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ABSTRACT

Neural networks trained only to optimize for training accuracy can often be fooled
by adversarial examples — slightly perturbed inputs misclassified with high con-
fidence. Verification of networks enables us to gauge their vulnerability to such
adversarial examples. We formulate verification of piecewise-linear neural net-
works as a mixed integer program. On a representative task of finding minimum
adversarial distortions, our verifier is two to three orders of magnitude quicker than
the state-of-the-art. We achieve this computational speedup via tight formulations
for non-linearities, as well as a novel presolve algorithm that makes full use of all
information available. The computational speedup allows us to verify properties on
convolutional and residual networks with over 100,000 ReLUs — several orders
of magnitude more than networks previously verified by any complete verifier.
In particular, we determine for the first time the exact adversarial accuracy of
an MNIST classifier to perturbations with bounded l∞ norm ε = 0.1: for this
classifier, we find an adversarial example for 4.38% of samples, and a certificate
of robustness to norm-bounded perturbations for the remainder. Across all robust
training procedures and network architectures considered, and for both the MNIST
and CIFAR-10 datasets, we are able to certify more samples than the state-of-the-art
and find more adversarial examples than a strong first-order attack.

1 INTRODUCTION

Neural networks trained only to optimize for training accuracy have been shown to be vulnerable
to adversarial examples: perturbed inputs that are very similar to some regular input but for which
the output is radically different (Szegedy et al., 2014). There is now a large body of work proposing
defense methods to produce classifiers that are more robust to adversarial examples. However, as long
as a defense is evaluated only via heuristic attacks (such as the Fast Gradient Sign Method (FGSM)
(Goodfellow et al., 2015) or Carlini & Wagner (2017b)’s attack (CW)), we have no guarantee that
the defense actually increases the robustness of the classifier produced. Defense methods thought to
be successful when published have often later been found to be vulnerable to a new class of attacks.
For instance, multiple defense methods are defeated in Carlini & Wagner (2017a) by constructing
defense-specific loss functions and in Athalye et al. (2018) by overcoming obfuscated gradients.

Fortunately, we can evaluate robustness to adversarial examples in a principled fashion. One option
is to determine (for each test input) the minimum distance to the closest adversarial example, which
we call the minimum adversarial distortion (Carlini et al., 2017). Alternatively, we can determine the
adversarial test accuracy (Bastani et al., 2016), which is the proportion of the test set for which no
perturbation in some bounded class causes a misclassification. An increase in the mean minimum
adversarial distortion or in the adversarial test accuracy indicates an improvement in robustness.1

We present an efficient implementation of a mixed-integer linear programming (MILP) verifier
for properties of piecewise-linear feed-forward neural networks. Our tight formulation for non-
linearities and our novel presolve algorithm combine to minimize the number of binary variables in
the MILP problem and dramatically improve its numerical conditioning. Optimizations in our MILP

1The two measures are related: a solver that can find certificates for bounded perturbations can be used
iteratively (in a binary search process) to find minimum distortions.
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implementation improve performance by several orders of magnitude when compared to a naı̈ve
MILP implementation, and we are two to three orders of magnitude faster than the state-of-the-art
Satisfiability Modulo Theories (SMT) based verifier, Reluplex (Katz et al., 2017)

We make the following key contributions:

• We demonstrate that, despite considering the full combinatorial nature of the network, our
verifier can succeed at evaluating the robustness of larger neural networks, including those
with convolutional and residual layers.

• We identify why we can succeed on larger neural networks with hundreds of thousands of
units. First, a large fraction of the ReLUs can be shown to be either always active or always
inactive over the bounded input domain. Second, since the predicted label is determined by
the unit in the final layer with the maximum activation, proving that a unit never has the
maximum activation over all bounded perturbations eliminates it from consideration. We
exploit both phenomena, reducing the overall number of non-linearities considered.

• We determine for the first time the exact adversarial accuracy for MNIST classifiers to
perturbations with bounded l∞ norm ε. We are also able to certify more samples than the
state-of-the-art and find more adversarial examples across MNIST and CIFAR-10 classifiers
with different architectures trained with a variety of robust training procedures.

Our code is available at https://github.com/vtjeng/MIPVerify.jl.

2 RELATED WORK

Our work relates most closely to other work on verification of piecewise-linear neural networks;
Bunel et al. (2018) provides a good overview of the field. We categorize verification procedures as
complete or incomplete. To understand the difference between these two types of procedures, we
consider the example of evaluating adversarial accuracy.

As in Kolter & Wong (2017), we call the exact set of all final-layer activations that can be achieved
by applying a bounded perturbation to the input the adversarial polytope. Incomplete verifiers reason
over an outer approximation of the adversarial polytope. As a result, when using incomplete verifiers,
the answer to some queries about the adversarial polytope may not be decidable. In particular,
incomplete verifiers can only certify robustness for a fraction of robust input; the status for the
remaining input is undetermined. In contrast, complete verifiers reason over the exact adversarial
polytope. Given sufficient time, a complete verifier can provide a definite answer to any query about
the adversarial polytope. In the context of adversarial accuracy, complete verifiers will obtain a valid
adversarial example or a certificate of robustness for every input. When a time limit is set, complete
verifiers behave like incomplete verifiers, and resolve only a fraction of queries. However, complete
verifiers do allow users to answer a larger fraction of queries by extending the set time limit.

Incomplete verifiers for evaluating network robustness employ a range of techniques, including
duality (Dvijotham et al., 2018; Kolter & Wong, 2017; Raghunathan et al., 2018), layer-by-layer
approximations of the adversarial polytope (Xiang et al., 2018), discretizing the search space (Huang
et al., 2017), abstract interpretation (Gehr et al., 2018), bounding the local Lipschitz constant (Weng
et al., 2018), or bounding the activation of the ReLU with linear functions (Weng et al., 2018).

Complete verifiers typically employ either MILP solvers as we do (Cheng et al., 2017; Dutta et al.,
2018; Fischetti & Jo, 2018; Lomuscio & Maganti, 2017) or SMT solvers (Carlini et al., 2017; Ehlers,
2017; Katz et al., 2017; Scheibler et al., 2015). Our approach improves upon existing MILP-based
approaches with a tighter formulation for non-linearities and a novel presolve algorithm that makes
full use of all information available, leading to solve times several orders of magnitude faster than a
naı̈vely implemented MILP-based approach. When comparing our approach to the state-of-the-art
SMT-based approach (Reluplex) on the task of finding minimum adversarial distortions, we find that
our verifier is two to three orders of magnitude faster. Crucially, these improvements in performance
allow our verifier to verify a network with over 100,000 units — several orders of magnitude larger
than the largest MNIST classifier previously verified with a complete verifier.

