
Finite-Time Regional Verification of Stochastic
Nonlinear Systems

Jacob Steinhardt
Department of Mathematics

Massachusetts Institute of Technology
Cambridge, Massachusetts 02139-4307

Email: jsteinha@mit.edu

Russ Tedrake
Department of Computer Science

Massachusetts Institute of Technology
Cambridge, Massachusetts 02139-4307

Email: russt@mit.edu

Abstract—Recent trends pushing robots into unstructured
environments with limited sensors have motivated considerable
work on planning under uncertainty and stochastic optimal
control, but these methods typically do not provide guaranteed
performance. Here we consider the problem of bounding the
probability of failure (defined as leaving a finite region of state
space) over a finite time for stochastic nonlinear systems with
continuous state. Our approach searches for exponential barrier
functions that provide bounds using a variant of the classical
supermartingale result. We provide a relaxation of this search
to a semidefinite program, yielding an efficient algorithm that
provides rigorous upper bounds on the probability of failure for
the original nonlinear system. We give a number of numerical
examples in both discrete and continuous time that demonstrate
the effectiveness of the approach.

I. INTRODUCTION

Consider the problem of a legged robot quickly traversing
unknown rough terrain, a vision-based autonomous vehicle
flying through a dense forest at high speeds, or a mobile
manipulator fetching a beer out of the refrigerator. Each of
these robots will be subject to many sources of uncertainty
— including uncertainty from imperfect perception, imperfect
models of robot and environment, and any unexpected distur-
bances. At the same time, we hope that our robots are able
to accomplish their tasks by executing high-speed dynamic
maneuevers, which demands that a high-performance control
system will have to reason about the nonlinear dynamics
of the machine. While there has been considerable progress
recently in designing impressive control systems for this class
of machine (e.g., [2, 6, 16, 27, 23, 22]), there is relatively
little work on guaranteeing that these systems can achieve their
goals in the presence of significant uncertainty.

In particular, we are motivated by the case where the effects
of the uncertainty are large when compared to the control
authority and passive stability of the robot (e.g. the small
vision-based UAV flying through a cluttered environment in a
strong wind). Consider, for instance, a closed-loop maneuver
that is only locally stable for the deterministic plant, subjected
to an unbounded uncertainty (for instance, Gaussian) from a
perceptual system. In this case, the system will eventually
be unstable with probability 1; hence, robust control design
and verification methods that consider worst-case performance
are not appropriate. Instead, here we attempt to analyze the

stochastic stability of the nonlinear system over a finite time
horizon — a framework considered in [12], which is also a
special case of planning with chance constraints as formulated
in [5]. In particular, we would like to verify an activation set
— a set of intial conditions from which the control policy will
provably achieve its goal with a desired probability. In addition
to certifying performance, efficient algorithms for verifying
this stochastic stability will lend themselves naturally to im-
proved methods for feedback design and planning algorithms
under chance constraints.

A common approach to nonlinear systems is via a finite-
dimensional interpolation of the state-space — either by direct
discretization, or through some more sophisticated technique
like volumetric interpolation. However, this approach has
multiple shortcomings — first, such approximations can end
up having large effects on the result, even for relatively
large numbers of interpolating functions and for well-behaved
systems. Second, for more than a few dimensions there will
not be enough memory on the computer to store even coarse
approximations to the continuous-state dynamics (for instance,
a discretization-based approach in a recent paper hits compu-
tation limits around 5 to 8 dimensions [1]; we can solve a
similar problem in 10 dimensions). For both of these reasons
we have been led to consider continuous-state verification. In
other words, we would like to perform verification directly on
the original system instead of first making a finite-dimensional
approximation.

Unfortunately, it appears that so far little progress has been
made on the problem of continuous-state, nonlinear, stochastic
verification, although many special cases have been studied.
If we eliminate stochasticity, then we can perform sum-of-
squares verification on Lyapunov functions [21, 25, 26, 15,
17]. If we eliminate continuous-state, then exact solutions can
be found by taking a matrix exponential (in continuous-time)
or matrix power (in discrete-time) of the transition matrix for
the Markov process, after adding an appropriate absorbing
state to capture all of the failed states. If we assume linearity
of the system then the problem falls into the risk-sensitive
control framework [10], which handles not only verification
but control design. Risk-sensitive control also deals with
nonlinear systems, but in the nonlinear case typically requires
a discretization of the state space, which is problematic for

the reasons discussed above.
There has been some progress on dealing with the general

case. The main approach is to find supermartingales of the
system, which bound the probability of leaving a region [3].
These supermartingales can be thought of as stochastic ana-
logues of Lyapunov functions, and are called barrier functions
in [19]. They can alternately be thought of as upper bounds
on a certain cost-to-go function.

However, unless the noise goes to zero near the desired point
of stability, no supermartingale exists (assuming the dynamics
of the system are sufficiently differentiable). This requires a
slight variation on the supermartingale criterion, as in Kushner
[12], which gives bounds very similar to our Theorems II.1
and II.2. In fact, the mathematical theory of [12] is more
complete than that presented here, as Kushner derives a version
of Theorem II.2 with the correct asymptotic form (exponential,
rather than linear, decay of the success probability as time
increases). Kushner also works through many nice examples
of applying the derived bounds to different types of noise.
The drawback of Kushner’s work is that it does not provide
any general algorithms for finding good supermartingales. We
hope to remedy this with our work.

