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Abstract— Modern robotic systems are very complex and
need to be tested in simulations with detailed sensor noise
models to effectively verify robotic behavior. Depth imagery
in particular comes with significant noise in the form of scene-
dependent pixel-wise dropouts and distortions. Unfortunately,
many depth camera simulations contain limited noise models,
or can only support generating realistic depth images of simple
scenes, which limits their usefulness in effectively testing percep-
tion algorithms. We propose a data driven approach to generate
more realistic noise for complex simulated environments by
using a convolutional neural network (CNN) to predict which
pixels of a simulated noise-free depth image will not have
returns (no-depth-return pixels, or NDP). We choose to focus on
NDP here, as these dropouts are the most common and dramatic
form of depth image noise. To train this network, we use
reconstructed real-world scenes from the Label Fusion dataset
to provide ground truth depth for each noisy depth image used
to scan the scene. We use the resulting noise-free and noisy
depth image pairs as labeled examples and train the network
to predict which pixels of the noise-free image will be NDP.
When used to post-process a simulation of a depth sensor, this
system produces realistic depth images, even in cluttered scenes.
To demonstrate that our approach successfully closes the reality
gap for depth imagery, we show that the popular ICP algorithm
for object pose estimation fails more realistically on our CNN-
corrupted simulated depth images than on uncorrupted depth
images and unsupervised domain adaptation baselines.

I. INTRODUCTION

Simulated perception data allows robotic systems to be
trained and tested efficiently and exhaustively. Days of
labeled data can be simulated in a matter of seconds,
allowing quick development and verification of robot behav-
iors. Unfortunately, today’s simulations of robotic perception
systems are too simplistic to guarantee any meaningful real
world behavior. Robot simulation tools have struggled to
close the reality gap that arises from the combination of
complex environments with a diverse ecosystem of sensors
and associated noise profiles [1]. Depth imaging is an area
in robotic perception where the simulation reality gap is
large, due primarily to the presence of complex camera,
geometry, and material-dependent noise. Nonetheless, these
sensors have become an important workhorse in robotic
perception systems, as the high density of depth readings
provide detailed scene geometry information that is highly
valuable to manipulation and locomotion alike. Because
of their particular popularity, we focus our discussion on
depth cameras that operate via a structured light approach,
though this approach is applicable to any dense depth camera
that has NDP-like noise. Structured light cameras include
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Fig. 1: Samples of registered RGB and depth images from the Label Fusion
dataset. The black pixels in the depth images are NDP (No Depth Pixels).
We model this type of noise and add it to depth image simulations.

the popular Microsoft Kinect and ASUS Xtion Pro. These
cameras measure depth by projecting a series of infrared
patterns onto a scene and using the perceived disparity
between the patterns to reconstruct dense depth readings for
each pixel in the resulting depth image. As a result of this
imaging method, depth images from e.g. the Kinect show
characteristic large-scale noise [2].

A given depth image can show both finite error in depth
estimation and complete dropouts of certain pixels (No Depth
Pixel, or NDP). We focus on only NDP in our analysis, as
it is one of the most salient noise artifacts in depth imaging.
There are at least two major sources of dropouts: interaction
of the depth camera’s projector-receiver pair with the geome-
try in the scene, and the interaction of scene illumination and
material properties with the projected IR pattern. Complex
object geometries including highly angled or discontinuous
surfaces, from the perspective of the camera, result in chaotic
noise artifacts that often result in NDP. Additionally, parallax
from the distance between the infrared projector and infrared
camera cause many near field objects to have NDP around
their boundaries. As for object material properties, surfaces
that are reflective, diffuse, and transparent further disrupt the
projection and imaging process, resulting in both NDP and
complex depth measurement errors. Real world scenes are
cluttered and filled with these types of objects. Therefore,
having more sophisticated simulations to mimic the noise
in this regime is essential. Figure 1 shows depth images
and their corresponding RGB images from the Label Fusion
dataset, developed by Marion et al. [3], captured with the



ASUS Xtion Pro. In cluttered scenes, like those found in
the Label Fusion dataset, there are many noticeable NDP,
particularly around objects that are close to the camera. This
type of noise makes it difficult for robots to make sense of
the world when measuring depth in a cluttered scene – for
example, as we discuss in our pose estimation case study,
NDP causes significant biases and errors when performing
pose estimation of cluttered objects.

