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Abstract

Having 3D simulation models which represent the visual geometry and contact dy-
namics of arbitrary objects is important for achieving robust planning and control
for robotic manipulation tasks and sim2real transfer. Currently, the most common
solution for obtaining such models is generating them by hand. However, this process
is not generalizable or scalable. Neural Radiance Fields (NeRFs) are able to generate
photorealistic 3D renderings of arbitrary objects based only on a few RGB images.
3D meshes that are extracted from NeRFs are often complex and hard to use in simu-
lation. In this thesis we propose geometric approaches based on convex optimization
for simplifying such meshes into unions of primitive shapes so that they are faster
and more accurate to simulate.
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Chapter 1

Introduction

In order to achieve robust planning and control for robotic manipulation tasks, it is

crucial to be able to accurately simulate the visual geometry and contact dynamics

of arbitrary objects. Currently, there is heavy reliance on handcrafted models of

objects which represent their geometry and dynamics in simulation platforms. These

models can take weeks to design, making it impossible to scale this solution to the

number of objects that would be required for a robot to robustly handle a large

variety of manipulation tasks. Furthermore, reliance on human-designed simulation

models means that robots are incapable of manipulating objects they have not seen

before. Instead, an ideal solution would be to automatically generate dynamically

accurate simulation models from just a few unlabeled images. Another emerging use

case for such "simulatable assets" is the idea of real2sim2real in which simulation

models generated from real world data are used to collect large scale datasets of

robots performing tasks in simulation, which can then be used to train policies on

robots in the real world [21].

Previously, Neural Radiance Fields (NeRF) have been successful in creating pho-

torealistic mesh representations of objects from a small set of input images [24].

However, while these models may be visually realistic, their underlying meshes are

complex and often poor representations for accurately simulating the original object

dynamics in simulation. Furthermore, the meshes generated by NeRF are generally

made up of thousands of vertices and faces which makes them slow to simulate and
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thus impractical to use for the desired tasks of generating robot plans or collecting

data sets of trajectories for training robot policies in the real world. Our goal in this

work is to use geometric approaches to simplify the meshes generated from NeRFs

into unions of primitive shapes so that they are faster to simulate and have better

simulation dynamics.
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Chapter 2

Related Work

2.1 Neural Radiance Fields and 3D Object Repre-

sentations

A Neural Radiance Field (NeRF) is a fully connected deep neural network which

represents a scene or object [24]. During training, NeRFs are fed a sparse set of

image and camera pose pairs. Then, at inference time, they take a camera position

and viewing direction as input, and generate the volume density and emitted radiance

at that location in 3D space. Classic volume rendering techniques can be used to

project the output colors and densities onto an image. When trained effectively,

NeRFs can produce photorealistic renderings of novel views of scenes or objects. In

addition, some recent works such as [25] have utilized algorithms based on marching

cubes to generate 3D meshes from NeRFs. These technologies have recently gained

traction in the graphics community and are now being employed by companies like

Luma AI and CSM.ai for various applications, such as generating photorealistic 3D

assets for video games and e-commerce, and visual effects for movies [2, 1].

Given the tasks they are used for, meshes generated from NeRFs tend to be opti-

mized for visual accuracy, which often results in messy, complex meshes with spurious

faces. Given these artifacts, when used in simulation NeRF meshes generally do not

have the same dynamic behavior as the real world object. The authors of [9] propose

13



augmenting NeRFs with dynamical properties which are obtained from images and

videos of the object. Using synthetic data, the authors showed that this augmented

object representation could be manipulated in simulation. However, in addition to

the images required to train the NeRF, this approach also requires videos of the ob-

ject interacting with its environment in order to generate the object representation.

Additionally, this approach does not address the complexities of simulated NeRFs

generated from real world data.

2.2 Mesh Simplification Methods

Many different types of mesh simplification and decomposition algorithms have been

proposed in the past to reduce processing time and simulation complexity. These

algorithms vary in their approach as well as the metrics they use to evaluate results.

One class of such algorithms is approximate convex decomposition in which a 3D

shape is broken into a set of nearly convex regions in order to leverage efficient ge-

ometry processing algorithms specifically designed for convex shapes. Traditionally,

these approaches use one of two metrics for their greedy decomposition algorithm –

boundary-based-distance or volume-based-distance between the shape and its decom-

posed convex hull. As pointed out in [34], these metrics alone can be insufficient in

preserving fine-grained details that are crucial for maintaining object functionality in

simulation environments (eg. the slots in a toaster). To address this, the authors of

[34] propose a different distance metric which simultaneously takes into account both

boundary and interior distances.

Another class of algorithms are shape decomposition algorithms which instead

break input shapes into a set of oriented geometric primitives such as spheres, cuboids,

cylinders, and ellipsoids.

Papers such as [31] and [6] perform shape decomposition using sphere meshes and

sphere trees. [31] decomposes the input shape into a collection of spheres connected

by edges or faces based on a spherical quadric error metric inspired by [11]. [6] uses

a medial-axis based algorithm to decompose shapes into a hierarchical sphere tree
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structure.

[32] and [27] use unsupervised learning to decompose shapes into collections of

cuboids. In [32] the authors formulate a geometric loss function which is a combina-

tion of the coverage loss and consistency loss. Coverage loss enforces that the input

object is subsumed by the predicted parameterized shapes, while consistency loss does

the opposite. Combining these losses enforces that the output shape is maximally

consistent with the input. [27] uses a similar approach but the input shape is repre-

sented using an adaptive hierarchical cuboid abstraction. A loss function combining

volume consistency (minimizing the difference in volume), surface consistency (mini-

mizing the difference in surface area), mutual exclusion (minimizing cuboid overlap),

abstraction compactness (minimizing the total abstraction volume), and hierarchical

consistency is used to train the model.

[19] uses a supervised learning approach to fit a combination of different types

of primitives to a mesh. While this method gives more general results, it requires

labeled data for training.

The authors of [17] introduce a 3D object representation, which they call Fuzzy

Metaballs, for differentiable rendering. Fuzzy Metaballs are an implicit representation

of an object, made up of a set of general multidimensional Gaussians that form

ellipsoids. Using a differentiable renderer, the authors optimize a Fuzzy Metaball

representation from a set of images and show the success of using this representation

to perform classic computer vision tasks such as shape from silhouette and pose

estimation.

In this work we aim to use geometric reasoning, rather than learning-based meth-

ods, to fit collections of primitives to noisy meshes.

2.3 Point Cloud Registration

A different, but related problem to shape decomposition, is point cloud registration.

In this class of problems the goal is to align two point clouds by computing the rel-

ative rotation and translation between them. A common use case for point cloud
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registration is to localize an object in a scene given a model point cloud of the object

of interest. This is similar to the problem in shape decomposition of finding poses

for primitive shapes such that they align with the vertices of a mesh. Other applica-

tions of point cloud registration include robot localization, lidar scan matching, and

mapping.

Works such as [38] and [14] use optimization methods and tight convex relaxations

to find globally optimal and certifiable registration results. More specifically, [38] uses

a truncated least squares objective function to handle outliers and decouples solving

for the relative scale, rotation, and translation. Using a tight semidefinite relaxation

of the rotation constraint, and an adaptive voting scheme to solve for scale and

translation, allows the authors to guarantee the optimality of their results. [14] takes

a similar approach, but uses mixed integer optimization to solve for globally optimal

poses.