Much of the continuous-state verification research has fo-
cused on nonlinear systems with Gaussian and switching noise
[19, 28]. In this paper we will focus on just Gaussian noise,
although we believe that extending the techniques to include
switching systems should not be too difficult. This is because
the theory presented here holds for general Markov processes,
with the computational results we provide tailored to Gaussian
noise.

The results in [19] are as far as we know the first to
provide an algorithm for finding supermartingales. However,
their approach has a few shortcomings that we address. The
first is that their method requires their barrier function to
be a true supermartingale, which for a time-invariant barrier
function requires them to pre-suppose stochastic stability for
sufficiently small initial conditions, a condition which is diffi-
cult to check and not always true. A second issue is that they
search over polynomially growing barrier functions, which
will not give as strong of guarantees as exponential barrier
functions. At the same time, while it is tractable to search
over relatively high-degree barrier functions in the CT case,
we believe that such a search becomes quickly infeasible in the
DT case because the Lyapunov function composed with the
dynamics leads to a polynomial whose degree is the product
of the degrees of the dynamics and Lyapunov functions; this
belief is based mainly on our own efforts to apply the methods
of [19] to the DT case, as [19] only considers the CT case.

To summarize, we are interested in bounding the probability
that a nonlinear, possibly time-varying, system with Gaussian
noise leaves a region (either pre-specified or computed as
part of the optimization) in a certain time interval. We will
do this by using the supermartingale approach discussed
in [12], searching over a family of exponentially growing
barrier functions. We will use sum-of-squares programming
to identify a member of this class that provides a good bound

on the failure probability.
We start in Section II by presenting Kushner’s bounds on

failure probability. In Section II we also give an overview of
sum-of-squares programming, an optimization technique that
will be important for finding a good barrier function. Next, in
Section III, we will define the family of barrier functions that
we intend to search over, and provide semidefinite constraints
that allow us to bound the failure probability. In Section IV,
we go over specific practical details of how we search for
a certificate that provides a good upper bound. We conclude
in Section V by providing examples of our approach on the
simple pendulum, cart-and-pole, and rimless wheel systems,
as well as for the heating system described in [1].

II. BACKGROUND

A. A Bound on Markov Chains

We begin with an extension of the classical result about
stability of supermartingales. Recall that a supermartingale is
a function B(x, t) of a Markov process such that E[B(x(t+
∆t), t + ∆t) | x(t)] ≤ B(x(t), t) for all ∆t ≥ 0. We will
instead consider functions that are almost supermartingales, in
the sense that E[B(x(t+ ∆t), t+ ∆t)] | x(t)] ≤ B(x(t), t) +∫ t+∆t

t
c(s)ds for some function c that depends only on time.

We will call such functions c-martingales. In discrete time, we
instead consider the condition E[B(x(t+ 1), t+ 1)] | x(t)] ≤
B(x(t), t) + c(n). In continuous time, a sufficient condition
for being a c-martingale is that AB(x(t), t) ≤ c(t), where A
is the infinitesimal operator:

AB(x(t), t) = lim
t′↓t

E[B(x(t′), t′) | x(t)]−B(x(t), t)

t′ − t
. (1)

We require this limit to converge uniformly across all x(t) and
t, which implies that B must be a continuous function of both
x and t. For a more detailed treatment of the technical issues
surrounding statistics of Markov processes, see Dynkin’s book
on the subject [7]; we refer the reader in particular to equations
(1.2) and (5.8) and the surrounding exposition.

The relaxation of the supermartingale condition to the c-
martingale condition allows us to consider systems that are
only locally stable and have non-zero noise at the origin. It is
similar to the approach taken in [18] for contracting systems.

We can draw an analogy between c-martingales and amor-
tized analysis in computer science — if there is some function
of our state that increases slowly, then it will be a long time
before it can reach a large value. If we can find a function B
of our state that increases slowly in expectation (such as a c-
martingale), and B is large outside of a region of state space,
then it will take a long time for a trajectory of the system
to escape that region. We more formally define the escape
probability from a region R at time T as the probability that
a trajectory of the system leaves R by time T (this includes
leaving R before time T , even if it later re-enters; we also
allow for the possibility that R is time-varying).

Our main theorems are given below. We only prove the
continuous-time version, as the discrete-time proof is essen-
tially the same but without the extra analytical technicalities.

For another exposition of these same ideas, see Theorem 1 of
[11].

Theorem II.1. LetM be a Markov chain over a space X with
initial condition x(0), let R be an open subset of X , and let B
be a non-negative real-valued function on X× [0, T]. Suppose
that B is a c-martingale inside R, and that B(x, t) ≥ B0 for
all x 6∈ R, 0 ≤ t < T . Then the escape probability at time T
is at most B(x(0),0)+

∑T−1
n=0 c(n)

B0
.