Most approaches to create realistic depth images rely on
hand-created, limited noise models or constrain the problem
to mapping real world depth image characteristics onto sim-
ulations for single objects, often in an unsupervised setting.
However, using a supervised approach, we can model the
most common noise artifact, NDP, for a more general set
of real world scenes using a CNN. By leveraging a dataset
that includes real depth images of a scene (obtained by
3D reconstruction) along with pixel-wise NDP labels, our
network has the ability to predict NDP in very cluttered
environments. Further, we focus on evaluating our method
in a task-sensitive way by measuring the similarity of errors
that the popular Iterative Closest Point (ICP) pose estima-
tion algorithm makes on real data, and on simulated data
corrupted by our CNN.

II. RELATED WORK

Given the ubiquity of depth sensing in robotics, many
researchers have investigated modeling and simulating depth
sensors, with special focus on the popular Kinect camera.
Structured light cameras like the Kinect contain noise caused
by geometric and material artifacts in the scene being
measured. Research into modeling depth camera noise can
be categorized into scene independent and scene dependent
models. The former relies on a general stochastic noise
models applied to any scene being observed. The latter
explicitly considers the scene being measured in the noise
model. We review research for both types of models.

A. Scene Independent Models

Scene independent models provide easy-to-apply tools to
recreate depth sensor noise. Researchers have investigated
empirically deriving these models from studying Kinect
noise in constrained environments. Khoshelham et al. [4]
investigates how accuracy of the Kinect sensor’s depth
measurements degrades with distance. Choo et al. [5] and
Nguyen et al. [6] both empirically measure lateral and axial
noise distributions to improve Kinect modeling. While scene-
independent models are efficient and easy to understand,
they are, by nature, unable to capture the scene-dependent
interactions that cause major spatially-correlated artifacts that
plague most depth images.

B. Scene Dependent Models

Scene dependent models directly use the simulated scene
to generate realistic noise. Much of the needed information
to predict depth camera noise is contained in the simulated
scene. Frequently, scene geometry and composition interfere
with the depth camera to cause NDP via high-angle surfaces

or occlusions due to offset between the IR camera and pro-
jector. Additionally, highly diffuse, specular, and transparent
surfaces disperse or absorb Kinect sensor infrared light, often
resulting in no depth measurement returned [2]. Simulating
the contribution of noise from all these external factors
is difficult challenge, and can draw on both hand-crafted
models and data driven analysis.

1) Model Based Approaches: With improved computer
graphics engines, Landau et al. [7] and Planche et al. [8]
have made efforts to more accurately capture depth camera
noise by directly modeling the noisy intermediate infrared
image of the structured light camera. These model based
approaches simulate the method the depth camera uses to
take measurements by rendering a noisy infrared image
onto a simulated scene and processing it to create realistic
depth images. Although model based approaches like these
are powerful tools to organically simulate depth imagery,
they depend heavily on the parameters used to model the
structured light camera and its environment. Since structured
light cameras like the Kinect have many unknown factors
such as its infrared patterns and subtleties of the depth recon-
struction algorithm, one often has to guess the characteristics
of the underlying system or fine-tune these methods on real
data. These model based approaches boast an incredible
feature list and predict noise from complex properties of
a scene, down to the level of lens distortion, specularity,
and external illumination, but correspondingly come with
increased requirements on detailed scene description before
simulation is possible, and the growing problem of ensuring
the simulated model remains true to reality.

2) Data Driven Approaches: Given an adequate training
set, data driven approaches have the ability to find functions
to approximate real world noise without being biased by
assumptions made during modeling. The data driven ap-
proaches in this regime are often formulated as image to
image translation and domain adaptation problems.

The task of generating realistic depth images from simu-
lated images can be framed as a domain adaptation problem.
Tobin et al. [9] uses extensive domain randomization to
generate large amounts of non-realistic but extremely diverse
simulated RGB images, and demonstrates that this non-
realistic data is sufficient for some learning tasks. Shrivastava
et al. [10] and Bousmalis et al. [11] on the other hand, train
a model end to end to generate realistic images (RGB and
Depth) from simulated images using Generative Adversarial
Networks (GANs). More recently, the work of Zhu et al.
[12] and Isola et al. [13] have gained significant popularity
for their applicability to image to image translation problems
in many different domains. [12] creates an impressive GAN
(coined CycleGAN) that performs image to image translation
without paired data, and [13] (coined Pix2Pix) similarly
performs powerful image to image translation with paired
data. Although these unsupervised methods using GANs are
powerful and captivating, [10] and [11] are trained on adapt-
ing domains of uncluttered scenes with single objects. This
is done to simplify the open-ended unsupervised learning
problem. However, most indoor scenes contain many objects.