Another class of algorithms for point cloud registration are iterative, sampling-

based methods which tradeoff global optimality in favor of faster runtimes. Examples

of such algorithms include Iterative Closest Point (ICP) [20] and Random Sample

Consensus (RANSAC) [10]. ICP starts by finding the closest points between two point

clouds and then computes a translation and rotation. This process is repeated until

convergence. RANSAC works by sampling many subsets of data points, computing

a pose for each set of points, and picking the pose for which the number of inliers is

largest. RANSAC is a widely used method for tasks such as fitting curves to data

with outliers, finding planar surfaces in point cloud data [40], and landmark location

estimation for visual odometry and SLAM [10, 16].

These methods are generally more computationally efficient than their globally

optimal counterparts, but they are susceptible to getting stuck in local minima and

finding suboptimal solutions.
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2.4 Convex Optimization

Convex optimization, used in both [38] and [14] for point cloud registration, is a

branch of mathematical optimization where both the cost function and constraints

are convex functions of the decision variables. The most commonly solved convex

optimization in practice are conic programs which include Linear Programs (LPs),

Quadratic Programs (QPs), Second Order Cone Programs (SOCPs), and Semidefinite

Programs (SDPs). For convex optimization problems, globally optimal solutions can

be found by polynomial time algorithms [3].

A more complex class of optimization problems are Mixed Integer Programs

(MIPs), in which some or all of the decision variables must be integers. MIPs are a

powerful tool for modeling discrete decisions in optimization problems such as whether

a data point is an inlier or outlier. In the worst case finding a solution to a MIP re-

quires searching through an exponentially large search space, making it NP-hard in

the number of discrete variables [39].

Despite these hardness results, effective strategies for solving MIPs in practice

have been developed. Most commonly MIPs are solved using the branch and bound

algorithm which recursively partitions the discrete search space into smaller sub-

problems, successively bounding the objective function within each subproblem, and

selectively exploring other subproblems until an optimal solution is found or proven

to be impossible [4]. In some cases branch and bound is able to eliminate large por-

tions of the search tree and efficiently find optimal solutions to MIPs. However, this

is not always the case and even with branch and bound, solving some MIPs can be

computationally intensive and impractical at large scales.
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Chapter 3

Optimization Methods for Fitting

Primitives

3.1 Background

The problem of fitting primitive shapes to a mesh is similar to a version of the point

cloud registration problem where the goal is to localize a known object in a scene by

aligning a point cloud model of the object to a point cloud of the scene. In the case

of mesh simplification, instead of a model point cloud we have a geometric primitive

such as a sphere, ellipsoid, or box, and instead of a scene point cloud we have the

vertices of the input mesh.

In standard point cloud registration without outliers the relative scale 𝑠, transla-

tion 𝑏, and rotation 𝑅 can be computed by solving the least squares problem which

minimizes the distance between the transformed scene points 𝑥𝑖 and their correspond-

ing model points 𝑚𝑖. [38] and [14] achieve robustness to outliers by instead using a

truncated least squares objective function:
∑︀𝑁

𝑖=1 min(‖𝑠𝑅𝑥𝑖 + 𝑡 −𝑚𝑖‖2, 𝑐). As writ-

ten this objective is non-convex and both works take different approaches to finding

optimal solutions to the problem.

[38] decouples each of the transforms (scale, translation, and rotation) by tak-

ing advantage of invariant measurements between scene points and model points, and

converts the non-convex truncated least squares objective into a non-convex Quadrat-
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Figure 3-1: Plot showing Least Squares Cost and Truncated Least Squares Cost (with
𝑐 = 10) in one dimension.

ically Constrained Quadratic Program (QCQP). In practice the authors find that this

QCQP has a tight semidefinite relaxation which can be solved to find certifiably op-

timal estimates of the relative transform.

Unfortunately, the decoupling procedure of [38] does not extend to the primitive

fitting problem. Therefore, an approach based on relaxing the TLS objective using

least squares necessarily relaxes a quartic objective which is less likely to have tight

SDP relaxations. Instead, in this work we will generalize the approach taken in [14]

for the point cloud registration problem to the primitive fitting problem. Specifically,

we will formulate the truncated least squares objective as a mixed integer program.

3.2 Fitting Individual Primitives to Meshes

We seek to solve the problem

min
𝛼

𝑁∑︁
𝑖=1

‖𝛼(𝑥𝑖)− 𝑢𝑖‖2,

20



where the points 𝑥𝑖 are vertices of the mesh, 𝛼 is a function which transforms the

points 𝑥𝑖 onto the primitive, and the points 𝑢𝑖 are points on the surface of the primitive

shape. Essentially, our goal is to minimize the distance between the transformed scene

points and a point on the surface of the primitive shape being fit. We parametrize

the function 𝛼 with a transformation matrix 𝐴 and translation vector 𝑏. Thus, the

full optimization problem is:

min
𝐴,𝑏,𝑢

𝑁∑︁
𝑖=1

‖𝐴𝑥𝑖 + 𝑏− 𝑢𝑖‖2,

s.t. constraints on 𝑢𝑖 based on shape,

constraints on 𝐴.

(3.1)

The presence of outliers can cause the solution to (3.1) to be biased, creating

non-physical shapes. Therefore, classifying points as inlier or outliers is essential for

robust, real world performance. This discrete classification decision can be modeled

using binary variables, resulting in a mixed integer program similar to the point

registration program described in [14]:

min
𝐴,𝑏,𝑢,𝜑,𝑜

𝑁∑︁
𝑖=1

𝜑𝑖,

s.t. 𝜑𝑖 ≥ ‖𝐴𝑥𝑖 + 𝑏− 𝑢𝑖‖2 −M𝑜𝑖 ∀𝑖,

𝜑𝑖 ≥ 𝜑𝑚𝑎𝑥𝑜𝑖 ∀𝑖,

𝑜𝑖 ∈ {0, 1} ∀𝑖,

constraints on 𝑢𝑖 based on shape,

constraints on 𝐴.

(3.2)

This formulation introduces 𝑁 new continuous decision variables 𝜑𝑖 which store

the truncated least squares cost for each data point, and 𝑁 binary variables 𝑜𝑖 which

indicate if a data point is an inlier (𝑜𝑖 = 0) or an outlier (𝑜𝑖 = 1). The variable

𝜑𝑚𝑎𝑥 is a threshold for classifying a point as an outlier and also acts as a penalty

for outliers. The variable M is a sufficiently large constant which is used to turn on
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and off constraints on 𝜑𝑖 based on the value that 𝑜𝑖 takes. Problem (3.2) is a mixed

integer program which has to be solved with branch and bound.

In the following sections we show how to use this general formulation for fitting

spheres, ellipsoids, and boxes to noisy input points.

3.2.1 Spheres

In order to transform the mesh vertices onto a sphere, 𝐴 is a scaled version of the

identity matrix. Additionally, we require 𝑢𝑖 to be a point on the surface of the unit

ball with the constraint ||𝑢𝑖||2 = 1. This results in the following optimization problem:

min
𝑠,𝑏,𝑢

𝑁∑︁
𝑖=1

‖𝑠𝑥𝑖 + 𝑏− 𝑢𝑖‖2,

s.t. ‖𝑢𝑖‖2 = 1 ∀𝑖,

𝑠 ≥ 0.

