[500] is the classifier in [32], provided courtesy of the authors.

• Networks designed for robustness to perturbations with l∞ norm-bound ε =

0.2, 0.3, 0.4:

32

https://github.com/huanzhang12/CertifiedReLURobustness
https://github.com/locuslab/convex_adversarial
https://github.com/locuslab/convex_adversarial

– LPd-cnn was trained with the code available at https://github.com/

locuslab/convex_adversarial. Parameters selected were batch_size=20,

starting_epsilon=0.01, epochs=200, seed=0.

3.1 Performance Comparisons

We evaluate the performance of our verification approach on the task of finding

minimum targeted adversarial distortions. Approaches included for comparison are 1)

Reluplex [26], a complete verifier also able to find the true minimum distortion; and

2) LP2, Fast-Lip, Fast-Lin [40], and LP-full [27], incomplete verifiers that provide

a certified lower bound on the minimum distortion. We remove the time limit of 1200s

for our method for these experiments.

For each sample in the MNIST test set, our complete verifier finds the true minimum

distortion by providing an adversarial example with that distortion, and a proof that

no input closer than that is adversarial.

To ensure that we are able to accurately compare the verification times for our

method with those reported for the methods in [40], we did our best to match the

authors’ experimental setup. Specifically, we used the same network weights, test

samples, and target classes as in [40]. In addition, we conducted the experiments

in single thread mode as the authors do. Finally, as in [40], the results presented

represent an average over the first 100 samples of the MNIST test set, with samples

among the first 100 that are incorrectly classified excluded from the average.

3.1.1 Verification Times

Figure 3-1 presents average verification times per sample. On the l∞ norm, we improve

on the speed of the state-of-the-art complete verifier Reluplex by two to three orders

of magnitude, and our method appears to scale better for deeper networks. For the l1

norm, our speed is even comparable to LP-full — a method which only provides a

lower bound.
2This is unrelated to the procedure to determine bounds named lp, or the traning procedure LPd.

33

https://github.com/locuslab/convex_adversarial
https://github.com/locuslab/convex_adversarial

Figure 3-1: Average times for determining exact values or bounds on the minimum
targeted adversarial distortion. We improve on the speed of the state-of-the-art
complete verifier Reluplex by two to three orders of magnitude. Results for methods
other than ours are from [40]; results for Reluplex were only available in [40] for the
l∞ norm.

3.1.2 Bounds on Minimum Targeted Adversarial Distortions

Figure 3-2 compares lower bounds provided by the incomplete verifiers to the exact

value we obtain.

Even on the small networks we are considering, the gap between the best certified

lower bound and the true minimum adversarial distortion is significant. This corrob-

orates the observation in [32] that incomplete verifiers provide weak bounds if the

network they are applied to is not optimized for that verifier. For example, under

the l∞ norm, the best certified lower bound is less than half of the true minimum

distortion; thus, a network designed to be robust to perturbations with l∞ norm-bound

ε = 0.2 might only be verifiable to ε = 0.1.

3.2 Determining Adversarial Accuracy of Robust Net-

works

Our complete verifier enables us to determine the exact adversarial accuracy of any

feed-forward piecewise-linear classifier given enough time. We attempt to do so on

classifiers trained by a range of robust training procedures. Table 3.1 presents the test

34

Figure 3-2: Average of exact values or bounds on the minimum targeted adversarial
distortion. The gap between the true minimum adversarial distortion and the best
lower bound is significant and increases for deeper networks. Again, results for methods
other than ours are from [40].

error of these classifiers, along with estimates of the adversarial error.

Lower Bounds. Lower bounds on the adversarial error are proven by providing

adversarial examples for input that is not robust. We compare the number of samples

for which we successfully find adversarial examples to the number for PGD, a strong

first-order attack.

Upper Bounds. Upper bounds on the adversarial error are proven by providing

certificates of robustness for input that is robust. We compare our upper bounds to

the previous state-of-the-art for each network.

While our performance depends on the training method and architecture, we

improve on both the upper and lower bounds for every network tested.3 Notably,

we improve on the upper bound on adversarial error even when the upper bound on

the worst-case loss — which is used to generate the certificate of robustness — is

explicitly optimized for during training (as is the case for LPd and SDPd training).

