
Stabilizing demonstration trajectories of linear
deformable objects for robotic shoe tying

by

Michelle Tan

S.B., Computer Science and Engineering, Massachusetts Institute of
Technology 2020

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2021

© Massachusetts Institute of Technology 2021. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 20, 2021

Certified by. .
Russ Tedrake

Toyota Professor of EECS, Aero/Astro, MechE.
Thesis Supervisor

Accepted by .
Katrina LaCurts

Chair, Master of Engineering Thesis Committee

2

Stabilizing demonstration trajectories of linear deformable

objects for robotic shoe tying

by

Michelle Tan

Submitted to the Department of Electrical Engineering and Computer Science
on May 20, 2021, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Tying a shoelace knot is commonly seen as a milestone for young children as they learn
how to use their hands to execute complex motions. Humans are able to consistently
tie a shoelace knot on a wide variety of shoes, even if they haven’t seen the shoe
before. In comparison, shoe tying is a problem that the robotics community is still
very far from solving, since it breaks many assumptions of existing algorithms in
robotic manipulation. Some key difficulties of getting a robot to consistently tie
any shoe include the complex dynamics, the deformable nature of the shoelaces, the
long time horizon, the dexterity needed to manipulate flexible objects, and the large
variation between different shoes.

In this thesis, we make progress towards shoe tying by making a robot that is able
to improve on a given demonstration by making it more robust to initial conditions
of a shoe in simulation. This is motivated by the fact that when humans learn to tie
a shoe for the first time, they are carefully taught a procedure for making the knot,
including how to hold the shoelaces and how to be able to tell if a shoelace knot is
good or bad. The impressive part is that they can quickly adapt this procedure to
any shoe. In this thesis, I discuss the following three contributions towards refining
a demonstration to work for any shoe. The first contribution is the development of
an open-sourced configurable shoe simulator environment that allowed us to tie shoes
completely in simulation. The second contribution is a formulation and evaluation
of direct policy search via CMA-ES with the goal of optimizing a given shoe tying
policy for robustness. The third contribution is a formulation and analysis for learning
the dynamics and cost on a latent state and an evaluation of the learned model for
control. We found that CMA-ES and learning latent approximate information states
were both successful techniques. Both were able to stabilize a demonstration for
robustness on initial conditions of the shoelaces >95/100 of the time.

Thesis Supervisor: Russ Tedrake
Title: Toyota Professor of EECS, Aero/Astro, MechE.

3

4

Acknowledgments

There are lots of people who made this thesis possible.

First of all, I’d like to extend my deepest gratitude for Russ Tedrake for welcoming

me into his lab during a pandemic. His keen eye for choosing captivating and impor-

tant problems led me towards this project. He constantly led me towards thinking

about the hard problems while also helping me feel supported along the way. It’s been

the biggest honor to get to be a part of this group. On top of that, he also introduced

me to the two greatest collaborators one could ever hope for for their MEng.

Mark Petersen and Terry Suh were generous with their time, knowledge and sup-

port. They were always down for small reading groups when I had questions about a

topic. They were also so willing to help me at all hours of the day when I got stuck.

Their inputs during our weekly meetings constantly challenged yet inspired me. They

truly gave me all the support I needed to grow and learn so much this year.

I’d also like to thank the Robot Locomotion Group for being so welcoming to-

wards me. Their sharp comments during group meetings always inspired me to think

critically. I’m so proud to have been a part of this amazing lab. This year has been

a total dream come true.

I’d also like to thank the Drake Developer team for building such an amazing tool

and also for their guidance with the shoe simulator.

Finally, I’d also like to thank my roommates, friends, and family for their ongoing

support.

5

6

Contents

1 Introduction 15

1.1 Related work . 16

1.1.1 Representing the state and dynamics of deformable objects . . 16

1.1.2 Dealing with complex dynamics of a rope while tying 17

1.1.3 Getting reliable perception for deformable objects 18

1.1.4 Our objective in relation to previous work 18

2 Simulation 21

2.1 Related work . 21

2.2 Simulation of the grippers . 22

2.3 Model of the rope . 23

2.4 Shoe simulation parameters . 23

2.4.1 Performance metrics . 25

2.4.2 Number of rope links . 26

2.4.3 Penetration Allowance . 26

2.4.4 Stiction tolerance . 27

2.4.5 Contacts . 28

2.4.6 Parallelization . 29

2.5 Conclusion . 29

3 Human-generated baselines and parameterization 31

3.1 Related work . 32

3.2 Open loop motion primitive . 32

7

3.3 Closed loop motion primitive . 33

3.4 Varying initial conditions of the rope 34

3.5 Experiments . 34

3.6 Discussion . 35

4 Optimizing for robustness with CMA-ES 39

4.1 Related work . 39

4.2 Formulating a fitness function . 40

4.3 Choosing CMA-ES hyperparameters 42

4.4 Experiments . 43

4.4.1 Sampling schemes for ranking 43

4.4.2 Comparing open loop and closed loop parameterizations . . . 45

4.5 Conclusion . 45

5 Learning Approximate Information State 47

5.1 Related work . 47

5.2 Defining the system . 48

5.2.1 Observation representation . 48

5.2.2 Action representation . 49

5.2.3 Cost formulation . 49

5.3 Generating AIS . 50

5.4 Dataset generation . 51

5.5 Loss functions . 51

5.6 Control . 52

5.7 Experiments . 53

5.7.1 Number of rollouts to train on 53

5.7.2 Task success results . 53

5.7.3 Analyzing the AIS model . 54

5.8 Future Work . 57

6 Discussion 59

8

A Network Architecture and Hyperparameters 61

9

10

List of Figures

2-1 Modified gripper geometry holding a successfully completed knot in

simulation . 24

2-2 As we increase the number of links, the simulator rate generally decreases 26

2-3 The presence of more contacts in the simulator results in a slower

simulation rate . 28

3-1 We pick a point on the rope to track an offset from that point. 33

3-2 Rope frame R is p meters along the rope 33

3-3 Varying the initial conditions of the rope. 34

3-4 2d example of a gripper successfully lifting the rope using an open loop

trajectory . 35

3-5 2d example of a gripper failing with the same trajectory because we

moved the rope. 36

3-6 2d example of a gripper successfully lifting the rope using a closed loop

trajectory around the base of the rope 36

3-7 2d example of a gripper successfully lifting the rope using the same

trajectory even when the rope moved 37

4-1 Demonstration rope state . 41

4-2 Example of bad state . 41

4-3 Starting position . 43

4-4 Goal position for stage 1 . 43

5-1 Left: Sampling densely, Right: Sampling sparsely 49

11

5-2 When trained on 1-step error, we get small errors on that horizon but

the errors blow up past that. When trained on 7-step error, the errors

are larger for the small horizons, but the errors don’t drift as much as

the horizon size increases . 54

5-3 Open loop baseline diverges over initial many initial conditions 55

5-4 AIS-based MPC converges on 98/100 of the episodes. 55

5-5 Plot of the AIS predicted cost vs the true cost from timestep 0 to 7 . 56

12

List of Tables

2.1 Simulation parameters . 25

2.2 Computer specifications . 25

2.3 Observations for various penetration allowances 27

2.4 Observations for various stiction tolerances 28

2.5 Wall clock time to complete 100 episodes 29

3.1 Number of success out of 100 for various models 35

4.1 CMA Results for various sample sizes 44

4.2 Number of task successes out of 100 45

5.1 Number of success out of 100 for various models 54

13

14

Chapter 1

Introduction

The task of tying shoes contains many features that robots are notoriously poor at

handling. Deformable objects like ropes serve as a benchmark challenge for robots,

which often rely on mathematical state representations to manipulate objects. Rep-

resenting the exact state of a rope would involve an infinite amount of DOFs, which

makes it difficult for robots to reason about. In addition, tying a shoe requires a lot

of finger dexterity and finesse, which a majority of robots lack in hardware or don’t

have the software/algorithmic capabilities to fully utilize yet. Ropes are also incred-

ibly dynamic and flexible, making the problem aggressively underactuated. Unlike

many existing papers on deformable object manipulation, we aim to tie shoes in-air

with no external rope supports, which means that the grippers have to both be con-

stantly holding the ropes up while also tying the knot. On top of all of that, the large

number of precise steps required means that a slight imprecision in the tying might

require us to start all over again.

15

1.1 Related work

1.1.1 Representing the state and dynamics of deformable ob-

jects

Much prior work in robotics depends on having an accurate mathematical way of

describing the world, but writing down a controller that uses the exact state and

dynamics of deformable objects is an impractical task due to the high number of

degrees of freedom involved. Humans are able to manipulate deformable objects with

relative ease, despite not knowing the entire state or exact dynamics model of these

objects. We intuitively know that only a small subset of the information is important,

and we’re able to extract what to focus on at any given time. Researchers studying

the manipulation of deformable objects have had to find ways of writing down what’s

important.

One common approach for representing the state of ropes is to utilize ideas from

knot theory. [33, 27, 35, 37] all utilize variations of Gauss codes to write the topological

state of ropes. [35] also considers analyzing the lengths of the segments in order to

tightly tie knots. Knot theory provides an abstract way of representing the toplogy

of a specific knot but it doesn’t take into account the dynamics of the rope or the

specifics of how to tie a knot with a physical robot.