A complementary line of research to verification is in robust training procedures that train networks
designed to be robust to bounded perturbations. Robust training aims to minimize the “worst-case
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loss” for each example — that is, the maximum loss over all bounded perturbations of that example
(Kolter & Wong, 2017). Since calculating the exact worst-case loss can be computationally costly,
robust training procedures typically minimize an estimate of the worst-case loss: either a lower bound
as is the case for adversarial training (Goodfellow et al., 2015), or an upper bound as is the case for
certified training approaches (Hein & Andriushchenko, 2017; Kolter & Wong, 2017; Raghunathan
et al., 2018). Complete verifiers such as ours can augment robust training procedures by resolving
the status of input for which heuristic attacks cannot find an adversarial example and incomplete
verifiers cannot guarantee robustness, enabling more accurate comparisons between different training
procedures.

3 BACKGROUND AND NOTATION

We denote a neural network by a function f(·; θ) : Rm → Rn parameterized by a (fixed) vector of
weights θ. For a classifier, the output layer has a neuron for each target class.

Verification as solving an MILP. The general problem of verification is to determine whether some
property P on the output of a neural network holds for all input in a bounded input domain C ⊆ Rm.
For the verification problem to be expressible as solving an MILP, P must be expressible as the
conjunction or disjunction of linear properties Pi,j over some set of polyhedra Ci, where C = ∪Ci.
In addition, f(·) must be composed of piecewise-linear layers. This is not a particularly restrictive
requirement: piecewise-linear layers include linear transformations (such as fully-connected, convo-
lution, and average-pooling layers) and layers that use piecewise-linear functions (such as ReLU or
maximum-pooling layers). We provide details on how to express these piecewise-linear functions
in the MILP framework in Section 4.1. The “shortcut connections” used in architectures such as
ResNet (He et al., 2016) are also linear, and batch normalization (Ioffe & Szegedy, 2015) or dropout
(Srivastava et al., 2014) are linear transformations at evaluation time (Bunel et al., 2018).

4 FORMULATING ROBUSTNESS EVALUATION OF CLASSIFIERS AS AN MILP

Evaluating Adversarial Accuracy. Let G(x) denote the region in the input domain corresponding
to all allowable perturbations of a particular input x. In general, perturbed inputs must also remain in
the domain of valid inputs Xvalid. For example, for normalized images with pixel values ranging
from 0 to 1, Xvalid = [0, 1]m. As in Madry et al. (2018), we say that a neural network is robust to
perturbations on x if the predicted probability of the true label λ(x) exceeds that of every other label
for all perturbations:

∀x′ ∈ (G(x) ∩ Xvalid) : argmaxi(fi(x
′)) = λ(x) (1)

Equivalently, the network is robust to perturbations on x if and only if Equation 2 is infeasible for x′.

(x′ ∈ (G(x) ∩ Xvalid)) ∧
(
fλ(x)(x

′) < max
µ∈[1,n]\{λ(x)}

fµ(x
′)

)
(2)

where fi(·) is the ith output of the network. For conciseness, we call x robust with respect to the
network if f(·) is robust to perturbations on x. If x is not robust, we call any x′ satisfying the
constraints a valid adversarial example to x. The adversarial accuracy of a network is the fraction of
the test set that is robust; the adversarial error is the complement of the adversarial accuracy.

As long as G(x) ∩ Xvalid can be expressed as the union of a set of polyhedra, the feasibility problem
can be expressed as an MILP. The four robust training procedures we consider (Kolter & Wong,
2017; Wong et al., 2018; Madry et al., 2018; Raghunathan et al., 2018) are designed to be robust
to perturbations with bounded l∞ norm, and the l∞-ball of radius ε around each input x can be
succinctly represented by the set of linear constraints G(x) = {x′ | ∀i : −ε ≤ (x− x′)i ≤ ε}.
Evaluating Mean Minimum Adversarial Distortion. Let d(·, ·) denote a distance metric that
measures the perceptual similarity between two input images. The minimum adversarial distortion
under d for input x with true label λ(x) corresponds to the solution to the optimization:

minx′ d(x
′, x) (3)

subject to argmaxi(fi(x
′)) 6= λ(x) (4)

x′ ∈ Xvalid (5)
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We can target the attack to generate an adversarial example that is classified in one of a set of target
labels T by replacing Equation 4 with argmaxi(fi(x

′)) ∈ T .

The most prevalent distance metrics in the literature for generating adversarial examples are the l1
(Carlini & Wagner, 2017b; Chen et al., 2018), l2 (Szegedy et al., 2014), and l∞ (Goodfellow et al.,
2015; Papernot et al., 2016) norms. All three can be expressed in the objective without adding any
additional integer variables to the model (Boyd & Vandenberghe, 2004); details are in Appendix A.3.

4.1 FORMULATING PIECEWISE-LINEAR FUNCTIONS IN THE MILP FRAMEWORK

Tight formulations of the ReLU and maximum functions are critical to good performance of the
MILP solver; we thus present these formulations in detail with accompanying proofs.2

Formulating ReLU Let y = max(x, 0), and l ≤ x ≤ u. There are three possibilities for the phase
of the ReLU. If u ≤ 0, we have y ≡ 0. We say that such a unit is stably inactive. Similarly, if
l ≥ 0, we have y ≡ x. We say that such a unit is stably active. Otherwise, the unit is unstable. For
unstable units, we introduce an indicator decision variable a = 1x≥0. As we prove in Appendix A.1,
y = max(x, 0) is equivalent to the set of linear and integer constraints in Equation 6.3

(y ≤ x− l(1− a)) ∧ (y ≥ x) ∧ (y ≤ u · a) ∧ (y ≥ 0) ∧ (a ∈ {0, 1}) (6)

Formulating the Maximum Function Let y = max(x1, x2, . . . , xm), and li ≤ xi ≤ ui.
Proposition 1. Let lmax , max(l1, l2, . . . , lm). We can eliminate from consideration all xi where
ui ≤ lmax, since we know that y ≥ lmax ≥ ui ≥ xi.

We introduce an indicator decision variable ai for each of our input variables, where ai = 1 =⇒ y =
xi. Furthermore, we define umax,−i , maxj 6=i(uj). As we prove in Appendix A.2, the constraint
y = max(x1, x2, . . . , xm) is equivalent to the set of linear and integer constraints in Equation 7.

m∧
i=1

((y ≤ xi + (1− ai)(umax,−i − li) ) ∧ (y ≥ xi )) ∧
(∑m

i=1
ai = 1

)
∧ (ai ∈ {0, 1}) (7)

4.2 PROGRESSIVE BOUNDS TIGHTENING

We previously assumed that we had some element-wise bounds on the inputs to non-linearities. In
practice, we have to carry out a presolve step to determine these bounds. Determining tight bounds is
critical for problem tractability: tight bounds strengthen the problem formulation and thus improve
solve times (Vielma, 2015). For instance, if we can prove that the phase of a ReLU is stable, we
can avoid introducing a binary variable. More generally, loose bounds on input to some unit will
propagate downstream, leading to units in later layers having looser bounds.