(a) Our completely automated process to create training data. We post-
process the Label Fusion dataset to create all the necessary ground truth
depth images for training. For any RGBD stream, we can reconstruct the
scene into a point cloud. We then mesh the point cloud and render ground
truth depth images from many viewpoints of a scene paired with the binary
masked real depth image.

(b) Our CNN takes a simulated depth image and predicts a probability map of
pixel-wise NDP probabilities. Our model contains about 100,000 parameters.
We use a final 1x1 convolutional layer and sigmoid function to transform
our feature maps into a pixel-wise probability image of NDP.

Fig. 2: Training data generation and model.

[12] and [13] are able to perform image-to-image translation
for coloring or texture changes on a wide range of images,
but tend to add unwanted distortions when corrupting images
as needed to add noise to a depth image. Since we have
domain specific knowledge that for depth camera noise, NDP
is the major artifact, we can use a much more targeted
and lightweight approach without introducing any unwanted
distortions into a simulated depth image. Therefore, we solve
a supervised learning problem, employing a CNN to predict
NDP noise for complex simulated scenes.

III. TECHNICAL APPROACH

We present a novel technique to predict noise in simulated
depth images using a CNN architecture. Our focus is directed
at predicting NDP as a supervised pixel-wise binary classi-
fication task. Using real depth images as labels, we train on
reprojected depth from the 3D reconstructed mesh of a scene.
In order to model NDP from a wide set of noise artifacts,
a diverse set of training data is required. Our method can
quickly and automatically generate training data from any
RGBD dataset.

A. Data Generation

In order to capture the necessary training data for our
supervised learning problem, we set up a graphics pipeline
that takes as input an RGBD stream and outputs repro-
jected depth images from the scene’s reconstructed mesh.
We train on depth images as they contain useful geometric
information for determining whether or not a given pixel is
NDP. RGB images can also contain information about the
geometry of the scene. However, RGB images also contain
a lot of superfluous information to the NDP prediction from
scene geometries task such as color and lighting. To avoid
overfitting to the non-relevant data, we constrain our model
to process only rendered ground truth depth images.

Creating ground truth reprojected depth images require
post-processing RGBD streams from the Label Fusion
dataset. First, we create a 3D reconstructed point cloud of
the scene from the Label Fusion RGBD stream using Elastic
Fusion, developed by Whelan et al. [14]. Next, we turn the

reconstructed point cloud of a scene into a mesh represen-
tation using Poisson Surface Reconstruction developed by
Kazhdan et al. [15]. Then for each RGB and depth frame of
a particular scene, we simulate the corresponding viewpoint
of the reconstructed mesh. From here, we render the current
view of the mesh into a depth image. Each rendered depth
image is paired with its real depth image, binary masked
to form NDP labels. Figure 2a describes our pipeline for
generating this training data. Given the RGBD data of a
scene, our pipeline is completely automated. There are many
large RGBD databases that already exist (Silberman et al.
[16] and Glocker et al. [17] to name a couple) and can
be used with no human in the loop to create the necessary
training data.

B. Our Model

NDP in a cluttered scene is very complex, and not effec-
tively modeled by traditional stochastic models. We use a
CNN network architecture inspired by Ronneberger et al.
[18] to carry out the complex NDP prediction task. We
model the NDP prediction for complex scene geometries
as a pixel-wise binary classification problem using a CNN.
Given a ground truth depth image, our network can learn the
complicated features relevant for NDP prediction. Our labels
for each ground truth depth image are the real world depth
images where all the NDP are mapped to a 1 and every other
pixel mapped to a 0.