Recently, researchers have been looking into learned representations to represent

the state and dynamics of a rope in a compressed way. [31] learns a transferable

and interpretable visual representation called dense depth object descriptors(DDODs)

and shows its success in policies for simple knot manipulation tasks. [24] uses a

deep autoencoder to represent an elastic rod’s centerline in a low-dimensional latent

state. [22, 21] learn a dynamics model from a large number of random interactions

from the environment. [41] learns a latent dynamics model in addition to learning

a visual representation model by observing random interactions. [42] learns a full

autoencoder to give full output predictions and uses the latent state to get a linear

dynamics model. Learning approaches are able to demonstrate results for simple

16

cases, but using random interactions as training data will likely scale poorly to truly

complicated cases. [23] learns an approximation of a rope as a rigid link, which

allows them to do a simple rope placing task with less data. However, significant

amounts of data will be needed to learn representations that reason about intricate

rope topologies, occlusions, dynamics, and rope types needed to tie a shoe.

Some have fused the ideas from knot theory and topology with additional layers

for incorporating more physical properties of ropes so that robots can interact with

them. [43] formulates a layered latent representation for soft objects. The lowest

layer does the initial feature extraction of a real-world object. The middle layers

perform compression and obtain more semantic feature information. The highest

level contains the full semantic knowledge of the shape for use in shape planning. [40]

similarly has a high level topological plan that is robot agnostic. In order to connect

this to the real world, they learn topological motion primitives to execute the plan.

[9] uses Reidemeister moves and Node deletion moves to formulate an algorithm for

untangling dense knots. This had to be paired with a module that learns task relevant

keypoints for manipulation in order to be successful on a real rope. They show that

dense knot untangling can be completed without estimating or predicting the full

state of a rope. In this thesis, we hypothesize that full prediction of the rope isn’t

necessary for good control while tying shoes, an idea we explore more in chapters 4

and 5.

1.1.2 Dealing with complex dynamics of a rope while tying

The difficulty of accurately predicting the dynamics of a hanging rope while it’s being

manipulated has led many to simplify the dynamics when tying knots in real life. [27]

is able to get impressive results for robustly tying a variety of knots in simulation

and real-life, but they were forced to make some modifications to the environment to

make the dynamics easier to manage. They utilized external supports to hold parts

of the rope in place. This allowed them to create motion plans where the arms don’t

make contact with the rope except for at the end, ensuring that most of the knot

stays static while executing moves. [37] considers the concept of utilizing external

17

supports by theoretically analyzing bounds on the number of fingers and re-grasps

needed to tie arbitrary knots. They find that 40 fingers would be sufficient to tie

a shoelace knot. Instead of setting up an environment with 40 fingers to tie a knot

statically, we’re interested in finding clever and robust policies that will work with

ordinary parallel grippers. We’re interested in tying knots in-air without external

supports, similar to how humans do it, which forces us to develop algorithms that

don’t assume stationary ropes or no contact.

1.1.3 Getting reliable perception for deformable objects

When manipulating a deformable object, perception is difficult because of the in-

evitable occlusions caused by the grippers over the object. The external support ap-

proaches in section 1.1.2 eliminate the need for perception at all because the supports

prevent the rope from deviating from its expected position. [15, 21, 31, 42, 22, 41]

offer promising results in controlling deformable objects through images directly, but

they avoid the issue of dealing with occlusions by keeping the rope on the ground so

that they can move the gripper away to give the camera a good view of the rope.

This severely limits the complexity of possible tasks since the rope has to stay on

the ground. [29] attempts to address occlusions by using MAP estimation of point

clouds along with integrating information from a physics simulator to try to produce

the best estimate of the location of a general deformable object. Even with a perfect

point cloud representation of a shoelace knot, it is unclear how to utilize this to tie a

shoe. Our approach to perception for the shoe tying task is to utilize simulation with

ground truth perception to better understand what kind of perception is needed for

control.

1.1.4 Our objective in relation to previous work

Although there is promising previous work in controlling deformable objects with a

variety of approaches, we feel that none of these approaches are ready to be applied to

the task of consistently tying any shoe. Much of the previous work looks at systems

18

that try to be extensible to a variety of rope tasks, such as designing controllers that

can go from a start rope state to a goal rope state. They test on simple tasks such as

pushing a rope into a configuration or tying simple knots on a table, hoping that their

method will eventually extend to complex knots such as a shoelace knot. Instead, we

take focus on tying shoes, a single extremely difficult task, and try to gain mastery

over robustly tying a shoe with various initial conditions given a demonstration. This

is similar to when a human first learns to tie a shoe, they might get a specific set

of steps and hand motions to be successful, but they can then adapt this easily for

any shoe. This is a task that we believe captures key problems in executing complex

manipulation consistently in the real world. These include the representation of

deformable objects for manipulation, reasoning about the high level of variability of

objects in the world, the complexity of the dynamics of deformable objects, and the

ability to transfer algorithms from simulation to real-life successfully.

19

20

Chapter 2

Simulation

A simulator for the shoe environment is a useful tool for making progress because it

allows us to access simulator ground truths, collect massive amounts of training data,

and quickly compare approaches without the physical hardware. A simulator with

ground truth allows us to focus on the control and modeling of the shoe rather than

the challenges of real-world perception of the shoelaces. A deterministic simulator

also allows us to compare algorithms in a reproducible way.

Simulation of a shoe is a challenging task. The large number of contacts is com-

putationally expensive to model and any realistic approximation of the object is

extremely high dimensional. In this chapter, we discuss the simulation and modeling

of an environment that allows a robot manipulator to interact with a shoe. Our pri-

mary design goals with this simulator are visual plausibility, simulation speed, and

integration with robots.

2.1 Related work

Simulation of physically realistic rope-like objects have been used for biology and

medical applications in [36], [6], and [4]. Many working on robotics applications such

as [38, 41, 29] simulate a rope by approximating it as a chain of rigid links. [31] focuses

on visually modeling a rope to generate depth training data. They approximate a rope

as a chain of 50,000 vertices with a 12 control point Bezier curve as the underlying

21

representation. [3, 17] use the concept of diminishing rigidity to approximate the

Jacobian of the deformable object for manipulation instead of relying on a direct

model of the object. [36] develops a specialized physics-based thread simulator that

is used in [27]. This simulator also relies on approximating a thread as a series

of a finite number of nodes, but they additionally consider stretching, compressing,

bending, and twisting of the thread. All of these simulators involve tradeoffs between

being realistic and being fast. We will similarly work on a balance between having a

realistic and fast simulator.

For future work, position-based dynamic simulators or GPU-based simulators

could be a possible direction to explore. Nvidia FleX[16] is a particle-based simu-

lation library that can give us real-time simulations of soft objects using the GPU.

We found that it can support a real-time rope in a visually realistic way, but it cur-

rently lacks support for force-controlled actuators. [11] describes a way to use PBD

to simulate a mooring line in real time. [39] combines Cosserat theory and position

based dynamics to perform real-time simulation of a surgical thread.

2.2 Simulation of the grippers

We are hoping to eventually deploy these algorithms onto two real-life Kuka IIWA

LBR arms with parallel Schunk grippers. However, for the purposes of simulation,

we use just two floating parallel grippers in order to improve performance. The

two floating grippers are controlled with two modules: A high-level velocity-limited

setpoint controller and a lower level spatial force PID controller. The desired targets

for the gripper are fed into the setpoint controller, which determines a point nearby in

the direction of the target that should act as the actual goal for the PID spatial force

controller. This ensures that the arm will move smoothly and in a controlled manner

at all times regardless of the requested poses. Although this limits the ability of the

arms to complete quick or variable speed maneuvers, we think that isn’t important

for robust shoe tying.

22

2.3 Model of the rope

We simulated the shoe as a MultibodyPlant in Drake[34]. This allows the simulation

to be highly configurable, up to date with advances in simulation, and accessible for

the wider robotics community. Although a lot of exciting work is being done in the

space of realistic rope demonstration, we use a much more approximate rope model by

modeling the rope as a chain of rigid bodies. This gives a stable and simple model to

prototype algorithms with in simulation. The links in the rope are connected using a

series of two revolute joints. We chose not to model the twisting or stretching involved

since twisting/stretching motions are not essential to the main shoe tying task and

they would make the simulation slower. On the other hand, friction and contacts are

very important to tying shoes, which we can model with rigid bodies. Although we

are using a less realistic and only visually plausible model, we hope that algorithms

that are successful in simulation with this rigid body model can be adapted to work

with a more realistic simulation and also in real life.

2.4 Shoe simulation parameters

The collision geometry of the shoe is approximated as a large cylinder and the

shoelaces are modeled as two multi-link chains with 19 links each. There is a thin

cylindrical collision element connecting the two shoelaces so it looks like one continu-

ous rope. Although we modeled the rope as two separate ropes, it was more natural

to observe the rope as if it were a single rope. Modeling the shoe with two separate

laces allows us to easily vary the initial conditions of the two ropes independently.

Modeling our shoelaces to have the same mass as a realistic shoe would require

the links in the rope to be really light. This large relative inertial scaling between the

gripper and shoelaces translates to faster dynamics that the solver needs to resolve.

Smaller timesteps are needed to resolve these dynamics, which means slower simu-

lation. Since performance was a big design consideration, we made the mass of the

rope hundreds of times heavier than a realistic shoelace. This allows us to get results

23

that look realistic while not needing a smaller simulator timestep than 0.0005s.