We used two procedures to determine bounds: INTERVAL ARITHMETIC (IA), also used in Cheng
et al. (2017); Dutta et al. (2018), and the slower but tighter LINEAR PROGRAMMING (LP) approach.
Implementation details are in Appendix B.

Since faster procedures achieve efficiency by compromising on tightness of bounds, we face a trade-
off between higher build times (to determine tighter bounds to inputs to non-linearities), and higher
solve times (to solve the main MILP problem in Equation 2 or Equation 3-5). While a degree of
compromise is inevitable, our knowledge of the non-linearities used in our network allows us to
reduce average build times without affecting the strength of the problem formulation.

The key observation is that, for piecewise-linear non-linearities, there are thresholds beyond which
further refining a bound will not improve the problem formulation. With this in mind, we adopt a
progressive bounds tightening approach: we begin by determining coarse bounds using fast procedures
and only spend time refining bounds using procedures with higher computational complexity if
doing so could provide additional information to improve the problem formulation.4 Pseudocode

2Huchette & Vielma (2017) presents formulations for general piecewise linear functions.
3We note that relaxing the binary constraint a ∈ {0, 1} to 0 ≤ a ≤ 1 results in the convex formulation for

the ReLU in Ehlers (2017)
4As a corollary, we always use only IA for the output of the first layer, since the independence of network

input implies that IA is provably optimal for that layer.
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demonstrating how to efficiently determine bounds for the tightest possible formulations for the
ReLU and maximum function is provided below and in Appendix C respectively.

GETBOUNDSFORRELU(x, fs)

1 � fs are the procedures to determine bounds, sorted in increasing computational complexity.
2 lbest = −∞; ubest =∞ � initialize best known upper and lower bounds on x
3 for f in fs: � carrying out progressive bounds tightening
4 do u = f(x, boundType = upper); ubest = min(ubest, u)
5 if ubest ≤ 0 return (lbest, ubest) � Early return: x ≤ ubest ≤ 0; thus max(x, 0) ≡ 0.
6 l = f(x, boundType = lower); lbest = max(lbest, l)
7 if lbest ≥ 0 return (lbest, ubest) � Early return: x ≥ lbest ≥ 0; thus max(x, 0) ≡ x
8 return (lbest, ubest) � x could be either positive or negative.

The process of progressive bounds tightening is naturally extensible to more procedures. Kolter &
Wong (2017); Wong et al. (2018); Dvijotham et al. (2018); Weng et al. (2018) each discuss procedures
to determine bounds with computational complexity and tightness intermediate between IA and LP.
Using one of these procedures in addition to IA and LP has the potential to further reduce build times.

5 EXPERIMENTS

Dataset. All experiments are carried out on classifiers for the MNIST dataset of handwritten digits
or the CIFAR-10 dataset of color images.

Architectures. We conduct experiments on a range of feed-forward networks. In all cases, ReLUs
follow each layer except the output layer. MLP-m×[n] refers to a multilayer perceptron with m
hidden layers and n units per hidden layer. We further abbreviate MLP-1×[500] and MLP-2×[200] as
MLPA and MLPB respectively. CNNA and CNNB refer to the small and large ConvNet architectures in
Wong et al. (2018). CNNA has two convolutional layers (stride length 2) with 16 and 32 filters (size
4× 4) respectively, followed by a fully-connected layer with 100 units. CNNB has four convolutional
layers with 32, 32, 64, and 64 filters, followed by two fully-connected layers with 512 units. RES
refers to the ResNet architecture used in Wong et al. (2018), with 9 convolutional layers in four
blocks, followed by two fully-connected layers with 4096 and 1000 units respectively.

Training Methods. We conduct experiments on networks trained with a regular loss function and
networks trained to be robust. Networks trained to be robust are identified by a prefix corresponding
to the method used to approximate the worst-case loss: LPd

5 when the dual of a linear program is
used, as in Kolter & Wong (2017); SDPd when the dual of a semidefinite relaxation is used, as in
Raghunathan et al. (2018); and Adv when adversarial examples generated via Projected Gradient
Descent (PGD) are used, as in Madry et al. (2018). Full details on each network are in Appendix D.1.

Experimental Setup. We run experiments on a modest 8 CPUs@2.20 GHz with 8GB of RAM.
Appendix D.2 provides additional details about the computational environment. Maximum build
effort is LP. Unless otherwise noted, we report a timeout if solve time for some input exceeds 1200s.

5.1 PERFORMANCE COMPARISONS

5.1.1 COMPARISONS TO OTHER MILP-BASED COMPLETE VERIFIERS

Our MILP approach implements three key optimizations: we use progressive tightening, make
use of the information provided by the restricted input domain G(x), and use asymmetric bounds
in the ReLU formulation in Equation 6. None of the four other MILP-based complete verifiers
implement progressive tightening or use the restricted input domain, and only Fischetti & Jo (2018)
uses asymmetric bounds. Since none of the four verifiers have publicly available code, we use ablation
tests to provide an idea of the difference in performance between our verifier and these existing ones.

When removing progressive tightening, we directly use LP rather than doing IA first. When removing
using restricted input domain, we determine bounds under the assumption that our perturbed input
could be anywhere in the full input domain Xvalid, imposing the constraint x′ ∈ G(x) only after all

5This is unrelated to the procedure to determine bounds named LP.
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bounds are determined. Finally, when removing using asymmetric bounds, we replace l and u in
Equation 6 with −M and M respectively, where M , max(−l, u), as is done in Cheng et al. (2017);
Dutta et al. (2018); Lomuscio & Maganti (2017). We carry out experiments on an MNIST classifier;
results are reported in Table 1.

Table 1: Results of ablation testing on our verifier, where each test removes a single optimization. The
task was to determine the adversarial accuracy of the MNIST classifier LPd-CNNA to perturbations
with l∞ norm-bound ε = 0.1. Build time refers to time used to determine bounds, while solve
time refers to time used to solve the main MILP problem in Equation 2 once all bounds have been
determined. During solve time, we solve a linear program for each of the nodes explored in the MILP
search tree.
†We exclude the initial build time required (3593s) to determine reusable bounds.

Optimization Removed Mean Time / s Nodes Explored Fraction
Timed OutBuild Solve Total Mean Median

(Control) 3.44 0.08 3.52 1.91 0 0
Progressive tightening 7.66 0.11 7.77 1.91 0 0

Using restricted input domain† 1.49 56.47 57.96 649.63 65 0.0047
Using asymmetric bounds 4465.11 133.03 4598.15 1279.06 105 0.0300

The ablation tests demonstrate that each optimization is critical to the performance of our verifier.
In terms of performance comparisons, we expect our verifier to have a runtime several orders of
magnitude faster than any of the three verifiers not using asymmetric bounds. While Fischetti & Jo
(2018) do use asymmetric bounds, they do not use information from the restricted input domain; we
thus expect our verifier to have a runtime at least an order of magnitude faster than theirs.

