
Sample-Based Planning with Volumes in Configuration Space

Alexander Shkolnik and Russ Tedrake

Abstract— A simple sample-based planning method is pre-
sented which approximates connected regions of free space with
volumes in Configuration space instead of points. The algorithm
produces very sparse trees compared to point-based planning
approaches, yet it maintains probabilistic completeness guar-
antees. The planner is shown to improve performance on a
variety of planning problems, by focusing sampling on more
challenging regions of a planning problem, including collision
boundary areas such as narrow passages.

I. INTRODUCTION

Motion planning algorithms are used to solve challenging
problems in robotics, assembly / disassembly tasks, and
even drug discovery. The field has made significant headway
towards efficiently solving these P-Space hard problems. An
enabling development was the seminal idea of the Configura-
tion Space [1], where the state of a robot is characterized by
a single point, which is either in collision, Cobs, or is in free
space, Cfree. A solution is then a trajectory through Cfree.
More recently, the development of sample-based planning
methods, such as the Probabilistic RoadMap (PRM) [2], and
the Rapidly-exploring Random Tree (RRT) [3], have used
the configuration space to formulate planning as a search
problem where the obstacle and robot geometry do not need
to be explicitly considered. These algorithms are widely used
because they are computationally efficient and simple to
implement, but performance suffers when there are narrow
passages, or when the C-space is high dimensional.

The PRM and RRT are tree based algorithms, where
nodes in the tree correspond to feasible (collision-free)
configurations, and edges represent feasible motions between
these nodes. In this paper, we utilize volumes to character-
ize regions of connected free-space instead of points. The
premise is that rather than building a tree of connected points
in configuration space, where the points, and therefore the
tree have zero volume, each node in the tree can instead
be associated with a non-zero volume, representing a set of
trivially reachable points from the parent node in the tree. By
considering a volumetric tree, significantly fewer nodes are
able to characterize the connectivity of configuration space,
therefore significantly improving search efficiency, while still
preserving completeness guarantees. This idea is developed
in this paper in the context of an RRT, for single-query type
problems.

In many planning problems, there may be relatively easy
regions to plan in, consisting of wide-open regions of
configuration space, as well as intermittently challenging
regions, consisting of narrow regions. Such a problem can

A. Shkolnik is a research affiliate in the Computer Science and Arti-
ficial Intelligence Lab, MIT, 32 Vassar St., Cambridge, MA 02139, USA
shkolnik@mit.edu

R. Tedrake is an Assistant Professor of EECS at the Computer Science
and Artificial Intelligence Lab, MIT, 32 Vassar St., Cambridge, MA 02139,
USA russt@mit.edu

Fig. 1. Tree based planning with volumes. Edges are collision free paths
between nodes; Nodes are volumes characterizing free space. Each point
in a node’s volume has visibility to the node center. When growing the
tree, samples within the tree volumes are rejected, and the tree is forced to
expand to previously unexplored regions of free space.

be characterized by the bug trap toy example, consisting of
a room with a narrow tunnel coming from within the room
which offers the only path to escape (see Figure 4). Planning
collision free movements within the room is relatively easy,
as is planning outside the room. The challenge then is finding
a connected region of free space between these two areas.

The conventional RRT algorithm will not distinguish be-
tween difficult and easy areas of configuration space, and in
fact will continuously add more and more samples within
the room. One might visualize what it might be like to try
to escape from a cluttered room while blind-folded, using
only hands to feel around (just as the RRT is blind to
explicit obstacle geometry). One might quickly realize they
are in a large room. Instead of searching for exits in random
places (like the RRT would do), it would make sense to feel
around the outer wall of the room until an exit is found. A
similar strategy can be employed by using volumetric trees
for motion planning. Parts of the tree will have nodes with
large volumes, corresponding to areas of configuration space
which are largely unencumbered by obstacles. The planner
can effectively neglect to search within these large regions of
known free space, and instead focus the search on expanding
into unexplored regions of configuration space.