In order to maintain the visual plausibility of the simulator despite the heavy

ropes, we tuned the grippers such that we would command as much force as needed

to closely track the commanded positions. This meant having a significantly larger

force limit than we would use in real life. Since maintaining friction while gripping a

small and heavy object could be difficult for the simulator, we add blocks to the end

of the grippers so the ropes don’t slip as easily. This also provides space for the width

of the rope to sit between the gripper fingers. These modifications shouldn’t hurt

transferability to the real world because in the real world, the shoelaces should be

so light that we wouldn’t have to worry about the robot arm getting weighed down

by it. In addition, the gripping strength will be so much more powerful than any

friction/gravitational forces that we shouldn’t have to worry about the rope slipping

out of the gripper.

Figure 2-1: Modified gripper geometry holding a successfully completed knot in sim-
ulation

24

The joint damping was tuned to be as large as possible until the system showed

unstable behavior. The value of the timestep was fixed at 0.0005s, which was tuned

to work with the shoetying task while also being as fast as possible.

Table 2.1: Simulation parameters

Parameter Value
Rope Radius 0.01 m

Joint damping 0.001 Nms
Timestep 0.0005 s

Penetration allowance 0.0001 m
Stiction tolerance 0.001 m/s

2.4.1 Performance metrics

In this section, we go through the parameters needed for performant but visually

plausible simulation. The overall goal in this section is to show which simulation

parameters have the largest effect on performance and provide information about

how long the simulator takes us to run. We’re hoping this information might help

others working with MultibodyPlant in Drake to understand how choose parameters

to achieve faster simulation. These metrics reflect the speeds we were able to achieve

with version 0.28 of Drake[34]. It’s likely that additional tuning and newer versions

of Drake will significantly speed up these times, but these times can at least act as

a lower bound. It will also provide context about how long the experiments in this

thesis took. Specifications of the computer are below:

Table 2.2: Computer specifications

Part Spec
CPU Intel Core i9-9900X
RAM 62G
GPU 2 Nvidia GeForce RTX 2080

25

2.4.2 Number of rope links

Unsurprisingly, the number of rope links we model the rope with has a huge impact

on the performance relative to real time. We graph the simulator rate for a stationary

shoe setup with two hanging ropes while varying the number of links per rope and

keeping the total rope length constant. Figure 2-2 shows that with this implementa-

tion, the simulator rate decreases as number of links increases. This shows that we

should select the minimum number of links needed to make the task possible. In order

to minimize number of links needed, we vary the size of the links. For the shoe, this

means we use larger links at the end of the rope, where the exact bending behavior is

less important and smaller links towards the middle of the rope where modeling the

bending of the rope is more important. This can be seen in figure 2-1.

0 5 10 15 20 25
0

0.5

1

Number of links

Si
m

ul
at

or
ra

te

Effect of number of rope links on simulator speed

Figure 2-2: As we increase the number of links, the simulator rate generally decreases

2.4.3 Penetration Allowance

The MultibodyPlant in Drake uses a rigid contact model, which requires non-penetration

constraints between the bodies. Drake enforces this using the penalty method. In

doing so, we have to select a penetration allowance that gives a tradeoff between being

26

fast and being realistic. We measure the average simulator rate for a full shoe tie for

various values of penetration allowances. We also note down if the shoe tie was still

successful.

Allowance(m) Average simulator rate Success
10𝑒−5 0.33 Yes
10𝑒−4 0.35 Yes
10𝑒−3 0.35 Yes
10𝑒−2 0.34 Yes
10𝑒−1 0.42 No

Table 2.3: Observations for various penetration allowances

We found that if the allowance is too large, the rope is able to easily pass through

the gripper, resulting in a failed shoe tie and unphysical behavior. At the same

time, when the allowance is decreased, the performance starts to get worse because

the simulation equations are more stiff. We chose a value of 0.0001m to provide a

tradeoff between speed and realistic behavior. Table 2.3 shows that the difference in

simulator rate is fairly negligable between 10𝑒−5m and 10𝑒−2m so we chose this value

somewhat arbitrarily. In general, we wanted to choose as small of a value as possible

without significantly hurting performance. This is because we want a minimal amount

of penetration between the grippers and the rope.

2.4.4 Stiction tolerance

Drake uses the viscous damping of tangential velocities as a continuous approximation

of Coulomb’s law of friction. We measure the average simulator rate for a full shoe tie

as we vary the stiction tolerance while also noting if the shoe tie was successful. We

chose a stiction tolerance of 0.001𝑚
𝑠
, because with smaller values, the timestep isn’t

small enough to resolve the dynamics. However, the results in table 2.4 also show

that there is potential for improving the performance with increasing the tolerance

and therefore allowing more slip with the rope.

27

Table 2.4: Observations for various stiction tolerances

Tolerance Average simulator rate Success
10𝑒−5 0.44 No
10𝑒−4 0.46 No
10𝑒−3 0.35 Yes
10𝑒−2 0.36 Yes
10𝑒−1 0.38 Yes

1 0.40 Yes

2.4.5 Contacts

In this section, we analyze the effect of contacts on the simulator rate after tuning

both penetration allowance and stiction tolerance. In order to show this relationship,

we run a full shoetie and graph the relationship between simulator rate and number

of contacts.

5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

Number of contacts

Si
m

ul
at

or
ra

te

Effect of contacts on simulator speed

Figure 2-3: The presence of more contacts in the simulator results in a slower simu-
lation rate

This graph shows that the number of contacts has a big impact on the rate of

the simulator. As the number of contacts increases, the simulation rate decreases

because the simulator has more contacts to resolve. We can also see that the shoe

tying task produces a large range of contacts. At the beginning, there is very few

contacts because the grippers aren’t touching the ropes, but when the knot is tied,

28

we can get over 30 contacts as the rope collides with itself.

2.4.6 Parallelization

We used Ray[19] to run multiple shoe tying simulations in parallel. This allowed us

to parallelize easily on a multicore single machine while also making it easy to scale

on a full cluster in the future. We varied the amount of cpus and measured the wall

clock time for 100 trials. We can get a factor of 10 times speedup on a machine with

10 cores and 20 threads. When we increase the parallelization of Ray to be larger

than the number of cpus, our total computation time actually starts to decrease due

to the increased parallelism overhead.

Table 2.5: Wall clock time to complete 100 episodes

Number of cpus Wall time(s)
1 392 minutes

10 45 minutes
20 40 minutes

100 52 minutes

We haven’t optimized the simulation or the parallelization much so there is likely

a lot of possibility for speedup here. For example, these times could be dramatically

improved by not rebuilding the full simulation diagram every time. Ideally, we would

build the simulation once and then just make sure that the threads are using separate

Drake contexts.

2.5 Conclusion

In this section, we described the design for a visually plausible approximate shoe

simulator in Drake that allows direct interaction with robotic grippers. Although a

real-life shoe has different dynamics than our approximated simulation, the simulation

keeps the key complexities that exist in the rope problem, making it a reasonable

proxy for a real environment. We focus on the exploration of shoe-tying in this

simulation, leaving the problem of sim-to-real transfer as future work. The code for

29

this simulator is available in the format of an OpenAI environment so that other

researchers can easily build upon our work 1

1Source code: https://github.com/RobotLocomotion/gym/tree/master/gym/envs/robot_
locomotion_group/drake/shoe.

30

https://github.com/RobotLocomotion/gym/tree/master/gym/envs/robot_locomotion_group/drake/shoe
https://github.com/RobotLocomotion/gym/tree/master/gym/envs/robot_locomotion_group/drake/shoe

Chapter 3

Human-generated baselines and

parameterization

Our first goal was to produce a human-generated demonstration in order to show that

the task is possible with the bimanual parallel gripper setup. This demonstration can

be used as a reference or initialization for future methods. In addition to finding a

way to tie shoes with this setup, we wanted to find simple yet flexible trajectory pa-

rameterization that allowed us to tie a shoe well. We designed two parameterizations:

one that is open loop on the state of the rope and one that utilizes two positions of

the rope to close the loop. The key idea for both parameterizations is expressing the

trajectory in terms of higher level motion primitives.

One of the challenges with shoe tying is the long time horizon. It can take over

60 seconds to complete a shoe tie and if we run a controller at 10Hz, this results in

a problem that is over 600 timesteps long. This will make the derivative-free direct

policy search in chapter 4 difficult because we have to optimize over so many steps. It

will also make model-based planning approaches like chapter 5 more difficult because

we need to learn a model that can accurately predict hundreds of steps into the future.

Therefore, in the section, we aim to create piecewise linear baselines that condense

the whole shoe tie into as few moves as possible.

31

3.1 Related work

Many manipulation papers[22, 31, 42, 38] utilize higher level pick/place action param-

eterizations. For 2D rope pushing cases or even basic cloth folding examples, this is

a suitable parameterization. Shoe tying requires a more flexible action space because

we must stay in contact with the rope while tying because otherwise the shoelaces will

fall. With the presence of gravity, we can’t just place the rope in mid-air and expect

it to stay. [12] manually specifies and teaches five in-air skill motions that the robot

can perform: Grasping/Releasing, Double-grasping, Looping, Twisting, and Sliding.

They then tell the robot which primitives to use when tying a knot. We also define

motion primitives, but we aim to make our primitive class less specific to just ropes

and then try to find policies with this flexible motion primitive class to tie shoes.

