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ABSTRACT
Birds routinely execute aerial maneuvers that are far beyond
the capabilities of our best aircraft control systems. The
complexity and variability of the aerodynamics during these
maneuvers are formidable, with dominant flow structures
(e.g., vortices) that are difficult to predict robustly from
first-principles (Navier-Stokes) models. Here we argue that
machine learning will play an important role in the control
design process for agile flight by building data-driven ap-
proximate models of the aerodynamics and by synthesizing
high-performance nonlinear feedback policies based on these
approximate models and trial-and-error experience. This ar-
ticle highlights some of the more remarkable characteristics
of nature’s flyers, and describes the challenges involved in
replicating this performance in our machines. We conclude
by describing our two-meter wingspan autonomous robotic
bird and some initial results using machine learning to design
control systems for bird-scale, supermaneuverable flight.

Categories and Subject Descriptors
I.2.9 [Robotics]: Autonomous vehicles; I.2.9 [Robotics]:
Propelling Mechanisms

General Terms
Algorithms, Experimentation

Keywords
Machine learning, Reinforcement learning, Control theory,
Flying robots, Flapping-Wings, Fluid Dynamics

1. INTRODUCTION
Watch carefully the next time you see a neighborhood bird

fly past the window and land on the branch of a tree. That
little bird is casually, but dramatically, outperforming some
of the best control systems ever designed by humans.

During a “perching” maneuver, birds rotate their wings
and bodies so that they are almost perpendicular to the
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direction of travel and oncoming airflow. This maneuver
increases the aerodynamic drag on the bird both by increas-
ing the surface area exposed to the flow and by creating a
low-pressure pocket of air behind the wing. Viscous and
pressure forces combine for the desired rapid deceleration,
but the maneuver has important consequences: the wings
become “stalled”, meaning they experience a dramatic loss
of lift and potentially control authority, and the aerodynam-
ics become unsteady (time-varying) and nonlinear, making
the aerodynamic forces difficult to model and predict accu-
rately. The task is further complicated by uncertain wind
dynamics (which affect both the bird and the perch) and
the partial observability of the airflow. Yet birds perch with
apparent ease.

By comparison, helicopters and vertical take-off and land-
ing (VTOL) airplanes require considerably more time and
energy to land on a target. Airplanes today can’t yet land on
a perch with the dynamic performance of a bird. It turns out
that we might not be too far from providing this capability,
but success will require control systems which reason about
the complicated unsteady post-stall aerodynamics. Flared
perching is just one example in which birds exploit compli-
cated dynamic interactions with the airflow to outperform
our best engineered vehicles in metrics of speed, efficiency,
and/or maneuverability.

This article is intended as a call to arms for computer sci-
entists. Our fascination with birds is as old as time, and
thanks to recent advances in UAV technology we may soon
replicate the performance of birds with our machines. Com-
puter science is suddenly well-positioned to make a substan-
tial impact on this fascinating problem.

2. AMAZING FLYING MACHINES
Modern airplanes are extremely effective for steady, level

flight in still air. Propellers produce thrust very efficiently,
and today’s cambered airfoils are highly optimized for speed
and/or efficiency. But examining performance in more in-
teresting flight regimes reveals why birds are still the true
masters of the sky.

Birds are extremely efficient flying machines; some are
capable of migrating thousands of kilometers with incredi-
bly small fuel supplies. The wandering albatross can fly for
hours, or even days, without flapping its wings by exploit-
ing the shear layer formed by the wind over the ocean sur-
face in a technique called dynamic soaring. Remarkably, the
metabolic cost of flying for these birds is indistinguishable
from the baseline metabolic cost[5], suggesting that they can
travel incredible distances (upwind or downwind) powered



almost completely by gradients in the wind. Other birds
achieve efficiency through similarly rich interactions with the
air - including formation flying, thermal soaring, and ridge
soaring[32]. Small birds and large insects, such as butterflies
and locusts, use ‘gust soaring’ to migrate hundreds or even
thousands of kilometers carried primarily by the wind[32].