5.1.2 COMPARISONS TO OTHER COMPLETE AND INCOMPLETE VERIFIERS

We also compared our verifier to other verifiers on the task of finding minimum targeted adversarial
distortions for MNIST test samples. Verifiers included for comparison are 1) Reluplex (Katz et al.,
2017), a complete verifier also able to find the true minimum distortion; and 2) LP6, Fast-Lip,
Fast-Lin (Weng et al., 2018), and LP-full (Kolter & Wong, 2017), incomplete verifiers that
provide a certified lower bound on the minimum distortion.

Verification Times, vis-à-vis the state-of-the-art SMT-based complete verifier Reluplex. Fig-
ure 1 presents average verification times per sample. All solves for our method were run to completion.
On the l∞ norm, we improve on the speed of Reluplex by two to three orders of magnitude.

Figure 1: Average times for determining bounds on or exact values of minimum targeted adversarial
distortion for MNIST test samples. We improve on the speed of the state-of-the-art complete verifier
Reluplex by two to three orders of magnitude. Results for methods other than ours are from Weng
et al. (2018); results for Reluplex were only available in Weng et al. (2018) for the l∞ norm.

Minimum Targeted Adversarial Distortions, vis-à-vis incomplete verifiers. Figure 2 compares
lower bounds from the incomplete verifiers to the exact value we obtain. The gap between the best

6This is unrelated to the procedure to determine bounds named LP, or the training procedure LPd.
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lower bound and the true minimum adversarial distortion is significant even on these small networks.
This corroborates the observation in Raghunathan et al. (2018) that incomplete verifiers provide weak
bounds if the network they are applied to is not optimized for that verifier. For example, under the l∞
norm, the best certified lower bound is less than half of the true minimum distortion. In context: a
network robust to perturbations with l∞ norm-bound ε = 0.1 would only be verifiable to ε = 0.05.

Figure 2: Bounds on or exact values of minimum targeted adversarial distortion for MNIST test
samples. The gap between the true minimum adversarial distortion and the best lower bound is
significant in all cases, increasing for deeper networks. We report mean values over 100 samples.

5.2 DETERMINING ADVERSARIAL ACCURACY OF MNIST AND CIFAR-10 CLASSIFIERS

We use our verifier to determine the adversarial accuracy of classifiers trained by a range of robust
training procedures on the MNIST and CIFAR-10 datasets. Table 2 presents the test error and
estimates of the adversarial error for these classifiers.7 For MNIST, we verified a range of networks
trained to be robust to attacks with bounded l∞ norm ε = 0.1, as well as networks trained to be
robust to larger attacks of ε = 0.2, 0.3 and 0.4. Lower bounds on the adversarial error are proven by
providing adversarial examples for input that is not robust. We compare the number of samples for
which we successfully find adversarial examples to the number for PGD, a strong first-order attack.
Upper bounds on the adversarial error are proven by providing certificates of robustness for input that
is robust. We compare our upper bounds to the previous state-of-the-art for each network.

While performance depends on the training method and architecture, we improve on both the lower
and upper bounds for every network tested.8 For lower bounds, we successfully find an adversarial
example for every test sample that PGD finds an adversarial example for. In addition, we observe
that PGD ‘misses’ some valid adversarial examples: it fails to find these adversarial examples even
though they are within the norm bounds. As the last three rows of Table 2 show, PGD misses for a
larger fraction of test samples when ε is larger. We also found that PGD is far more likely to miss for
some test sample if the minimum adversarial distortion for that sample is close to ε; this observation
is discussed in more depth in Appendix G. For upper bounds, we improve on the bound on adversarial
error even when the upper bound on the worst-case loss — which is used to generate the certificate of
robustness — is explicitly optimized for during training (as is the case for LPd and SDPd training).
Our method also scales well to the more complex CIFAR-10 dataset and the larger LPd-RES network
(which has 107,496 units), with the solver reaching the time limit for only 0.31% of samples.

Most importantly, we are able to determine the exact adversarial accuracy for Adv-MLPB and
LPd-CNNA for all ε tested, finding either a certificate of robustness or an adversarial example for
every test sample. For Adv-MLPB and LPd-CNNA, running our verifier over the full test set takes
approximately 10 hours on 8 CPUs — the same order of magnitude as the time to train each network
on a single GPU. Better still, verification of individual samples is fully parallelizable — so verification
time can be reduced with more computational power.

7As mentioned in Section 2, complete verifiers will obtain either a valid adversarial example or a certificate
of robustness for every input given enough time. However, we do not always have a guarantee of robustness or a
valid adversarial example for every test sample since we terminate the optimization at 1200s to provide a better
picture of how our verifier performs within reasonable time limits.

8On SDPd-MLPA, the verifier in Raghunathan et al. (2018) finds certificates for 372 samples for which our
verifier reaches its time limit.
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Table 2: Adversarial accuracy of MNIST and CIFAR-10 classifiers to perturbations with l∞ norm-
bound ε. In every case, we improve on both 1) the lower bound on the adversarial error, found by
PGD, and 2) the previous state-of-the-art (SOA) for the upper bound, generated by the following
methods: [1] Kolter & Wong (2017), [2] Dvijotham et al. (2018), [3] Raghunathan et al. (2018). For
classifiers marked with a X, we have a guarantee of robustness or a valid adversarial example for
every test sample. Gaps between our bounds correspond to cases where the solver reached the time
limit for some samples. Solve statistics on nodes explored are in Appendix F.1.

Dataset Network ε
Test
Error

Certified Bounds on Adversarial Error Mean
Time

/ sLower Bound Upper Bound No
Gap?PGD Ours SOA Ours

MNIST LPd-CNNB 0.1 1.19% 2.62% 2.73% 4.45%[1] 2.74% 46.33
LPd-CNNA 0.1 1.89% 4.11% 4.38% 5.82%[1] 4.38% X 3.52
Adv-CNNA 0.1 0.96% 4.10% 4.21% — 7.21% 135.74
Adv-MLPB 0.1 4.02% 9.03% 9.74% 15.41%[2] 9.74% X 3.69

SDPd-MLPA 0.1 4.18% 11.51% 14.36% 34.77%[3] 30.81% 312.43

LPd-CNNA 0.2 4.23% 9.54% 10.68% 17.50%[1] 10.68% X 7.32
LPd-CNNB 0.3 11.16% 19.70% 24.12% 41.98%[1] 24.19% 98.79
LPd-CNNA 0.3 11.40% 22.70% 25.79% 35.03%[1] 25.79% X 5.13
LPd-CNNA 0.4 26.13% 39.22% 48.98% 62.49%[1] 48.98% X 5.07

CIFAR-10 LPd-CNNA
2

255 39.14% 48.23% 49.84% 53.59%[1] 50.20% 22.41
LPd-RES 8

255 72.93% 76.52% 77.29% 78.52%[1] 77.60% 15.23

5.2.1 OBSERVATIONS ON DETERMINANTS OF VERIFICATION TIME

All else being equal, we might expect verification time to be correlated to the total number of ReLUs,
since the solver may need to explore both possibilities for the phase of each ReLU. However, there is
clearly more at play: even though LPd-CNNA and Adv-CNNA have identical architectures, verification
time for Adv-CNNA is two orders of magnitude higher.