In this paper, we build on the idea of planning with
volumes. A volume may be defined as the sublevel set
of a distance (or cost) function. When using Euclidean
distance, the volume is simply a hypersphere. We present a
modified RRT which uses hyperspheres (balls) for planning,
called the “Ball Tree”. Each node of the Ball Tree keeps
track of the center and radius of the ball (the algorithm
may also be generalized to other convex volumes). When
building the tree, any samples that fall within the balls are
discarded. In this way, the connected regions of free space

are approximated with the sum of center-to-center connected
spherical volumes; any samples inside this volumetric tree
will not lead to meaningful expansion, since paths within
any ball to the center of the node is known, so these samples
are safely rejected. The sampling is then dynamically biased
to encourage exploration of areas which the tree is currently
unable to reach.

The remainder of the paper is organized as follows:
Section II provides a review of relevant background in-
formation. Section III describes the Ball Tree algorithm.
An exact version of the Ball-Tree is presented first, which
assumes perfect knowledge of distance from a point in free
space to the closest collision surface. An inexact method
is then described, which produces better results on more
realistic problems where minimum-collision distance is not
easily computable. This section also sketches a proof of
completeness for both forms of the algorithm. In Section
IV, performance of the RRT is compared to the Ball-tree on
four different planning problems. Finally, in Section V we
provide concluding remarks and discuss future directions.

II. BACKGROUND AND RELATED WORK

In this section, we review additional relevant material.
As mentioned above, the algorithm is based on the RRT-
Connect [3], which the interested reader may wish to review.
It is worth noting that a few other sample-based approaches
have used volumes for planning. The “Bubble Tree” [4],
for example, builds tunnels in the workspace by growing
a tree of overlapping spheres. When a sphere is inserted in
the workspace the radius is bounded to the nearest collision
surface. A priority queue of spheres is constructed based
on distance to the goal. Using the priority queue to select
a sphere, the surface of the sphere is randomly sampled,
and a new sphere is inserted at the sampled surface point.
Once a tunnel is found through the workspace, this infor-
mation can be used to guide sampling for a robot in its
full configuration space [5]. This approach does not take
advantage of the Voronoi bias which inherently improves
search efficiency in an RRT, and also works well only for
planning in the Workspace, where shortest collision distance
is easily computed. Also related is the work by Morales et
al. [6], which utilizes bubbles of constant radius centered
around some nodes in the tree to aggregate statistics and
characterize the efficiency of sampling for a given random
sample based planner. By grouping nearby nodes (those
within a bubble), and measuring the ratio of bubbles to
nodes, one can tune sampling parameters, and also spot
problem areas where repeated growth attempts do not result
in successful expansions.

Another work which is conceptually closely related is the
RESAMPL algorithm [7], which groups regions of samples
by proximity (the regions could be spheres), and focuses
sampling on select regions. Samples in configuration space
are first grouped into regions. The regions are then charac-
terized by their entropy as either being low entropy, where
most samples are Cfree or Cobs, or high entropy regions,
which contain surface regions, or narrow passages. A set
of adjacent regions which are likely to contain a potential
solution path can be explored. In doing so, sampling can be
adjusted to encourage exploration of high entropy areas as

needed, and discourage sampling of low entropy areas which
are more or less trivial (or impossible) to plan through. The
algorithm requires tuning for choosing how to best define
regions, and also requires extensive sampling to appropriately
classify regions containing very narrow passages.

In addition to these bubble and region based approaches,
other approaches in the literature use workspace information
to guide the growth of an RRT or PRM in the full configu-
ration space (see for example [8]–[10]). The work presented
in this paper can be used as an alternative method for very
quickly and efficiently exploring 2D and 3D workspaces,
from which more complete planning can take place, or the
Ball Tree can be used to directly search in the higher di-
mensional configuration space. Additionally, the Inexact Ball
Tree does not require shortest collision distance information
like the Bubble Tree.

Other related work comes from ideas in feedback plan-
ning. For an excellent review of motion planning, including
planning with feedback controllers, see [11]. Local feedback
controllers have basins of attraction, which direct the robot
from a state in the basin to some other bounded region of
state space. The idea of funnels is to create local feedback
controllers where any point in the controllers basin (funnel)
gets directed into an adjacent funnel. A number of funnels
can then be combined so their basins cover the state space
with a feedback policy. A sample-based algorithm which
uses spheres as funnels is described in [11, p. 413]. First,
a “cover” is created, which tries to fill a space with spheres.
As samples are drawn, if they lie in free space, and are
not contained within a sphere, then a new sphere is added
centered at the sample. Like the Bubble Tree, spheres are
added so they are touching a collision surface, requiring
distance information. The process continues until substantial
coverage is achieved. Paths can be found by considering
each sphere as a potential field leading into overlapping
neighboring balls. The approach is feasible for planning in
2D or 3D workspaces, or simple configuration spaces where
shortest distance to obstacles can be efficiently computed.
For planning problems with very narrow passages, for exam-
ple the Alpha Puzzle 1.0 [12], the probability of sampling
inside the passage is very low, which would inhibit this type
of planner.