Given the input rendered depth images, the network en-
codes the information in these images into a high level repre-
sentation for predicting NDP. It then decodes this representa-
tion through up-sampling these high level representations and
merging with higher resolution features of the images using
skip layer connections. Figure 2b shows a visual depiction of
our architecture. Our model outputs a probability map where
each pixel in the image describes the probability of a NDP.
We use this probability map to instantiate a mask to apply
to a simulated depth image.



Fig. 3: From left to right: RGB image, real depth image, rendered depth image from the reconstructed scene mesh, CNN predicted NDP probability map.
The depth images are color coded as a heatmap with red being near distances and blue being far distances.

Fig. 4: From left to right: Real depth image, depth image with NDP predictions added to the simulated depth image from sampling the probability heatmap,
depth images produced by CycleGAN and Pix2Pix. Both CycleGAN and Pix2Pix were given the reprojected depth image as input. Our method captures
much of the real world depth image noise without adding unrealistic distortions seen in the unsupervised baselines. The unsupervised baselines distort
things like depth scaling resulting in a more red depth image.

C. From NDP Probabilities to Simulated Depth Image

We use the NDP probability map from our CNN to form a
image mask to corrupt a simulated depth image. Since NDP
noise has a high frequency, scene independent component
(often perceived as the characteristic flickering seen in depth
imaging), we sample the probability map using a correlated
noise process. For pixels in the NDP probability map with
probability higher than some threshold (0.5 works well in
practice) we mark the corresponding pixel in the image
mask. For pixels in the NDP probability map lower than
the threshold, we sample the probabilities using a Perlin
correlated noise process, and mark the corresponding pixels
in the image mask. Finally, we corrupt the simulated depth
image by applying this mask, setting all pixels corresponding
to marked pixels to 0 or NDP.

IV. RESULTS

A. Qualitative Experiments

We evaluate the realism in our simulated depth images by
visually comparing them to real depth images and domain
adaptation baselines. Figure 3 shows an RGBD pair, the
corresponding reconstructed depth image, and NDP predicted
probability map. Figure 4 shows side by side comparisons of
the real depth image, simulated depth image by sampling the
NDP probability map, a depth image created by CycleGAN
[12], and a depth image created by Pix2Pix [13]. Both the
CycleGAN and Pix2Pix model were trained on the same
Label Fusion training set as our model. From a visual
perspective, our model seems to be able to best capture the
complex NDP patterns seen in real depth images without
compromising other parts of the depth image with unwanted
distortions as seen in the images produced using CycleGAN
and Pix2Pix.

B. Quantitative Experiments

We evaluate our method quantitatively in two ways. First
we evaluate the ability of our model to predict NDP from
the classification perspective and expand on its ability to
generalize to novel scenes. Then we evaluate how well
our simulation prepares robotic tasks for the real world by
observing relative pose error statistics after applying the
pose alignment algorithm, Iterative Closest Point (ICP). We
compare relative error metrics of object poses in our NDP
predicted depth image’s projected point cloud to the poses
of the same objects in the real depth image’s point cloud
after ICP alignment and baseline our approach on a simple
NDP prediction scheme, the CycleGAN baseline, the Pix2Pix
baseline, and perfect uncorrupted simulation.

1) NDP classification: Our NDP prediction CNN is
lightweight, containing only about 100,000 parameters. The
average feed forward inference time for NDP prediction is
13ms on a GeForce GTX 980 GPU. Thus, our model is well
below the frame rate of a typical depth camera (30ms) and
can be put at the end of a real time simulation pipeline with
no large performance penalty.

To test the accuracy of our model, we use a 80%-20%
train/test split of the Label Fusion dataset and plot the
resulting ROC curves for NDP binary classification for four
different models on the test set. Our curves are shown
in Figure 5. We compare our model against three other
baselines: a simple NDP prediction scheme that predicts
NDP for pixels with normals that are too perpendicular to
the view direction; CycleGAN; and Pix2Pix. The CycleGAN
model was trained on the Label Fusion training set ignoring
our pixel-wise image labeled pairs, and the Pix2Pix model
used the paired images in our training set. Our method
clearly outperforms the simple NDP prediction baseline in



terms of its sensitivity-specificity trade-off. Since CycleGAN
and Pix2Pix produce deterministic results, their NDP binary
classification performances exist as points in Figure 5. For
a constant false positive rate of 10%, our method achieves
a true positive rate of 85% while CycleGAN achieves a
true positive rate of 67%. With a false positive rate of
4%, our method achieves a true positive rate of 80% while
the Pix2Pix baseline achieves a true positive rate of 71%.
With respect to NDP classification, our method outperforms
the unsupervised and simple model based alternatives and
also has the flexibility to change classification thresholds to
trade-off true and false positive rates, unlike the baseline
unsupervised methods.