3.2 Open loop motion primitive

We define a sequence of open loop high-level motion primitives that are able to tie

the shoe completely independent of the position of the rope. Each motion primitive

contains 8 parameters with 4 per arm. We define 𝑊 as the world frame, 𝐺 as the

gripper frame before the move, and 𝐺′ as the desired gripper frame. For each arm,

the parameters are as follows for moves 𝑛 ∈ 1, 2, 3..12

• 𝑊𝑝𝐺
′

𝐺 [𝑛] ∈ R3: desired displacement from current gripper position in meters

• 𝑑[𝑛] ∈ R: desired displacement in gripper width in meters

This parameterization commands the grippers to fixed points in the world regardless

of the state of the rope. We keep the angle of the grippers constant to decrease the

size of the action space. We rely on the lower level gripper controller described in

section 2.2 to perform this motion at a consistent and slow velocity in a straight line.

32

3.3 Closed loop motion primitive

We also define a trajectory parameterization that uses two points on the shoelace as

frames of reference for the gripper. Each motion primitive contains 10 parameters,

5 per arm. We define 𝑊 as the world frame, 𝐺′ as the desired gripper frame, and

𝑅 as the point on the rope that the corresponding gripper tracks. For each arm, the

parameters are as follows for moves 𝑛 ∈ 1, 2, 3..14:

• 𝑊𝑝𝐺
′

𝑅 [𝑛] ∈ R3: desired displacement of gripper from rope frame in meters

• 𝑑 ∈ R: desired displacement of gripper width in meters

• 𝑝 ∈ R: distance from the start of the rope to frame R in meters

The frames can be visualized in figures 3-1. We can see that the closed loop motion

primitive tells the left gripper to align itself with a point at frame R on the opposite

rope. We are able to command the gripper based on the position of just two keypoints

on the rope. This shows that successful shoe ties are possible even if we use a minimal

amount of the rope state. Despite the high dimensionality of the rope, it turns out

that much of this information isn’t useful with shoe tying.

Figure 3-1: We pick a point on the rope to
track an offset from that point.

Figure 3-2: Rope frame R
is p meters along the rope

33

3.4 Varying initial conditions of the rope

In order to measure the robustness of a policy over initial conditions, we generate

100 random initial rope conditions and count the number of successes. Throughout

this thesis, we use the same 100 random rope initial conditions to benchmark all of

the policies. Random rope initial conditions are generated by perturbing the initial

condition of the rope according to 𝑈 ∼ (−0.02𝑚, 0.02𝑚) for the x, y, z directions for

both grippers independently and 𝑈 ∼ (−0.2𝑟𝑎𝑑, 0.2𝑟𝑎𝑑) for the roll pitch and yaw

for both grippers independently.

Figure 3-3: Varying the initial conditions of the rope.

3.5 Experiments

In this section, we evaluate the success of the open loop and closed loop baselines

under perturbations of initial conditions as shown in figure 3-3 in order to estimate

the robustness of the baselines. This is meant to give us a point of comparison for

34

the success of future methods.

Table 3.1: Number of success out of 100 for various models

Parameterization Value
Open loop 38

Closed loop 77

The results show the initial closed loop trajectory beating the initial open loop

trajectory. Although we can’t say that this makes the closed loop parameterization

better from just 1 sample, it does make sense that the closed loop trajectory is more

robust to initial rope configuration. Figures 3-4 and 3-5 show the open loop trajectory

will not at all be able to adjust if the rope is moved. Figures 3-6 and 3-7 show that

the closed loop trajectory uses the position of rope keypoints to define the waypoints,

so it will adjust if the rope is moved.

x

z z

x

z

x

Figure 3-4: 2d example of a gripper successfully lifting the rope using an open loop
trajectory

3.6 Discussion

In this section, we show that it is possible to encode the class of shoe-tie policies

using just a sequence of 10-20 motion primitives with 8-10 parameters each. This

makes it feasible to utilize CMA-ES to optimize these actions in the next chapter.

35

z

x

z

x

z

x

Figure 3-5: 2d example of a gripper failing with the same trajectory because we moved
the rope.

z

x

z

x

z

x

Figure 3-6: 2d example of a gripper successfully lifting the rope using a closed loop
trajectory around the base of the rope

By including the observation of two rope keypoints, the closed loop parameterization

makes achieving robustness to initial conditions more natural than the open loop pa-

rameterization. In chapter 4 and 5, we explore ways to make these parameterizations

more robust to initial conditions.

For future work, it would be interesting to test out the parameterizations on

hardware. The open loop parameterization is the most straightforward to implement

on hardware since we just need to ensure the setup and scale of real-life matches

the simulator that the baseline was created with. The closed loop parameterization

36

z

x

z

x

z

x

Figure 3-7: 2d example of a gripper successfully lifting the rope using the same
trajectory even when the rope moved

requires us to be able to accurately query the pose of a point on the rope given how far

away from the start of the rope the keypoint should be regardless of if it’s occluded.

Dense descriptors[31, 5] would be able to give us this information, but it’s unclear

how effective dense descriptors would be for shoelaces due to the heavy amount of

occlusions that are inevitable. Since we’re only analyzing simulation results right

now, we are able to query the ground truth exactly from the simulator.

37

38

Chapter 4

Optimizing for robustness with

CMA-ES

In this section, we optimize the baselines in the previous chapter for robustness over

the initial conditions of the rope. We used CMA-ES, which gives us the ability to

heavily parallelize to optimize noisy and non-convex function. For shoe-tying, CMA-

ES allows us to directly optimize for the policy in the simulator without having to

model the complexity of state and dynamics representations for deformable objects.

Our contribution in this chapter is applying CMA-ES to optimize the policy of a

complex manipulation task for robustness.

4.1 Related work

Previous works in deformable object manipulation show surprisingly impressive re-

sults with just open loop. [18], a mechanical engineering senior design project, sug-

gests that there exists a robust open loop policy to tie a shoe that doesn’t rely on

any perception at all. It is still able to tie the knot with a high success rate. [27]

also shows that robust open loop policies for consistently tying knots is possible. In

this thesis, we want to build on that work in order to show that we can optimize a

given trajectory for robustness over initial conditions. [20] Shows an example of ma-

nipulating a deformable whip in open loop. Similarly to the task of tying a complex

39

knot, getting full and accurate perception of a high-speed whip is neither practical

nor necessary. Despite the complexity of whip mechanics, they are able to get a good

open loop policy in simulation by designing a motion primitive with five parameters

and then optimizing over the parameters. We try to find a robust open loop policy

for tying shoes, which has proven to be more challenging than manipulating a whip

because it requires us to make and break contact over a longer time horizon.

CMA-ES has been used on various humanoid problems and RL benchmarks, but

far fewer people have considered using direct policy search for complex manipulation

tasks. [28] suggests evolution strategies as a scalable alternative to reinforcement

learning for classic RL benchmarks. By scaling CMA-ES on over 1000 parallel work-

ers, they are able to solve 3D humanoid walking in 10 minutes. In [32], evolutionary

strategies were utilized to allow a biped robot to walk from scratch. [14] uses CMA-

ES to optimize a kicking motion for a Nao robot. Most of the related work of using

CMA-ES in robotics only studies the optimization of trajectories that don’t use per-

ception. We designed a closed loop motion primitive where the gripper tracks the

state of 2 keypoints on the ropes.

4.2 Formulating a fitness function

We define a fitness function for CMA-ES by using distance from a set of demon-

strations. We produce a set of good demonstrations 𝒟 by randomly perturbing the

open loop benchmark in chapter 3 for different initial conditions and randomly se-

lect successful ones. To compute the cost for an episode, we sum the corresponding

demonstration costs
𝑇∑︁
1

𝑐𝑡(𝑦𝑡) = 𝑚𝑖𝑛𝑦𝑡∈𝒟||𝑦𝑡 − 𝑦𝑡||22 (4.1)

where 𝑦𝑡 is a vectorized state of the shoe including 𝑦𝑟𝑜𝑝𝑒 and 𝑦𝑔𝑟𝑖𝑝𝑝𝑒𝑟 as defined in

section 5.2.1. Using corresponding costs allows us to get a cost along the way while

tying a shoe. Scoring over a demonstration allows us to consider the diversity in

possible solutions, ensure that there is representation from various initial conditions

40

in the demonstration set, and help make sure that good episodes have low costs.

A flaw with the corresponding score cost formulation is that the inclusion of time

would penalize the robot for tying a shoe at different speeds from the demonstration.

Another flaw is that computing the difference to a demonstration using the Euclidean

distance between them has many failure modes. The numerical scores we get don’t

always line up with our intuition of success for the task. In figure 4-2, the fact that

the rope isn’t wrapped over both sides of the left gripper means that it won’t be

possible to finish the shoe tie without starting over. However, the Euclidean distance

of this scenario is still low.

Figure 4-1: Demonstration rope state Figure 4-2: Example of bad state

In the future, coming up with a distance metric that is more topological or task-

specific would likely help address these failure cases. We want our cost function to pay

more attention to higher level structures in the shoe system than coordinates of the

bodies, like location of shoelace crossings and the way that the gripper is interacting

with the rope. A way to improve on the Euclidean distance score is to use a SVM

classifier to attempt to classify overall task success given a 𝑦𝑡 position. We can assign

a constant penalty to any trajectory that doesn’t produce a successful result.

41

4.3 Choosing CMA-ES hyperparameters

We used the CMA-ES wrapper out of Nevergrad [26] to perform a derivative-free

direct policy search. In using this implementation, there were several parameters

that needed to be tuned.

• 𝜆: Offspring population size: A large population size will result in slower conver-

gence but decreases the chance of convergence to a local minima. [2] suggests

restarting CMA-ES with increasing population sizes to obtain a more global

search. However, since we aren’t trying to solve the global problem, we fix this

parameter to 20, the number of simulations we can run in parallel.