(3.3)

The magnitude constraint on 𝑢𝑖 in program (3.3) is not convex, so we relax it to

‖𝑢𝑖‖2 ≤ 1 which can be implemented as a convex second-order-cone constraint. This

leads to the convex SOCP optimization problem below:

min
𝑠,𝑏,𝑢

𝑁∑︁
𝑖=1

‖𝑠𝑥𝑖 + 𝑏− 𝑢𝑖‖2,

s.t. ‖𝑢𝑖‖ ≤ 1 ∀𝑖,

𝑠 ≥ 0.

(3.4)

However, the convex relaxation on the 𝑢𝑖 constraint means that data points can

be mapped to any point within the unit sphere, not just points on the surface of the

unit sphere. This includes the trivial solution where 𝑢 = 𝑠 = 𝑏 = 0.

A more sophisticated relaxation of (3.3) involves semidefinite programming. First,
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we rewrite the quadratic cost in the following form:

𝑁∑︁
𝑖=1

‖𝑠𝑥𝑖 + 𝑏− 𝑢𝑖‖2 =
𝑁∑︁
𝑖=1

⎡⎢⎢⎢⎣
𝑠

𝑏

𝑢𝑖

⎤⎥⎥⎥⎦
𝑇

𝑄𝑖

⎡⎢⎢⎢⎣
𝑠

𝑏

𝑢𝑖

⎤⎥⎥⎥⎦ . (3.5)

Then, the relaxed program is:

min
𝑠,𝑏,𝑢,𝑍

𝑁∑︁
𝑖=1

TR(𝑄𝑖𝑍𝑖, )

s.t. 𝑍𝑖 ⪰

⎡⎢⎢⎢⎣
𝑠

𝑏

𝑢𝑖

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
𝑠

𝑏

𝑢𝑖

⎤⎥⎥⎥⎦
𝑇

∀𝑖,

TR(𝑍𝑖,[−3:,−3:]) = 1 ∀𝑖,

TR(𝑍𝑖,[0:−3,0:−3]) = TR(𝑍𝑗,[0:−3,0:−3]) ∀𝑖, 𝑗,

𝑠 ≥ 0.

(3.6)

However, without a term that is purely linear in the decision variables 𝑠, 𝑏, 𝑢, there

is no cost to pushing optimal solutions towards 𝑢𝑇
𝑖 𝑢𝑖 = 1, resulting in solutions similar

to those given by the SOCP (3.4) [29].

As written, both the SOCP and SDP relaxations of the program are loose unless

we fix 𝑠, in which case the relaxations are tight but do not solve for the optimal 𝑠.

However, we can do better than the above formulation by noticing that a point 𝑝 is on

the surface of a sphere parametrized by center 𝑐 and 𝑟 if ‖𝑝− 𝑐‖ = 𝑟 =⇒ ‖𝑝− 𝑐‖2 =

𝑟2 =⇒ ‖𝑝− 𝑐‖2 − 𝑟2 = 0. Thus, we can reformulate the optimization problem as a

penalty on mesh vertices 𝑝 being far from the surface of the fit sphere:

min
𝑐,𝑟

𝑁∑︁
𝑖=1

(‖𝑝𝑖 − 𝑐‖2 − 𝑟2)2,

s.t. 𝑟 ≥ 0.

(3.7)

As written this problem has a quartic objective which is not convex. However, as
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shown in [15] the objective can be expanded and rearranged to the following expres-

sion:

𝑁∑︁
𝑖=1

((𝑝2𝑖𝑥 + 𝑝2𝑖𝑦 + 𝑝2𝑖𝑧)− (2𝑝𝑖𝑥𝑐𝑥 + 2𝑝𝑖𝑦𝑐𝑦 + 2𝑝𝑖𝑧𝑐𝑧 + 𝑟2 − 𝑐2𝑥 + 𝑐2𝑦 + 𝑐2𝑧))
2

=
𝑁∑︁
𝑖=1

((2𝑝𝑖𝑥𝑐𝑥 + 2𝑝𝑖𝑦𝑐𝑦 + 2𝑝𝑖𝑧𝑐𝑧 + 𝑟2 − 𝑐2𝑥 + 𝑐2𝑦 + 𝑐2𝑧)− (𝑝2𝑖𝑥 + 𝑝2𝑖𝑦 + 𝑝2𝑖𝑧))
2.

(3.8)

This expression can then be converted to vector notation:

𝑁∑︁
𝑖=1

(𝑎𝑇𝑖 𝑄− 𝑓𝑖)
2,

where: 𝑎𝑖 =

⎡⎢⎢⎢⎢⎢⎢⎣
2𝑝𝑖𝑥

2𝑝𝑖𝑦

2𝑝𝑖𝑧

1

⎤⎥⎥⎥⎥⎥⎥⎦ , 𝑄 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑐𝑥

𝑐𝑦

𝑐𝑧

𝑟2 − (𝑐2𝑥 + 𝑐2𝑦 + 𝑐2𝑧)

⎤⎥⎥⎥⎥⎥⎥⎦ , 𝑓𝑖 =
[︁
𝑝2𝑖𝑥 + 𝑝2𝑖𝑦 + 𝑝2𝑖𝑧

]︁
.

Thus, the new problem can be written with a standard least squares objective,

where vectors 𝑎𝑖 and 𝑓𝑖 are pre-computed from the data, and the only decision variable

is 𝑄:

min
𝑄

𝑁∑︁
𝑖=1

(𝑎𝑇𝑖 𝑄− 𝑓𝑖)
2. (3.9)

This optimization problem is now a least squares program which has a unique

and non-trivial solution for 𝑄. The first three elements of the optimal 𝑄 contain the

coordinates of the center of the fit sphere, and can be used to recover the radius of

the sphere from the fourth element of 𝑄.

It is worth noting that the objective function for the new formulation is no longer

exactly the squared distance between data points and the surface of the sphere. In-

stead, it is the difference between the squared distance between a point and the
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center of the sphere, and the radius of the sphere squared. However, the benefit of

this modified formulation is that we avoid the loose convex relaxation ‖𝑢𝑖‖2 ≤ 1.

Adding outlier rejection we have the following mixed integer quadratic program

(MIQP):

min
𝑄,𝜑,𝑜

𝑁∑︁
𝑖=1

𝜑𝑖,

s.t. 𝜑𝑖 ≥ (𝑎𝑇𝑖 𝑄− 𝑓𝑖)
2 −M𝑜𝑖 ∀𝑖,

𝜑𝑖 ≥ 𝜑𝑚𝑎𝑥𝑜𝑖 ∀𝑖,

𝑜𝑖 ∈ {0, 1} ∀𝑖.