Theorem II.2. Let M be a strong Markov process over a
space X whose trajectories are almost surely right-continuous.
Let x(0) be the initial condition of the Markov process, let
R be an open subset of X , and let B be a non-negative
real-valued function on X × [0, T]. Suppose that B is a c-
martingale inside R, and that B(x, t) ≥ B0 for all x 6∈ R,
0 ≤ t < T . Then the escape probability at time T is at most
B(x(0),0)+

∫ T
0
c(t)dt

B0
.

Proof of Theorem II.2.: Modify M to a new Markov
process M′ that stops as soon as a trajectory leaves R. More
formally, if x(t0) 6∈ R, then x(t) = x(t0) for all t ≥ t0. Also
add a state variable τ that is equal to t up until the time t0
and that is equal to t0 for all t ≥ t0.

With this new Markov process defined, AB(x(t), τ(t)) ≤
c(t) holds across all of X . Consequently, we have
E[B(x(T), τ(T)) | x(0)] ≤ B(x(0), 0) +

∫ T
0
c(t)dt. Since

B is non-negative, by Markov’s inequality we must have
P[B(x(T), τ(T)) ≥ B0 | x(0)] ≤ E[B(x(T),τ(T))|x(0)]

B0
≤

B(x(0),0)+
∫ T
0
c(t)dt

B0
. Since B(x, τ) ≥ B0 for all x 6∈ R,

0 ≤ τ ≤ T , we also have P[x(T) 6∈ R | x(0)] ≤
P[B(x(T), τ(T)) ≥ B0 | x(0)]. On the other hand, since M′
stops upon leaving R, the escape probability of M at time T
is exactly the probability that x(T) 6∈ R forM′, which proves
the theorem.

In the following sections, we will discuss how to usefully
apply this bound to dynamical systems with Gaussian noise.

B. Sum-of-Squares Programming

Suppose that we want to compute the global minimum
of a polynomial p(x1, . . . , xn). We could formulate this as
maximizing δ subject to the constraint p(x) − δ ≥ 0 for all
x. This problem is NP-hard in general; however, if we could
write p(x) − δ = h(x)TQh(x) for some matrix Q � 0, then
we would know that p(x) ≥ δ for all x. We can more generally
consider programs with linearly parameterized polynomials
and several positivity constraints, e.g.

maximize
α

hTα

subject to αT pi(x) ≥ 0, i = 1, . . . ,m,
(2)

which are then replaced with

maximize
α,Q

hTα

subject to αT pi(x) = hi(x)TQihi(x), i = 1, . . . ,m

Qi � 0, i = 1, . . . ,m.

(3)

Note that (3) is a semidefinite program, and can thus be solved
efficiently. The α are referred to as decision variables and the
x are referred to as free variables.

We may also wish to only enforce a constraint pi(x) ≥ 0
in some region described by qi(x) ≤ 0. In this case, we
can introduce a Lagrange multiplier λ(x) and impose the
constraints pi(x) + λ(x)qi(x) ≥ 0 and λ(x) ≥ 0. If qi is
not fixed then the constraint is no longer linear, an issue we
deal with in Section IV.

Sum-of-squares programs can be formulated using the MAT-
LAB package yalmip [13]. Yalmip is a modeling language
for optimization problems that has built-in support for several
optimizers; we used SeDuMi [24] for our work. While the
final version of our code uses yalmip, we also used CVX
[8, 9] and SOSTOOLS [20] during development. All of the
software mentioned here is freely available online.

III. CERTIFICATES OF STABILITY

Theorems II.1 and II.2 show us how to obtain true certifi-
cates of stability from approximate certificates. In order to
usefully apply these theorems, we need to pick a suitable
barrier function for a given noise model. For now, we will
consider systems with polynomial dynamics and (possibly
state-dependent) Gaussian noise. In the DT case, this means
systems of the form xn+1 = f(xn) + g(xn)wn, where wn
is unit covariance white noise. In the CT case, this means
systems of the form dx(t) = f(x)dt+ g(x)dw(t), where w is
a vector of independent Wiener processes. All of the following
results also hold for time-varying f and g, but we will omit the
possible dependence on t to keep the equations more readable.

We will consider barrier functions of the form BS(x, t) =

e
1
2x
TS(t)x − 1. Note that including cubic or higher terms in

the exponent would make the expected value of BS infinite
with respect to Gaussian noise.

A. Discrete-Time

In discrete-time, we can compute

E[BS(x(t+ 1)) | x(t)] =

det(I − gTSg)−
1
2 e

1
2 f(x)TS(S−SggTS)

−1
Sf(x) − 1.

Applying Theorem II.1 to BS lets us bound the failure
probability by

e
1
2x(0)TS(0)x(0) − 1 +

∑N
n=1 C(n)

e
1
2ρ − 1

(4)

as long as xTS(n)x ≥ ρ for all x 6∈ Rn and

C(n) ≥ −e 1
2x
TS(n−1)x +

det(I − gTS(n)g)−
1
2 e

1
2 f
TS(n)(S(n)−S(n)ggTS(n))−1S(n)f

whenever xTS(n)x < ρ. The expression for C(n) is cumber-
some, as it involves a determinant as well as the difference of
two exponential functions. The following two lemmas let us
relax the expression to a condition on polynomials.

Lemma III.1. det(I −M) ≥ 1− Tr(M) when 0 �M � I .