• 𝜎: This describes the standard deviation of CMA-ES. If this value is too small,

we might not be able to find the optimal solution because we’re only sampling

very close to the initial demonstration. If it’s too large, the optimization will

take a significantly longer time because we are doing a more global search. We

found that a value of 0.02. provides a good tradeoff between the two.

• Initialization: We found that initializing the search with a good solution was

crucial due to the difficulty of figuring out how to tie a shoe without a demon-

stration. There’s also a large amount of local minima that are possible. We

initialized the optimization with the baselines from chapter 3.

• Elitist mode: With elitist selection, we select the all-time best 𝜇 individuals.

Without elitist mode, we only select the 𝜇 best from the current generation,

essentially forgetting about previous generations. Elitist mode is prone to local

minima but results in faster convergence. We chose to use elitist mode since we

are less concerned about local minima since we start with a good solution.

• Termination: The fitness function for shoe tying is noisy and ill-conditioned

which means it will take a long time for CMA-ES to converge, especially given

the speed of the simulator. A small change in the action trajectory can result

in a large difference it output because it could mean the difference between

42

dropping the shoelaces and holding the shoelaces. Evaluating a trajectory on

random initial conditions of the rope is noisy. Therefore, we terminate the algo-

rithm after 1000 iterations and analyze which methods were better at converging

towards robust solutions in that time.

4.4 Experiments

In this section, we focus on fully understanding CMA-ES’s behavior on just the first

portion of the shoetie, which we define as stage 1 as shown in figures 4-3 and 4-4.

Figure 4-3: Starting position
Figure 4-4: Goal position for stage
1

4.4.1 Sampling schemes for ranking

In each generation of CMA-ES, we generate 𝜆 offspring and our objective is to select

the 𝜇 best. In our case, this means out of 20 possible gripper trajectories, we want

to be able to rank them in terms of robustness. In order to evaluate each of the

individuals, we evaluate it on 𝑛 random initial conditions and add their fitness values.

We then choose the 𝜇 lowest fitness values, representing the trajectories that produce

shoe-gripper states closest to the demonstration.

In order to evaluate a policy on robustness for the purpose of ranking, we need

43

to evaluate it on multiple random samples. However, to get an accurate robustness

measure, we need to sample on a lot of initial conditions. In chapter 2, we showed

how expensive the simulator is to evaluate a trajectory on. Another possible way

around sampling is to use a fixed training set rather than randomly generating initial

conditions every generation. Our function will be less noisy, but we won’t be optimiz-

ing over the whole distribution of the initial conditions of the shoelace so the solution

will likely be less robust.

In this section, we analyze the effect of 𝑛 on the success of the CMA-ES algorithm

where 𝑛 is the number of initial conditions we evaluate each trajectory on to measure

robustness. We generate the random rope initial conditions the same way we did

in section 3.4. We ran the CMA-ES algorithm on stage 1 of the shoe tying task

as defined in figures 4-3 and 4-4 for the open loop parameterization. We vary the

number of samples 𝑛 and measure the eventual robustness of the optimal policy by

evaluating how many successes we get out of 100 random initial conditions. We ran

CMA-ES for a fixed 1000 iterations.

Table 4.1: CMA Results for various sample sizes

Number of samples Success out of 100 on the task
16 100
8 98
4 91
1 92

This shows that sampling more helps CMA-ES find more robust solutions, at a

huge performance cost. Sampling 8 times will take around 8 times as long as sampling

once, but this only gives us success on 6 more tasks. When we don’t sample enough, we

end up frequently mis-ranking trajectories, which makes it significantly more difficult

for CMA-ES to converge to a robust trajectory. [25] provides a survey of various ways

of ranking policies in noisy optimization problems, such as ours where we evaluate

our trajectories on random samples out of a distribution. A key idea is that we should

ideally avoid sampling a lot for trajectories that we already know are bad and instead

focus on sampling the better trajectories in order to truly distinguish which are better.

44

Another possible idea is sampling less in early generations when we are "exploring"

and sampling more in the later generations when the goal is refinement. For future

work, we’d like to explore these ideas to give us robustness while also conserving the

number of evaluations of the fitness function needed.

4.4.2 Comparing open loop and closed loop parameterizations

We compare the performance of optimizing the open loop and closed loop trajectories

using 4 random initial conditions to evaluate each sample.

Table 4.2: Number of task successes out of 100

Parameterization Baseline Optimized
Open loop 46 91

Closed loop 90 99

These results show that CMA-ES was successful in optimizing both trajectory pa-

rameterizations. The open loop parameterization had a larger improvement because

it started with signficantly worse initial condition. The closed loop parameterization

was initialized with a good baseline, but it was able to further improve on this base-

line. Both of these parameterizations are both viable approaches that should be tested

on real robots. For future work, this experiment should be run on the entire shoe tie

for signficantly more iterations. A larger number of random of initial conditions than

4 should also considered for each trajectory.

4.5 Conclusion

In this section, we used CMA-ES to optimize a given baseline trajectory of the first

portion of the shoe tie for robustness. We found that increasing the number of

samples we evaluate each trajectory on dramatically increases the total number of

rollouts we have to do, but it makes CMA-ES converge to a more robust solution. In

the future, we hope to extend this to the entire shoe tie and also test the resulting

policies on hardware. In addition, we hope to vary the shoes over various dynamics

45

parameters like friction and damping in addition to optimizing over initial conditions

of the rope. In [32], CMA-ES results in simulation failed to work in real life because

of slight differences in real life and in the simulator. Our hope is that by optimizing

for robustness in the simulator, our policy will transfer more successfully to the real

world.

Another important direction for future work is to explore alternative trajectory

parameterizations. Finding a parameterization that utilizes haptic data could allow

us to formulate an even more robust parameterization. When humans tie shoes, we

rely heavily on how the shoelaces feel in our fingers rather than trying to estimate

the true position of the rope visually. Many would find tying a shoe with eyes closed

to be easier than tying a shoe with gloves such that it’s impossible to feel forces and

contacts.

46

Chapter 5

Learning Approximate Information

State

In this chapter, we explore the feasibility of learning models for shoe-tying that are

useful for control. Similarly to the CMA-ES section, our goal here is to stabilize a

demonstration to be robust over the initial conditions of the shoelaces. We focus on

giving an analysis on the success of this method on the first stage of the shoetie. In

this section, we learn a neural network to reduce observations to a latent approximate

information state along with a quadratic cost network and a linear dynamics model

on the approximate latent state. Then, we utilize these networks to perform Linear

MPC.

5.1 Related work

[30] defines approximation information state(AIS) as a function of history that is

learned from data. They show that if AIS is sufficient to approximately predict

the reward and its own dynamics, solving a dynamic program on AIS can approx-

imately match the solution to the original optimal control problem. They learn a

policy online in order to simultaneously improve the representation and the policy.

Our contribution is modifying their method of producing AIS and the corresponding

optimal control for a realistic robotic manipulation problem.

47

Our formulation is similar to that of [10], where they learn latent spaces for plan-

ning through reward prediction. However, we constrain the dynamics to be linear

and the rewards to be quadratic, so the resulting optimal control problem is convex.

Our approaches differs from other autoencoder approaches from deformable ob-

jects like [42], [24] because we don’t require our latent representation to be able to

reconstruct the whole output of the rope. Since our goal is to get a latent state ob-

servation that is good for control, we only require our latent representation to be able

to predict the next latent state and the current cost, which enables the prediction of

cost trajectories given an input trajectory.

5.2 Defining the system

We have a shoe system with discrete time nonlinear dynamics 𝑥𝑡+1 = 𝑓(𝑥𝑡, 𝑢𝑡) and

𝑦𝑡 = 𝑔(𝑥𝑡) is ground truth observations from the simulator and 𝑢𝑡 is the commanded

action. The dynamics function 𝑓 of a shoe is approximated using the simulator

in chapter 3, making it expensive to reason about for optimal control. The non-

smoothness from contacts and the nonlinear constraints lead to non-convex problems.

We treat this simulator a black-box system. The goal is to find the optimal control

𝑢𝑡 that is able to tie the shoe while being robust to the initial conditions of the rope.

5.2.1 Observation representation

The observation 𝑦 ∈ R183 is a concatenation of the following ground truth information

from the simulator (𝑦𝑟𝑜𝑝𝑒, 𝑦𝑔𝑟𝑖𝑝𝑝𝑒𝑟)

• 𝑦𝑟𝑜𝑝𝑒 ∈ R165: rope configuration, parameterized by 3D positions of keypoints

every 0.05cm along the rope

• 𝑦𝑔𝑟𝑖𝑝𝑝𝑒𝑟 ∈ R18: gripper rotations and translations for both arms

The original AIS paper used history of observations where we just use a singular

observation. This is because we do not believe that history is useful when tying

shoes. Given a still frame of the ground truth states of the shoe, it is clear to a

48

human what the next action to take is, no matter what the velocities on the rope or

gripper were previously.

5.2.2 Action representation

The action space 𝑢 is the open-loop high-level action primitive discussed in chapter 3.

It contains the changes in x, y, z, and gripper width for both arms, making 𝑢 ∈ R8. It’s

possible that alternate action representations such as the keypoint-based closed loop

parameterization could provide improvements on our work so far. Similarly to chapter

3, we limit the horizon of the task by choosing actions that are as sparse as possible.