(3.10)

In practice it may be possible to modify the MIQP above so that it is easier to find

solutions. Since the truncated least squares cost for this program is now quadratic

in the decision variable 𝑄, the SDP relaxation is more likely to be tight and result

in optimal solutions. Alternatively, this optimization problem can be converted to a

mixed integer linear program (MILP) by switching from the squared cost (𝑎𝑇𝑖 𝑄−𝑓𝑖)
2

to the absolute value |𝑎𝑇𝑖 𝑄− 𝑓𝑖|. In practice, MILPs can be solved much faster than

MIQPs due to the efficiency of simplex warm starting the branch and bound algorithm

[28]. The MILP formulation is given below:

min
𝑄,𝜑,𝑜

𝑁∑︁
𝑖=1

𝜑𝑖,

s.t. 𝜑𝑖 ≥ +(𝑎𝑇𝑖 𝑄− 𝑓𝑖)−M𝑜𝑖 ∀𝑖,

𝜑𝑖 ≥ −(𝑎𝑇𝑖 𝑄− 𝑓𝑖)−M𝑜𝑖 ∀𝑖,

𝜑𝑖 ≥ 𝜑𝑚𝑎𝑥𝑜𝑖 ∀𝑖,

𝑜𝑖 ∈ {0, 1} ∀𝑖.

(3.11)

3.2.2 Ellipsoids

We can take a similar approach to fitting ellipsoids as we used for fitting spheres. The

general quadratic form 𝑎𝑥2 + 𝑏𝑦2 + 𝑐𝑧2 + 2𝑑𝑥𝑦 + 2𝑒𝑥𝑧 + 2𝑓𝑦𝑧 + 2𝑔𝑥+ 2ℎ𝑦 + 2𝑖𝑧 = 1

describes an ellipsoid if all of the discriminants are less than zero:
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(2𝑑)2 − 4𝑎𝑏 < 0,

(2𝑒)2 − 4𝑎𝑐 < 0,

(2𝑓)2 − 4𝑏𝑐 < 0.

(3.12)

In vector notation this can be written as:

𝑎𝑇𝑖 𝑄− 1 = 0,

where: 𝑎𝑖 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥2
𝑖

𝑦2𝑖

𝑧2𝑖

2𝑥𝑖𝑦𝑖

2𝑥𝑖𝑧𝑖

2𝑦𝑖𝑧𝑖

2𝑥𝑖

2𝑦𝑖

2𝑧𝑖

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, 𝑄 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑎

𝑏
...

ℎ

𝑖

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Now we write the problem of fitting ellipsoids as a minimization of (𝑎𝑇𝑖 𝑄− 1)2 for

all data points:

min
𝑄

𝑁∑︁
𝑖=1

(𝑎𝑇𝑖 𝑄− 1)2,

s.t. (2𝑑)2 − 4𝑎𝑏 < 0,

(2𝑒)2 − 4𝑎𝑐 < 0,

(2𝑓)2 − 4𝑏𝑐 < 0.

(3.13)

As written here the objective function is convex but each of the discriminant con-

straints is non-convex due to the bi-linear terms. Empirically, we find that solutions

to the unconstrained optimization problem almost always result in solutions that sat-
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isfy the discriminant constraints if there are at least 20 data points. Thus it can be

solved as a least squares problem and the solutions can be verified after the fact. This

also holds for the formulation with outliers:

min
𝑄,𝜑,𝑜

𝑁∑︁
𝑖=1

𝜑𝑖,

s.t. 𝜑𝑖 ≥ (𝑎𝑇𝑖 𝑄− 1)2 −M𝑜𝑖 ∀𝑖,

𝜑𝑖 ≥ 𝜑𝑚𝑎𝑥𝑜𝑖 ∀𝑖,

𝑜𝑖 ∈ {0, 1} ∀𝑖,

(2𝑑)2 − 4𝑎𝑏 < 0,

(2𝑒)2 − 4𝑎𝑐 < 0,

(2𝑓)2 − 4𝑏𝑐 < 0.

(3.14)

A solution which guarantees ellipsoidal solutions can be achieved with an SDP.

The original quadratic form can be rewritten as a matrix equation:

⎡⎢⎢⎢⎢⎢⎢⎣
𝑥

𝑦

𝑧

1

⎤⎥⎥⎥⎥⎥⎥⎦

𝑇 ⎡⎢⎢⎢⎢⎢⎢⎣
𝑎 𝑑 𝑒 𝑔

𝑑 𝑏 𝑓 ℎ

𝑒 𝑓 𝑐 𝑖

𝑔 ℎ 𝑖 −1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
𝑥

𝑦

𝑧

1

⎤⎥⎥⎥⎥⎥⎥⎦ = 0.
(3.15)

Call the matrix of coefficients 𝑃 . In this form the discriminant constraints from

(3.14) are equivalent to a positive definite constraint on 𝑃 . Thus, an alternative

optimization formulation is:

min
𝑃

𝑁∑︁
𝑖=1

⎡⎣𝑎𝑖,
1

⎤⎦𝑇

𝑃

⎡⎣𝑎𝑖
1

⎤⎦
s.t. 𝑃[0:3,0:3] ⪰ 0.

(3.16)
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And with outliers:

min
𝑃,𝜑,𝑜

𝑁∑︁
𝑖=1

𝜑𝑖,

s.t. 𝜑𝑖 ≥

⎡⎣𝑎𝑖
1

⎤⎦𝑇

𝑃

⎡⎣𝑎𝑖
1

⎤⎦−M𝑜𝑖 ∀𝑖,

𝜑𝑖 ≥ 𝜑𝑚𝑎𝑥𝑜𝑖 ∀𝑖,

𝑃[0:3,0:3] ⪰ 0,

𝑜𝑖 ∈ {0, 1} ∀𝑖.

(3.17)

With this formulation the solutions that are found are guaranteed to be ellipsoidal

for any number of data points, but solving SDPs and mixed integer SDPs is harder

than the quadratic program proposed earlier and requires specialized solvers.

3.2.3 Boxes

In order to fit boxes we return to formulation (3.1), where for each scene point 𝑥𝑖, we

search for the closest corresponding model point 𝑢𝑖. Unlike the sphere and ellipsoid

cases, for boxes we can use linear constraints to constrain 𝑢𝑖.

We start by presenting the box fitting problem in two dimensions. In this case the

model we are fitting is the square defined by the vertices (−1,−1), (1,−1), (1, 1), (−1, 1),

and 𝑢𝑖 must be exactly on one of the sides of this square. Each side is a closed line

segment which can be represented by the expression 𝑒2 + 𝜃(𝑒1 − 𝑒2) where 𝑒1 and 𝑒2

are the endpoints of the segment, and 𝜃 is a scalar variable which ranges from 0 to

1 [5]. Thus, 𝑢𝑖 can be represented using one binary variable per side to assign which

side 𝑢𝑖 belongs to, and a scalar variable ranging from 0 to 1, to determine where along

the chosen side 𝑢𝑖 lies. This mixed integer program is shown below:
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min
𝐴,𝑏,𝜑,𝛾

𝑁∑︁
𝑖=1

𝜑𝑖,

s.t. 𝜑𝑖 ≥ ‖𝐴𝑥𝑖 + 𝑏− (𝑒2,𝑗 + 𝜃𝑖𝑗(𝑒1,𝑗 − 𝑒2,𝑗))‖2 −M(1− 𝛾𝑖,𝑗) ∀𝑖 ∈ [1, 𝑁 ], ∀𝑗 ∈ [1, 4],

0 ≤ 𝜃𝑖𝑗 ≤ 1 ∀𝑖 ∈ [1, 𝑁 ],∀𝑗 ∈ [1, 4],

4∑︁
𝑗=1

𝛾𝑖,𝑗 ≥ 1 ∀𝑖 ∈ [1, 𝑁 ],
𝑁∑︁
𝑖=1

𝛾𝑖,𝑗 ≥ 1 ∀𝑗 ∈ [1, 4],

𝛾𝑖𝑗 ∈ {0, 1},

𝐴 =

⎡⎣𝑎00 −𝑎01
𝑎10 𝑎11

⎤⎦ , 𝑎00, 𝑎11 ≥ 𝜖, 𝑎01, 𝑎10 ≥ 0.