Birds are also incredibly maneuverable. The roll rate of a
barn swallow is in excess of 5000 deg/sec[22].Bats can be fly-
ing at full-speed in one direction, then be flying at full-speed
in the opposite direction, using a turning maneuver that is
accomplished in just over 2 wing-beats and in a distance
less than half the wingspan[27]. Although quantitative flow
visualization data from maneuvering flight is scarce, a dom-
inant theory is that the ability of these animals to produce
sudden, large forces for maneuverability can be attributed
to unsteady aerodynamics, e.g., the animal creates a large
suction vortex to rapidly change direction[28]. These aston-
ishing capabilities are called upon routinely in maneuvers
like flared perching, prey-catching, and high speed flying
through forests and caves. Even at high speeds and high
turn rates, these animals are capable of incredible agility -
bats sometimes capture prey on their wings, Peregrine fal-
cons can pull 25 G’s out of a 240 mph dive to catch a sparrow
in mid-flight[29], and even the small birds on the MIT cam-
pus can be seen diving through a chain-link fence to grab a
bite of food.

Although many impressive statistics about avian flight
have been recorded, our understanding is partially limited by
experimental accessibility - its is quite difficult to carefully
measure birds (and the surrounding airflow) during their
most impressive maneuvers without disturbing them. The
dynamics of a swimming fish are closely related, and can
be more convenient to study. Dolphins have been known to
swim gracefully through the waves alongside ships moving
at 20 knots[28]. Smaller fish, such as the bluegill sunfish,
are known to possess an escape response in which they pro-
pel themselves to full speed from rest in less than a body
length; flow visualizations indeed confirm that this is accom-
plished by creating a large suction vortex along the side of
the body[30] - similar to how bats change direction in less
than a body length. There are even observations of a dead
fish swimming upstream by pulling energy out of the wake
of a cylinder; this passive propulsion is presumably part of
the technique used by rainbow trout to swim upstream at
mating season[6].

3. MANIPULATING THE AIR
These examples illustrate that the key attribute which

separates birds from our machines is not their flapping wings,
but rather their more delicate interaction with the surround-
ing airflow. These interactions occur at many different time-
scales - from relatively persistent aerodynamic structures
like the shear layer on the ocean or updrafts along a ridge,
to transient thermal and wind gusts, all of the way down to
the unsteady aerodynamics that occur with a single flap of
the wings.

One of the primary reasons why many of these topics have
not received sufficient attention from the engineering com-
munity to date is that birds are operating in a different dy-
namic regime than most of our man-made vehicles. Because
they are considerably smaller, and correspondingly slower
than an airplane, small-scale atmospheric events which are
of minor consequence to a fighter jet or an airliner can

Figure 1: Smoke visualization of the perching plane.

dominate the dynamics of a bird-scale flying machine; this
presents both a challenge and an opportunity. Advances
in miniaturization of power, actuator, sensing, and compu-
tational resources, along with the advances in technologies
for unmanned vehicles, have only recently made these small
vehicles practical.

One only has to watch a video of an eagle soaring at the
edge of a cliff[1] to appreciate the fundamental problem of
flying like a bird. These birds are able to remain incredi-
bly stationary with respect to the world (lift occurs because
they are moving with respect to the air), presumably keep-
ing their eyes still to watch for something the size of a mouse
moving hundreds of feet below. The station keeping occurs
not by flapping, but by making constant minor adjustments
with the fingers and tail, a ritual that might best be de-
scribed as “playing” with the incredibly complicated airflow
coming off the cliff. The fundamental problem in flying like a
bird is not generating lift and thrust with flapping wings, nor
optimizing an airfoil for lift-to-drag ratio, but rather using
small adjustments on the aerodynamic surfaces to achieve a
refined manipulation of the complicated, unsteady airflow.
As roboticists, the authors cannot help but think of this as
the ultimate robotic manipulation problem.