Building on the feedback idea is the LQR-tree [13],
designed to combine local feedback planners, based on time-
varying LQR solutions, with global planning methods such as
the RRT. A tree of local planners is assembled, grown back-
wards from the goal, where a conservative basin of attraction
is estimated for each controller. Sampling continues until
a substantial portion of state space is covered with basins,
resulting in a feedback policy. A simulation-based LQR-tree
[14] was also developed, which verifies the size of the basins
of attraction by simulation, instead of explicitly computing
basins. The work in this paper builds on these results to try
to build trees which cover the space as efficiently as possible.

The Ball Tree is also loosely based on the Reachability-
Guided RRT (RG-RRT) [15], which was developed for
single-query planning problems in dynamic systems. When
there are dynamics constraints, particularly nonholonomic
and underactuated dynamics constraints, then standard plan-
ning with an RRT is hindered because the Euclidean dis-

tance metric fails to describe an appropriate distance for
expanding nodes. One can also view the problem as if each
node in the tree itself lies in a narrow tunnel (outlined
by the constraints on the dynamics), so planning in state-
space with dynamics magnifies the narrow-tunnel planning
problems faced by most sampling based planners. The RG-
RRT algorithm samples actions for each node in the tree,
and stores the resulting states as ”reachable” leaf nodes
in the tree. When samples are drawn, samples which are
closer to the tree nodes are rejected, and only samples close
to reachable nodes are used to try to expand the tree. In
this way, many samples are rejected, and the tree is only
grown when it is likely that the expansion attempt will
succeed, similar to the dynamic domain sampling method
introduced in [16] and [17]. By considering the reachable set
for kinematic type planning problems (where velocities and
accelerations do not need to be considered), one can see that
a node in the tree can move in any direction, so it makes
sense to use the Euclidean distance metric, and the local
reachable set can be approximated as a sphere. These ideas
directly lead to the work in this paper, though the method
for approximating and pruning the ”reachable” sets in this
work is different. By changing the sampling distribution,
the Dynamic Domain RRT encourages sampling near the
difficult areas for expansion, and also encourages refining
the inside nodes of the tree. In this work, we use volumes
to discourage sampling the inside of the tree, unless there
is reason to do so. This results in very sparse tree, where
sampling is focused mainly on the nodes of the tree which
are having difficulty growing into nearby open regions of
configuration space.

III. ALGORITHM

We present two variations on the Ball Tree algorithm. In
the first version, we assume that the largest collision-free
hypersphere around a point can be computed efficiently and
exactly. Then we remove that assumption and instead use
the collision checking on the random samples used in the
algorithm to estimate the volumes. Surprisingly, this second
“inexact” algorithm often outperforms the “exact” algorithm
in terms of computation time and/or number of nodes. Both
versions of the algorithm are probabilistically complete.

A. Exact Ball Tree
We begin by exploring the Exact Ball Tree Connect

algorithm, as described in Algorithms 1 - 3. The algorithm
is similar in structure to RRT-Connect. Two trees are grown
iteratively, one from the start node, and one from the goal
node. For each node in the tree, v, we store the volume
position, v.x, and a radius, v.r, which is the shortest distance
to any obstacle from v.x. A rejection step is introduced into
the sampling step, 1 Line 5, whereby random samples which
are contained inside any volume affiliated with either tree are
rejected, and a new sample is drawn. Aside from rejecting
samples, the BALL-TREE algorithm and the CONNECT
algorithm are identical to the RRT-CONNECT in [3]. The
EXACT-EXTEND is also similar to the classic RRT. How-
ever, when choosing an expansion node, the Ball-Tree refers
to the Nearest-Volume, rather than the nearest point. Since
the node-volumes are defined as a sublevel set for a given

distance metric, the distance from the node-center to the
volume-surface is constant for any point on the surface, and
this distance can be subtracted when comparing distances
from a sample to nodes of the tree. Using Euclidean distance,
with hyper-spherical volumes, the Nearest-Volume function
simply returns the node i which minimizes ||xrand−vi.x||2−
vi.r. Additionally, the EXACT-EXTEND algorithm is tasked
with computing and storing the shortest distance to obstacles
in Line 4.