Proof: This is the same as showing that
∏n
i=1(1−λi) ≥

1 −
∑n
i=1 λi whenever 0 ≤ λi ≤ 1. Since A(1 − λ) = A −

Aλ ≥ A−λ ≥ B−λ whenever B ≤ A ≤ 1, the lemma follows
by induction on n (with A =

∏n−1
i=1 (1−λi), B = 1−

∑n−1
i=1 λi,

and λ = λn).

Lemma III.2. Suppose that 0 < r0 < 1 and

(1− r0)−
1
2 ep0(p− p0)− eq0(q − q0) ≤ δ (5)

r ≤ r0. (6)

Then
(1− r)− 1

2 ep − eq ≤Me
δ
M , (7)

with M = (1− r0)−
1
2 ep0 − eq0 .

Proof: Since the left-hand side of (7) is increasing with r,
by condition (6) it suffices to consider the case r = r0. We can
then maximize (1− r0)−

1
2 ep − eq against (5) using Lagrange

multipliers, and obtain a unique maximum at p = p0 + δ
M ,

q = q0 + δ
M as long as 0 < r0 < 1. Substituting back in

yields (7).
Setting p0 = q0 = 0 and letting b equal 1−(1−r0)

1
2 , Lem-

mas III.1 and III.2 imply that we can set C(n) to (1−b)−1−1
as long as (1−b)−1fTS(n)(S(n)−S(n)ggTS(n))−1S(n)f ≤
xTS(n−1)x and Tr(gTS(n)g) ≤ 2b−b2. We handle this last
part by introducing a Lagrange multiplier, so that we end up
with the three constraints

(1− b)xTS(n− 1)x+ λ(x)(xTS(n− 1)x− ρ) (8)

− fTS(n)(S(n)− S(n)ggTS(n))−1S(n)f ≥ 0[
1 b
b 2b− Tr(g(x, n− 1)TS(n)g(x, n− 1))

]
� 0 (9)

λ(x) ≥ 0. (10)

for all x. Note that (9) is equivalent to Tr(gTS(n)g) ≤ 2b−b2
by Schur complements.

Remark As the noise goes to 0, we can set b to 0. It is
easy to check that the constraints then reduce to the Lyapunov
equation f(x)TS(t)f(x) ≤ xTS(t − 1)x with a Lagrange
multiplier added to check regional stability.

B. Continuous-Time

We now turn to the continuous-time case. Recall that we
are interested in the infinitesimal operator AB(x, t) defined
in Equation 1. For systems of the form dx(t) = f(x)dt +
g(x)dw(t), we can compute [28]

AB(x, t) =
∂B

∂t
+
∂B

∂x
f(x)+

1

2
Tr

(
g(x)T

∂2B

∂x2
g(x)

)
. (11)

For functions of the form BS(x) = e
1
2x
TS(t)x, (11) becomes

ABS(x, t) = e
1
2x
TSx

×
[

1

2
xT Ṡx+ xTSf +

1

2
Tr
(
gTSg

)
+

1

2
xTSggTSx

]
.

Then Theorem II.2 implies that the failure probability is
bounded by

e
1
2x(0)TS(0)x(0) − 1 +

∫ T
0
C(t)dt

e
1
2ρ − 1

(12)

as long as (i) xTSx ≥ ρ for all x 6∈ Rt and (ii) C(t) ≥
e

1
2x
TSx

[
1
2x

T Ṡx+ xTSf + 1
2 Tr(gTSg) + 1

2x
TSggTSx

]
whenever xTSx < ρ. We would therefore like an analog
of Lemma III.2 for functions of the form p(x)eq(x). The
following will suffice:

Lemma III.3. Suppose that p(x) ≤ p0(1 + q0 − q(x)) and
p0 ≥ 0. Then p(x)eq(x) ≤ p0e

q0 .

Proof: Since 1 − x ≤ e−x, 1 + q0 − q(x) ≤ eq0−q(x),
so p(x) ≤ p0(1 + q0 − q(x)) ≤ p0e

q0−q(x). Multiplying both
sides by eq(x) yields p(x)eq(x) ≤ p0e

q0 .
Applying Lemma III.3 with p0 = b and q0 = 0 allows us

to upper-bound ABS(x, t) by b as long as

b(2− xTSx)− 2xTSf − Tr(gTSg)− xT Ṡx (13)

− xTSggTSx+ 2λ(x, t)(xTSx− ρ) ≥ 0

for some non-negative function λ(x, t).

IV. OPTIMIZING OVER S

Assuming that we can find suitable values of S, b, λ, and ρ,
conditions (8-10) and (13) allow us to upper-bound the failure
probability. However, while checking these constraints for a
fixed tuple (S, b, λ, ρ) is a sum-of-squares program, optimizing
against them is not, because the decision variables S, b, λ, and
ρ appear nonlinearly.