4. A MACHINE LEARNING PROBLEM
In fluid dynamics, the dimensionless Reynolds number

(Re) characterizes the ratio of inertial forces to viscous forces
in a fluid flow. Roughly speaking, at very low Re, viscos-
ity dominates and the fluid- (or air-) flow is laminar and
smooth. At very high Re, inertia dominates and flows are
turbulent. Bird flight is an intermediate Reynolds number
problem, typified by Reynolds numbers between 103 and
105, where the mean aerodynamic chord of the wing is used
as the reference length. At these intermediate Reynolds
numbers, the flow is complicated but structured, dominated
by features such as vortices, and just beginning the transi-
tion to turbulence. Figure 1 is a smoke visualization of the
airflow behind the wing of a bird-scale airplane at 104 which
illustrates this clear but complicated structure.

Although the governing equations for intermediate Reynolds
number flows are known (the Navier-Stokes equations), solv-
ing these partial differential equations accurately can require
prohibitive spatial resolution. As such, computational fluid
dynamic (CFD) codes which simulate a single wing-beat at
Re 103 can take hours or days to compute, while Re 105 flows
are generally considered to be computationally intractable.
Furthermore, the details of a flow of this complexity will be
very sensitive to modeling assumptions about boundary con-
ditions and the exact properties of the wing. Computational
investigations of flapping flight have been, and will certainly



continue to be, an important tool for understanding avian
flight, but these techniques may not be the most direct tool
for designing a control system for a robotic bird.

4.1 Learning Approximate Models
Machine learning potentially has an important role to play

in building tractable approximate models of the aerodynam-
ics in this regime. Perhaps analagous to speech recogni-
tion and machine vision, we suspect that data-driven mod-
els will be more successful than models based directly on
the physics involved; speech and vision rarely make exten-
sive use of the detailed mechanics of the vocal tract/ear/eye
nor sound/light propagation. In fact, there is substantial
evidence of a robust low-dimensional structure embedded
within the complicated fluid dynamics of bird flight. Ex-
perimental fluid dynamicists are often able to write down
suitable first-principle models which describe the dominant
dynamics of their experiments[4, 8], and the considerable lit-
erature on model-order reduction for CFD has demonstrated
the potential for dimensionality reduction, even in the gov-
erning equations[14, 24]. However, the derived models must
be rich and robust, as small atmospheric disturbances that
would go unnoticed to a large vehicle can dominate the dy-
namics of these small vehicles.

A primary challenge in this modeling exercise is that the
flows which dominate the wings are difficult to sense, and are
partially observable at best. Flow visualizations and quanti-
tative flow measurements typically require specialized exper-
imental setups - these are appropriate for wind-tunnel test-
ing but typically not for outdoor flight. Local flow sensors
that can be placed on the wing (such as mechano-receptors
at the wing-tip insertion) can be strongly effected by bound-
ary layer shear, and are presumably limited in their ability
to predict oncoming wind gusts early enough for the bird to
respond. There is relatively little known about how detailed
and predictive of a flow model birds use to accomplish their
aerodynamic prowess.

4.2 Algorithms for Feedback Control Design
Even if the model was known exactly and the airflow was

fully-observable, designing a feedback control system for sys-
tems of this complexity remains an open and challenging
problem due to the severe dynamic constraints. The con-
trol system is underactuated, relying on thrust and local
control surfaces for orientation to control six degrees of free-
dom. Furthermore, aerodynamic control forces take time to
develop; for example, the response in lift force to leading-
edge flow control actuators occurs only after a noticeable
delay [34]. Separation on the wings, as experienced during
an aerodynamic stall, can also result in intermittent losses
of control authority. Furthermore, the dynamics of the fluid
are described as a continuum model - even relatively low-
order lumped-parametert approximations of these compli-
cated dynamics will likely reside in a very high-dimensional
state space compared to the capabilities of our current meth-
ods.

There is considerable work on model-based algorithms
which attempt to systematically design nonlinear feedback
for complicated control systems; often these are based on
sample-based motion planning or dynamic programming and
optimal control[26]. Many of these are based on discretizing
the state-action space, and nearly all struggle with design-
ing controllers in high-dimensional state spaces. Abbeel re-

cently demonstrated aggressive maneuvering with a model
helicopter based on learning trajectories from human ex-
perts and tracking them with receding-horizon control[2];
however, our primary interest here is in accomplishing ma-
neuvers that are beyond the capabilities of our best hu-
man pilots. Our current model-based control design efforts
are focused on algorithms which efficiently stitch together
locally-valid linear control laws into a nonlinear policy by
explicitly reasoning (with semi-definite programming) about
the basins of attraction of the local controllers[25]. Many
other approaches could succeed, and more work is certainly
needed.

