
LQR-Trees: Feedback Motion Planning on
Sparse Randomized Trees

Russ Tedrake

Associate Professor
MIT Computer Science and Artificial Intelligence Lab

RSS, Seattle
June 29, 2009

Russ Tedrake, MIT CSAIL LQR-Trees



A Motivating Example: The Compass Gait

h

sw

m

τ

−θ

b

γ

a

θ

m

st

Torque only at the hip.

No foot scuffing.

Impulsive, Inelastic Collisions

Instantaneous transfer of
support

[click image to play movie]

Russ Tedrake, MIT CSAIL LQR-Trees


compassGait.mov
Media File (video/quicktime)



Compass Gait: The nominal (passive) limit cycle

Russ Tedrake, MIT CSAIL LQR-Trees



Compass Gait: The nominal (passive) limit cycle

Goswami, 1996

Russ Tedrake, MIT CSAIL LQR-Trees



Control for the Compass Gait

A good model for control experiments:

Captures challenge of hybrid limit cycle stability
Avoids unnecessary complexity
We don’t yet have satisfying control solutions

Good previous work on stabilizing the nominal limit cycle:

Local linear or nonlinear feedback increases basin (Westervelt,
Shiriaev, Ruina, Goswami,..)
“Global” methods like dynamic progamming suffer from
discretization, and don’t scale (Byl,Morimoto,...).

but I want more...

Russ Tedrake, MIT CSAIL LQR-Trees



Control for the Compass Gait

A good model for control experiments:

Captures challenge of hybrid limit cycle stability
Avoids unnecessary complexity
We don’t yet have satisfying control solutions

Good previous work on stabilizing the nominal limit cycle:

Local linear or nonlinear feedback increases basin (Westervelt,
Shiriaev, Ruina, Goswami,..)
“Global” methods like dynamic progamming suffer from
discretization, and don’t scale (Byl,Morimoto,...).

but I want more...

Russ Tedrake, MIT CSAIL LQR-Trees



Control for the Compass Gait

A good model for control experiments:

Captures challenge of hybrid limit cycle stability
Avoids unnecessary complexity
We don’t yet have satisfying control solutions

Good previous work on stabilizing the nominal limit cycle:

Local linear or nonlinear feedback increases basin (Westervelt,
Shiriaev, Ruina, Goswami,..)
“Global” methods like dynamic progamming suffer from
discretization, and don’t scale (Byl,Morimoto,...).

but I want more...

Russ Tedrake, MIT CSAIL LQR-Trees



Control for the Compass Gait

A good model for control experiments:

Captures challenge of hybrid limit cycle stability
Avoids unnecessary complexity
We don’t yet have satisfying control solutions

Good previous work on stabilizing the nominal limit cycle:

Local linear or nonlinear feedback increases basin (Westervelt,
Shiriaev, Ruina, Goswami,..)
“Global” methods like dynamic progamming suffer from
discretization, and don’t scale (Byl,Morimoto,...).

but I want more...

Russ Tedrake, MIT CSAIL LQR-Trees



Goals for Control

Goal: Systematically design a feedback controller such that
every point in a (bounded subset of) state space that can be
driven to the goal will be driven to the goal.

Non-trivial because of actuator limits and nonlinear dynamic
(underactuation) constraints

Observation: Trajectory optimization and trajectory
stabilization work very well (locally)

Possible solution: Trajectory libraries

Chris Atkeson has been arguing this for years
Can we find a “minimal” set of trajectories that cover the
space?

Russ Tedrake, MIT CSAIL LQR-Trees



Goals for Control

Goal: Systematically design a feedback controller such that
every point in a (bounded subset of) state space that can be
driven to the goal will be driven to the goal.

Non-trivial because of actuator limits and nonlinear dynamic
(underactuation) constraints

Observation: Trajectory optimization and trajectory
stabilization work very well (locally)

Possible solution: Trajectory libraries

Chris Atkeson has been arguing this for years
Can we find a “minimal” set of trajectories that cover the
space?

Russ Tedrake, MIT CSAIL LQR-Trees



Goals for Control

Goal: Systematically design a feedback controller such that
every point in a (bounded subset of) state space that can be
driven to the goal will be driven to the goal.