Table 3: Determinants of verification time: mean verification time is 1) inversely correlated to the
number of labels that can be eliminated from consideration and 2) correlated to the number of ReLUs
that are not provably stable. Results are for ε = 0.1 on MNIST; results for other networks are in
Appendix F.2.

Network
Mean

Time / s

Number
of Labels

Eliminated

Number of ReLUs

Possibly
Unstable

Provably Stable Total
Active Inactive

LPd-CNNB 46.33 6.87 311.96 30175.65 17576.39 48064
LPd-CNNA 3.52 6.57 121.18 1552.52 3130.30 4804
Adv-CNNA 135.74 3.14 545.90 3383.30 874.80 4804
Adv-MLPB 3.69 4.77 55.21 87.31 257.48 400

SDPd-MLPA 312.43 0.00 297.66 73.85 128.50 500

The key lies in the restricted input domain G(x) for each test sample x. When input is restricted to
G(x), we can prove that many ReLUs are stable (with respect to G). Furthermore, we can eliminate
some labels from consideration by proving that the upper bound on the output neuron corresponding
to that label is lower than the lower bound for some other output neuron. As the results in Table 3
show, a significant number of ReLUs can be proven to be stable, and a significant number of labels
can be eliminated from consideration. Rather than being correlated to the total number of ReLUs,
solve times are instead more strongly correlated to the number of ReLUs that are not provably stable,
as well as the number of labels that cannot be eliminated from consideration.
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6 DISCUSSION

This paper presents an efficient complete verifier for piecewise-linear neural networks.

While we have focused on evaluating networks on the class of perturbations they are designed to be
robust to, defining a class of perturbations that generates images perceptually similar to the original
remains an important direction of research. Our verifier is able to handle new classes of perturbations
(such as convolutions applied to the original image) as long as the set of perturbed images is a union
of polytopes in the input space.

We close with ideas on improving verification of neural networks. First, our improvements can be
combined with other optimizations in solving MILPs. For example, Bunel et al. (2018) discusses
splitting on the input domain, producing two sub-MILPs where the input in each sub-MILP is
restricted to be from a half of the input domain. Splitting on the input domain could be particularly
useful where the split selected tightens bounds sufficiently to significantly reduce the number of
unstable ReLUs that need to be considered in each sub-MILP. Second, as previously discussed, taking
advantage of locally stable ReLUs speeds up verification; network verifiability could be improved
during training via a regularizer that increases the number of locally stable ReLUs. Finally, we
observed (see Appendix H) that sparsifying weights promotes verifiability. Adopting a principled
sparsification approach (for example, l1 regularization during training, or pruning and retraining
(Han et al., 2016)) could potentially further increase verifiability without compromising on the true
adversarial accuracy.
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A FORMULATING THE MILP MODEL

A.1 FORMULATING RELU IN AN MILP MODEL

We reproduce our formulation for the ReLU below.

y ≤ x− l(1− a) (8)
y ≥ x (9)
y ≤ u · a (10)
y ≥ 0 (11)
a ∈ {0, 1} (12)

We consider two cases.

Recall that a is the indicator variable a = 1x≥0.

When a = 0, the constraints in Equation 10 and 11 are binding, and together imply that y = 0. The
other two constraints are not binding, since Equation 9 is no stricter than Equation 11 when x < 0,
while Equation 8 is no stricter than Equation 10 since x− l ≥ 0. We thus have a = 0 =⇒ y = 0.

When a = 1, the constraints in Equation 8 and 9 are binding, and together imply that y = x. The
other two constraints are not binding, since Equation 11 is no stricter than Equation 9 when x > 0,
while Equation 10 is no stricter than Equation 8 since x ≤ u. We thus have a = 1 =⇒ y = x.

This formulation for rectified linearities is sharp (Vielma, 2015) if we have no further information
about x. This is the case since relaxing the integrality constraint on a leads to (x, y) being restricted to
an area that is the convex hull of y = max(x, 0). However, if x is an affine expression x = wT z + b,
the formulation is no longer sharp, and we can add more constraints using bounds we have on z to
improve the problem formulation.

A.2 FORMULATING THE MAXIMUM FUNCTION IN AN MILP MODEL

We reproduce our formulation for the maximum function below.

y ≤ xi + (1− ai)(umax,−i − li) ∀i (13)
y ≥ xi ∀i (14)

m∑
i=1

ai = 1 (15)

ai ∈ {0, 1} (16)

Equation 15 ensures that exactly one of the ai is 1. It thus suffices to consider the value of ai for a
single variable.

When ai = 1, Equations 13 and 14 are binding, and together imply that y = xi. We thus have
ai = 1 =⇒ y = xi.

When ai = 0, we simply need to show that the constraints involving xi are never binding regardless
of the values of x1, x2, . . . , xm. Equation 14 is not binding since ai = 0 implies xi is not the (unique)
maximum value. Furthermore, we have chosen the coefficient of ai such that Equation 13 is not
binding, since xi + umax,−i − li ≥ umax,−i ≥ y. This completes our proof.

A.3 EXPRESSING lp NORMS AS THE OBJECTIVE OF AN MIP MODEL

A.3.1 l1

When d(x′, x) = ‖x′ − x‖1, we introduce the auxiliary variable δ, which bounds the elementwise
absolute value from above: δj ≥ x′j − xj , δj ≥ xj − x′j . The optimization in Equation 3-5 is
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equivalent to

min
x′

∑
j

δj (17)

subject to argmaxi(fi(x
′)) 6= λ(x) (18)

x′ ∈ Xvalid (19)

δj ≥ x′j − xj (20)

δj ≥ xj − x′j (21)

A.3.2 l∞

When d(x′, x) = ‖x′ − x‖∞, we introduce the auxiliary variable ε, which bounds the l∞ norm from
above: ε ≥ x′j − xj , ε ≥ xj − x′j . The optimization in Equation 3-5 is equivalent to

min
x′

ε (22)

subject to argmaxi(fi(x
′)) 6= λ(x) (23)

x′ ∈ Xvalid (24)

ε ≥ x′j − xj (25)

ε ≥ xj − x′j (26)

A.3.3 l2

When d(x′, x) = ‖x′ − x‖2, the objective becomes quadratic, and we have to use a Mixed Integer
Quadratic Program (MIQP) solver. However, no auxiliary variables are required: the optimization in
Equation 3-5 is simply equivalent to

min
x′

∑
j

(x′j − xj)2 (27)

subject to argmaxi(fi(x
′)) 6= λ(x) (28)

x′ ∈ Xvalid (29)

B DETERMINING TIGHT BOUNDS ON DECISION VARIABLES

Our framework for determining bounds on decision variables is to view the neural network as a
computation graph G. Directed edges point from function input to output, and vertices represent
variables. Source vertices in G correspond to the input of the network, and sink vertices in G
correspond to the output of the network. The computation graph begins with defined bounds on
the input variables (based on the input domain (G(x) ∩ Xvalid)), and is augmented with bounds on
intermediate variables as we determine them. The computation graph is acyclic for the feed-forward
networks we consider.