Our method also finds an adversarial example for every input that PGD finds one

for. Most importantly, we are able to determine the exact adversarial accuracy

for LPd-cnn and Adv-mlp-b for all ε tested, finding either a certificate of robustness

3On SDPd-mlp-a, the verifier in [32] finds certificates for 372 samples for which our verifier
reaches its time limit.

35

Table 3.1: Adversarial accuracy of classifiers to perturbations with l∞ norm-bound
ε. In every case, we improve both 1) the lower bound on the adversarial error found
by PGD and 2) the previous state-of-the-art (SOA) for the upper bound in the cited
paper. For classifiers marked with a X, we have a guarantee of robustness or a valid
adversarial example for every test sample. Gaps between our bounds correspond to
samples for which the solver reached the time limit. Error is over the full MNIST test
set of 10,000 samples; mean verification time includes solves reaching the time limit.
† The PGD error we report differs significantly from that in [32] since we impose the constraint that
x′ ∈ Xvalid.

Network ε
Test
Error

Certified Bounds on Adversarial Error

Lower Bound Upper Bound No
Gap?PGD Ours SOA Ours

LPd-cnn 0.1 1.89% 4.11% 4.38% 5.82%[27] 4.38% X
Adv-cnn 0.1 0.96% 4.10% 4.21% — 7.21%

Adv-mlp-b 0.1 4.02% 9.03% 9.68% 15.41%[13] 9.68% X
SDPd-mlp-a 0.1 4.18% †11.51% 14.36% 34.77%[32] 30.81%

LPd-cnn 0.2 4.23% 9.54% 10.68% 17.50%[27] 10.68% X
LPd-cnn 0.3 11.40% 22.70% 25.79% 35.03%[27] 25.79% X
LPd-cnn 0.4 26.13% 39.22% 48.98% 62.49%[27] 48.98% X

or an adversarial example for every test sample. As seen in Table 3.2, running our

verifier for LPd-cnn and Adv-mlp-bover the full test set takes approximately 10 hours

— the same order of magnitude as the time to train each network on a single GPU.

Better still, verification of individual samples is fully parallelizable.

Observations on Determinants of Verification Time

Ceteris paribus, we might expect verification time to be proportional to the total

number of ReLUs, since the solver may need to explore both possibilites for the phase

of each ReLU. However, as can be seen in Table 3.2, there is clearly more at play:

even though LPd-cnn and Adv-cnn have identical architectures, verification time for

Adv-cnn is two orders of magnitude higher. The restricted input domain partially

explains this discrepancy. With a restricted input domain, we can eliminate some

labels from consideration by proving that the upper bound on the corresponding

output neuron is lower than the lower bound for some other output neuron. We can

36

Table 3.2: Mean verification time for determining adversarial accuracy of classifiers
over the full MNIST test set of 10,000 samples, includes solves reaching the time limit
but excluding samples that are incorrectly classified (since determining that these
samples are not robust is trivial). The fraction of samples reaching the time limit is
noted as ‘fraction timed out’.

Network ε
Mean

Time / s
Fraction
timed out

LPd-cnn 0.1 3.52 0
Adv-cnn 0.1 135.74 0.0300

Adv-mlp-b 0.1 3.69 0
SDPd-mlp-a 0.1 312.43 0.1645

LPd-cnn 0.2 7.32 0
LPd-cnn 0.3 5.13 0
LPd-cnn 0.4 5.07 0

also determine that some ReLUs are stable by inspecting bounds on their input. For

details, see Section 2.5.1. As the results in Table 3.3 show, for robust networks, a

significant number of labels can be eliminated from consideration, and a significant

number of ReLUs can be proven to be stable. Runtime is lower when more labels can

be eliminated from consideration and more ReLUs can be proven to be stable.

Interestingly, networks not trained to be robust do not exhibit the same behavior

— very few ReLUs can be proven to be stable even with a restricted input domain. We

thus posit that, for robust classifiers, the small number of unstable ReLUs around test

input is an indication that the classifier has been trained to be less expressive in the

local neighborhood of points on the underlying data manifold, even as the classifier

retains global expressiveness.