We now describe one approach for finding good values of
these variables. Our approach is to first find values of S and b
(S0 and b0, say) that work for the system linearized about some
fixed point. We then restrict our consideration to multiples cS0

of S0, and binary search over c for several values of ρ, setting
b equal to (1−Tr(gTSg))−

1
2 in the DT case and 1

2 Tr(gTSg)
in the CT case; these values are optimal for satisfying (8) and
(13).

This approach will work well for time-invariant systems; it
is similar to using the S matrix from LQR as a local Lyapunov
function for a deterministic system. However, it will not work
well for time-varying systems because it introduces extra
conservatism that compounds over the course of a trajectory.
Another approach based on alternating maximization between
(S, ρ) and (b, λ) will work better for trajectories, but it is
more difficult to implement and more often runs into numerical
issues; we intend to describe this approach in a later paper.

For the linearization-based approach, we still need a way to
find good values of S and b for the linearized system. We con-
sider the DT constraints first. If we apply Schur complements
to (8) and linearize, we obtain the matrix constraint[

S0 − S0g(0)g(0)TS0 S0F
(S0F)T (1− b)S0

]
� 0, (14)

where F = ∇f(0). If we introduce a dummy variable P and
require that S0 − S0g(0)g(0)TS0 � P , then we can re-write
(14) as the pair of constraints[

P S0F
(S0F)T (1− b)S0

]
(15)[

I (S0g(0))T

S0g(0) S0 − P

]
� 0. (16)

The CT case can be dealt with similarly, leaving us with[
I (S0g(0))T

S0g(0) −bS0 − S0F − (S0F)T

]
� 0. (17)

In both cases, once we fix b we are left with a semi-definite
constraint, so we can just perform a line search on b and then
solve a semidefinite program over S0. However, we need a
good objective to optimize against. We choose to maximize α
such that S0 � αM , for some well-chosen matrix M (this is
equivalent to requiring that xTS0x ≥ α whenever xTMx ≥
1). There are two reasons to use this objective. First, if xTMx
gives an indication of how nonlinear the system is at x, then
we want xTS0x to be large whenever xTMx is large; this
makes it more likely that S0 will work well for the nonlinear
system. Second, if M defines some safety constraint (i.e. the
system is safe if xTMx < 1), then we would also like S0 to be
large relative to M in order to minimize the failure probability.

V. EXAMPLES

Now that we have covered the theoretical underpinnings of
our method, we will demonstrate its effectiveness with several
examples. For each example, we first describe the system, then
indicate which M matrix we used (see Section IV), the values
of S0 and b0, the values of c and ρ, and the final probability
bound.

A. Example 1: Simple Pendulum, Discrete Time

Our first example is a pendulum stabilized about the upright
with a time step of ∆t = 0.01. We use the following equations
for the pendulum dynamics (the sin term has been Taylor
expanded to third order):[
θn+1

θ̇n+1

]
=

[
θn + 0.01θ̇n

−0.0167θ3
n − 0.3θn + 0.97θ̇n

]
+

[
0.01w1,n

0.05w2,n

]
.

We want to bound the probability that θ leaves the region(
−π6 ,

π
6

)
after 3600 seconds. We thus set M to

[(
6
π

)2
0

0 0

]
,

as then xTMx > 1 ⇐⇒ |θ| > π
6 .

For b0 = 0.0136, we get S0 =

[
142.71 7.49
7.49 5.09

]
with

α = 36.10. When we verify on the nonlinear system, we get
c = 0.955, ρ = 34.48 (ρ is equal to cα because the constraint
S � ρM was the first to become tight). Figure 1 shows the
log of the failure probability plotted against initial conditions.

Note that we get strong bounds (failure probabilities less
than 10−3) for a large region around the origin. For the sake of
comparison, we estimated the actual failure probability using
a Kalman filter for the linearized system, also included in

Figure 1. While the true probabilities are much smaller than
verified (10−10 vs. 10−3), the verified region of stability is
not much smaller than the actual region of stability. For most
robotics applications we are more interested in the operating
region where we have a high success probability than in how
small the failure probability is for zero initial conditions. In
this respect our verification method is close to the true answer.

B. Example 2: Simple Pendulum, Continuous Time

We perform the same optimization as before, checking
against the continuous-time version of the constraints. For

b0 = 1.51, we get S0 =

[
156.90 8.34
8.34 5.64

]
with a corre-

sponding α value of 39.63. When we verify on the nonlinear
system, we get c = 1.0, ρ = 39.63. The failure probability is
plotted in Figure 2.

C. Example 3: Cart-Pole Balancing, Continuous Time

The next example demonstrates that our approach is scal-
able to more complicated systems. It is also an example of
including observation noise in the model. The cart and pole
system is a pendulum with length L and mass mp attached
to a cart with mass mc. The system is actuated by a force
u on the center of mass of the cart. Letting θ = 0 when the
pendulum is pointing straight up, the equations of motion are

ẍ =
u−mp sin(θ)(Lθ̇2 − g cos(θ))

mc +mp sin(θ)2
,

θ̈ =
u cos(θ)−mpLθ̇

2 cos(θ) sin(θ) + (mc +mp)g sin(θ)

L(mc +mp sin(θ)2)
.

We set mp = 1.0, mc = 10.0, L = 0.5, g = 9.8, and take a
third-order Taylor expansion to get the following dynamics:
dx
dθ
dẋ

dθ̇

 =

ẋ

θ̇

−.75θ3 − .01θ2u− .05θθ̇2 + .98θ + .1u

−5.75θ3 − .12θ2u− .1θθ̇2 + 21.56θ + .2u

 dt
+ diag

([
0.03 0.03 0.1 0.1

])
dw(t).

