

Improved Dynamic Stability Using Reinforcement
Learning

R. Tedrake
Brain & Cognitive Sciences Department, MIT, Cambridge MA, USA
Leg Laboratory, MIT, Cambridge MA, USA
H.S. Seung
Brain & Cognitive Sciences Department, MIT, Cambridge MA, USA
Howard Hughes Medical Institute, Cambridge MA, USA

ABSTRACT

Many researchers studying legged locomotion have applied tools from reinforcement
learning/optimal control to minimize characteristics of a walking gait, most notably the energy
consumption. In this paper, we use similar tools to maximize the region of stability of the
controller - defined as the set of initial conditions from which the robot maintains its balance
for at least 5 seconds. Experiments were run on a simulation of a planar one-legged hopping
robot. After a large number of iterations, the ‘learned’ controller is able to maintain balance
from a much larger region of initial conditions than the original controller proposed by
Raibert[1].

1 INTRODUCTION

Despite recent advances in walking and running robots, legged systems in biology continue to
outperform our robots in terms of energetic efficiency and their ability to cope with rough
terrain. Many researchers believe that this success can be attributed to the ability to learn.
Learning systems have been applied successfully to dynamically stable legged robots in
simulation[2,3,4] and occasionally to physical robots[5,6]. In these experiments, the system is
typically trained from a small range of initial conditions, and it is unclear how the learned
system would behave in very different configurations. In this paper, we address the issue of
robustness. By rewarding the robot for keeping its balance from a large range of initial
conditions, we show that a very simple learning system can actually uncover a surprisingly
‘stable’ controller.

In the biological motor control literature, stability has been proposed as a guiding principle for
motor system design[7] and motor learning[8]. To study these issues in the context of
locomotion, we focus on a simulation of the planar one-legged hopping robot (Figure 1)
introduced by Raibert et al[1,9]. This simple legged system captures the essence of dynamic

(xft; yft)��

��

B
BBM

B
BBN

r

��

�
�
�
��

�

Fig. 1 The planar one-legged hopper.),(ftft yx represents the position of the point foot in
world coordinates. θ represents the absolute angle of the leg, φ represents the absolute

angle of the body, and r represents the length of the leg.

stability but avoids the complication of coordinating multiple legs or solving complex leg
kinematics. Just as a cat always lands on its feet, the goal here is to make the planar hopper
balance (dynamically) from a huge range of initial conditions.

This is not the first work to combine stability and optimization. In [10], energy optimization
is performed over a parameter range in which the controller is provably stable. This approach
yields powerful theoretical results, but the focus is on guaranteeing stability in a small region
around the steady-state trajectory, not maximizing the region of stability. In [11], they
describe an optimal feedforward control law for stable hopping in the spring-loaded inverted
pendulum model. In this paper, we find a feedback controller for the complete hopper model.

In the following sections, we will outline a procedure for optimizing a neural network
feedback controller to maximize the region of stability of the planar one-legged hopping
robot. We define this region as the set of initial conditions from which the robot maintains its
balance for at least 5 seconds. Using this very simple notion of stability and relatively naive
optimization techniques, we are able to obtain a surprisingly ‘stable’ controller.

2 SIMULATION

The planar one-legged hopping robot (Figure 1) is simulated as a rigid body and a springy leg
that pivot around a pin-joint at the hip. Both the body and the leg have considerable mass,
although the moment of inertia of the body around the hip is 15 times larger than that of the
leg. The leg is actually modelled as a position actuator in series with the main leg spring and
also a very stiff spring with damping that acts as a mechanical stop. The controller commands
a torque at the hip and the velocity of the position actuator in the leg. All together, the model
has 5 state variables T

ftft ryx],,,,[φθ=q and 2 control variables Tuu],[10=u . More details
can be found in [1]. Notice that our 1u is equivalent to 1u& in the original paper. The velocity
of the leg actuator necessary to produce thrust has a much lower spatial frequency (over the
state space), and is consequently a much easier feedback controller to learn.

Using the original control equations provided by [1], when the robot is initialized with

0>>φ , it falls down. The large moment of inertia of the body serves to minimize the effect
of the swing leg during the aerial phase of the steady-state trajectory, but consequently
complicates the problem of dealing with disturbances around the hip. The original control

equations were based on an analysis of steady-state hopping conditions augmented with
simple linear feedback, and they simply can't recover from these disturbances. [12] reported
improved robustness using a more comprehensive model of hip displacements, suggesting that
a nonlinear controller may improve the situation.