Since the networks we consider are piecewise-linear, any subgraph of G can be expressed as an
MILP, with constraints derived from 1) input-output relationships along edges and 2) bounds on the
values of the source nodes in the subgraph. Integer constraints are added whenever edges describe a
non-linear relationship.

We focus on computing an upper bound on some variable v; computing lower bounds follows a
similar process. All the information required to determine the best possible bounds on v is contained
in the subtree of G rooted at v, Gv. (Other variables that are not ancestors of v in the computation
graph cannot affect its value.) Maximizing the value of v in the MILP Mv corresponding to Gv gives
the optimal upper bound on v.

We can reduce computation time in two ways. Firstly, we can prune some edges and vertices of Gv .
Specifically, we select a set of variables with existing bounds VI that we assume to be independent
(that is, we assume that they each can take on any value independent of the value of the other variables
in VI ). We remove all in-edges to vertices in VI , and eliminate variables without children, resulting in
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the smaller computation graph Gv,VI
. Maximizing the value of v in the MILP Mv,VI

corresponding
to Gv,VI

gives a valid upper bound on v that is optimal if the independence assumption holds.

We can also reduce computation time by relaxing some of the integer constraints in Mv to obtain a
MILP with fewer integer variables M ′v. Relaxing an integer constraint corresponds to replacing the
relevant non-linear relationship with its convex relaxation. Again, the objective value returned by
maximizing the value of v over M ′v may not be the optimal upper bound, but is guaranteed to be a
valid bound.

B.1 FULL

FULL considers the full subtree Gv and does not relax any integer constraints. The upper and lower
bound on v is determined by maximizing and minimizing the value of v in Mv respectively. FULL is
also used in Cheng et al. (2017) and Fischetti & Jo (2018).

If solves proceed to optimality, FULL is guaranteed to find the optimal bounds on the value of a single
variable v. The trade-off is that, for deeper layers, using FULL can be relatively inefficient, since
solve times in the worst case are exponential in the number of binary variables in Mv .

Nevertheless, contrary to what is asserted in Cheng et al. (2017), we can terminate solves early and
still obtain useful bounds. For example, to determine an upper bound on v, we set the objective of
Mv to be to maximize the value of v. As the solve process proceeds, we obtain progressively better
certified upper bounds on the maximum value of v. We can thus terminate the solve process and
extract the best upper bound found at any time, using this upper bound as a valid (but possibly loose)
bound on the value of v.

B.2 LINEAR PROGRAMMING (LP)

LP considers the full subtree Gv but relaxes all integer constraints. This results in the optimization
problem becoming a linear program that can be solved more efficiently. LP represents a good middle
ground between the optimality of FULL and the performance of IA.

B.3 INTERVAL ARITHMETIC (IA)

IA selects VI to be the parents of v. In other words, bounds on v are determined solely by considering
the bounds on the variables in the previous layer. We note that this is simply interval arithmetic
Moore et al. (2009).

Consider the example of computing bounds on the variable ẑi =Wizi−1 + bi, where lzi−1 ≤ zi−1 ≤
uzi−1 . We have

ẑi ≥W−i uzi−1
+W+

i lzi−1
(30)

ẑi ≤W+
i uzi−1

+W−i lzi−1
(31)

W+
i , max(Wi, 0) (32)

W−i , min(Wi, 0) (33)

IA is efficient (since it only involves matrix operations for our applications). However, for deeper
layers, using interval arithmetic can lead to overly conservative bounds.

C PROGRESSIVE BOUNDS TIGHTENING

GETBOUNDSFORMAX finds the tightest bounds required for specifying the constraint y = max(xs).
Using the observation in Proposition 1, we stop tightening the bounds on a variable if its maximum
possible value is lower than the minimum value of some other variable. GETBOUNDSFORMAX
returns a tuple containing the set of elements in xs that can still take on the maximum value, as well
as a dictionary of upper and lower bounds.

14



Published as a conference paper at ICLR 2019

GETBOUNDSFORMAX(xs, fs)

1 � fs are the procedures to determine bounds, sorted in increasing computational complexity.
2 dl = {x : −∞ for x in xs}
3 du = {x :∞ for x in xs}
4 � initialize dictionaries containing best known upper and lower bounds on xs
5 lmax = −∞ � lmax is the maximum known lower bound on any of the xs
6 a = {xs}
7 � a is a set of active elements in xs that can still potentially take on the maximum value.
8 for f in fs: � carrying out progressive bounds tightening
9 do for x in xs:

10 if du[x] < lmax

11 then a.remove(x) � x cannot take on the maximum value
12 else u = f(x, boundType = upper)
13 du[x] = min(du[x], u)
14 l = f(x, boundType = lower)
15 dl[x] = max(dl[x], l)
16 lmax = max(lmax , l)
17 return (a, dl, du)

D ADDITIONAL EXPERIMENTAL DETAILS

D.1 NETWORKS USED

The source of the weights for each of the networks we present results for in the paper are provided
below.

• MNIST classifiers not designed to be robust:

– MLP-2×[20] and MLP-3×[20] are the MNIST classifiers in Weng et al.
(2018), and can be found at https://github.com/huanzhang12/
CertifiedReLURobustness.

• MNIST classifiers designed for robustness to perturbations with l∞ norm-bound ε = 0.1:

– LPd-CNNB is the large MNIST classifier for ε = 0.1 in Wong et al. (2018), and
can be found at https://github.com/locuslab/convex_adversarial/
blob/master/models_scaled/mnist_large_0_1.pth.

– LPd-CNNA is the MNIST classifier in Kolter & Wong (2017), and can
be found at https://github.com/locuslab/convex_adversarial/
blob/master/models/mnist.pth.

– Adv-CNNA was trained with adversarial examples generated by PGD. PGD attacks
were carried out with l∞ norm-bound ε = 0.1, 8 steps per sample, and a step size of
0.334. An l1 regularization term was added to the objective with a weight of 0.0015625
on the first convolution layer and 0.003125 for the remaining layers.