Non-trivial because of actuator limits and nonlinear dynamic
(underactuation) constraints

Observation: Trajectory optimization and trajectory
stabilization work very well (locally)

Possible solution: Trajectory libraries

Chris Atkeson has been arguing this for years
Can we find a “minimal” set of trajectories that cover the
space?

Russ Tedrake, MIT CSAIL LQR-Trees



Goals for Control

Goal: Systematically design a feedback controller such that
every point in a (bounded subset of) state space that can be
driven to the goal will be driven to the goal.

Non-trivial because of actuator limits and nonlinear dynamic
(underactuation) constraints

Observation: Trajectory optimization and trajectory
stabilization work very well (locally)

Possible solution: Trajectory libraries

Chris Atkeson has been arguing this for years
Can we find a “minimal” set of trajectories that cover the
space?

Russ Tedrake, MIT CSAIL LQR-Trees



Estimating basins of attraction

New tools from systems theory can estimate basins of
attraction for linear feedback using convex optimization.

Pendulum Example:

g

θ

m

l

θ

θ̇

Russ Tedrake, MIT CSAIL LQR-Trees



Estimating basins of attraction

New tools from systems theory can estimate basins of
attraction for linear feedback using convex optimization.

Pendulum Example:

g

θ

m

l

θ

θ̇

Russ Tedrake, MIT CSAIL LQR-Trees



Sums-of-Squares (SOS) Optimization

Given polynomial, p(x), with unknown coefficients, c , verify
uniform positive definiteness:

∃c∀x p(x) ≥ 0.

Feasibility set is convex → convex optimization.

Can also handle equality constraints, and/or optimize a linear
objective

Russ Tedrake, MIT CSAIL LQR-Trees



Sums-of-Squares (SOS) Optimization

Given polynomial, p(x), with unknown coefficients, c , verify
uniform positive definiteness:

∃c∀x p(x) ≥ 0.

Feasibility set is convex → convex optimization.

Can also handle equality constraints, and/or optimize a linear
objective

Russ Tedrake, MIT CSAIL LQR-Trees



Sums-of-Squares (SOS) Optimization

Given polynomial, p(x), with unknown coefficients, c , verify
uniform positive definiteness:

∃c∀x p(x) ≥ 0.

Feasibility set is convex → convex optimization.

Can also handle equality constraints, and/or optimize a linear
objective

Russ Tedrake, MIT CSAIL LQR-Trees



Polynomial Lyapunov functions

Pablo Parrilo popularized SOS tools for control verification.

Example: Given a polynomial dynamical system:

ẋ =
N∑

i=0

αix
i ,

can search for coefficients of a polynomial Lyapunov function,
V (x), such that V̇ (x) ≤ 0.

Russ Tedrake, MIT CSAIL LQR-Trees



“Certificates” for LQR Design

Given ẋ = f(x,u)

Linearize around operating point to obtain

˙̄x ≈ Ax̄ + Bū.

LQR design gives:

ū = −Kx̄, J(x) ≈ x̄T Sx̄,

where J(x) is the approximate cost-to-go.

Approximate f with higher-order Taylor expansion.

Use SOS tools to find largest scalar ρ for which

∀x with J(x) ≤ ρ, d

dt
J(x) ≤ 0.

Also works for LQR trajectory stabilization (time-varying)

Russ Tedrake, MIT CSAIL LQR-Trees



Pendulum “Funnels”

Russ Tedrake, MIT CSAIL LQR-Trees



Pendulum “Funnels”

Russ Tedrake, MIT CSAIL LQR-Trees



Pendulum “Funnels”

Erdmann,Mason,Koditschek

Russ Tedrake, MIT CSAIL LQR-Trees



Randomized Feedback Motion Planning

Planning funnels are based on trajectories.

Represented compactly by matrix S and scalar ρ.
Conservative in almost every way.

Combine funnels with randomized motion planning

Rapidly-exploring randomized trees (RRTs)
Probabilistic Roadmaps (PRMs)

Russ Tedrake, MIT CSAIL LQR-Trees



Randomized Feedback Motion Planning

Planning funnels are based on trajectories.

Represented compactly by matrix S and scalar ρ.
Conservative in almost every way.