3.3 Ablation Testing

We isolated the impact of each optimization in our implementation by conducting

thorough ablation tests. Results are reported in Table 3.4. When removing progres-

sive tightening, we skip less computationally complex procedures, directly using the

procedure specified by the maximum build effort (lp in this case). When removing

37

Table 3.3: Number of labels that can be eliminated from consideration, and average
number of ReLUs in each phase when the input domain is restricted to the l∞ ball of
radius ε = 0.1 around test input. Results are aggregated over the full MNIST test set.
Mean verification time is inversely proportional to number of labels eliminated and
proportional to number of possibly unstable ReLUs.

Network
Mean

Time / s

Average
Number
of Labels
Eliminated

Number of ReLUs

Possibly
Unstable

Provably Stable Total
Active Inactive

LPd-cnn 3.52 6.57 121.18 1552.52 3130.30 4804
Adv-mlp-b 3.69 4.77 55.21 87.31 257.48 400
Adv-cnn 135.74 3.14 545.90 3383.30 874.80 4804

SDPd-mlp-a 312.43 0.00 297.66 73.85 128.50 500

using restricted input domain, we determine bounds under the assumption that our

perturbed input could be anywhere in the full input domain Xvalid, imposing the

constraint x′ ∈ G(x) only after all bounds are determined. Finally, when removing

using asymmetric bounds, we replace l and u in Equations 2.22 and 2.24 with −M

and M respectively, where M , max(−l, u), as is done in [10, 12, 28].

When removing progressive tightening, solve times match those of the control

since the final MILP model generated is identical. However, build times more than

double: we lose the performance advantage of skipping a costly lp solve when ia

would have provided sufficient information. When removing using restricted input

domain or using asymmetric bounds, solve times are 3-4 orders of magnitude higher

since the formulation size increases significantly. In particular, when removing using

asymmetric bounds, we introduce a binary variable for each ReLU, since we are no

longer able to prove that any ReLU is in the stable phase. In addition, higher build

times when removing using asymmetric bounds demonstrate the vicious cycle of loose

initial bounds causing later bounds to take more time to compute. These ablation

tests emphasize how critical it is to make full use of the information available on

bounds when building the MILP model.

38

Table 3.4: Results of ablation testing for our verifier. The task was to determine the
adversarial accuracy of LPd-cnn to perturbations with l∞ norm-bound ε = 0.1. In
each case, we removed a single optimization made in our verifier. Build time refers
to time used to determine bounds, while solve time refers to time used to solve the
feasibility problem in Equation 2.2.
†For Some bounds are reusable across different input since input domain is no longer restricted; we
exclude the initial build time required (3593s) for these bounds. ‡Ablation test run only on first 100
samples.

Optimization Removed Mean Time / s Fraction
Timed OutBuild Solve Total

(Control) 3.44 0.08 3.52 0
Progressive tightening 7.66 0.11 7.77 0

Using restricted input domain† 1.49 56.47 57.96 0.0047
Using asymmetric bounds‡ 4465.11 133.03 4598.15 0.0300

39

40

Chapter 4

Discussion

In this paper, we present a complete verifier for piecewise-linear neural networks built

on expressing verification as a mixed integer linear program. While our verifier is

reasonably fast, we encourage users to use even faster methods (such as heuristic

attacks or incomplete verifiers) as a first pass, using our verifier only for cases that

remain undecided. We do expect our verifier to become more useful when larger

attacks are allowed, since the gap between lower bounds provided by heuristic attacks

and upper bounds provided by incomplete verifiers increases with attack size.

We have focused on evaluating networks against the class of perturbations that

they are designed to be robust to. However, defining a class of perturbations that

better captures images perceptually similar to the original image remains an important

direction of research. We note that our verifier is able to handle new classes of

perturbations as long as the perturbation region is piecewise-linear in x.

While our work has focused on robustness evaluation of neural networks where the

training process is treated as a black box, we do have some thoughts on improving

the verifiability of neural networks by augmenting training.

Firstly, as discussed in Section 3.2, increasing the number of ReLUs that can

be proven to be locally stable makes verification quicker. One possible approach to

improving verifiability is to reduce the number of ReLUs that are unstable during

training. For example, we could design a differentiable estimator for the number of

unstable ReLUs, adding a penalty for the estimated number of unstable ReLUs to the

41

loss function.