– Adv-MLP-2×[200] was trained with adversarial examples generated by PGD. PGD
attacks were carried out with with l∞ norm-bound ε = 0.15, 200 steps per sample, and
a step size of 0.1. An l1 regularization term was added to the objective with a weight
of 0.003 on the first layer and 0 for the remaining layers.

– SDPd-MLP-1×[500] is the classifier in Raghunathan et al. (2018).

• MNIST classifiers designed for robustness to perturbations with l∞ norm-bound ε =
0.2, 0.3, 0.4:

– LPd-CNNA was trained with the code available at https://github.com/
locuslab/convex_adversarial at commit 4e9377f. Parameters se-
lected were batch size=20, starting epsilon=0.01, epochs=200,
seed=0.

– LPd-CNNB is the large MNIST classifier for ε = 0.3 in Wong et al. (2018), and
can be found at https://github.com/locuslab/convex_adversarial/
blob/master/models_scaled/mnist_large_0_3.pth.
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• CIFAR-10 classifiers designed for robustness to perturbations with l∞ norm-bound ε = 2
255

– LPd-CNNA is the small CIFAR classifier in Wong et al. (2018), courtesy of the authors.
• CIFAR-10 classifiers designed for robustness to perturbations with l∞ norm-bound ε = 8

255

– LPd-RES is the resnet CIFAR classifier in Wong et al. (2018), and can
be found at https://github.com/locuslab/convex_adversarial/
blob/master/models_scaled/cifar_resnet_8px.pth.

D.2 COMPUTATIONAL ENVIRONMENT

We construct the MILP models in Julia (Bezanson et al., 2017) using JuMP (Dunning et al., 2017),
with the model solved by the commercial solver Gurobi 7.5.2 (Gurobi Optimization, 2017). All
experiments were run on a KVM virtual machine with 8 virtual CPUs running on shared hardware,
with Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz processors, and 8GB of RAM.

E PERFORMANCE OF VERIFIER WITH OTHER MILP SOLVERS

To give a sense for how our verifier performs with other solvers, we ran a comparison with the Cbc
(Forrest et al., 2018) and GLPK (Makhorin, 2012) solvers, two open-source MILP solvers.

Table 4: Performance of verifier with different MILP solvers on MNIST LPd-CNNA network with
ε = 0.1. Verifier performance is best with Gurobi, but our verifier outperforms both the lower bound
from PGD and the upper bound generated by the SOA method in Kolter & Wong (2017) when using
the Cbc solver too.

Approach Adversarial Error Mean
Time / sLower Bound Upper Bound

Ours w/ Gurobi 4.38% 4.38% 3.52
Ours w/ Cbc 4.30% 4.82% 18.92
Ours w/ GLPK 3.50% 7.30% 35.78
PGD / SOA 4.11% 5.82% –

When we use GLPK as the solver, our performance is significantly worse than when using Gurobi,
with the solver timing out on almost 4% of samples. While we time out on some samples with Cbc,
our verifier still provides a lower bound better than PGD and an upper bound significantly better than
the state-of-the-art for this network. Overall, verifier performance is affected by the underlying MILP
solver used, but we are still able to improve on existing bounds using an open-source solver.

F ADDITIONAL SOLVE STATISTICS

F.1 NODES EXPLORED

Table 5 presents solve statistics on nodes explored to supplement the results reported in Table 2. If
the solver explores zero nodes for a particular sample, it proved that the sample was robust (or found
an adversarial example) without branching on any binary variables. This occurs when the bounds we
find during the presolve step are sufficiently tight. We note that this occurs for over 95% of samples
for LPd-CNNA for ε = 0.1.

F.2 DETERMINANTS OF VERIFICATION TIME

Table 6 presents additional information on the determinants of verification time for networks we omit
in Table 3.
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Table 5: Solve statistics on nodes explored when determining adversarial accuracy of MNIST and
CIFAR-10 classifiers to perturbations with l∞ norm-bound ε. We solve a linear program for each of
the nodes explored in the MILP search tree.

Dataset Network ε
Mean
Time

/s

Nodes Explored

Mean Median Percentile Max
90 95 99 99.9

MNIST LPd-CNNB 0.1 46.33 8.18 0 0 0 1 2385 20784
LPd-CNNA 0.1 3.52 1.91 0 0 0 1 698 1387
Adv-CNNA 0.1 135.74 749.55 0 201 3529 20195 31559 50360
Adv-MLPB 0.1 3.69 87.17 0 1 3 2129 11625 103481

SDPd-MLPA 0.1 312.43 4641.33 39 17608 21689 27120 29770 29887

LPd-CNNA 0.2 7.32 15.71 0 1 1 540 2151 7105
LPd-CNNB 0.3 98.79 305.82 0 607 1557 4319 28064 185500
LPd-CNNA 0.3 5.13 31.58 0 5 119 788 2123 19650
LPd-CNNA 0.4 5.07 57.32 1 79 320 932 3455 43274

CIFAR-10 LPd-CNNA
2

255 22.41 195.67 0 1 1 4166 29774 51010
LPd-RES 8

255 15.23 41.38 0 1 3 1339 4239 5022

Table 6: Solve statistics on number of labels that can be eliminated from consideration, and number
of ReLUs that are provably stable, when determining adversarial accuracy of MNIST and CIFAR-10
classifiers to perturbations with l∞ norm-bound ε.

Dataset Network ε

Mean
Time

/ s

Number
of Labels

Eliminated

Number of ReLUs

Possibly
Unstable

Provably Stable Total
Active Inactive

MNIST LPd-CNNA 0.2 7.32 5.84 115.51 3202.67 1485.82 4804
LPd-CNNB 0.3 98.79 5.43 575.61 34147.99 13340.40 48064
LPd-CNNA 0.3 5.13 4.57 150.90 3991.38 661.72 4804
LPd-CNNA 0.4 5.07 2.67 172.63 4352.60 278.78 4804

CIFAR-10 LPd-CNNA
2

255 22.41 7.06 371.36 4185.35 1687.29 6244
LPd-RES 8

255 15.23 6.94 1906.15 96121.50 9468.35 107496
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G WHICH ADVERSARIAL EXAMPLES ARE MISSED BY PGD?

Figure 3: Fraction of samples in the MNIST test set vulnerable to attack for which PGD succeeds
at finding an adversarial example. Samples are binned by their minimum adversarial distortion (as
measured under the l∞ norm), with bins of size 0.01. Each of these are LPd-CNNA networks, and
were trained to optimize for robustness to attacks with l∞ norm-bound ε. For any given network, the
success rate of PGD declines as the minimum adversarial distortion increases. Comparing networks,
success rates decline for networks with larger ε even at the same minimum adversarial distortion.