3 OBJECTIVE FUNCTION: REWARDING STABILITY

The feedback controller to be learned is a function uxw →:)(π , where T],[qqx &= and the
vector w contains the parameters of the controller. We would like to reward control
parameters that maintain the robot's balance from a large range of initial conditions. This can
be done by simulating the robot from a set of initial conditions, 0X , and accumulating the
total amount of time that it took the robot to fall down. The objective is to select the w that
maximizes the reward function,

∑ ∫
∈

=
00

0)),,(min(

00 1),,(
Xx

xw
Xw

Tt f dtTR ,

where T is the finite-horizon time, and),(0xwft is the time that the center of mass of the
robot passes through the ground using controller w and starting from the initial condition 0x .
In practice, this is a hard function to optimize, because explicit gradient information is only
available for control states where the robot is about to fall down. This is a well-known
problem in reinforcement learning and is often treated with reward shaping[13]. In reward
shaping, we add terms to the objective function that provide more direct gradient information
for all configurations of the robot. The actual function that we optimize is

[]∑ ∫
∈

+−+−+−=
00

0)),,(min(

0

222
0)()((1),,(

Xx

xw
Xw

Tt

hvelcomheightcom
f dtdxdyTR &φγ

where)0,max(][zz =+ ,],[ππφ −∈ is the body angle in radians, heightd is the desired average
vertical position (approximately half the hopping height), hveld is the desired horizontal
velocity, and 0>γ is a scalar which weights the contribution of the shaping terms. Strictly,
the terms added to the objective function during reward shaping should not change the
optimal policy[13]. Although we are only applying reward shaping in a loose sense, we do
select γ so that the contributions of the shaping terms are relatively small)05.0(=γ .

In the examples in this paper, we use a finite-horizon time, T , of 5 seconds. This is enough
time for the hopper to land and hop at least 5 times. 0X represents 50 to 100 points selected
from the distribution described in section 5.3. Since our focus is simply on balance, not
forward locomotion, we set 0=hveld m/s, and 0.2=heightd m to encourage a hopping solution.

This objective function should be compared to the indicators of dynamic instability typically
used in walking systems, namely the zero-moment point (ZMP) and the foot-rotation indicator
(FRI)[14]. The value function (also known as the cost-to-go function) associated with
Equation 1, taken over the entire state space and with an infinite horizon, would represent the

amount of time until the robot falls down given the current controller and the current state.
Both ZMP and FRI could be considered elegant analytical approximations of this function,
which work for walking robots with feet. Minimizing Equation 1 numerically is more general
in the sense that it is well-defined for the current system, which has a point foot and an aerial
phase.

4 CONTROLLER REPRESENTATION

The feedback controller)(wπ is represented using a small 3-layer neural network with 9
inputs, 25 hidden units, and 2 outputs. The inputs are),,,,,,,,(ryxry ftftft &&&&& φθφθ , scaled and
shifted linearly so that most inputs are within the range]0.1,0.1[− . The outputs are),(10 uu ,
which are computed from the network using the standard sigmoid activation function and then
linearly scaled and shifted from the range]0.1,0.0[to the desired actuator range. The
parameter vector w contains the connection strengths between layers and the threshold biases
for each unit, a total of 302 values.

This representation is very common for standard function approximation. Many robot
learning papers, though, use a more local representation of the state space[15,16]. In our
experiments, the local representations required a much larger number of parameters to achieve
similar training errors. The number of simulations that we perform during our optimization
scales proportionally with the size of the parameter space, so we opted to have fewer
parameters and a global representation.

5 NONLINEAR OPTIMIZATION

The task is to find the control parameter vector w that maximizes the reward function
),,(0 TR Xw for some 0X selected randomly from a distribution of initial conditions (section

5.3) and for some finite-horizon time T . Our optimization procedure is composed of two
parts - a standard algorithm for finding local maxima, and a set of heuristics for initializing the
local search near an acceptable solution. To find the local maxima, we use the Downhill
Simplex method[17,section 10.4]. This particular algorithm was selected because we do not
have analytical gradient information and because it can be implemented efficiently with a
distributed algorithm. Whenever possible, simulations of the robot were run simultaneously
on all of the machines in our lab.