4.3 When Modeling Fails
To date, the flow control community has yet to make seri-

ous progress in low-dimensional models for transient regimes,
and problems with aero-elasticity. Due to limited observ-
ability, strong nonlinearities, and simply the variability of
the flow conditions, there will inevitably be non-neglible dif-
ferences between the actual dynamics and our approximate
models. The standard approach to this problem in systems
theory is robust control synthesis[35], which attempts to
bound the modeling errors then design a feedback control
which is guaranteed to stabilize all possible models in this
defined class. The well-known problems with robust control
synthesis are that it tends to require considerable control
authority, and tends to result in very conservative perfor-
mance.

A potentially unique and essential contribution from ma-
chine learning to this domain will be in the use of “model-
free” control methods from reinforcement learning[23], in-
cluding the policy gradient methods (e.g,[17]). These meth-
ods stochastically optimize an expected value cost function
using sampling in policy parameter space and trial-and-error
experience to estimate the local policy gradient - the ex-
pected change in cost based on a change in the parameters.
Because they operate directly on experimental data (naively
ignoring any previously design approximate models), these
methods can potentially be used to overcome approxima-
tions in the model - though typically requiring many trials.

An essential property of the policy gradient algorithms,
which makes them compelling in this domain, is that the
learning performance depends only on the number of con-
trol parameters being optimized, and is locally invariant to
the dimensionality and complexity of the dynamics. As the
number of parameters increases, it requires more samples
to obtain a low-variance estimate of the gradient. Careful
analysis of the signal-to-noise ratio (SNR) of the basic policy
gradient algorithms[20] reveals that the SNR degrades as a
simple function:

SNR =
3

N − 1
, (1)

where N is the number of policy parameters. Note that
the dynamics and the cost function appear nowhere in this
expression; for a controller with N parameters, it requires
the same number of samples to estimate the policy gradient
whether that controller is attached to a simple pendulum or
a Navier-Stokes simulation. Thus, if a clever policy repre-
sentation can be found that requires only a small number of
parameters, policy gradient learning for bird flight may in
fact be relatively very efficient.

Control design based on approximate models or on direct
policy search are both viable approaches to avian flight. The



correct answer will almost certainly involve both. In the re-
maining sections, we will present a few initial results using
these machine learning ideas to generate experimental con-
trol solutions.

5. A PERCHING AIRPLANE
Can an airplane land on a perch like a bird? Most modern

control systems impose a hard limit on the angle of attack
(AoA) of the aircraft, ensuring that the wings stay at a low
angle relative to the oncoming airflow in order to avoid stall.
These vehicles achieve only a fraction of the desired drag
(scaled) of a perching bird and consequently require long
runways for landing[12]. A number of “supermaneuverable”
fighter jets have demonstrated post-stall angle-of-attack ma-
neuvers in airshows (such as the famous “Pugachev’s Cobra”
maneuver), using high thrust-to-weight ratios for lift, which
are energetically expensive to maintain, along with thrust
vectoring or passive stability in the aircraft design to re-
turn from stall[11]. The flight control systems used in these
maneuvers operate without high fidelity models of the air-
flow[3], so probably cannot execute with sufficient position
precision to, for instance, land on a (scaled) perch. To the
authors’ knowledge, the most dynamic landings achieved by
a piloted fixed-wing vehicle to date are the 24 degree AoA
runway landings achieved by the X-31 research vehicle[33].
In practice, a 747 lands with about 15 degrees AoA; an F-18
lands on a carrier at a very moderate 8.1 degree AoA[18],
because it must be ready to take-off again if the tail-hook
misses the arrestor cable. Birds, on the other hand, rou-
tinely surpass a 90 degree AoA during flared perching.