PGD succeeds in finding an adversarial example if and only if the starting point for the gradient
descent is in the basin of attraction of some adversarial example. Since PGD initializes the gradient
descent with a randomly chosen starting point within G(x) ∩ Xvalid, the success rate (with a single
random start) corresponds to the fraction of G(x) ∩ Xvalid that is in the basin of attraction of some
adversarial example.

Intuitively, the success rate of PGD should be inversely related to the magnitude of the minimum
adversarial distortion δ̂: if δ̂ is small, we expect more of G(x) ∩ Xvalid to correspond to adversarial
examples, and thus the union of the basins of attraction of the adversarial examples is likely to be
larger. We investigate here whether our intuition is substantiated.

To obtain the best possible empirical estimate of the success rate of PGD for each sample, we
would need to re-run PGD initialized with multiple different randomly chosen starting points within
G(x) ∩ Xvalid.

However, since we are simply interested in the relationship between success rate and minimum
adversarial distortion, we obtained a coarser estimate by binning the samples based on their minimum
adversarial distortion, and then calculating the fraction of samples in each bin for which PGD with a
single randomly chosen starting point succeeds at finding an adversarial example.
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Figure 3 plots this relationship for four networks using the CNNA architecture and trained with the
same training method LPd but optimized for attacks of different size. Three features are clearly
discernible:

• PGD is very successful at finding adversarial examples when the magnitude of the minimum
adversarial distortion, δ̂, is small.

• The success rate of PGD declines significantly for all networks as δ̂ approaches ε.

• For a given value of δ̂, and two networks a and b trained to be robust to attacks with l∞
norm-bound εa and εb respectively (where εa < εb), PGD is consistently more successful at
attacking the network trained to be robust to smaller attacks, a, as long as δ̂ � εa.

The sharp decline in the success rate of PGD as δ̂ approaches ε is particularly interesting, especially
since it is suggests a pathway to generating networks that appear robust when subject to PGD attacks
of bounded l∞ norm but are in fact vulnerable to such bounded attacks: we simply train the network
to maximize the total number of adversarial examples with minimum adversarial distortion close to ε.

H SPARSIFICATION AND VERIFIABILITY

When verifying the robustness of SDPd-MLPA, we observed that a significant proportion of kernel
weights were close to zero. Many of these tiny weights are unlikely to be contributing significantly
to the final classification of any input image. Having said that, setting these tiny weights to zero
could potentially reduce verification time, by 1) reducing the size of the MILP formulation, and by
2) ameliorating numerical issues caused by the large range of numerical coefficients in the network
(Gurobi, 2017).

We generated sparse versions of the original network to study the impact of sparseness on solve times.
Our heuristic sparsification algorithm is as follows: for each fully-connected layer i, we set a fraction
fi of the weights with smallest absolute value in the kernel to 0, and rescale the rest of the weights
such that the l1 norm of the kernel remains the same.9 Note that MLPA consists of only two layers:
one hidden layer (layer 1) and one output layer (layer 2).

Table 7: Effect of sparsification of SDPd-MLPA on verifiability. Test error increases slightly as larger
fractions of kernel weights are set to zero, but the certified upper bound on adversarial error decreases
significantly as the solver reaches the time limit for fewer samples.

Fraction
zeroed Test

Error

Certified Bounds
on Adversarial Error Mean

Time / s
Fraction

Timed Out
f1 f2 Lower Bound Upper Bound

0.0 0.00 4.18% 14.36% 30.81% 312.4 0.1645
0.5 0.25 4.22% 14.60% 25.25% 196.0 0.1065
0.8 0.25 4.22% 15.03% 18.26% 69.7 0.0323
0.9 0.25 4.93% 17.97% 18.76% 22.2 0.0079

Table 7 summarizes the results of verifying sparse versions of SDPd-MLPA; the first row presents
results for the original network, and the subsequent rows present results when more and more of the
kernel weights are set to zero.

When comparing the first and last rows, we observe an improvement in both mean time and fraction
timed out by an order of magnitude. As expected, sparsifying weights increases the test error, but the
impact is not significant until f1 exceeds 0.8. We also find that sparsification significantly improves
our upper bound on adversarial error — to a point: the upper bound on adversarial error for f1 = 0.9
is higher than that for f1 = 0.8, likely because the true adversarial error has increased significantly.

9Skipping the rescaling step did not appreciably affect verification times or test errors.
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Starting with a network that is robust, we have demonstrated that a simple sparsification approach
can already generate a sparsified network with an upper bound on adversarial error significantly
lower than the best upper bound that can be determined for the original network. Adopting a more
principled sparsification approach could achieve the same improvement in verifiability but without
compromising on the true adversarial error as much.

I ROBUST TRAINING AND RELU STABILITY

Networks that are designed to be robust need to balance two competing objectives. Locally, they
need to be robust to small perturbations to the input. However, they also need to retain sufficient
global expressiveness to maintain a low test error.

For the networks in Table 3, even though each robust training approach estimates the worst-case
error very differently, all approaches lead to a significant fraction of the ReLUs in the network being
provably stable with respect to perturbations with bounded l∞ norm. In other words, for the input
domain G(x) consisting of all bounded perturbations of the sample x, we can show that, for many
ReLUs, the input to the unit is always positive (and thus the output is linear in the input) or always
negative (and thus the output is always zero). As discussed in the main text, we believe that the need
for the network to be robust to perturbations in G drives more ReLUs to be provably stable with
respect to G.

To better understand how networks can retain global expressiveness even as many ReLUs are provably
stable with respect to perturbations with bounded l∞ norm ε, we study how the number of ReLUs
that are provably stable changes as we vary the size of G(x) by changing the maximum allowable l∞
norm of perturbations. The results are presented in Figure 4.

As expected, the number of ReLUs that cannot be proven to be stable increases as the maximum
allowable l∞ norm of perturbations increases. More interestingly, LPd-CNNA is very sensitive to the
ε = 0.1 threshold, with a sharp increase in the number of ReLUs that cannot be proven to be stable
when the maximum allowable l∞ norm of perturbations increases beyond 0.102. An increase of the
same abruptness is not seen for the other two networks.
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(a) LPd-CNNA. Note the sharp increase in the num-
ber of ReLUs that cannot be proven to be stable
when the maximum l∞ norm increases beyond
0.102.

(b) SDPd-MLPA.

(c) Adv-MLPB. Adversarial training alone is suffi-
cient to significantly increase the number of ReLUs
that are provably stable.

Figure 4: Comparison of provably ReLU stability for networks trained via different robust training
procedures to be robust at ε = 0.1, when varying the maximum allowable l∞ norm of the perturbation.
The results reported in Table 3 are marked by a dotted line. As we increase the maximum allowable
l∞ norm of perturbations, the number of ReLUs that cannot be proven to be stable increases across
all networks (as expected), but LPd-CNNA is far more sensitive to the ε = 0.1 threshold.
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