Although this limits the richness of the trajectory class, it significantly shortens the

task horizon. We showed in chapter 3 that the shoelace task can be broken down into

a few piecewise linear moves. Figure 5-1 shows what a gripper trajectory might look

like with a dense and sparse sampling scheme. Although the dense sampling will look

more fluid when deployed on a robot and will have trajectories that perform better,

this is not strictly necessary to achieving highly consistent shoe ties.

𝑦0

𝑦1

𝑦2

𝑢0

𝑢1

𝑦0𝑦1

𝑦5

𝑦10

𝑢0𝑢1

𝑢5

Figure 5-1: Left: Sampling densely, Right: Sampling sparsely

5.2.3 Cost formulation

A key idea with learning AIS is that instead of requiring the network to be able to

predict the full output like an autoencoder, we only require it to be able to approxi-

mate the original cost of the full system. This cost can then be used for approximate

49

optimal control. In this section, we discuss the cost formulation for the cost we aim

to predict with the AIS networks. We use a cost defined on the full observation from

the simulator. This cost from a set of demonstrations 𝒟 at timestep t is defined as

𝑐𝑡(𝑦𝑡) = min
𝑦𝑡∈𝒟

||𝑦𝑡 − 𝑦𝑡||22 (5.1)

In the next section, we discuss how this cost is used.

5.3 Generating AIS

We do system identification to approximate a linear dynamics model and a quadratic

rewards model on a latent state 𝑧𝑡. We learn an MLP network for 𝜎 to transform the

raw observations 𝑦𝑡 from the simulator into a latent space 𝑧𝑡. We also learn a cost

network 𝑐 with a quadratic structure that predicts a scalar representing how bad the

state represented by 𝑧𝑡 is. We also learn a dynamics network with a linear structure to

take a latent state and action and produce the next latent state. We formulate a cost

function 𝑐 in section 5.2.3 that is not action-dependent, which allows us to remove 𝑢𝑡

as a parameter to the cost function we learn. We learn a quadratic cost function since

it should be estimating a distance from a demonstration. With 𝐴100×100, 𝐵100×8, and

𝐶100×100 as matrices, these are the networks we are trying to learn

𝑧𝑡 = 𝜎(𝑦𝑡, 𝑡) (5.2)

𝑧𝑡+1 = 𝜓(𝑧𝑡, 𝑢𝑡) = 𝐴𝑧𝑡 +𝐵𝑢𝑡 (5.3)

𝑐𝑡 = 𝑐(𝑧𝑡) = 𝑧𝑇𝑘 𝐶𝑧𝑘 (5.4)

Similar to the idea of the Koopman operator, 𝜎 lifts the state space into a space where

we can construct linear models of the nonlinear system. The original AIS paper did

not restrict 𝜓 to be linear and 𝑐 to be quadratic. However, doing so yields tractable

optimization problems when using MPC at planning time. This allows us to learn AIS

on an offline dataset and then use the AIS to inform an optimal plan. The inclusion

50

of time as a parameter to 𝜎 is a requirement due to our cost formulation of exactly

replicating the demonstration trajectory rather than a requirement inherent to the

shoe-tying problem.

5.4 Dataset generation

We learn the model using an offline dataset. This is generated by perturbing the initial

condition of the rope according to 𝑈 ∼ (−0.02𝑚, 0.02𝑚) for the x, y, z directions for

both grippers independently and 𝑈 ∼ (−0.2𝑟𝑎𝑑, 0.2𝑟𝑎𝑑) for the roll pitch and yaw

for both grippers independently. Two data augmentation techniques were used. In

one, we apply a translational offset to the whole scene so that the model learns the

dependence between the position of the rope and gripper rather than the gripper’s

absolute location in the world. We also apply a 0.001m perturbation to the actions

in order to account for noise that will occur in the action. We will analyze the effect

of the action augmentation in section 5.7.2.

5.5 Loss functions

Given an initial observation 𝑦1 and a sequence of actions 𝑢1, 𝑢2, . . . from the dataset,

we can repeatedly apply the 𝜎, 𝜓, and 𝑐 networks to approximate the costs that would

occur.

𝑧𝑛 = 𝜎(𝑦𝑛) (5.5)

𝑐𝑛 = 𝑐(𝑧𝑛) (5.6)

𝑧𝑛+1 = 𝜓(𝑧𝑛, 𝑢𝑛) (5.7)

𝑐𝑛+1 = 𝑐(𝑧𝑛+1) (5.8)
...

(5.9)

51

We train on an n-step total loss as defined below

ℒ𝑐𝑜𝑠𝑡 =
1

𝑛

𝑛∑︁
𝑖=1

(𝑐𝑖 − 𝑐𝑖)
2 (5.10)

ℒ𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑠 =
1

𝑛

𝑛∑︁
𝑖=1

||𝑧𝑖+1 − 𝜎(𝑦𝑖+1)||2 (5.11)

ℒ𝑡𝑜𝑡𝑎𝑙 = ℒ𝑐𝑜𝑠𝑡 + 𝜆ℒ𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑠 (5.12)

5.6 Control

We utilize the learned observation compression 𝜎, linear dynamics 𝜓, and quadratic

rewards 𝑐 to run MPC over a fixed task length of T. At each timestep, we formulate

and solve an optimization using Mathematical Program in Drake, which automatically

identifies the optimization as a QP. We use the SNOPT solver[7, 8].

Given a task length T and a horizon of H, to run non-receding horizon MPC, we

run the following optimization from t to ℎ = 𝑚𝑖𝑛(𝑇, 𝑡+𝐻) at every timestep t. After

solving the optimization, we execute the first action 𝑢1.

minimize
𝑢1, . . . , 𝑢ℎ, 𝑧1, . . . , 𝑧ℎ+1

ℎ∑︁
𝑖=2

𝑐(𝑧𝑖)

subject to 𝑧𝑖+1 = 𝜓(𝑧𝑖, 𝑢𝑖), 𝑖 = 1, ...ℎ,

𝑧1 = 𝜎(𝑦𝑡),

|𝑢𝑖 − 𝑢𝑖| ≤ 0.01, 𝑖 = 1, ...ℎ,

|𝑢𝑖| ≤ 0.3, 𝑖 = 1, ...ℎ

(5.13)

The first constraint is a dynamics constraint to ensure we’re following our learned

dynamics model 𝜓. The second constraint is an initial condition constraint to initialize

𝑧1 based on the current observation from the simulator. In order to stay in the domain

of our training set, we impose a constraint that actions have to be within 0.01m from

the demonstration trajectory �̄�. We also constrain the size of the actions to be less

than 0.3.

52

5.7 Experiments

Similarly to the CMA-ES section, we focus on gaining a good understanding of just

the first stage of the shoe tie as shown in figures 4-3 and 4-4. Hyperparameters and

architectures are described in Appendix A.

5.7.1 Number of rollouts to train on

An essential training parameter to tune is the number of rollouts to train on, or 𝑛

in the training loss defined in section 5.5. We expect that a 1-step loss, or equation

error, provides an easier function for the model to approximate. However, any bias

in this 1-step error may explode when we use this dynamics model to predict many

steps into the future, which can have a big negative impact on control. [1] suggests

that training on multi-step simulation error is preferable to training on single-step

equation error because it can eliminate bias. In order to see if these expections align

with our problem, we trained a model trained on 1-step loss and a model training of

7-step loss, which is also the size of the training episodes and then observe losses over

the n-step losses for varying values of n. We measured the n-step errors on a test set

of 100 episodes that are generated with the same distribution as the training set, but

are completely unseen in training. The n-step losses are computed from the formulas

in 5.5. In 5-2, we compare the two extremes of training on 1 step and over the whole

task horizon of 7 steps.

5.7.2 Task success results

In order to evaluate which was better for real-world performance, we compared 1-step

MPC for the model trained on equation error with 7-step MPC for the model trained

on simulation error. Our goal here is to see whether a short horizon accurate model

or a long horizon approximate model is better for control.

We ran the MPC policy described in Section 5.6 for 100 random initial condi-

tions(generated the same way as the training set but not from the training set) for

both models from the previous section. We also count success of when the model is

53

1 2 3 4 5 6 7

0

2

4

6

8

n in n-step loss

Av
er

ag
e

M
SE

Training on 1-step error
Training on 7-step error

Figure 5-2: When trained on 1-step error, we get small errors on that horizon but the
errors blow up past that. When trained on 7-step error, the errors are larger for the
small horizons, but the errors don’t drift as much as the horizon size increases

trained with and without the action augmentation.

Table 5.1: Number of success out of 100 for various models
Open loop baseline 44

1-step loss model without augmentation 50
1-step loss model with augmentation 55

7-step loss model without augmentation 91
7-step loss model with augmentation 98

It’s clear that applying the action augmentation improves results on all rollouts.

Table 5.1 also tells us that training a model on 7-step loss and deploying it on MPC

with a horizon of 7 yields a significantly larger success rate than training a model on

1-step loss and deploying it on MPC with a horizon of 1.

5.7.3 Analyzing the AIS model

One of the major downsides of the AIS approach is that it lacks interpretability. In

this section, we will visualize and analyze the behavior of the best-performing learned

AIS model to attempt to understand what it learned.

54

Stabilizing the cost for various initial conditions

We plot the costs from both the open loop and AIS policy over time for the random

initial rope conditions in our test set. We use the 7-step loss model with augmentation

from the previous section.