To stabilize this system, we apply LQR control
to the linear system with cost matrices Q =
diag([10, 10, 1, 1]), R = 0.1 to get a gain matrix of
K =

[
−10.0 289.83 −19.53 63.25

]
.

Let us suppose that we also have independent measurement
noise on x, θ, ẋ, and θ̇, with standard deviations of 0.01, 0.01,
0.03, and 0.03, respectively. Our feedback law will push this
noise back into the dynamics, adding 4 extra noise channels
that end up being functions of θ.

Because the major source of nonlinearity is θ, want
xTS0x to grow quickly with θ. We will therefore set M
to diag

([
0 1 0 0

])
. For b0 = 0.728, we get S0 =

2.45 −12.01 2.57 −1.85
−12.01 231.42 −21.72 22.72

2.57 −21.72 5.95 −4.46
−1.85 22.72 −4.46 5.26

, with α = 124.36.

When we verify on the nonlinear system, we get c = 0.9023,

θ

d
θ
/d

t

Pendulum (Verified)

−0.5 0 0.5

−3

−2

−1

0

1

2

3
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

θ

d
θ
/d

t

Pendulum (Kalman Filter)

−0.5 0 0.5

−3

−2

−1

0

1

2

3
−10

−8

−6

−4

−2

0

Fig. 1: The log-base-10 of the failure probability for the discrete-time pendulum after one hour. Left: failure probability plotted
against initial conditions, verified with our algorithm. Right: estimated failure probability for the linearized discrete-time
pendulum, computed with a Kalman filter.

θ

d
θ
/d

t

Pendulum (Verified)

−0.5 0 0.5

−3

−2

−1

0

1

2

3

−4

−3

−2

−1

0

θ

d
θ
/d

t

Cartpole Balancing

−0.5 0 0.5

−3

−2

−1

0

1

2

3

−1.5

−1

−0.5

0

Fig. 2: The log-base-10 failure probabilities for two continuous-time systems. Left: balancing for the pendulum, as a function
of initial conditions. Right: balancing for the cartpole, as a function of initial conditions in x and θ (the initial conditions for
ẋ and θ̇ are fixed to 0).

ρ = 20.75. Figure 2 contains a visualization of the failure
probability after one hour.

D. Example 4: Rimless Wheel

The rimless wheel is a common model for walking first in-
troduced in [14]. It is a wheel consisting of ns spokes, each of
length L, connected at a point. The angle between consecutive
spokes is θ = 2π

ns
. The spokes are massless; the central point

has a mass of M . The rimless wheel typically rolls down a
hill, say with slope angle γ. When a spoke impacts the ground,
the collision is inelastic, conserves angular momentum, and
immediately transfers support to the next spoke. Because of
the impacts, the rimless wheel is an inherently discrete-time
system. One way to compute its dynamics across several
collisions is via the Poincaré return map, which gives the
angular velocity at the point where the stance leg is vertical.
If we let ωn denote this angular velocity between the nth and

(n+ 1)st impacts, and let xn = ω2
n, then [4]

xn+1 = cos2(θ)

(
xn +

2g

L
(1− cosβ1)

)
− 2g

L
(1− cosβ2),

where β1 = θ
2 + γ and β2 = θ

2 − γ. As in [4], we model
γ as Gaussian with mean γ0 = 8◦ and standard deviation
σ = 1.5◦. This means that the actual noise to the system is
non-Gaussian since it is filtered through a cosine. The system
is locally stable to some value x̄ > 0 as well as to the state
where both stance legs are on the ground and the wheel stops
moving. We will consider this second stable point a failure
state, which corresponds to xn ≤ 0.

We will compare the following approaches to bounding the
time until the wheel enters this failure state:

1) Find the smallest slope γs such that the rimless wheel
would roll forever with a constant slope of γs. Then
compute the probability that γ < γs. The expected time
to failure is at least the reciprocal of this probability.

One-step slope bound (nonlinear) 313 impacts
One-step slope bound (linear) 428 impacts

Noise as state variable 50 impacts
Linearized noise 12647 impacts

Discrete-state 643600 impacts

TABLE I: Expected failure time/50% failure probability
thresholds for the rimless wheel. The first, second, and last
bounds compute expected failure times, while the second and
third bounds compute the time with a 50% failure probability.

2) Let vn denote γ−γ0 for time n+1. Then vn is Gaussian,
and it is okay that it affects the dynamics in a nonlinear
way because it is a state variable. We can then apply the
techniques of this paper to find a time that has at most
a 50% probability of failure.

3) Approximate the noise as an appropriate Gaussian by
linearizing around γ0, then apply the techniques of this
paper.

4) Discretize the state space and compute the expected time
to failure exactly (up to the discretization) by solving a
system of equations, as in [4].

In order to make the point of stability the origin, we make the
change of coordinates x 7→ x− x̄.

In the first approach, solving for γs yields 3.91◦ in the
nonlinear noise case and 3.76◦ in the linearized case. The
respective bounds on expected time to failure are 313.08 and
427.74 impacts, respectively.