The exact ball tree is conceptually very simple, and allows
one to easily visualize the idea of planning with volumes.
The algorithm is probabilistically complete, as shown in the
sketch in the next section. However, for many problems, it
can be difficult to find the minimum distance to collisions in
arbitrary configuration spaces. A distance measure requires
explicit consideration of the geometry, which negates some
of the nice properties of the RRT which makes it fast to
begin with.

Algorithm 1 BALL-TREE (x0)
1: Ta.init(x0)
2: Tb.init(xgoal)
3: while true do
4: xs ⇐ RANDOM-SAMPLE()
5: if INSIDE(xs,Ta) or INSIDE(xs,Tb) then
6: continue
7: end if
8: [vnew, status]⇐ EXACT-EXTEND(Ta, xs)
9: if vnew and CONNECT(Tb, vnew.x) == Reached

then
10: return PATH(Ta, Tb)
11: end if
12: SWAP(Ta, Tb)
13: end while

Algorithm 2 CONNECT (T, x)
1: repeat
2: [vnew, status]← EXTEND(T, x)
3: until status 6= Advanced
4: return status

Algorithm 3 EXACT-EXTEND (T, x)
1: [vnear,mindist]⇐ NEAREST-VOLUME(x,T)
2: [unew, vnew.x]⇐ NEW-STATE(vnear.x, x)
3: if VALID(unew, vnew.x) then
4: vnew.r = DIST-CLOSEST-OBS(vnew.x)
5: T.add-node(xnear, vnew, unew)
6: if vnew.x == x then
7: return [vnew, Reached]
8: else
9: return [vnew, Advanced]

10: end if
11: end if
12: return [NULL,Trapped]

Fig. 2. Inexact version of Ball Tree: tree volumes may overlap with obstacles. All edges are verified to be collision free. When expanding to a new node
(green point), if a collision is encountered, the volume is trimmed to reflect the collision distance information (trimmed volume shown on right).

B. Inexact Ball Tree

Using similar principles of storing volumes in the nodes
of the tree, and rejecting samples that land in the volumes,
we can define an “inexact” version of the Ball Tree, which
does not require a minimum collision distance computation.
In this case, the EXTEND operation is modified, as shown
in Algorithm 4 and 5. The idea is to initialize a volume
with a large radius, R0. This radius may even be infinite,
though generally a more reasonable value may be more
efficient. This radius is then trimmed when collisions are
encountered during the NEW-STATE operation. The NEW-
STATE function attempts to connect the nearest tree node
with a non-rejected sample, which lies outside the tree
volumes. If a collision is found, the radius of the tree node
is reduced or “trimmed” to the lesser of the current radius
or the estimated collision distance, as calculated within the
NEW-STATE function. In the results presented below, with
the exception of the Alpha Puzzle, the NEW-STATE function
is implemented by linearly interpolating the action, and
checking each point for collision. If a collision is found, the
ball radius is trimmed to the distance of the closest collision
point found by NEW-STATE().

If the EXTEND operation succeeds, a new node is
added to the tree containing a volume, with radius R0.
The CHECK-OVERLAP function is introduced to address
overlapping volumes between trees. If the volume of the
newly added node overlaps with some volume in T2, then
we attempt to connect the two trees. This step will either
succeed, in which case we have succeeded in finding a path
from start to goal, or the step will fail, in which case at least
one or both radii are trimmed. This step is repeated until
there are no more overlapping volumes found between the
new node and T2. This step ensures that trees do not overlap
unless a connection between them is validated, a necessary
step to ensure the completeness of the algorithm. Note, that
when the trees are initialized, the CHECK-OVERLAP can
be performed. This forces the start nodes of the trees to have
a reasonable radii, and ensures that regions of free space can
still be sampled.