(3.18)

In this formulation 𝑒1,𝑗 and 𝑒2,𝑗 represent the two endpoints that define side 𝑗.

Since we are working with a box there are always 4 sides. The binary variable 𝛾𝑖,𝑗 is 1

if point 𝑥𝑖 is assigned to side 𝑗 and 0 otherwise. There are additional constraints that

require each point to be assigned to at least one side, and each side to be assigned at

least one point. Additionally, in order to avoid symmetries, each of the basis vectors

formed by matrix 𝐴 are constrained to have rotation angle between 0 and 90 degrees.

We do not restrict 𝐴 to form an orthogonal basis so shearing is allowed. This results

in a more general formulation which allows us to fit parallelograms/parallelepipeds

to the data, rather than just rectangles/cuboids. However, it is possible to add an

additional set of constraints to the elements of 𝐴 to prevent shearing.

Scaling this program to 3 dimensions would require each data point to have a

separate binary variable for each face, and two 𝜃 variables to parametrize where on

each face 𝑢𝑖 lies. Adding 6 binary variables per data point would be very expensive,

so we present an alternative formulation which only uses 4 binary variables, and 1

continuous variable per data point.
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min
𝐴,𝑡,𝑢,𝑏,𝑧

𝑁∑︁
𝑖=1

‖𝐴𝑥𝑖 + 𝑏− 𝑢𝑖‖2,

s.t. 𝑏𝑖,𝑗 ∈ {0, 1}, 𝑢𝑖,𝑗 ∈ [−1, 1], 𝑧𝑖 ∈ {−1, 1} ∀𝑖 ∈ [1, 𝑁 ],∀𝑗 ∈ [𝑥, 𝑦, 𝑧],

𝑧𝑖 − 2𝑏𝑖,𝑗 ≤ 𝑢𝑖,𝑗 ≤ 𝑧𝑖 + 2𝑏𝑖,𝑗 ∀𝑖 ∈ [1, 𝑁 ],∀𝑗 ∈ [𝑥, 𝑦, 𝑧].

(3.19)

In order for the point 𝑢𝑖 to be on the surface of the 3D box centered at the origin

with side length 2, the L-infinity norm of 𝑢𝑖 must equal 1. If the binary variable 𝑏𝑖,𝑗

is 0 coordinate 𝑗 of point 𝑢𝑖 is constrained such that 𝑢𝑖,𝑗 ∈ {−1, 1}, and if 𝑏𝑖,𝑗 = 1,

then 𝑢𝑖,𝑗 ∈ [−1, 1]. The binary variable 𝑧𝑖 ∈ {−1, 1} helps enforce these constraints.

Similar to the previous formulation, adding additional constraints limiting the axis

rotation angles of the vectors formed by 𝐴 makes the optimization easier to solve by

eliminating some symmetries.

3.3 Primitive Fitting Based on Greedy Set Cover

The problem of simplifying a surface mesh into the union of primitive shapes can be

seen as a generalization of the set cover problem where, given a set of elements (often

called the “universe”) and a set of subsets, the goal is to find the smallest set of subsets

that covers all the elements in the universe. In the context of simplifying a mesh the

universe is the surface represented by the vertices of the input mesh, the subsets are

primitive shapes, and the goal is to find the set of primitives which minimizes the

cost of explaining all of the input vertices.

In general, the set cover problem is NP-hard, but if the function which measures

coverage is submodular, a greedy algorithm can be used to find solutions that are

approximately optimal [36]. Submodularity is a property of set functions which are

functions 𝑓(𝑆) that assign a value to each subset 𝑆 of a finite set 𝑉 [18]. Submodular

functions are characterized by diminishing marginal returns. Mathematically this

means that a function 𝑓(𝑆) is submodular if for every 𝐴 ⊆ 𝐵 ⊆ 𝑉 and 𝑒 ∈ 𝑉 ∖𝐵:
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∆(𝑒|𝐴) ≥ ∆(𝑒|𝐵),

where, ∆(𝑒|𝑆) = 𝑓(𝑆 ∪ {𝑒})− 𝑓(𝑆) [18].
(3.20)

In our problem setting of fitting primitives to vertices of a mesh, the subsets 𝑆 are

various primitive shapes fit using the outlier rejection formulations, and the coverage

function 𝑓(𝑆) is the sum of the cost of the fit for each vertex. In the case where

𝑆 contains a single primitive, 𝑓(𝑆) is the sum of the distance between each inlier

vertex and the primitive, plus a cost of 𝜑𝑚𝑎𝑥 for each outlier vertex. When a new

primitive 𝑒 is fit to the outliers, the cost 𝑓(𝑆 ∪ {𝑒}) decreases because some subset

of the outlier points will be classified as inliers for primitive 𝑒 and have lower cost

than 𝜑𝑚𝑎𝑥. As more primitives are added, the number of outliers decreases and the

marginal reduction in cost diminishes, making 𝑓(𝑆) a submodular function. Thus,

using a greedy algorithm to simplify a mesh will result in approximately optimal

solutions.

More specifically, the greedy algorithm requires iteratively solving for the best fit

primitive with outlier rejection, removing all input data points classified as inliers,

and then repeating these steps until no more input data points remain. This can be

extended to fitting multiple primitives by performing the outlier rejection optimiza-

tion for all primitive types, selecting the primitive with the lowest cost, removing all

inlier points for that primitive, and again repeating the process until all input points

have been removed. While this algorithm will give approximately optimal results, the

final primitive decomposition is not guaranteed to be globally optimal.

3.4 Optimal Primitive Fitting Using Mixed Integer

Programming

In order to avoid the sub-optimality that comes from taking the greedy approach

described in the previous section, we can use mixed integer programming to solve the

NP-hard problem of optimal set cover for primitive fitting. This formulation is an
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extension of the k-means clustering problem [22] where our goal is to both cluster

points together, and fit a primitive shape to each cluster.

In standard k-means the goal is to optimally assign a set of data points to clusters,

which are defined by the location of their centroid. This is an NP-hard problem that is

usually solved using an efficient iterative algorithm. This approach does not guarantee

optimality. An optimal solution can be found by formulating k-means as a MIP and

solving the MIP using branch and bound. [35] presents a formulation for doing this

which uses binary variables to determine which cluster each data point is assigned

to. Extending this formulation to both cluster points and fit the best sphere to each

cluster yields the following MIP:

min
𝑅,𝜑,𝑏

𝑁∑︁
𝑖=1

𝜑𝑖,

s.t. 𝜑𝑖 ≥ (𝑎𝑇𝑖 𝑅𝑗 − 𝑓𝑖)
2 −M(1− 𝑏𝑖𝑗) ∀𝑖 ∈ [1, 𝑁 ],∀𝑗 ∈ [1, 𝐾],

𝐾∑︁
𝑗=1

𝑏𝑖𝑗 = 1 ∀𝑖 ∈ [1, 𝑁 ],

𝑏𝑖𝑗 ∈ {0, 1} ∀𝑖 ∈ [1, 𝑁 ],∀𝑗 ∈ [1, 𝐾].