0 1 2 3 4 5 6 7
0

5

10

15

episode timestep

Si
m

ul
at

or
co

st

Costs with baseline open loop controller

Figure 5-3: Open loop baseline

diverges over initial many initial

conditions

0 1 2 3 4 5 6 7
0

5

10

15

episode timestep
Si

m
ul

at
or

co
st

Costs with AIS-MPC controller

Figure 5-4: AIS-based MPC con-

verges on 98/100 of the episodes.

When running the same open loop baseline for 100 initial conditions, we can see

in figure 5-3 that many of the episodes diverge from having a cost near 0. When

running AIS-based MPC controller for 100 initial conditions, we can see in figure 5-4

that most of the episodes converge to having a cost near zero. Therefore, we see that

AIS is generally able to adjust trajectories to stabilize to a demonstration even when

initial conditions change.

Analyzing prediction error of AIS

In this section, we aim to understand more about how an AIS that has such significant

prediction error can still be successful for optimal control. In order to do this, we

select a single random initial condition to analyze. From that initial condition, we

select 100 random action trajectories and use the trajectories to perform a full rollout

55

to get the predicted costs. We then plot the sum of the true simulator 7-step cost on

the x axis and the sum of the AIS predicted 7-step cost on the y axis as predicted at

timestep 0.

0 10 20 30 40

0

10

20

30

40

Cost from demonstration

P
re

di
ct

ed
co

st
fr

om
A

IS

Total cost from 0 to 7

Figure 5-5: Plot of the AIS predicted cost vs the true cost from timestep 0 to 7

With perfect predictions, all of the points would lie on the gray diagonal line. We

can visually see the nature of our large prediction error. We can see two distinct

clusters. The left cluster represents trajectories with a low cost. We can see that for

these good trajectories, the AIS predicts the true cost closely or overpredicts. Out of

all good trajectories, AIS correctly recognizes some of them as having low costs, but

mistakenly predicts many of them as bad episodes. The cluster on the right represents

episodes that are bad. We see that AIS tends to underpredict the cost on these.

The reason why this model with poor prediction is still able to stabilize trajectories

is because when choosing a trajectory, the AIS-MPC controller will choose the argmin

out of all of its predictions. We see in this graph that the action with the smallest

predicted cost also has a small true cost, meaning that it’s actually a good trajectory.

This shows that our model doesn’t have to be able to accurately approximate

the true costs in order to work well for MPC. It just has to ensure that the optimal

trajectory based on the AIS models is in fact a good trajectory.

56

It’s surprising that our AIS model learned a model for the cost that has such a

high loss, but preserves properties for optimal control. As future work, we would like

to further explore why this occurred. Some possible guesses are that maybe we picked

a lucky seed or maybe our training set was distributed in a biased way.

5.8 Future Work

In this chapter, we established that AIS can stabilize a shoe-tying demonstration to

give us significantly more robustness over initial conditions. We only demonstrated

these results in simulation for the first part of the shoe tie. In the future, extending

this process to the rest of the shoetie will be important, along with getting results in

real life, where perfect ground truth won’t be available.

There’s also lots of potential to improve on parts of the process. It’s possible

that adding a network to transform the actions could yield better results. Also,

including other kinds of observations in the right way is important. We make the

shoe tying problem significantly harder by not including forces or contact information.

We did attempt adding force and contact into the full state observation through

concatenatation, but we weren’t able to see any improvement. It’s likely we will

have to draw upon more sophisticated techniques[13] from the multi-modal learning

community to successfully combine these.

57

58

Chapter 6

Discussion

CMA-ES is a good method to brute force an interpretable solution that can out-

perform the given demonstration. Intelligent parameterizations of high level motion

primitives can allow for the incorporation of various sensor modalities to improve

robustness. The resulting trajectories are easily interpretable and verifiable by a hu-

man. Direct policy optimization approaches like CMA-ES are powerful and could

scale to other complex robotics problems such as those with deformable objects be-

cause they are black box methods that can work regardless of the size of the state

space or the number of contacts present. CMA-ES will generalize well to tasks that

are too complex for existing control methods, but are still simulatable in a realistic

way.

However, CMA-ES has limitations. A core limitation of CMA-ES is its dependence

on fast simulation. When optimizing for robustness, the computation needed for

CMA-ES grows significantly due to the large number of samples needed to rank the

policies in a generation by robustness. In chapter 3, we discussed work we’ve done

to make a visually plausible and fast shoe simulator, but there is still a lot more

potential to speed this up even more, making CMA-ES a more powerful approach.

In this thesis, we mainly focused on working in the simulator, but deploying our

solutions onto the real world on real shoes is a significant hurdle that still needs to

be passed. This would expose any gaps in how realistic our simulator is and inform

us which parameters we need to optimize to be robust against. This method is also

59

significantly limited by the number of parameters in each action and the total number

of actions in the task, since these make up the dimension of the optimization problem.

We found that it was possible to encode an open loop policy with just 96 parameters

and a closed loop policy that tracks rope keypoints with just 140 parameters. Despite

this, without significantly more compute, the shoelace problem likely needs to be

optimized in stages. Model-free methods such as CMA-ES allow us to work with

difficult problems without having to learn a model, but our program lacks any sort

of intuition about the shoe problem.

Learning a good model for a task such as shoe tying is a difficult task. In chapter

5, we showed some results showing that we can get a model for tying a shoelace in a

regime around a certain demonstration. One of the challenges that we face with this

method is the inability to interpret what the model is learning. Another challenge

is collecting a diverse and complete dataset. I focused on only collecting data 0.01m

from a demonstration, which is a tiny fraction of the space required to solve this task

globally.

AIS fits the data we provide and learns a model for understanding this limited

space at a deeper level. It cannot explore or generalize outside this region. CMA-ES

on the other hand has no understanding of the problem, but given a starting location

to search, it’s able to explore complex function spaces to improve on the policy.

For both methods, the general future work is similar. We need to explore the

pitfalls when deploying on a real robot. In this thesis, we modeled different shoes

by slightly perturbing the location of the laces on the shoe. However, in real life,

the variation that occurs between shoes is far more extensive. Just considering col-

lision geometries alone, there is already a huge variety. We also need to find robust

controllers for the stages of a shoe tie past the first stage of lifting both ropes and

determine if these controllers can be chained together to get a robust trajectory over

the whole problem.

60

Appendix A

Network Architecture and

Hyperparameters

For the 𝜎 network, we used 3 fully connected layers with ReLU activation and 100

nodes each. The 𝜓 network is initialized to the identity matrix. The AIS state size

is 100. For the loss function, the weight 𝜆 on the dynamics loss is 100. The Reduce

on Plateau learning rate scheduler was used with an initial learning rate of 1e-4. We

used batch size of 32. In the future, ensemble learning, dropout, and cross-validation

can be used to further improve these results

61

62

Bibliography

[1] Luis Aguirre, Bruno Barbosa, and Antônio Braga. Prediction and simulation
errors in parameter estimation for nonlinear systems. Mechanical Systems and
Signal Processing, 24:2855–2867, 11 2010.

[2] A. Auger and N. Hansen. A restart cma evolution strategy with increasing
population size. In 2005 IEEE Congress on Evolutionary Computation, volume 2,
pages 1769–1776 Vol. 2, 2005.

[3] D. Berenson. Manipulation of deformable objects without modeling and simu-
lating deformation. In 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 4525–4532, 2013.

[4] Nicholas Charles, Mattia Gazzola, and L. Mahadevan. Topology, geometry, and
mechanics of strongly stretched and twisted filaments: Solenoids, plectonemes,
and artificial muscle fibers. Phys. Rev. Lett., 123:208003, Nov 2019.

[5] Peter R. Florence, Lucas Manuelli, and Russ Tedrake. Dense object nets: Learn-
ing dense visual object descriptors by and for robotic manipulation, 2018.

[6] Mattia Gazzola, Levi Dudte, A. McCormick, and Lakshminarayanan Mahade-
van. Forward and inverse problems in the mechanics of soft filaments. Royal
Society Open Science, 5:171628, 06 2018.

[7] Philip E. Gill, Walter Murray, and Michael A. Saunders. SNOPT: An SQP
algorithm for large-scale constrained optimization. SIAM Rev., 47:99–131, 2005.

[8] Philip E. Gill, Walter Murray, Michael A. Saunders, and Elizabeth Wong. User’s
guide for SNOPT 7.7: Software for large-scale nonlinear programming. Center for
Computational Mathematics Report CCoM 18-1, Department of Mathematics,
University of California, San Diego, La Jolla, CA, 2018.

[9] Jennifer Grannen, Priya Sundaresan, Brijen Thananjeyan, Jeffrey Ichnowski,
Ashwin Balakrishna, Minho Hwang, Vainavi Viswanath, Michael Laskey,
Joseph E. Gonzalez, and Ken Goldberg. Untangling dense knots by learning
task-relevant keypoints, 2020.

[10] Aaron Havens, Yi Ouyang, Prabhat Nagarajan, and Yasuhiro Fujita. Learning
latent state spaces for planning through reward prediction, 2019.

63

https://ieeexplore.ieee.org/document/6697007
https://ieeexplore.ieee.org/document/6697007

[11] Xiaobin Jiang, Hongxiang Ren, and Xin He. Simulation of mooring lines based
on position-based dynamics method. IEEE Access, 7:142796–142805, 2019.

[12] S. Kudoh, T. Gomi, R. Katano, T. Tomizawa, and T. Suehiro. In-air Knotting
of Rope by a Dual-arm Multi-finger Robot. In 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 6202–6207, 2015.