We designed an indoor experiment for flared perching in
a motion capture studio with a closed-aerodynamic envi-
ronment. We designed a small foam glider (77g, 260mm
wingspan, 98mm mean chord) with passive roll and yaw
stability and a single actuator for the elevator. We hy-
pothesized that by designing an appropriate nonlinear feed-
back control law, the small glider would be capable of au-
tonomously landing on a perch by executing the flared perch-
ing maneuver. The glider was launched at 6 m/s towards
a perch 3.5 m away, and constrained to land in less than
one second. Under these tight dynamic constraints, the
(un-propelled) glider must exploit viscous and pressure drag
forces for a successful perch. In order to test our hypothe-
sis, we first collected post-stall flight data by launching our
glider from a custom launching device approximately 200
times in a motion capture arena, executing open loop tra-
jectories that would cover a wide set of angle-of-attack and
elevator angle combinations, capturing data that was repre-
sentative of our perching dynamics. Through careful anal-
ysis of the kinematic flight data, we were able to recover
surprisingly clean aerodynamic coefficients at very high an-
gles of attack [7] (see Figure 2).

Given this acquired model, we formulate the optimal con-
trol problem:

min
α,tf

J(x0) = xT (tf )Qfx(tf ), subject to

x(0) = x0, ẋ(t) = f(x(t), u(t)), u(t) = πα(x(t), t)),

xmintol ≤ x(tf ) ≤ xmaxtol, |u| ≤ ulim

where x is the seven-dimensional state of the glider in a coor-
dinate system relative to the perch, Qf is a positive definite
final-cost matrix, f is the acquired dynamic model, πα is
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Figure 2: Lift and drag coefficients of the perching
plane.



the feedback policy parameterized by vector α, ulim is the
actuator contraint, and xmintol, xmaxtol are hard final-value
constraints which require that the plane lands within the
tolerance of the latching mechanism on the perch. We have
approximated solutions to this optimal control problem with
a number of methods: initially with a dynamic program-
ming algorithm[7], and more recently with open-loop tra-
jectory optimization and local trajectory stabilization[13].
These approaches differ in their robustness to initial con-
ditions and disturbances[19], as well as their computation
time; dynamic programming on the large mesh took hours
to run, while local trajectory optimization and stabilization
run at speeds compatible with real-time planning. Transfer-
ring the acquired policy onto the real plane then allowed the
glider to autonomously land on a perch from initial condi-
tions within ± 1 m/s of the initial training data. Figure 3
shows a successful perching trajectory.

Although our simplified glider design has fixed wings, it
still has the capability of inducing and exploiting compli-
cated airflow structures during such a dynamic maneuver.
During perching, our foam glider easily exceeds a 90 degree
AoA, causing the airflow to separate over the wings and pro-
duce considerable pressure drag. The smoke visualization in
Figure 1 is taken from a perching trajectory, and clearly re-
veals the dominant vortex dynamics behind the wing during
the maneuver. The success of this experiment was primarily
due to our ability to simplify the dynamics of the prob-
lem down into a planar dynamics with a seven-dimensional
state space - just at the limits of our capabilities for dynamic
programming-type algorithms - and our ability to identify a
sufficiently accurate model of the aircraft to perform model-
based feedback design.

We are currently working to demonstrate perching in an
outdoor environment. One of the primary challenges in the
perching problem for a fixed-wing aircraft is that as the
airspeed goes to zero near the perch, so does the aerody-
namic control authority[19]. When the vehicle is near the
perch, even a small gust of wind can knock it off course.
Birds nearly always flap their wings during landing - this
contributes quite effectively to the deceleration of the bird.
But we hypothesize that flapping during the final moments
of landing also serves to maintain airspeed on the wings,
and therefore maintain control authority. Although there
are a number of actuation schemes possible for investigating
super-maneuverable flight (thrust vectoring is the most pop-
ular choice on fighter jets), we believe that flapping wings
will enable a more intricate interaction with the surrounding
airflow.