Combine funnels with randomized motion planning

Rapidly-exploring randomized trees (RRTs)
Probabilistic Roadmaps (PRMs)

Russ Tedrake, MIT CSAIL LQR-Trees



The “LQR-Tree” Algorithm

Grow a stabilizing tree
backwards from the goal:

1 Choose a sample
randomly from state
space

2 Find closest leaf in the
tree (via LQR metric)

3 Grow the tree towards
the sample

If connection fails,
discard sample.

4 Compute LQR stabilizing
controller and Lyapunov
‘certificates’ for new leaf.

5 Repeat

θ

θ̇

Russ Tedrake, MIT CSAIL LQR-Trees



The “LQR-Tree” Algorithm

Grow a stabilizing tree
backwards from the goal:

1 Choose a sample
randomly from state
space

2 Find closest leaf in the
tree (via LQR metric)

3 Grow the tree towards
the sample

If connection fails,
discard sample.

4 Compute LQR stabilizing
controller and Lyapunov
‘certificates’ for new leaf.

5 Repeat

θ

θ̇

Russ Tedrake, MIT CSAIL LQR-Trees



The “LQR-Tree” Algorithm

Grow a stabilizing tree
backwards from the goal:

1 Choose a sample
randomly from state
space

2 Find closest leaf in the
tree (via LQR metric)

3 Grow the tree towards
the sample

If connection fails,
discard sample.

4 Compute LQR stabilizing
controller and Lyapunov
‘certificates’ for new leaf.

5 Repeat

θ

θ̇

Russ Tedrake, MIT CSAIL LQR-Trees



The “LQR-Tree” Algorithm

Grow a stabilizing tree
backwards from the goal:

1 Choose a sample
randomly from state
space

2 Find closest leaf in the
tree (via LQR metric)

3 Grow the tree towards
the sample

If connection fails,
discard sample.

4 Compute LQR stabilizing
controller and Lyapunov
‘certificates’ for new leaf.

5 Repeat

θ

θ̇

Russ Tedrake, MIT CSAIL LQR-Trees



The “LQR-Tree” Algorithm

Grow a stabilizing tree
backwards from the goal:

1 Choose a sample
randomly from state
space

2 Find closest leaf in the
tree (via LQR metric)

3 Grow the tree towards
the sample

If connection fails,
discard sample.

4 Compute LQR stabilizing
controller and Lyapunov
‘certificates’ for new leaf.

5 Repeat

θ

θ̇

Russ Tedrake, MIT CSAIL LQR-Trees



The “LQR-Tree” Algorithm

Grow a stabilizing tree
backwards from the goal:

1 Choose a sample
randomly from state
space

2 Find closest leaf in the
tree (via LQR metric)

3 Grow the tree towards
the sample

If connection fails,
discard sample.

4 Compute LQR stabilizing
controller and Lyapunov
‘certificates’ for new leaf.

5 Repeat

θ

θ̇

Russ Tedrake, MIT CSAIL LQR-Trees



The “LQR-Tree” Algorithm

Grow a stabilizing tree
backwards from the goal:

1 Choose a sample
randomly from state
space

2 Find closest leaf in the
tree (via LQR metric)

3 Grow the tree towards
the sample

If connection fails,
discard sample.

4 Compute LQR stabilizing
controller and Lyapunov
‘certificates’ for new leaf.

5 Repeat

θ

θ̇

Russ Tedrake, MIT CSAIL LQR-Trees



Simple Pendulum Example

[click image to play movie]
[click image to play movie]

Russ Tedrake, MIT CSAIL LQR-Trees


pend_tree5_104.avi
Media File (video/avi)


pend_tree_playback5.avi
Media File (video/avi)



Properties of the algorithm

Probabilistically covers reachable space with stabilizing
controller (under mild assumptions)

Efficient in number of nodes; each node requires computation

LQR-Trees

−3 −2 −1 0 1 2 3
−10

−8

−6

−4

−2

0

2

4

6

8

10

θ

θ do
t

RRT w/ Euclidean metric

Russ Tedrake, MIT CSAIL LQR-Trees



Properties of the algorithm

Probabilistically covers reachable space with stabilizing
controller (under mild assumptions)