To initialize the search, we combine a backpropagation algorithm (section 5.1) with a
heuristic linear search (section 5.2). We have also observed experimentally that shorter finite-
horizon time problems seem to have less local maxima. To capitalize on this, we train the
controller over a slowly expanding horizon time, until we reach the desired 5=T seconds.
The following is an algorithm that slowly but reliably converges on a controller that is good in
practice:

• Pretrain the robot to mimic the modified (autonomous) Raibert equations
• Select 50 random initial conditions
• For 75.4:25.0:5.0=T

o Run heuristic linear search in 75 directions.
o Run the downhill simplex algorithm with very loose convergence criteria

• Run the downhill simplex algorithm with 5=T , and force it to truly converge

5.1 Pretraining Algorithm

Although we hope to improve upon the control equations presented in [1], we can certainly
use those equations as a starting point. The pretraining algorithm uses the backpropagation
algorithm to initialize the network controller to resemble the Raibert controller.

The neural network feedback controller is autonomous, but the control equations that we wish
to mimic are based on a state machine, making them dependent on time. It turns out that the
most important states of the machine can be easily identified by observing the state.
Therefore, it is possible to approximate the state machine controller using an autonomous
feedback controller. We simply consider the robot to be in the FLIGHT phase when the foot
is above the ground)0(>fty , in the COMPRESSION phase when the foot is on the ground
and the leg is compressing (0<fty and 0<r&), or in the THRUST phase any other time the
leg is compressed (0srr < , where 0sr is the rest length of the mechanical stop in the leg). This
allows us to write the following autonomous control equations:








=















−





 −

+














 −
++

=

otherwise
NCOMPRESSIOv

FLIGHTv
u

otherwise

THRUSTNCOMPRESSIObk

FLIGHTb
r

xxk
r

Tx
k

u

thrust

retract

attatt

fp
dxs

fp

0

0

,
2

)(
2

arcsin

1

0 φφθ

θθ

&

&&&& &

In my simulation, this autonomous approximation to the state-machine controller works very
nearly as well as the original equations.

5.2 Heuristic Linear Search

Our line minimization is designed to perform a coarse search in control parameter space for
desirable basins of attraction. It is completely independent from the downhill simplex
algorithm. The method works by sampling the line in discrete intervals and then evaluating
the reward function R at each of those points. We then low-pass filter the results and select
the w which achieves the maximum reward in a small neighborhood around the maximum of
the filtered curve. The idea is to encourage maxima with broad basins of attraction. Not only
will our hill-climbing algorithms perform best in these regions, we are also rewarding control
strategies that are less sensitive to the exact control parameters.

Evaluating all of the sampled points along the line is a luxury that we have because we can
evaluate the reward function in parallel on many machines across the lab. This brute force
approach is not as susceptible to local minima as bracket- or gradient-based methods.

5.3 Initial Conditions

Due to the large moment of inertia of the body relative to the hip, the robot is most sensitive
to initial conditions where 0>>φ . For this reason, random initial conditions for φ were
selected from a uniform distribution over],[ππ− radians. Similarly, the internal angle
between the body and the leg)(θφ− was selected from a uniform distribution over

]25.02/,25.02/[−+− ππ radians. The remaining state variables were set to ensure that the
center of mass of the robot was stationary at the point 0=x m, 0.2=y m. These random
initial conditions correspond to the robot being dropped from 2.5m with arbitrary leg and body
angles.

6 RESULTS

After a very large number of simulations (610≈), the learning algorithm had converged on a
surprising controller. Because our simulation did not model collisions between the body and
the leg, the final controller recovered from large hip angles by spinning the body nearly 360
degrees around the hip to return to vertical.

Fig. 2 This figure illustrates the hopper recovering from an initial condition (white fill

at the top left) where both the hip and leg angles are very far from vertical. The shading
of the robot gets darker as time progresses.

The goal of the optimization was to maximize the region of initial conditions from which the
robot can recover. For comparison, Figure 3 plots the region of initial conditions for the two
controllers.

7 DISCUSSION

Using brute force optimization techniques, we were able to train a very small neural network
controller that notably expanded the region of stability of the hopping robot. This was
accomplished by evaluating the robot from a relatively small sample (50-100) of random
initial conditions taken from a very broad distribution. Although we did not attempt to

optimize any energetic criteria, nor to drive the robot along a specific trajectory, these could
easily be taken

�3:0 �2:0 �1:0 0:0 1:0 2:0 3:0
� (radians)

3:0

2:0

1:0

0:0

�1:0

�2:0

�3:0

� (radians)

Fig. 3 Regions of stability for the optimized controller)(wπ in gray, and for the original

hopper control equations in black.

into account by adding terms to the reward function. Furthermore, none of the algorithms
presented here depend on the robot model and therefore could be applied directly to a
simulation of a different robot.