6. LEARNING FLAPPING FLIGHT
Unlike the perching glider, the complex aerodynamics of

flapping wings are not as easily captured by a low-order
statistical model (yet). In lieu of a descriptive dynamical
model, we investigated the feasibility of using only policy
gradient methods to optimize flapping flight. Initial experi-
ments were carried out with Jun Zhang at the Applied Math
Lab at NYU on an experimental laboratory system he devel-
oped to study the fluid dynamics of a flapping wing[31]. In
this experiment, a rigid flat plate is driven by a linear motor
vertically in a fluid, while it is free to spin about its center
(see Figure 4). This spinning motion replicates the features
of a simple wing flying forward, but allows experiments to
be carried on indefinitely without resetting the system. This

Figure 3: Stills from a successful perching trajec-
tory.



system acts as a simple model for forward flapping flight,
possessing a Reynolds number of approximately 16,000 dur-
ing these experiments, placing it in the same regime as a
large dragonfly flying forward.

Figure 4: A schematic of the rigid flat plate flapping
experiment (courtesy of Jun Zhang, NYU).

The control task in this problem was to control the heave
of the foil vertically in order to maximize the horizontal
propulsive efficiency, as measured by the dimensionless cost
of transport, defined over one period T as follows:

cmt =

R

T
|Fz(t)ż(t)|dt

mg
R

T
ẋ(t)dt

, (2)

where Fz is the vertical force, m is the mass of the body, x

is the angular position of the plate, z is its vertical position
and g is gravitational acceleration. The vertical motion of
the plate was parameterized as a symmetric periodic cubic
spline with fixed amplitude and frequency with five inde-
pendent parameters. With every flap of the flat plate, the
policy gradient algorithm makes small random changes to
these control parameters and correlates these changes with
the resulting change in the reward. By optimizing the ran-
dom sampling distribution to maximize the signal-to-noise
ratio of the algorithm, we found we were able to learn the
optimal flapping motion in as few as four hundred flap-
ping cycles, or approximately seven minutes (see Figure 5
and [20]). In contrast, cutting edge CFD simulations of this
system take approximately 36 hours to simulate 30 seconds
of flight. Unlike the simulation model, the policy gradient
algorithm easily accommodates changes in the experimental
setup, including a flexible trailing edge and passive pitching.
This versatility is due to the essential property of the policy
gradient algorithms - learning performance (as measured by
the number of trials required to accurately estimate the gra-
dient) degrades with the number of policy parameters, but
is insensitive to the complexity of the dynamics in the task.

Learning trials in this periodic flapping system were exper-
imentally cheap (the system didn’t fall out of the sky every
time we executed a bad policy), and the task was to optimize
a single nominal trajectory. These features made the system
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Figure 5: The average of five learning curves us-
ing online learning (an update every second, after
each full flapping cycle), with markers for +/- one
standard deviation. The high variance is the result
of large inter-trial variance in the cost, rather than
large differences between different learning curves.

quite compatible with online policy gradient learning. In
contrast, nearly every trial in the perching experiment ended
in a crash landing, requiring human intervention to restart
the system, and the goal was to design a controller that
could respond to a range of initial conditions - in this case
model-based control was more appropriate. We anticipate
that most systems will make use of both methods: using an
initial model-based controller design to achieve reasonable
performance, then policy-gradient optimization to overcome
limitations imposed by the approximations in the model.

7. A TWO-METER WINGSPAN
AUTONOMOUS ORNITHOPTER

In order to continue our investigations of flapping-winged
flight, we have designed a large, two-meter wingspan, robotic
bird - commonly referred to as an ornithopter (Figure 6).
This machine was designed as a platform for control exper-
iments, with enough payload to carry plentiful sensing and
computational resources, and with sufficient robustness to
endure the controller development process. We affection-
ately call this robot the “Phoenix”, because of its large red
wings and its propensity to crash dramatically, then rise
from the ashes.

There have been a number of successful demonstrations
of small-scale radio-controlled ornithopters; Many of these
were not developed in research labs, but rather by hobby-
ists and enthusiasts of radio-controlled aircraft. Perhaps the
most impressive are Sean Kinkade’s ‘Park Hawk’ and ‘Slow
Hawk’ designs[15]. There have even been demonstrations of
steady-level autonomous ornithopter flights using standard
off the shelf autopilots (e.g. [16]), and investigations with
simplified models of stabilizing controllers[21, 10], again for
steady-level flight. There has even been a short demonstra-
tion of flight by a human-scale ornithopter[9].