Efficient in number of nodes; each node requires computation

LQR-Trees

−3 −2 −1 0 1 2 3
−10

−8

−6

−4

−2

0

2

4

6

8

10

θ

θ do
t

RRT w/ Euclidean metric

Russ Tedrake, MIT CSAIL LQR-Trees



Properties of the algorithm

Probabilistically covers reachable space with stabilizing
controller (under mild assumptions)

Efficient in number of nodes; each node requires computation

LQR-Trees

−3 −2 −1 0 1 2 3
−10

−8

−6

−4

−2

0

2

4

6

8

10

θ

θ do
t

RRT w/ Euclidean metric

Russ Tedrake, MIT CSAIL LQR-Trees



Properties of the algorithm

Probabilistically covers reachable space with stabilizing
controller (under mild assumptions)

Efficient in number of nodes; each node requires computation

LQR-Trees

−3 −2 −1 0 1 2 3
−10

−8

−6

−4

−2

0

2

4

6

8

10

θ

θ do
t

RRT w/ Euclidean metric

Russ Tedrake, MIT CSAIL LQR-Trees



Certificates for the Cart-Pole system

f

p

x

l

m c

g

θ

m

[click image to play movie]

by Philipp Reist

Russ Tedrake, MIT CSAIL LQR-Trees


00000001.jpg

created.with.SUPER(C).v2009.bld.35

created.with.SUPER(C).v2009.bld.35

cpHoldOn.MOV
Media File (video/quicktime)



LQR-Trees for the Cart-Pole system

[click image to play movie]

[click image to play movie]

.

Russ Tedrake, MIT CSAIL LQR-Trees


philipp_cartpole_tree_sims.mov
Media File (video/quicktime)



The “Perching” Problem

Russ Tedrake, MIT CSAIL LQR-Trees



Experiment Design

Glider (no propellor)

Flat wings

Dihedral (passive roll
stability)

Offboard sensing and
control

Russ Tedrake, MIT CSAIL LQR-Trees



System Identification

Nonlinear rigid-body vehicle model

Linear (w/ delay) actuator model
Real flight data (no wind tunnel)

Very high angle-of-attack regimes
Relatively small number of physics-based basis functions
Vortex shedding

Lift Coefficient

−20 0 20 40 60 80 100 120 140 160
−1.5

−1

−0.5

0

0.5

1

1.5

Angle of Attack

C
l

 

 
Glider Data
Flat Plate Theory

Drag Coefficient

−20 0 20 40 60 80 100 120 140 160
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Angle of Attack

C
d

 

 
Glider Data
Flat Plate Theory

Russ Tedrake, MIT CSAIL LQR-Trees



A dynamic model

(x, z)
m, I

θF

F

g

w

e
l

lw

el

−φ

Planar dynamics

Aerodynamics fit from data

State: x = [x , y , θ, φ, ẋ , ẏ , θ̇]

Only actuator is the elevator
angle, u = φ̇

Russ Tedrake, MIT CSAIL LQR-Trees



Glider Perching

Enters motion capture @ 6 m/s.

Perch is < 3.5 m away.

Entire trajectory @ 1 second.

Requires
Separation!

[click image to play movie]

Russ Tedrake, MIT CSAIL LQR-Trees


perch-hs-06-22-07.mov
Media File (video/quicktime)



Glider Perching

Enters motion capture @ 6 m/s.

Perch is < 3.5 m away.

Entire trajectory @ 1 second.

Requires
Separation!

[click image to play movie]

Russ Tedrake, MIT CSAIL LQR-Trees


perch-hs-06-22-07.mov
Media File (video/quicktime)



Preliminary results: Trees for Perching

[click image to play movie]

Russ Tedrake, MIT CSAIL LQR-Trees


glider_medley.mov
Media File (video/quicktime)



Cartoon: LQR-Trees for bipedal walking

h

sw

m

τ

−θ

b

γ

a

θ

m

st

Russ Tedrake, MIT CSAIL LQR-Trees



Cartoon: LQR-trees for bipedal walking

Russ Tedrake, MIT CSAIL LQR-Trees



Extensions to the basic algorithm

Can replace LQR with favorite trajectory stabilizer

Stochastic basins requires more thought, but not impossible
LQR is convenient because it yields cost-to-go

Certificates for more complicated problems (e.g., actuator
constraints)

Can replace some pieces of SOS with direct simulation without
losing coverage

Multi-query algorithms.