Fig. 5: ROC curves showing the NDP binary classification performance
of our approach and three baselines. Our method achieves the best per-
formance on predicting NDP, without falsely classifying too many pixels.
The unsupervised baselines are points on the ROC curve as they produce
deterministic images.

Our model performs well for the types of scenes often seen
in robotic manipulation tasks. These types of scenes tend to
be cluttered environments with many near-field objects. The
Label Fusion dataset contains over 150 scenes with subsets
of 12 known object in various orientations and positions.
Therefore our performance on the Label Fusion dataset
suggest, at a high level, we can achieve good performance
for scenes in this regime.

In our evaluation of RGBD camera noise, we found that
noise models change considerably between different depth
cameras. (As a concrete example, parallax errors scale with
projector-receiver baseline, which differs between camera
model.) Fortunately, to generate a reasonably good NDP
prediction model for a new depth camera, only small amounts
of data are needed. We investigate the generalizability of our
method in data limited environments to show that the training
data for our method could be easily and quickly collected for
a new depth camera.

We repeat our NDP classification analysis for a model
trained on images collected from one scene (approx. 4000
images) of the Label Fusion dataset and show one can get
a pretty good degree of generalization with very limited
training data. Results are plotted in Figure 6.

After training the NDP model on a single scene log (log0
in Figure 6), one can apply the model to environments where
similar near field objects are put in many different configura-
tions for a small penalty in performance. The limited amount
of data needed suggests that training data could be collected

as part of a calibration stack for robotic manipulation.
2) Pose Estimation Case Study: To evaluate whether our

simulation captures the relevant noise to close the reality gap,
it is important to evaluate how well our simulation prepares
a robot for real world tasks. To quantify our simulation’s
task-relevant similarity to the real world, we inspect the
relative error statistics of a common object pose estimation
algorithm when applied to simulated and real depth images.
Our algorithm of choice – Iterative Closest Point (ICP) [19]
– is a local optimization method for object pose estimation
in point clouds. This method serves as a good indicator for
our simulation’s ability to truly close the reality gap, as
ICP is applied extremely broadly in robotic perception – for
example, for object localization in robot manipulation (as in
[20] and [21]), and for scan alignment for localization and
mapping (as in [22]). We report relative percentage absolute
difference between the real depth image simulation and our
simulation and baselines for mean magnitudes and variances
of the pose estimation error.

We now explain our evaluation pipeline. For a given sim-
ulated scene created from Label Fusion, we compare (1) an
uncorrupted simulated depth image; (2) our NDP predicted
depth image; (3) a NDP predicted depth image using the
simple NDP prediction scheme; (4) the CycleGAN predicted
depth image; (5) the Pix2Pix predicted depth image; and (6)
the corresponding real world depth image. We then create
six point clouds by projecting each of these depth images
into 3D space. Next, we render point clouds of every object
in the scene (for which we have the Label Fusion ground
truth poses), slightly perturb their poses and then use ICP to
realign the objects with each of the various point clouds. We
calculate the mean and variance of Euclidean and rotational
distances between the post ICP poses of the objects and
their ground truth poses in each simulated point cloud. The
Euclidean and rotational error metrics are defined below.

d(q1, q2) = 1− 〈q1, q2〉 (1)

d(p1, p2) =
√
(p1x − p2x)

2 + (p1y − p2y )
2 + (p1z − p2z )

2

(2)
Eq. 1 is the rotation distance metric and Eq. 2 is the position
distance metric. q1 is the post ICP object quaternion and q2
is the ground truth quaternion. p1 and p2 follow the same
scheme but are the 3D coordinates of an object.

We show that the post ICP error statistics of objects
aligned in our NDP predicted depth images are much closer
to the real world post ICP error statistics than the errors for
the pure simulated depth, the simple NDP prediction scheme
and the unsupervised baselines.