We also observed that sparsifying weights promotes verifiability: even naïvely spar-

sifying SDPd-mlp-a (by setting a fraction of weights with the smallest absolute value

to 0) reduces the number of timeouts by an order of magnitude without significantly

affecting test error. Adopting a more principled sparsification approach (for example,

l1 regularization during training, or pruning and retraining [20]) could potentially

further increase verifiability without compromising on the true adversarial accuracy.

In closing, we believe that, when the stakes are sufficiently high — for example,

if the neural network is used within the control loop of an autonomous vehicle —

practitioners should not simply be satisfied with a network that has high test accuracy

on the unperturbed test set, but for which the adversarial accuracy is unknown.

Instead, what is needed is a neural network that has high provable adversarial accuracy

over a sufficiently rich set of allowable perturbations G(x).1 We hope that our work

will form one part of the toolkit used to generate neural networks that are robust to

perturbations and by proving that the networks generated are indeed robust.

1We consider G(x) to be richer if it captures more images that humans would consider to be
perceptually similar to the original image x.

42

Bibliography

[1] Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false

sense of security: Circumventing defenses to adversarial examples. arXiv preprint

arXiv:1802.00420, 2018.

[2] Osbert Bastani, Yani Ioannou, Leonidas Lampropoulos, Dimitrios Vytiniotis, Aditya

Nori, and Antonio Criminisi. Measuring neural net robustness with constraints. In

Advances in neural information processing systems, pages 2613–2621, 2016.

[3] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. Julia: A fresh

approach to numerical computing. SIAM Review, 59(1):65–98, 2017.

[4] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University

Press, 2004.

[5] Rudy Bunel, Ilker Turkaslan, Philip HS Torr, Pushmeet Kohli, and M Pawan Kumar.

Piecewise linear neural network verification: A comparative study. arXiv preprint

arXiv:1711.00455, 2017.

[6] Nicholas Carlini, Guy Katz, Clark Barrett, and David L Dill. Ground-truth adversarial

examples. arXiv preprint arXiv:1709.10207, 2017.

[7] Nicholas Carlini and David Wagner. Adversarial examples are not easily detected:

Bypassing ten detection methods. arXiv preprint arXiv:1705.07263, 2017.

[8] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural

networks. In Security and Privacy (SP), 2017 IEEE Symposium on, pages 39–57. IEEE,

2017.

43

[9] Pin-Yu Chen, Yash Sharma, Huan Zhang, Jinfeng Yi, and Cho-Jui Hsieh. Ead:

elastic-net attacks to deep neural networks via adversarial examples. arXiv preprint

arXiv:1709.04114, 2017.

[10] Chih-Hong Cheng, Georg Nührenberg, and Harald Ruess. Maximum resilience of

artificial neural networks. In International Symposium on Automated Technology for

Verification and Analysis, pages 251–268. Springer, 2017.

[11] Iain Dunning, Joey Huchette, and Miles Lubin. Jump: A modeling language for

mathematical optimization. SIAM Review, 59(2):295–320, 2017.

[12] Souradeep Dutta, Susmit Jha, Sriram Sankaranarayanan, and Ashish Tiwari. Out-

put range analysis for deep feedforward neural networks. In NASA Formal Methods

Symposium, pages 121–138. Springer, 2018.

[13] Krishnamurthy Dvijotham, Robert Stanforth, Sven Gowal, Timothy Mann, and Push-

meet Kohli. A dual approach to scalable verification of deep networks. arXiv preprint

arXiv:1803.06567, 2018.

[14] Ruediger Ehlers. Formal verification of piece-wise linear feed-forward neural networks.

In International Symposium on Automated Technology for Verification and Analysis,

pages 269–286. Springer, 2017.

[15] Matteo Fischetti and Jason Jo. Deep neural networks as 0-1 mixed integer linear

programs: A feasibility study. arXiv preprint arXiv:1712.06174, 2017.

[16] Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaud-

huri, and Martin Vechev. Ai 2: Safety and robustness certification of neural networks

with abstract interpretation.

[17] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing

adversarial examples. arXiv preprint arXiv:1412.6572, 2014.

[18] Benjamin Graham. Fractional max-pooling. arXiv preprint arXiv:1412.6071, 2014.

[19] Inc. Gurobi Optimization. Gurobi optimizer reference manual, 2017.