(3.21)

In this program, which we refer to as the "k-spheres" optimization problem, there

are 𝑁 *𝐾 binary variables 𝑏𝑖𝑗 which represent whether or not a data point 𝑖 is assigned

to sphere 𝑗. Using the big-M method, constraints on the cost associated with each

data point are turned on and off depending on which cluster the point is assigned to.

Additionally, each data point is constrained to be assigned to exactly one cluster.

This MIP can be extended to also choose which primitive type to fit to each

cluster. This requires adding at least 𝑁 *𝑀 additional binary variables where 𝑁 is

the number of data points and 𝑀 is the number of primitive types.

32



3.5 Results

In this section we present the results of using the formulations above to fit primitive

shapes to various datasets. All of the optimization programs were implemented using

Drake’s MathematicalProgram class and solved using the commercial optimization

solver Gurobi [30, 12].

3.5.1 Fitting Individual Primitives

Spheres

Figure 3-2 shows the result of fitting spheres to various data distributions using for-

mulation (3.9). Data points for Figure 3-2a are sampled from the surface of a sphere

and perturbed with random noise. The data for the Figure 3-2b is drawn from two

concentric spheres. Finally, for Figure 3-2c data is sampled from vertices of the Stan-

ford Bunny Mesh [33]. In this case there is no outlier rejection so the optimal solution

minimizes the distance between all points and the surface of the sphere.

Figure 3-3 shows the results of fitting spheres with outlier rejection. Data points

classified as outliers are shown in red, while inlier data points are shown in blue. The

data distributions used for the examples in Figure 3-3 are the same as those used in

Figure 3-2, but due to the increased computation complexity of solving MIPs, only

20 data points are used for each example.

In, Figure 3-4 we show the time taken to solve optimization problem (3.9) for a

range of data set sizes. For each data set, points are randomly sampled from the

vertices of the Stanford Bunny Mesh [33]. Solving this convex, continuous optimiza-

tion problem with Gurobi is fast, with average run times ranging from 0.2 to 0.4 ms.

Furthermore, the solve time remains constant over data sets ranging from 100 points

to 1000 points.

Once outlier rejection is introduced to the problem formulation in programs (3.10)

and (3.11), solve times increase significantly. Figures 3-5 and 3-6 show the time taken

for Gurobi to solve the MIQP and MILP for data sets ranging from 10 to 50 points.

Note that the data is shown on a log scale. As the number of points increases from
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(a) (b)

(c)

Figure 3-2: Fitting spheres without outlier rejection.
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(a) (b)

(c)

Figure 3-3: Fitting spheres with outlier rejection. Points classified as outliers are
shown in red.
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Figure 3-4: Gurobi solve times for fitting spheres without outlier rejection.

10 to 50, the solve times for the MIQP increase exponentially from an average of 0.2

seconds for 10 points to an average solve time of 3400 seconds (57 minutes) for 50

data points. For the MILP the solve times are much lower than the MIQP, but they

still increase exponentially with the number of data points. For 10 points the average

solve time is 0.015 seconds and this number increases to 190 seconds for 50 data

points. With these mixed integer formulations, each new data point requires one new

binary variable, thus increasing the branch and bound search space exponentially for

every additionally data point.

Ellipsoids

Examples of fitting ellipsoids with and without outlier rejection are shown in Figures

3-7 and 3-8. In both figures data for the first ellipsoid is drawn from the surface

of a noisy ellipsoid and data for the second example is randomly sampled from the
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Figure 3-5: Gurobi solve times for fitting spheres with outlier rejection using the
MIQP (3.10).
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Figure 3-6: Gurobi solve times for fitting spheres with outlier rejection using the
MILP (3.11).

Stanford Bunny Mesh [33].

The Gurobi solve times for fitting ellipsoids with and without outliers are shown

in Figures 3-9 and 3-10. With no outlier rejection the average time to fit an ellipsoid

ranges from about 0.2 to 0.7 ms, but the solve times do not scale with the number of

data points. For the outlier rejection case, on the other hand, each additional data

point requires a corresponding binary variable so the time to solve for an ellipsoid

increases exponentially with the number of data points.

Boxes

Figures 3-11 and 3-12 show the results of fitting boxes in two dimensions with and

without outlier rejection. The mixed integer program for fitting boxes without outlier

rejection requires 4 binary variables for each data point, while the program with

outlier rejection uses 5 binary variables per data point. Thus, in the case of fitting

boxes the computational complexity for both versions increases exponentially with

the number of data points.
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(a) (b)

Figure 3-7: Fitting ellipsoids without outlier rejection.

3.5.2 K-spheres Fitting

Figure 3-13 shows the results of fitting two spheres to different data distributions using

the k-spheres program (Formulation (3.21)). The data for Figure 3-13a is drawn from

two concentric spheres, the data for Figure 3-13b comes from two non-concentric

spheres, and the data for Figure 3-13c is randomly sampled from the Stanford Bunny

Mesh [33].

Figure 3-14 shows the time taken to solve the K-spheres problem for fitting two

spheres to data sets of various sizes. As expected, the computational complexity

increases exponentially with the number of data points because each additional data

point requires one binary variable for each sphere being fit.

3.6 Discussion

For all of the optimization formulations presented in this section we can find globally

optimal solutions. However, as discussed earlier, finding optimal solutions to mixed

integer programs is NP-hard and the possible solution space grows exponentially with
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(a)

(b)

Figure 3-8: Fitting ellipsoids with outlier rejection. Points classified as outliers are
shown in red.
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Figure 3-9: Gurobi solve times for fitting ellipsoids without outlier rejection.
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Figure 3-10: Gurobi solve times for fitting ellipsoids with outlier rejection.

(a) (b)

Figure 3-11: Fitting boxes without outlier rejection.
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(a) (b)

Figure 3-12: Fitting boxes with outlier rejection. Points classified as outliers are
shown in red.

the number of integer variables. As seen in Figures 3-5, 3-10, and 3-14, solving large

mixed integer programs quickly becomes impractical.

Some of the computational difficulty of the mixed integer programs presented

in this chapter comes from the presence of symmetries which result in symmetric

optimal solutions which cannot be pruned by branch and bound. For example, in

the K-spheres problem, the solution which assigns data points 1, . . . ,𝑀 to sphere 1,

and 𝑀 + 1, . . . , 𝑁 to sphere 2 is equivalent to the solution which assigns data points

1, . . . ,𝑀 to sphere 2, and 𝑀 + 1, . . . , 𝑁 to sphere 1. However, branch and bound

must explore both options before returning one of the them as the optimal solution.

Additionally, with this class of problems there are geometric heuristics that influ-

ence which types of solutions and binary assignments are likely to result in optimal

solutions. For example, when fitting a single primitive with outlier rejection, it is likely

that two points that are close to each other in Euclidean distance have the same out-

lier assignment. Similarly, in the K-spheres problem it is unlikely that points that are

far away in Euclidean distance would be assigned to the same sphere. Encoding such

heuristics in the branching function for branch and bound could help the algorithm
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(a) (b)

(c)

Figure 3-13: Simultaneously fitting two spheres to different data distributions.
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Figure 3-14: Gurobi solve times for fitting two spheres to a data set using Formulation
(3.21).
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explore the solution tree more efficiently and find optimal solutions faster. However,

even with these strategies the optimization methods are hard to scale to the size of

meshes like the Stanford Bunny which has 35947 vertices.