C. Probabilistic Completeness of the Exact Ball Tree method

Suppose we have a connected tree, T, as defined by the
exact ball tree algorithm. Each node in the tree consists of a

convex volume in Cfree, with center, x, and convex volume
definition V. The edges in the tree are collision free paths
between node centers. Because a node’s volume is convex,
for any point on the surface of (or within) this volume, there
is a straight-line path in free space to the center, and we
can therefore define a path from the root of the tree to any
point lying on the surface of the tree volumes. Regions of the
surface can be categorized in one of three ways: 1) region
or point which is in contact with Cobs; 2) regions of the
surface which are contained within some other volume of
the tree; and 3) the remainder of the surface, called free-
surface, which is adjacent to Cfree and not contained within
any tree node volume. If we pick any point within the free-
surface, then there exists some hypersphere, H, centered
around this point, with an arbitrarily small radius, ε > 0,
for which this hypersphere is entirely in free space. The
volume defined by (H - tree-volume) is non-zero, therefore
there is a strictly positive probability of sampling near any
point of the free-surface of the tree. Furthermore, the distance
metric is defined with respect to the node affiliated with this
surface, so that the distance to a given node is zero along
its surface. Therefore, we can guarantee that for any node in
the tree which is exposed to free space (e.g. where part of
the surface is not in collision, and also not contained inside
another ball), there is a non-zero probability of extending
that ball into its adjacent free space region. Furthermore,
there is a non-zero probability of extending into any regions
of free space which are ε-close to the tree. Therefore, as
the number of samples goes to infinity, the probability of
covering the entire connected region of free space with balls
converges to 1, implying that the exact Ball-tree algorithm
is probabilistically complete.

D. Probabilistic Completeness of the INEXACT Ball Tree
method

The proof is constructed in a similar manner to the one
above. The difference is that in the inexact version of
the algorithm, node volumes may overlap with regions of
Cobs. As noted above, a convex volume which is not in
collision has straight-path visibility from regions adjacent to
the surface of this volume to the center of the volume. In the
case where volumes overlap with obstacles, we break down
the surface into 4 categories, including: 1) surface regions
adjacent or inside of collisions; 2) regions inside other node

volumes; 3) regions adjacent to free-space, with straight-line
collision-free connectivity to the center of the node; and 4)
regions which are adjacent to free-space, but which do not
have straight-line connectivity to the center node. By the
same logic that there is a non-zero probability of extending
a node into any adjacent free-space, we can say there is
a non-zero probability of attempting to extend a node into
regions of free space for which there is no straight-line path.
In this case, the volume of the ball will be trimmed so that
less of the ball is in collision. Therefore, with probability 1,
any ball which contains surface regions of type (4) will be
trimmed until this surface type does not exist. When these
regions are reduced to null, the proof of completeness is the
same as for the Exact Ball tree case.

Algorithm 4 INEXACT-EXTEND (T, x, T2)
1: [vnear,mindist]⇐ NEAREST-VOLUME(x,T)
2: [unew, vnew.x]⇐ NEW-STATE(vnear.x, x)
3: if VALID(unew, vnew.x) then
4: vnew.r = r0
5: T.add-node(vnear, vnew, unew)
6: if CHECK-OVERLAP(vnew, T2) == Plan-found

then
7: return Plan-found
8: end if
9: if vnew.x == x then

10: return [vnew, Reached]
11: else
12: return [vnew, Advanced]
13: end if
14: else
15: Trim vnear.r {use collision information from NEW-

STATE to trim the ball radius, if a collision is detected
within the boundary of the ball.}

16: end if
17: return [NULL, Trapped]

E. δ-Ball Tree

A simple but powerful modification of the inexact ball tree
allows balls to penetrate obstacles by a small slack factor,
delta. In this case, when trimming, the ball radius is set
to the minimal collision distance plus δ. If a ball has been
trimmed to the minimum radius, then further attempts to trim
it down will be unsuccessful. This offers a trade-off. On the
one hand, the minimum ball radius introduces bounds into
the planning algorithm, guaranteeing a solution to be found
within a finite number of node expansions. Consider that a
ball touches a surface at only a point, so to completely fill a
prismatic volume with overlapping spheres, infinite spheres
are required. On the other hand, if the spheres are allow
to penetrate by some distance into the walls of the prism,
then a finite number of balls can completely fill the prism.
Of course, this slack factor destroys the basic premise of
the probabilistic completeness proof given above. However,
it can be shown that the algorithm remains complete if
there exists a solution path from start to goal, for which the
closest distance from any point on the path to any obstacle is