The design of the Phoenix ornithopter was based on the
wing design of Kinkade’s Slow Hawk - a nylon membrane



Figure 6: The MIT Phoenix Ornithopter. Photos
by Jason Dorfman.

stretched across a carbon-fiber frame. In order to accom-
modate the very large forces present during the downstroke
of our vehicle, which has a wingspan almost twice as large as
the Slow Hawk, the drive train was completely redesigned.
In the current model, we use a large brushless motor and a
titanium welded geared four-bar linkage transmission. The
bird currently carries a small processor running Linux, a
solid-state inertial measurement unit, altimeters, and all of
the necessary communication hardware. The mechanical
design also features engineered failure points, including a
breakaway fiberglass beak and easily replaceable wing spars
- these have proven essential elements for our initial con-
trol experiments. The powertrain consumes approximately
300 watts during flight, sourced from a large lithium poly-
mer battery pack. The bird flaps its wings at approximately
2.4Hz. The control system directly commands the voltage
to the powertrain motor and the orientation of the tail via
two position-controlled servo motors.

To date, we have only achieved simple steady, level flight
with this machine, using a hand-tuned linear controller act-
ing on state information low-pass filtered below the flapping
frequency. Figure 6 shows frames from a successful outdoor
autonomous steady-level flight at approximately 4 m/s. The
machine is now ready to serve as a test-bed for more exten-
sive control experiments; our goals include making this bird
land on the branch of a tree and turn 180 degrees at full
speed in less than a meter.

8. CONCLUSIONS
Birds fly using a delicate controlled interaction with the

surrounding airflow that is, so far, unparalleled by our ma-
chines. Engineering this prowess into our machines will en-
able more efficient and more agile unmanned aerial vehicles,
will address fundamental issues in nonlinear control, and
will contribute to our scientific understanding of avian flight.
Due to the dynamical complexity of the problem, we expect
that designing high-performance control systems with ap-
proximate dynamical models will be an essential theme. Our
initial results suggest that techniques from machine learning
for building approximate dynamic models, for model-based
feedback design, and for model-free policy improvement, are
well-matched to the dynamic complexity of the task. Indeed,
it may actually be easier to design a control system for agile
flight on a robotic bird than it is to describe the aerodynam-
ics; birds probably don’t solve Navier-Stokes.
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[7] R. Cory and R. Tedrake. Experiments in fixed-wing
UAV perching. In Proceedings of the AIAA Guidance,
Navigation, and Control Conference. AIAA, 2008.

[8] J. DeLaurier. An aerodynamic model for
flapping-wing flight. The Aeronoutical Journal of the
Royal Aeronautical Society, April 1993.

[9] J. DeLaurier. The development and testing of a
full-scale piloted ornithopter. Canadian Aeronautics
and Space Journal, June 1999.

[10] J. M. Dietl and E. Garcia. Ornithopter flight
stabilization. volume 6525. SPIE, 2007.

[11] W. B. Herbst. Supermaneuverability. In AFOSR Proc.
of the Workshop on Unsteady Separated Flow, pages
1–9, August 1983.

[12] W. Hoburg, J. W. Roberts, J. Moore, and R. Tedrake.
The perching number: A dimensionless analysis of
post-stall maneuvering in birds and planes. Working
Draft, 2009.

[13] W. Hoburg and R. Tedrake. System identification of
post stall aerodynamics for UAV perching. In
Proceedings of the AIAA Infotech@Aerospace
Conference, Seattle, WA, April 2009. AIAA.

[14] P. Holmes, J. Lumley, and G. Berkooz. Turbulence,
Coherent Structures, Dynamical Systems and
Symmetry. Cambridge University Press, 1998.

[15] S. Kinkade. Hobbytechnik.
http://www.flappingflight.com., 2009.