In Chapter 4 we present an alternative solution which uses a sampling based algo-

rithm which is less computationally intensive, but does not have the same optimality

guarantees given by the convex optimization formulations.
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Chapter 4

Sampling-based Method for Fitting

Primitives

Although the optimization-based techniques discussed in the previous chapter can

ensure globally optimal solutions, their computational complexity makes them diffi-

cult to scale to the high number of vertices found in typical meshes. An alternative

strategy is to reduce the computational complexity by using a sampling-based method

at the cost of giving up guaranteed optimality. In this chapter we present a method

for using the Random Sample Consensus (RANSAC) paradigm to fit primitives to

meshes [10].

4.1 Algorithm Description

RANSAC provides an alternative to the optimization methods in Section 3.2 for fit-

ting primitives in the presence of outliers. Rather than searching for the optimal

assignment of outliers and inliers using a MIP, we can use RANSAC to implicitly

perform outlier rejection by generating many candidate shape parameters and choos-

ing the one that maximizes consensus. By using RANSAC to fit individual shapes we

can scale the greedy mesh decomposition approach described in Section 3.3 to many

more input mesh vertices.

The RANSAC algorithm for fitting a single primitive works by first sampling a
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small subset of the input vertices. A shape is fit to this subset without any outlier

rejection, and all the vertices in the original set which are within some distance

threshold 𝜖 of the fit shape are added to an inlier set. A "refined" shape model is

then fit to all of the inlier data points, again without any explicit outlier rejection.

A new inlier set and cost of fit are computed for the updated shape model. This

process repeats for a set number of iterations, after which the model with lowest cost

is returned. Pseudo code for using the greedy set cover algorithm with RANSAC for

fitting each shape is given below for clarity. In the rest of this section we explain in

more detail each of the steps of the RANSAC algorithm for shape fitting.

Algorithm 1 Sampling Based Primitve Decomposition Algorithm
𝒟 ← set of input mesh vertices
N← |𝒟|
𝒫 ← ∅
while |𝒟| ≥ 𝛼 *𝑁 do

𝑖← 0
𝜑best ← None
𝑐best ←∞
ℐbest ← ∅
while 𝑖 ≤ max_iterations do
𝒟𝑟 ← GetRandomSubset(𝒟)
𝜑← BestFitModel(𝒟𝑟)
ℐ ← GetInliers(𝒟, 𝜑, 𝜖)
𝜑new ← BestFitModel(ℐ)
ℐnew ← GetInliers(𝒟, 𝜑new, 𝜖)
𝑐← GetModelCost(ℐnew, 𝜑new)
if 𝑐 < 𝑐best then

𝑐best ← 𝑐
𝜑best ← 𝜑new

ℐbest ← ℐnew

end if
𝑖← 𝑖+ 1

end while
𝒟 ← 𝒟 ∖ ℐbest

𝒫 ← 𝒫
⋃︀

𝜑best

end while
return 𝒫
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(a) (b)

Figure 4-1: Left: Colormap showing the euclidean-biased sampling distribution based
on a seed point chosen on the left of the Bunny’s torso. Right: The chosen sample
points used for fitting a model. The red point is the seed point and the three blue
points are the additional points sampled based on the euclidean-biased distribution.

Data Sampling RANSAC is sensitive to the seed points used to fit the initial mod-

els. On average, we expect a large sample of points that are far apart to be explained

by different primitives while nearby points will generically belong to the same primi-

tive. Therefore, we introduce the following Euclidean bias in our sampling algorithm.

First, a single seed point is sampled uniformly from the data, then we compute a

probability distribution such that points close to the seed point in Euclidean distance

are more likely to be chosen than points far away. The remaining sample points

are sampled using this distribution. Figure 4-1 shows a visual representation of this

probability distribution.

By sampling in this way, we are more likely to fit a single primitive to points that

are close to each other. This is preferable to using a single primitive to explain points

that are far apart and would be better explained by multiple primitives.

Shape Fitting In this section we focus specifically on using spheres to approximate

input meshes. In order to do this we use the least squares formulation presented in

(3.9) to fit a single sphere to the sampled data points with no outlier rejection. It is

also possible to instead fit other primitive shapes such as ellipsoids and boxes, or to
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(a) (b)

Figure 4-2: Left: The best fit sphere for the four original sampled points, inlier
vertices from the original data set are highlighted in red. Right: The refined sphere
fit to all the red inlier points, with new inlier points shown in blue.

fit multiple shapes to the sampled data and select the best one based on the cost of

the fit.

Inlier Selection In general, inliers for a given model are points whose distance

from the surface of the model is within some threshold. Once an initial sphere radius

𝑟 and center 𝐶 have been computed, we compute the distance between every data

point 𝑥𝑖 and the surface of the fit sphere using the equation 𝑑𝑖 = |‖(𝑥𝑖 − 𝐶)‖2 − 𝑟|.

Given a maximum allowable threshold 𝑑𝑚𝑎𝑥, inliers are defined as all the points 𝑥𝑖 for

which 𝑑𝑖 ≤ 𝑑𝑚𝑎𝑥. The threshold 𝑑𝑚𝑎𝑥 is a parameter of the RANSAC shape fitting

algorithm which determines how close a point has to be to the surface of a sphere in

order to be considered "explained" by that sphere.

Cost of Fit Once the inliers have been computed, a new, refined sphere is fit using

all the inlier points as data. The set of inliers is re-computed for the new sphere

using the same method as described above. The final cost used to determine which

model is best is the average distance between the surface of the refined sphere and

the updated set of inliers.

50



Additional Algorithm Details Before beginning the shape decomposition algo-

rithm, the input mesh is scaled such that it fits within the unit sphere. Knowing this,

it is reasonable to constrain any sphere that makes up the decomposition to have

radius of at most 1. Additionally, we know that the center of any sphere used to de-

compose the input mesh should be on the inside of the mesh. This can be enforced by

checking if the signed distance function (SDF) of the original input mesh is negative

for the center of the sphere. If either the radius or center constraints are violated by

a sphere output by the RANSAC shape fitting algorithm, it is discarded and its inlier

points are not removed from the input data set.

4.2 Results & Discussion

Unlike the mixed integer programs from Chapter 3, the RANSAC-based algorithm

for fitting spheres with outlier rejection is fast. Fitting a single sphere with RANSAC,

using max_iterations = 1500 takes 3.2 ± 2.6 seconds. The RANSAC run time does

not depend on the total number of data points because for each iteration a model is

first fit for exactly 4 points (the minimum required to fit a sphere with least squares),

then the refined model is fit to all the inlier points. The number of inlier points can

vary depending on the size of the input and the value of the threshold 𝜖; however, as

seen in Figure 3-4, the time to fit a sphere without outlier rejection does not scale

with the number of data points. Thus, run time of each step of the RANSAC process

is independent of the number of data points.

The time taken to decompose a full mesh into spheres using Algorithm 1 is de-

pendent on the values of the parameters 𝛼, which determines how many data points

must be assigned to a sphere before stopping, 𝜖, the inlier threshold value, and the

size of the input set of vertices. For the results shown in the rest of this section the

fit times range from 25 to 35 seconds.