Backwards tree is big stabilizing web of trajectories.
Reuse funnel computation when goal changes.

Tentative: Combine with policy-gradient methods to adjust to
model errors

Russ Tedrake, MIT CSAIL LQR-Trees



Extensions to the basic algorithm

Can replace LQR with favorite trajectory stabilizer

Stochastic basins requires more thought, but not impossible

LQR is convenient because it yields cost-to-go

Certificates for more complicated problems (e.g., actuator
constraints)

Can replace some pieces of SOS with direct simulation without
losing coverage

Multi-query algorithms.

Backwards tree is big stabilizing web of trajectories.
Reuse funnel computation when goal changes.

Tentative: Combine with policy-gradient methods to adjust to
model errors

Russ Tedrake, MIT CSAIL LQR-Trees



Extensions to the basic algorithm

Can replace LQR with favorite trajectory stabilizer

Stochastic basins requires more thought, but not impossible
LQR is convenient because it yields cost-to-go

Certificates for more complicated problems (e.g., actuator
constraints)

Can replace some pieces of SOS with direct simulation without
losing coverage

Multi-query algorithms.

Backwards tree is big stabilizing web of trajectories.
Reuse funnel computation when goal changes.

Tentative: Combine with policy-gradient methods to adjust to
model errors

Russ Tedrake, MIT CSAIL LQR-Trees



Extensions to the basic algorithm

Can replace LQR with favorite trajectory stabilizer

Stochastic basins requires more thought, but not impossible
LQR is convenient because it yields cost-to-go

Certificates for more complicated problems (e.g., actuator
constraints)

Can replace some pieces of SOS with direct simulation without
losing coverage

Multi-query algorithms.

Backwards tree is big stabilizing web of trajectories.
Reuse funnel computation when goal changes.

Tentative: Combine with policy-gradient methods to adjust to
model errors

Russ Tedrake, MIT CSAIL LQR-Trees



Extensions to the basic algorithm

Can replace LQR with favorite trajectory stabilizer

Stochastic basins requires more thought, but not impossible
LQR is convenient because it yields cost-to-go

Certificates for more complicated problems (e.g., actuator
constraints)

Can replace some pieces of SOS with direct simulation without
losing coverage

Multi-query algorithms.

Backwards tree is big stabilizing web of trajectories.
Reuse funnel computation when goal changes.

Tentative: Combine with policy-gradient methods to adjust to
model errors

Russ Tedrake, MIT CSAIL LQR-Trees



Extensions to the basic algorithm

Can replace LQR with favorite trajectory stabilizer

Stochastic basins requires more thought, but not impossible
LQR is convenient because it yields cost-to-go

Certificates for more complicated problems (e.g., actuator
constraints)

Can replace some pieces of SOS with direct simulation without
losing coverage

Multi-query algorithms.

Backwards tree is big stabilizing web of trajectories.
Reuse funnel computation when goal changes.

Tentative: Combine with policy-gradient methods to adjust to
model errors

Russ Tedrake, MIT CSAIL LQR-Trees



Extensions to the basic algorithm

Can replace LQR with favorite trajectory stabilizer

Stochastic basins requires more thought, but not impossible
LQR is convenient because it yields cost-to-go

Certificates for more complicated problems (e.g., actuator
constraints)

Can replace some pieces of SOS with direct simulation without
losing coverage

Multi-query algorithms.

Backwards tree is big stabilizing web of trajectories.
Reuse funnel computation when goal changes.

Tentative: Combine with policy-gradient methods to adjust to
model errors

Russ Tedrake, MIT CSAIL LQR-Trees



Scaling

Randomized sampling scales

Trajectory optimization scales

LQR design scales

Polynomial expansion for certificates is expensive

In high dimensions, cover only relevant portion of state space

Can add to the tree during execution (multi-query)

Currently demonstrated in 5 dimensions (same as dynamic
programming) with virtually no optimization

Goal is @ 10 dimensions. Time will tell.

Russ Tedrake, MIT CSAIL LQR-Trees



Scaling

Randomized sampling scales

Trajectory optimization scales

LQR design scales

Polynomial expansion for certificates is expensive

In high dimensions, cover only relevant portion of state space

Can add to the tree during execution (multi-query)

Currently demonstrated in 5 dimensions (same as dynamic
programming) with virtually no optimization

Goal is @ 10 dimensions. Time will tell.