[16] R. Krashanitsa, D. Silin, and S. Shkarayev. Flight
dynamics of flapping-wing air vehicle. In Proceedings
of the AIAA Atmospheric Flight Mechanics
Conference, pages 1–12. AIAA, August 2008.

[17] J. Peters, S. Vijayakumar, and S. Schaal.
Reinforcement learning for humanoid robotics. In
Proceedings of the Third IEEE-RAS International
Conference on Humanoid Robots, Sept. 29-30 2003.

[18] A. Prickett and C. Parkes. Flight testing of the
f/a-18e/f automatic carrier landing system. Aerospace
Conference, 2001, IEEE Proceedings., 5:2593–2612
vol.5, 2001.

[19] J. W. Roberts, R. Cory, and R. Tedrake. On the
controllability of fixed-wing perching. In To Appear in
the Proceedings of the American Controls Conference
(ACC), 2009.

[20] J. W. Roberts and R. Tedrake. Signal-to-noise ratio
analysis of policy gradient algorithms. In Advances of
Neural Information Processing Systems (NIPS) 21,

page 8, 2009.

[21] L. Schenato, W. Wu, and S. Sastry. Attitude control
for a micromechanical flying insect via sensor output
feedback. In IEEE International Conference on
Robotics and Automation. IEEE, May 2003.

[22] W. Shyy, Y. Lian, J. Teng, D. Viieru, and H. Liu.
Aerodynamics of Low Reynolds Number Flyers.
Cambridge Aerospace Series. Cambridge University
Press, 2008.

[23] R. S. Sutton and A. G. Barto. Reinforcement
Learning: An Introduction. MIT Press, 1998.

[24] G. Tadmor, M. D. Centuori, B. R. Noack,
M. Luchtenburg, O. Lehmann, and M. Morzynski.
Low Order Galerkin Models for the Actuated Flow
Around 2-D Airfoils. In 45th AIAA Aerospace
Sciences Meeting and Exhibit, 8 - 11 January, Reno,
Nevada 2007. Paper AIAA 2007-1313.

[25] R. Tedrake. LQR-Trees: Feedback motion planning on
sparse randomized trees. In Accepted for the
Proceedings of Robotics: Science and Systems (RSS),
2009.

[26] R. Tedrake. Underactuated Robotics: Learning,
Planning, and Control for Efficient and Agile
Machines: Course Notes for MIT 6.832. Working
draft edition, 2009.

[27] X. Tian, J. Iriarte-Diaz, K. Middleton, R. Galvao,
E. Israeli, A. Roemer, A. Sullivan, A. Song, S. Swartz,
and K. Breuer. Direct measurements of the kinematics
and dynamics of bat flight. Bioinspiration &
Biomimetics, 1:S10–S18, 2006.

[28] M. S. Triantafyllou and G. S. Triantafyllou. An
efficient swimming machine. Scientific American,
272(3):64, March 1995.

[29] V. A. Tucker. Gliding flight: Speed and acceleration of
ideal falcons during diving and pull out. Journal of
Experimental Biology, 201:403–414, Nov 1998.

[30] E. D. Tytell and G. V. Lauder. Hydrodynamics of the
escape response in bluegill sunfish, lepomis
macrochirus. The Journal of Experimental Biology,
211:3359–3369, 2008.

[31] N. Vandenberghe, S. Childress, and J. Zhang. On
unidirectional flight of a free flapping wing. Physics of
Fluids, 18, 2006.

[32] J. J. Videler. Avian Flight. Oxford University Press,
October 2006.

[33] H. Visser. Optimization of high angle-of-attack
approach to landing trajectories. Proceedings of the
Institution of Mechanical Engineers, Part G: Journal
of Aerospace Engineering, 219(6):497–506, 2005.

[34] D. Williams, J. Collins, V. Quach, W. Kerstens,
S. Buntain, T. Colonius, G. Tadmor, and C. Rowley.
Low reynolds number wing response to an oscillating
freestream with and without feed forward control.
slides from talk at AIAA ASM Orlando 2009, 2009.

[35] K. Zhou and J. C. Doyle. Essentials of Robust
Control. Prentice Hall, 1997.