The absence of specific stability criterion and of trajectory constraints in the reward function
actually allowed the learning algorithm to generate some ‘creative’ results. Although the
robot did not fall down in the first 5 seconds, it was not possible (in either case) to describe
the solution as asymptotically stable to a single nominal trajectory. The controller may
actually be more stable because it was not limited to a form of stability with strict theoretical
properties.

Learning to recover from a large range of initial conditions may assist our robots in
locomoting on rough terrain. A first approximation to rough terrain walking might involve
being as stable as possible on flat ground and to simply treating the terrain as a disturbance.
In addition, by coding the controller as a highly parameterizable function, we provide the
opportunity for adjusting the controller online as we experience rough terrain. Finding an
initial satisfactory controller was computationally very expensive, but adjusting that controller
to account for small changes in the model may be something than can be done easily online.

In the coming months, we plan to experiment with more elegant solutions to this optimization
problem using the value function approximation tools that are more characteristic of the
reinforcement learning approach. Using these tools, we hope to extend our results to online
learning, and in the near future to begin experimenting on a real robot.

8 CONCLUSIONS

Stability is clearly a concern for any controller that is automatically generated using a learning
algorithm. By optimizing over a large range of initial conditions, we were able to generate a

neural network controller that actually increased the region of stability for the simulated
planar one-legged hopping robot. We hope that this work paves the way for more elegant
learning systems that emphasize the importance of having a large region of stability.

ACKNOWLEDGEMENTS

This work was supported by the David and Lucille Packard Foundation (contract 99-1471)
and by the National Science Foundation (grant CCR-0122419).

REFERENCES

[1] Marc H. Raibert. Hopping in legged systems: Modeling and simulation for the 2d one-
legged case. IEEE Trans. Systems, Man, and Cybernetics, 14:451–463, 1984.
[2] Jih-Gau Juang and Chun-Shin Lin. Gait synthesis of a biped robot using backpropagation
through time algorithm. pages 1710 – 1715. IEEE International Conference on Neural
Networks, 1996.
[3] Russell Smith. Intelligent Motion Control with an Artificial Cerebellum. PhD thesis,
University of Auckland, New Zealand, 1998.
[4] Chee-Meng Chew. Dynamic Bipedal Walking Assisted by Learning. PhD thesis,
Massachusettes Institute of Technology, 2000.
[5] W. Thomas Miller, III. Real-time neural network control of a biped walking robot. IEEE
Control Systems Magazine, 14(1):41–48, Feb 1994.
[6] Hamid Benbrahim and Judy A. Franklin. Biped dynamics walking using reinforcement
learning. Robotics and Autonomous Systems, 22:283–302, 1997.
[7] J.J.E. Slotine andW. Lohmiller. Modularity, evolution, and the binding problem: A view
from stability theory. Neural Networks, 14(2), February 2001.
[8] Emanuel Todorov. Optimal feedback control as a theory of motor coordination. Submitted
to Nature Neuroscience, 2002.
[9] Marc H. Raibert. Legged Robots That Balance. The MIT Press, 1986.
[10] E.R. Westervelt and J.W. Grizzle. Design of asymptotically stable walking for a 5-link
planar biped walker via optimization. International Conference on Robotics and Automation,
2002.
[11] Andre Seyfarth, Hartmut Geyer, Michael G¨unther, and Reinhard Blickhan. A movement
criterion for running. Journal of Biomechanics, 35(5):649–655, May 2002.
[12] J. Vermeulen, D. Lefeber, and H. De Man. A control strategy for a robot with one
articulated leg hopping on irregular terrain. pages 399–406. CLAWAR, Professional
Engineering Publishing, 2000.
[13] Andrew Y. Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward
transformations: Theory and application to reward shaping. Proceedings of the Sixteenth
International Conference on Machine Learning, 1999.
[14] A. Goswami. Postural stability of biped robots and the foot rotation indicator (fri) point.
International Journal of Robotics Research, 18(6), 1999.
[15] W.T. Miller III, F.H. Glanz, and L.G. Kraft III. Cmac: an associative neural network
alternative to backpropagation. Proceedings of the IEEE, 78(10):1561–1567, 1990.
[16] Stefan Schaal, Christopher Atkeson, and Sethu Vijayakumar. Scalable techniques from
nonparametric statistics for real-time robot learning. Applied Intelligence, 2001.

[17] William H. Press, Saul A. Teukolsky,William T. Vetterling, and Brian P. Flannery.
Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press,
second edition, 1992.
[18] M.H. Raibert and H.B. Brown Jr. Experiments in balance with a 2d one-legged hopping
machine. Journal of Dynamic Systems, Measurement, and Control, 106:75–81, March 1984.