We fit objects to point clouds from 15 various Label
Fusion scenes each containing 5 different objects and report
the mean and variance of distance errors relative to the
errors of the real depth image in Table 1. The CycleGAN
and Pix2Pix baselines have more drastic errors than the
other experiments due to unrealistic depth distortions learned
during training. Pix2Pix leverages paired image data like
our approach, but has unrealistic errors with respect to its



Fig. 6: Left: Sample images of 9 similar scene logs from the Label Fusion dataset. The upper left image (log0) is a sample from the scene used to train the
data limited model. Middle: ROC curves for NDP classification performance on 9 similar Label Fusion scenes (labeled log0-log8). The model was trained
on only 4000 images from data log 0 (blue curve), and is able to generalize well to the other scenes. Right: Area under ROC curve for the 9 scenes.

Methods Euclidean
Distance
Mean

Euclidean
Distance
Variance

Rotational
Distance
Mean

Rotational
Distance
Variance

Perfect Sim 3.90% 18.4% 77.8% 49.8%
Simple NDP 3.60% 18.0% 77.2% 49.7%
Cycle GAN 62.3% 196% 227% 95.8%
Pix2Pix 187% 179% 53.8% 99.3%
Our Method 3.60% 6.90% 3.74% 0.10%

TABLE I: Table showing relative % error between various depth simulation
schemes and the real world for various ICP error statistics. In terms of
mean Euclidean and rotational ICP error, our method has the most realistic
performance, having small differences with real world ICP errors. Other
unsupervised baselines like CycleGAN and Pix2Pix distort the depth images
resulting in unrealistically large errors with real world ICP errors.

Euclidean and rotation post ICP distances. CycleGAN does
not used paired data, so it is not surprising that it contains
more unrealistic distortions causing very large and chaotic
rotational errors. While CycleGAN and Pix2Pix have greater
representational power than our more handcrafted method,
their unsupervised nature makes it harder to trust them as a
source of realistic depth imagery in robotics.

Since objects in our simulation have similar post ICP
error statistics with the real world for a fundamental robotic
object pose estimation algorithm, we are confident that more
complex robotic tasks verified in our simulation will be
more likely to succeed in the real world. We believe that
our analysis using ICP error signals is a useful tool for the
evaluation of robot simulations with a focus on downstream
tasks in manipulation and locomotion.

V. DISCUSSION

Our method relies on meshing 3D reconstructions of a
scenes and rendering depth images from them. However,
meshing and 3D reconstruction performance decreases with
increasingly cluttered scenes, causing objects in the scene
to be warped. Since rendered images of these suboptimal
meshes serve as ground truth images for our supervised
learning task, our model is slightly biased to perform better
on these 3D reconstructed meshes rather than real simulated
environments. However, RGBD data is easy to create and
use, opening up the possibility of quickly collecting large
training sets for our method. While the geometries of objects
in a scene contribute significantly to NDP, the materials
properties of those objects also cause prevalent noise.

For the supervised regime, to our knowledge, there do not
exist any large datasets that have labeled material properties
for a given scene. The most common tools we have to
measure object material properties involve the Bi-Directional
Reflective Function. Using BRDF-like scanners on every ob-
ject in a scene is impractical and time consuming for building
large annotated datasets. However, recent approaches like
Park et al. [23] show that lighting properties of objects can
be captured accurately and efficiently using commodity IR
depth sensors. For an exhaustive modeling of depth camera
noise, it is essential to infer and parameterize the material
properties of objects in a scene in a concrete way, but
efficient way.

While this work exclusively focuses on NDP, there are
other types of prevalent noise in depth imagery. For example,
when measuring depth from transparent objects, structured
light depth cameras often return blotches of pixels with
incorrect depth values. Unlike NDP, robots have no clear way
of making sense of this noise. For future iterations of depth
camera simulations, it is important to capture other types of
depth errors to make robots more robust to interacting with
many different objects.

VI. CONCLUSION

We have introduced a new data driven approach for creat-
ing realistic depth images using a convolutional neural net-
work. Training our CNN on depth images rendered from the
3D reconstructed mesh of a scene, we are able to accurately
predict NDP in cluttered and complex environments. Finally,
we showed that adding our NDP predictions to a depth
camera simulation decreases the reality gap when performing
an ICP object pose estimation task, demonstrating that our
method advances our goal of providing more realistic and
trustworthy sensor simulation.
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