[13] Michelle A. Lee, Yuke Zhu, Krishnan Srinivasan, Parth Shah, Silvio Savarese,
Li Fei-Fei, Animesh Garg, and Jeannette Bohg. Making sense of vision and
touch: Self-supervised learning of multimodal representations for contact-rich
tasks. In 2019 International Conference on Robotics and Automation (ICRA),
pages 8943–8950, 2019.

[14] Xuejun Li, Zhiwei Liang, and Huanhuan Feng. Kicking motion planning of nao
robots based on cma-es. In The 27th Chinese Control and Decision Conference
(2015 CCDC), pages 6158–6161, 2015.

[15] W. H. Lui and A. Saxena. Tangled: Learning to untangle ropes with RGB-D
perception. In 2013 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 837–844, 2013.

[16] Miles Macklin, Matthias Müller, Nuttapong Chentanez, and Tae Kim. Unified
particle physics for real-time applications. ACM Transactions on Graphics, 33:1–
12, 07 2014.

[17] Dale McConachie, Andrew Dobson, Mengyao Ruan, and Dmitry Berenson. Ma-
nipulating deformable objects by interleaving prediction, planning, and control.
The International Journal of Robotics Research, 39(8):957–982, Jun 2020.

[18] Arturo Mori, Cesar Trujillo, Eric Li, and Rafael Corrales Fatou. Shoe tying robot,
page 67. Fu Foundation School of Engineering and Applied Science, 2019.

[19] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard
Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I. Jordan,
and Ion Stoica. Ray: A distributed framework for emerging ai applications, 2018.

[20] Moses C. Nah, Aleksei Krotov, Marta Russo, Dagmar Sternad, and Neville
Hogan. Dynamic primitives facilitate manipulating a whip. In 2020 8th IEEE
RAS/EMBS International Conference for Biomedical Robotics and Biomecha-
tronics (BioRob), pages 685–691, 2020.

[21] Ashvin Nair, Dian Chen, Pulkit Agrawal, Phillip Isola, Pieter Abbeel, Jitendra
Malik, and Sergey Levine. Combining Self-Supervised Learning and Imitation
for Vision-Based Rope Manipulation. CoRR, abs/1703.02018, 2017.

[22] Deepak Pathak, Parsa Mahmoudieh, Guanghao Luo, Pulkit Agrawal, Dian Chen,
Fred Shentu, Evan Shelhamer, Jitendra Malik, Alexei A. Efros, and Trevor Dar-
rell. Zero-Shot Visual Imitation. 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW), Jun 2018.

64

https://ieeexplore.ieee.org/document/7354262
https://ieeexplore.ieee.org/document/7354262
https://ieeexplore.ieee.org/document/6696448
https://ieeexplore.ieee.org/document/6696448
http://dx.doi.org/10.1177/0278364920918299
http://dx.doi.org/10.1177/0278364920918299
https://studentresearch.engineering.columbia.edu/sites/default/files/content/FINAL%20BOOKLET.pdf
http://arxiv.org/abs/1703.02018
http://arxiv.org/abs/1703.02018
http://dx.doi.org/10.1109/CVPRW.2018.00278

[23] Thomas Power and Dmitry Berenson. Keep it simple: Data-efficient learning for
controlling complex systems with simple models, 2021.

[24] Jiaming Qi, Guangfu Ma, Peng Zhou, Haibo Zhang, Yueyong Lyu, and David
Navarro-Alarcon. Towards latent space based manipulation of elastic rods using
autoencoder models and robust centerline extractions, 2021.

[25] Pratyusha Rakshit and Amit Konar. Recent Advances in Evolutionary Optimiza-
tion in Noisy Environment—A Comprehensive Survey, pages 89–169. Springer
Singapore, Singapore, 2018.

[26] J. Rapin and O. Teytaud. Nevergrad - A gradient-free optimization platform.
https://GitHub.com/FacebookResearch/Nevergrad, 2018.

[27] M. Saha and P. Isto. Manipulation Planning for Deformable Linear Objects.
IEEE Transactions on Robotics, 23(6):1141–1150, 2007.

[28] Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evo-
lution strategies as a scalable alternative to reinforcement learning, 2017.

[29] J. Schulman, A. Lee, J. Ho, and P. Abbeel. Tracking deformable objects with
point clouds. In 2013 IEEE International Conference on Robotics and Automa-
tion, pages 1130–1137, 2013.

[30] Jayakumar Subramanian, Amit Sinha, Raihan Seraj, and Aditya Mahajan. Ap-
proximate information state for approximate planning and reinforcement learning
in partially observed systems, 2020.

[31] Priya Sundaresan, Jennifer Grannen, Brijen Thananjeyan, Ashwin Balakrishna,
Michael Laskey, Kevin Stone, Joseph E. Gonzalez, and Ken Goldberg. Learning
Rope Manipulation Policies Using Dense Object Descriptors Trained on Syn-
thetic Depth Data. 2020.

[32] A. Suárez, C. Miralles, and S. Medina. On the application of cma-es to biped
walk. Technical report iri-tr-17-03„ Institut de Robòtica i Informàtica Industrial,
CSIC-UPC.

[33] J. Takamatsu, T. Morita, K. Ogawara, H. Kimura, and K. Ikeuchi. Representa-
tion for knot-tying tasks. IEEE Transactions on Robotics, 22(1):65–78, 2006.

[34] Russ Tedrake and the Drake Development Team. Drake: Model-based design
and verification for robotics, 2019.

[35] H. Wakamatsu, A. Tsumaya, E. Arai, and S. Hirai. Manipulation Planning for
Knotting/Unknotting and Tightly Tying of Deformable Linear Objects. In Pro-
ceedings of the 2005 IEEE International Conference on Robotics and Automation,
pages 2505–2510, 2005.

65

https://GitHub.com/FacebookResearch/Nevergrad
https://ieeexplore.ieee.org/document/4359263
http://joschu.net/docs/tracking-paper.pdf
http://joschu.net/docs/tracking-paper.pdf
https://arxiv.org/pdf/2003.01835.pdf
https://arxiv.org/pdf/2003.01835.pdf
https://arxiv.org/pdf/2003.01835.pdf
https://www.cvl.iis.u-tokyo.ac.jp/~ki/papers/knot-2006.pdf
https://www.cvl.iis.u-tokyo.ac.jp/~ki/papers/knot-2006.pdf
https://drake.mit.edu
https://drake.mit.edu
https://ieeexplore.ieee.org/document/1570489
https://ieeexplore.ieee.org/document/1570489

[36] F. Wang, E. Burdet, R. Vuillemin, and H. Bleuler. Knot-tying with Visual and
Force Feedback for VR Laparoscopic Training. In 2005 IEEE Engineering in
Medicine and Biology 27th Annual Conference, pages 5778–5781, 2005.

[37] Weifu Wang and Devin Balkcom. Knot grasping, folding, and re-grasping. The
International Journal of Robotics Research, 37(2-3):378–399, 2018.

[38] Yilin Wu, Wilson Yan, Thanard Kurutach, Lerrel Pinto, and Pieter Abbeel.
Learning to Manipulate Deformable Objects without Demonstrations. Robotics:
Science and Systems XVI, Jul 2020.

[39] Lang Xu and Qian Liu. Real-time inextensible surgical thread simulation. Inter-
national Journal of Computer Assisted Radiology and Surgery, 13:1019 – 1035,
2018.

[40] Mengyuan Yan, Gen Li, Yilin Zhu, and Jeannette Bohg. Learning topological
motion primitives for knot planning, 2020.

[41] Wilson Yan, Ashwin Vangipuram, Pieter Abbeel, and Lerrel Pinto. Learning Pre-
dictive Representations for Deformable Objects Using Contrastive Estimation,
2020.

[42] Wenbo Zhang, Karl Schmeckpeper, Pratik Chaudhari, and Kostas Daniilidis.
Deformable linear object prediction using locally linear latent dynamics, 2021.

[43] Peng Zhou, Jihong Zhu, Shengzeng Huo, and David Navarro-Alarcon. Lasesom:
A latent representation framework for semantic soft object manipulation, 2020.

66

https://ieeexplore.ieee.org/document/1615801
https://ieeexplore.ieee.org/document/1615801
https://doi.org/10.1177/0278364918754676
http://dx.doi.org/10.15607/rss.2020.xvi.065
https://arxiv.org/pdf/2003.05436.pdf
https://arxiv.org/pdf/2003.05436.pdf

	Introduction
	Related work
	Representing the state and dynamics of deformable objects
	Dealing with complex dynamics of a rope while tying
	Getting reliable perception for deformable objects
	Our objective in relation to previous work

	Simulation
	Related work
	Simulation of the grippers
	Model of the rope
	Shoe simulation parameters
	Performance metrics
	Number of rope links
	Penetration Allowance
	Stiction tolerance
	Contacts
	Parallelization

	Conclusion

	Human-generated baselines and parameterization
	Related work
	Open loop motion primitive
	Closed loop motion primitive
	Varying initial conditions of the rope
	Experiments
	Discussion

	Optimizing for robustness with CMA-ES
	Related work
	Formulating a fitness function
	Choosing CMA-ES hyperparameters
	Experiments
	Sampling schemes for ranking
	Comparing open loop and closed loop parameterizations

	Conclusion

	Learning Approximate Information State
	Related work
	Defining the system
	Observation representation
	Action representation
	Cost formulation

	Generating AIS
	Dataset generation
	Loss functions
	Control
	Experiments
	Number of rollouts to train on
	Task success results
	Analyzing the AIS model

	Future Work

	Discussion
	Network Architecture and Hyperparameters