In the second approach, we set M to
[

1
x̄2 0
0 0

]
. On the

nonlinear system, we obtain c = 0.972, ρ = 7.45, leading
to a bound of 0.4057T for initial conditions at the origin.
We thus hit 50% failure at T = 40.49

2×0.4057 = 49.90 impacts.
This compares poorly to the first approach, which may imply
that dealing with non-Gaussian noise by filtering it through
nonlinear dynamics does not work well in practice.

In the third approach, we set M to 1
x̄2 . We get c = 1,

ρ = 19.19, and a 50% failure rate at T = 12646.90 impacts,
a significant improvement on both of the first two approaches.

Finally, as computed in [4], the actual expected failure time
is 643600. These results are summarized in Table I.

E. Example 5: Room Heating

Our final example evaluates the scalability of our approach.
We compare our algorithm to the algorithm presented in Abate
et al [1]. The experiment presented in [1] concerns bounding
the probability that a heating system allows any of h rooms
to leave given temperature ranges. For a heating system with
h rooms, we represent the temperature of the h rooms as a
vector x = (x1, x2, . . . , xh), and consider the discrete-time
system xn+1 = f(xn) + g(xn)wn with

f(x)i = xi + b(x0 − xi) + a

∑
j 6=i

xj − xi

+ cσ
(xi
α
− 1
)

(18)
g(x) = νIh×h, (19)

where σ is a sigmoidal function rising from 0 to 1, which
we approximated as σ(y) = 0.5− 2.5y + 1.25y2 + 20y3. For
our experiment we took a = 0.0625, b = 0.025, c = 0.6,
x0 = 6.0, α = 19.5, and ν = 0.25. The goal was to bound
the probability of leaving the temperature region defined by
[17, 22] × [16, 23]h−1. The numbers given above are based
on Abate et al.’s paper, although we make a few simplifying
assumptions to the dynamics — first, we replace a certain
Bernoulli noise source by its expectation; second, we assume
symmetric between-room interactions so that there will be an
easily identifiable fixed point about which to verify stability.
We also remove a one-step lag on noise, which increases the
discretization mesh of [1] by a factor of 2 per dimension.

We observe that Abate et al. are able to (using 5 bins per
dimension) verify a 5-room heating system in 11 hours on a
3.4GHz PC with 1GB of RAM. Because of the factor of 2 per
dimension that they incur, a fair comparison of runtime would
be to test our SOS verification on a 7-room heating system
(the mesh size in [1] would decrease by a factor of 32 by
ignoring lag, then gain a factor of 25 when going from 5 to
7 dimensions, so that their 7-room times without lags would
be 6-7 hours, as their runtime scales about quadratically with
mesh size).

In this case a single SOS verification runs in an average
of 17.2 seconds (our algorithm performs several such verifi-
cations). We used a 3.4GHz PC with 24GB of RAM; we note
that our PC had 12 cores, with CPU diagnostics indicating that
only 4 cores were actually utilized by our computation. We
furthermore note that for a fixed degree of Taylor approxima-
tion our method scales polynomially with dimension, whereas
discretization methods scale exponentially with dimension.
Our method is therefore not only more scalable currently,
it will also continue to scale well with increased computing
power.

VI. CONCLUSION

We have presented a method for verifying stochastic non-
linear systems. However, the results here are by no means
a complete theory; there is much work left to be done.
Our hope is that the successful examples in this paper will
convince others that the methods first presented in [19] can
extend usefully to complex systems for suitable choices of
barrier functions. We chose exponentials of quadratic barrier
functions because the systems we had in mind were locally
well-approximated by linear systems and the noise model was
Gaussian. Other applications will require different families of
barrier functions; hopefully the convex relaxations given in
(III.2) and (III.3) will provide inspiration for similar relax-
ations for those other families. It seems that usually one can
obtain such relaxations from simple analytical properties of
the expressions in question, but the authors do not yet have a
way to make this observation rigorous.

Some interesting modifications to the dynamics would be
to consider mixtures of Gaussians, as well as switching pro-
cesses, in the noise model; also to consider verification about
stabilized trajectories. A final case of interest is Gaussian noise

passed through a nonlinear filter; as discussed in the Rimless
Wheel section, our method handles this case in principal, but
performs poorly in practice.

REFERENCES

[1] A. Abate, J.-P. Katoen, J. Lygeros, and M. Prandini. Ap-
proximate model checking of stochastic hybrid systems.
European Journal of Control, 16:624641, dec 2010.

[2] Pieter Abbeel, Adam Coates, Morgan Quigley, and An-
drew Y. Ng. An application of reinforcement learning to
aerobatic helicopter flight. In Proceedings of the Neural
Information Processing Systems (NIPS ’07), volume 19,
December 2006.

[3] Frederick J. Beutler. On two discrete-time system stabil-
ity concepts and supermartingales. Journal of Mathemat-
ical Analysis and Applications, 44(2):464 – 471, 1973.

[4] Katie Byl and Russ Tedrake. Metastable walking ma-
chines. International Journal of Robotics Research, 28
(8):1040–1064, August 1 2009.

[5] A. Charnes and W. W. Cooper. Chance-constrained
programming. Management Science, 6(1):pp. 73–79,
1959.