The results of applying Algorithm 1 to simplify the Stanford Bunny Mesh [33] are

visualized in Figure 4-3. The figure shows the output of running the algorithm twice

with the same parameters (𝛼 = 0.05, 𝜖 = 0.1). Each sphere and its inliers are shown in
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(a) (b)

Figure 4-3: RANSAC sphere decomposition applied to the Stanford Bunny.

a distinct color. Due to the randomness of the algorithm, every run results in slightly

different results, hence the difference between the decomposition on the right and left.

Given the shape of the bunny, spheres are a good primitive for approximating most

of the body. However, looking at the ears we see that the results can be improved if

we also included ellipsoids as an option for the decomposition.

Figure 4-4 shows the result of applying Algorithm 1 to a mesh generated from an

Instant NGP NeRF of the YCB mustard bottle [25, 7]. The algorithm parameters

used are the same as those used for Figure 4-3. On the left is a side view of the

decomposition and on the right is a top view. From the top view we can see that the

large blue sphere is a good approximation for points on the side of the bottle, but the

rest of the sphere protrudes out from the planar surfaces that make up the the front

and back of the mustard bottle. The planar surfaces present on the mustard bottle

would be better approximated by ellipsoids or boxes, rather than just spheres.

Additionally, Algorithm 1 enforces that the input mesh points be well explained

by a sphere, but does not enforce that the entire surface of each sphere fits the mesh.

In the next chapter we explore a variation on the previous approaches which uses a

denser cost in order to enforce both conditions.
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Figure 4-4: RANSAC sphere decomposition applied to the YCB Mustard Bottle.
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Chapter 5

Signed Distance Field Approaches

5.1 Background

Both the optimization-based methods and sampling-based approaches from the pre-

vious chapters aim to minimize a cost based on the distances between input mesh

vertices and the surface of the geometric shapes which make up the decomposition.

As seen in some of the results from Chapter 4, this cost does not enforce that the

whole surface of the geometric primitives closely matches the original mesh. In this

chapter we explore an alternative optimization formulation which uses the Signed

Distance Function (SDF) to implicitly represent the input mesh. The SDF of a mesh

is the distance between any point in space and the surface of the mesh. The SDF is

positive on the exterior of the mesh, zero on the surface of the mesh, and negative on

the interior of the mesh. The SDF has been used as an effective implicit representa-

tion of 3D objects in works such as [26, 8, 23], and [13] has expanded on this idea to

perform semantic primitive decomposition of meshes.

5.2 Using the Mesh SDF for Fitting Primitives

In this section we reformulate the optimization as minimizing the mesh SDF at points

sampled from the surface of the primitive. In other words, we search for a primitive

whose surface points are close to the surface of the input mesh. By re-formulating
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the problem in this way, we better express the goal of finding a primitive that closely

matches the surface of the mesh and reduce the likelihood of finding primitives which

closely approximate some mesh vertices but otherwise differ significantly from the

mesh surface.

We call the SDF of the input mesh SDFmesh and points on the surface of the

primitive are called 𝛼(𝑥, 𝜃) where points 𝑥 are sampled from the surface of a general

version of the primitive (e.g. the unit sphere), 𝜃 represents the parameters of the fit

primitive (e.g. the center and radius of a sphere), and the function 𝛼(𝑥, 𝜃) maps the

points 𝑥 onto the surface of the primitive defined by the parameters 𝜃. With these

definitions we write the new optimization problem:

min
𝜃

𝑁∑︁
𝑖=1

(SDFmesh(𝛼(𝑥𝑖, 𝜃)))
2. (5.1)

This optimization problem is non-convex due to the fundamental non-convexity

of the SDF. Thus, the Formulation (5.1) is subject to getting stuck in local minima

and solutions are sensitive to the initial conditions passed to the solver.

5.3 Results & Discussion

We focus on understanding this method with a simple 2D example where instead of

an input mesh we have two circles implicity represented by their joint SDF, and our

goal is to fit one circle to the input using Formulation (5.1). For our input of two

circles with centers 𝑐1, 𝑐2 and radii 𝑟1, 𝑟2, the SDF is defined as

SDFinput(𝑥) = min(‖𝑥− 𝑐1‖ − 𝑟1, ‖𝑥− 𝑐2‖ − 𝑟2).

Figure 5-1 shows a visual representation of this function.

We are searching for an optimal center 𝑐* and radius 𝑟* to define a circle, and we

transform points 𝑥𝑖 sampled from the surface of the unit sphere onto the fit sphere

using the function

𝛼(𝑥𝑖, 𝑐
*, 𝑟*) = 𝑟*𝑥𝑖 + 𝑐*.
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(a) (b)

Figure 5-1: Signed Distance Function for two circles in two dimensions.

With this we write the following optimization problem:

min
𝑐*,𝑟*

𝑁∑︁
𝑖=1

(SDFinput(𝑟
*𝑥𝑖 + 𝑐*))2. (5.2)

We implement this program with Drake’s MathematicalProgram class and solve

using the nonlinear optimizer IPOPT [30, 37]. In Figure 5-2 we show the results for

solving this program with different initial guesses.

As we can see from these figures, the solutions vary significantly depending on

the initial guesses, and it is possible to end up in suboptimal local minima. However,

with a good initial guess this method is able to implicitly perform outlier rejection

and fit the circle such that it closely approximates the surface of the input. This

method can be extended to fit different types of primitive shapes by modifying 𝛼 and

𝜃, as well as to fit multiple primitives at once. More work remains to be done on

selecting good initial guesses in order to obtain better results, however the approach

of fitting points sampled from the surface of a primitive to the SDF of a mesh does,

in theory, address some of the shortcomings of the previous methods.

57



(a) (b)

(c)

Figure 5-2: Fitting cirlces using formulation (5.2).
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Chapter 6

Conclusion

In this thesis we presented geometric approaches for simplifying complex meshes

with primitive shapes. The goal of simplifying meshes with primitives is to generate

geometrically and dynamically accurate representations of arbitrary objects to use in

simulation.

We began by presenting optimization formulations for fitting individual primitives

to input meshes, both with and without outlier rejection. Using a greedy approach

these individual primitives can be combined to represent the full input mesh. We

also propose an alternative to the greedy method, which simultaneously performs

assignment of the input vertices to primitives and computes the primitive parame-

ters. These methods guarantee globally optimal solutions. However, finding optimal

solutions to mixed integer programs is NP-hard, making these approaches hard to

scale.

Next, we propose a sampling based method to perform shape decomposition. This

approach builds off of the optimization methods but trades off optimality guarantees

in order to reduce computational complexity. We show the results of using this

algorithm to simplify meshes with thousands of input vertices. There are some cases

where the algorithm outputs high quality results, but there are also cases where the

fit spheres do not accurately represent the whole input mesh.

In order to mitigate this, in Chapter 5 we propose an alternative optimization

formulation which uses an implicit representation of the input mesh, and aims to
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minimize the distance between points sampled from the fit primitive and the surface

of the mesh. While this approach results in a non-convex optimization problem which

is susceptible to local minima and sensitive to initial guesses, we find that it is often

able to find good solutions and can be improved by finding methods to select good

initial guesses.
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