44

[20] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep

neural networks with pruning, trained quantization and huffman coding. arXiv preprint

arXiv:1510.00149, 2015.

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 770–778, 2016.

[22] Matthias Hein and Maksym Andriushchenko. Formal guarantees on the robustness

of a classifier against adversarial manipulation. In Advances in Neural Information

Processing Systems, pages 2263–2273, 2017.

[23] Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. Safety verification of

deep neural networks. In International Conference on Computer Aided Verification,

pages 3–29. Springer, 2017.

[24] Joey Huchette and Juan Pablo Vielma. Nonconvex piecewise linear functions: Advanced

formulations and simple modeling tools. arXiv preprint arXiv:1708.00050, 2017.

[25] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network

training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[26] Guy Katz, Clark Barrett, David Dill, Kyle Julian, and Mykel Kochenderfer. Reluplex: An

efficient smt solver for verifying deep neural networks. arXiv preprint arXiv:1702.01135,

2017.

[27] J Zico Kolter and Eric Wong. Provable defenses against adversarial examples via the

convex outer adversarial polytope. arXiv preprint arXiv:1711.00851, 2017.

[28] Alessio Lomuscio and Lalit Maganti. An approach to reachability analysis for feed-

forward relu neural networks. arXiv preprint arXiv:1706.07351, 2017.

[29] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian

Vladu. Towards deep learning models resistant to adversarial attacks. arXiv preprint

arXiv:1706.06083, 2017.

[30] Ramon E Moore, R Baker Kearfott, and Michael J Cloud. Introduction to interval

analysis. SIAM, 2009.

45

[31] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami.

Distillation as a defense to adversarial perturbations against deep neural networks. In

Security and Privacy (SP), 2016 IEEE Symposium on, pages 582–597. IEEE, 2016.

[32] Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. Certified defenses against

adversarial examples. arXiv preprint arXiv:1801.09344, 2018.

[33] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,

Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.

Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. International

Journal of Computer Vision (IJCV), 115(3):211–252, 2015.

[34] Karsten Scheibler, Leonore Winterer, Ralf Wimmer, and Bernd Becker. Towards

verification of artificial neural networks. In MBMV, pages 30–40, 2015.

[35] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-

dinov. Dropout: A simple way to prevent neural networks from overfitting. The Journal

of Machine Learning Research, 15(1):1929–1958, 2014.

[36] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian

Goodfellow, and Rob Fergus. Intriguing properties of neural networks. arXiv preprint

arXiv:1312.6199, 2013.

[37] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Dan Boneh, and Patrick McDaniel.

Ensemble adversarial training: Attacks and defenses. arXiv preprint arXiv:1705.07204,

2017.

[38] Juan Pablo Vielma. Mixed integer linear programming formulation techniques. SIAM

Review, 57(1):3–57, 2015.

[39] Li Wan, Matthew Zeiler, Sixin Zhang, Yann L Cun, and Rob Fergus. Regularization of

neural networks using dropconnect. In Proceedings of the 30th international conference

on machine learning (ICML-13), pages 1058–1066, 2013.

[40] Tsui-Wei Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Duane Boning,

Inderjit S Dhillon, and Luca Daniel. Towards fast computation of certified robustness

for relu networks. arXiv preprint arXiv:1804.09699, 2018.

46

[41] Weiming Xiang, Hoang-Dung Tran, and Taylor T Johnson. Output reachable set estima-

tion and verification for multi-layer neural networks. arXiv preprint arXiv:1708.03322,

2017.

47

	Introduction
	Contributions
	Related Work

	Verification as solving an MILP
	Preliminaries
	Evaluating Adversarial Accuracy
	Evaluating Mean Minimum Adversarial Distortion
	Expressing lp Norms as the objective of an MIP Model
	l1
	l
	l2

	Formulating piecewise-linear Functions
	Formulating ReLU
	Formulating the Maximum Function.

	Presolve to Determine Bounds
	Procedures to Determine Bounds
	Progressive Bounds Tightening

	Experimental Results
	Performance Comparisons
	Verification Times
	Bounds on Minimum Targeted Adversarial Distortions

	Determining Adversarial Accuracy of Robust Networks
	Ablation Testing

	Discussion