[6] Rick Cory and Russ Tedrake. Experiments in fixed-wing
UAV perching. In Proceedings of the AIAA Guidance,
Navigation, and Control Conference. AIAA, 2008.

[7] E. B. Dynkin. Markov Processes, volume 1. Academic
Press, 1965.

[8] M Grant and S Boyd. Graph implementations for
nonsmooth convex programs. In V. Blondel, S. Boyd,
and H. Kimura, editors, Recent Advances in Learning
and Control (tribute to M. Vidyasagar), Lecture Notes
in Control and Information Sciences, pages 95–110.
Springer, 2008.

[9] M Grant and S Boyd. CVX: Matlab software for
disciplined convex programming - version 1.1beta. http:
//cvxr.com/cvx, January 2011.

[10] Matthew R. James. Asymptotic analysis of nonlinear
stochastic risk-sensitive control and differential games.
Mathematics of Control, Signals, and Systems (MCSS),
5:401–417, 1992. 10.1007/BF02134013.

[11] H. J. Kushner. On the stability of stochastic dynamical
systems. PNAS, 53(1):8–12, Jan. 15 1965.

[12] HJ Kushner. Finite time stochastic stability and the
analysis of tracking systems. IEEE Transactions on
Automatic Control, pages 219–227, April 1966.

[13] Johan Lofberg. Pre- and post-processing sum-of-squares
programs in practice. IEEE Transactions On Automatic
Control, 54(5):1007–, May 2009.

[14] Tad McGeer. Passive dynamic walking. International
Journal of Robotics Research, 9(2):62–82, April 1990.

[15] A. Megretski. Positivity of trigonometric polynomials.
In Decision and Control, 2003. Proceedings. 42nd IEEE

Conference on, volume 4, pages 3814–3817 vol.4, Dec.
2003.

[16] D. Mellinger, N. Michael, and V. Kumar. Trajectory
generation and control for precise aggressive maneuvers
with quadrotors. In Proceedings of the 12th Inter-
national Symposium on Experimental Robotics (ISER
2010), 2010.

[17] Antonis Papachristodoulou and Stephen Prajna. Analysis
of non-polynomial systems using the sum of squares de-
composition. Positive Polynomials in Control, 312/2005:
23–43, 2005.

[18] Quang-Cuong Pham, Tabareau, N., Slotine, and J.-J. A
contraction theory approach to stochastic incremental
stability. Automatic Control, IEEE Transactions on, 54
(4):816 –820, Apr 2009.

[19] S Prajna, A. Jadbabaie, and GJ Pappas. Stochastic
safety verification using barrier certificates. 43rd IEEE
Conference on Decision and Control, pages 929–934,
2004.

[20] Stephen Prajna, Antonis Papachristodoulou, Peter Seiler,
and Pablo A. Parrilo. SOSTOOLS: Sum of Squares
Optimization Toolbox for MATLAB Users guide, 2.00
edition, June 1 2004.

[21] Stephen Prajna, Antonis Papachristodoulou, and Fen Wu.
Nonlinear control synthesis by sum of squares optimiza-
tion: A Lyapunov-based approach. In Proceedings of the
ASCC 2004, 2004.

[22] Marc Raibert, Kevin Blankespoor, Gabriel Nelson, Rob
Playter, and the BigDog Team. Bigdog, the rough-
terrain quadruped robot. Proceedings of the 17th World
Congress, The International Federation of Automatic
Control, 2008.

[23] Alexander Shkolnik, Michael Levashov, Ian R. Manch-
ester, and Russ Tedrake. Bounding on rough terrain with
the littledog robot. Under review, 2010.

[24] Jos F. Sturm. Using SeDuMi 1.02, a Matlab toolbox
for optimization over symmetric cones. Optimization
Methods and Software, 11(1-4):625 – 653, 1999.

[25] W. Tan and A. Packard. Stability region analysis using
polynomial and composite polynomial Lyapunov func-
tions and sum-of-squares programming. IEEE Transac-
tions on Automatic Control, 53(2):565–571, March 2008.

[26] Mark M. Tobenkin, Ian R. Manchester, and Russ
Tedrake. Invariant funnels around trajectories using sum-
of-squares programming. arXiv:1010.3013 [math.DS],
2010.

[27] Eric R. Westervelt, Jessy W. Grizzle, Christine
Chevallereau, Jun Ho Choi, and Benjamin Morris. Feed-
back Control of Dynamic Bipedal Robot Locomotion.
CRC Press, Boca Raton, FL, 2007.

[28] Y Yang, J Li, and G Chen. Finite-time stability and
stabilization of nonlinear stochastic hybrid systems. Jour-
nal of Mathematical Analysis and Applications, 356:338–
345, 2009.

http://cvxr.com/cvx
http://cvxr.com/cvx

	Introduction
	Background
	A Bound on Markov Chains
	Sum-of-Squares Programming

	Certificates of Stability
	Discrete-Time
	Continuous-Time

	Optimizing over S
	Examples
	Example 1: Simple Pendulum, Discrete Time
	Example 2: Simple Pendulum, Continuous Time
	Example 3: Cart-Pole Balancing, Continuous Time
	Example 4: Rimless Wheel
	Example 5: Room Heating

	Conclusion