Russ Tedrake, MIT CSAIL LQR-Trees



Scaling

Randomized sampling scales

Trajectory optimization scales

LQR design scales

Polynomial expansion for certificates is expensive

In high dimensions, cover only relevant portion of state space

Can add to the tree during execution (multi-query)

Currently demonstrated in 5 dimensions (same as dynamic
programming) with virtually no optimization

Goal is @ 10 dimensions. Time will tell.

Russ Tedrake, MIT CSAIL LQR-Trees



Scaling

Randomized sampling scales

Trajectory optimization scales

LQR design scales

Polynomial expansion for certificates is expensive

In high dimensions, cover only relevant portion of state space

Can add to the tree during execution (multi-query)

Currently demonstrated in 5 dimensions (same as dynamic
programming) with virtually no optimization

Goal is @ 10 dimensions. Time will tell.

Russ Tedrake, MIT CSAIL LQR-Trees



Scaling

Randomized sampling scales

Trajectory optimization scales

LQR design scales

Polynomial expansion for certificates is expensive

In high dimensions, cover only relevant portion of state space

Can add to the tree during execution (multi-query)

Currently demonstrated in 5 dimensions (same as dynamic
programming) with virtually no optimization

Goal is @ 10 dimensions. Time will tell.

Russ Tedrake, MIT CSAIL LQR-Trees



Scaling

Randomized sampling scales

Trajectory optimization scales

LQR design scales

Polynomial expansion for certificates is expensive

In high dimensions, cover only relevant portion of state space

Can add to the tree during execution (multi-query)

Currently demonstrated in 5 dimensions (same as dynamic
programming) with virtually no optimization

Goal is @ 10 dimensions. Time will tell.

Russ Tedrake, MIT CSAIL LQR-Trees



Scaling

Randomized sampling scales

Trajectory optimization scales

LQR design scales

Polynomial expansion for certificates is expensive

In high dimensions, cover only relevant portion of state space

Can add to the tree during execution (multi-query)

Currently demonstrated in 5 dimensions (same as dynamic
programming) with virtually no optimization

Goal is @ 10 dimensions. Time will tell.

Russ Tedrake, MIT CSAIL LQR-Trees



Scaling

Randomized sampling scales

Trajectory optimization scales

LQR design scales

Polynomial expansion for certificates is expensive

In high dimensions, cover only relevant portion of state space

Can add to the tree during execution (multi-query)

Currently demonstrated in 5 dimensions (same as dynamic
programming) with virtually no optimization

Goal is @ 10 dimensions. Time will tell.

Russ Tedrake, MIT CSAIL LQR-Trees



Scaling

Randomized sampling scales

Trajectory optimization scales

LQR design scales

Polynomial expansion for certificates is expensive

In high dimensions, cover only relevant portion of state space

Can add to the tree during execution (multi-query)

Currently demonstrated in 5 dimensions (same as dynamic
programming) with virtually no optimization

Goal is @ 10 dimensions. Time will tell.

Russ Tedrake, MIT CSAIL LQR-Trees



Summary and Conclusions

Trajectory libraries are a good way to systematically design
nonlinear controllers using linear control.

It pays to reason about the funnels as you plan:

Efficient - thanks to new tools from verification
Sparseness - relatively few trajectories required
Stronger guarantees - “probabilistic feedback coverage”

Russ Tedrake, MIT CSAIL LQR-Trees



Summary and Conclusions

Trajectory libraries are a good way to systematically design
nonlinear controllers using linear control.

It pays to reason about the funnels as you plan:

Efficient - thanks to new tools from verification
Sparseness - relatively few trajectories required
Stronger guarantees - “probabilistic feedback coverage”

Russ Tedrake, MIT CSAIL LQR-Trees



Summary and Conclusions

Trajectory libraries are a good way to systematically design
nonlinear controllers using linear control.

It pays to reason about the funnels as you plan:

Efficient - thanks to new tools from verification
Sparseness - relatively few trajectories required
Stronger guarantees - “probabilistic feedback coverage”

Russ Tedrake, MIT CSAIL LQR-Trees