Algorithm 5 CHECK-OVERLAP(vnew, T2)
1: Overlap = true
2: while Overlap do
3: [vclose,mindist] =

NEAREST-VOLUME(vnew.x, T2)
4: if mindist < 0 then
5: [ut, xt]⇐ NEW-STATE(vnew.x, vclose.x)
6: if VALID(ut, xt) then
7: if xt == vclose.x then
8: return Plan-found
9: end if

10: else
11: Trim vnew.r and vclose.r {use collision informa-

tion from NEW-STATE to trim the ball radius
if a collision is detected within the boundary of
either ball.}

12: end if
13: else
14: Overlap = false
15: end if
16: end while
17: return No-overlap

greater than δ. In practice, this modification can significantly
improve search time, even for small values of δ.

IV. RESULTS

The RRT and Ball Tree algorithms were implemented in
Matlab, and tested on four planning problems: (1) moving a
rectangle through a bug trap [N = 3; see Figure 4 and 3];
(2) 10-link planar arm, tasked with moving the end point
of the arm to a location in the work space while avoiding
collisions [N=10; see Figure 6]; (3) Alpha Puzzle 1.0 -
the most difficult of the “Alpha” puzzles [N=6; see bottom
right of Figure 4]; and (4) finding a path through map data
collected with Lidar mounted on a vehicle driving through
Cambridge [N=2; see Figure 5]. The Ball Tree algorithm was
tested against the standard RRT, which shared almost all the
same code base, on a PC with a Xeon X5450 3GHZ CPU
and 8.0 GB of RAM.

A comparison of RRT vs Ball Tree performance is pro-
vided in Table I. Each planner was run 30 times to collect
statistics. Planning times can be dramatically improved from
those presented in the table if a set of free-space samples are
pre-computed. However, this pre-processing step can take
several minutes (to randomly sample in the configuration
space and prune out those samples which are in collision).
Furthermore, for some problems such as the Alpha Puzzle,
the passageways between collision surfaces can be so narrow
that even with millions of pruned samples, no samples are
expected to be found in the passage. Alternative sampling
methods may produce better results, and have almost always
been used in the past literature to solve these types of prob-
lems. In this work, however, we chose to sample uniformly
from the configuration space, and include collision samples
for expansion.

The sampling approach described above, with simple
straight-line expansion, worked well for each planning prob-
lem except the Alpha Puzzle 1.0, for which we could not

Fig. 3. Left: Ball Tree solution of bug trap. Right: Showing same Ball-Tree, but just the node centers.

Fig. 4. RRT solution of bug trap.

find solutions with the RRT in reasonable time. For this
problem, we used local trajectory optimization to try to
find the longest collision-free path when expanding a node
towards a sample. With this trajectory warping approach, and
using a fairly constrained sampling range, we were able to

consistently solve the Alpha Puzzle in less than two minutes
with a standard RRT, exploring fewer than 2000 expansions.
The Ball Tree improves this performance further. The Alpha
Puzzle was obtained from [12], and the collision checking
was done by calling a V-COLLIDE collision detection library
wrapped in a Matlab Mex function.

A modified bug-trap type problem, shown in Figure 3,
demonstrates the potential sparsity that results from the Ball
Tree. In this problem, a rectangular robot is tasked with
leaving the trap, requiring passage through a very narrow
tunnel. The Ball Tree consistently required fewer than < 2%
of the nodes of an RRT, which dramatically reduces the time
spent checking for nearest neighbors, and also requires fewer
expansion attempts, and therefore fewer collision checks to
solve the problem.

In order to test the algorithm on a real-world planning
problem, we formulated a planning problem on a 2D occu-
pancy grid representation of a real environment generated
using an autonomous car (built using OctoMap with a
number of SICK scanners and a Velodyne). We anticipated
that spurious points in the occupancy grid could slow down
our algorithm, but in practice the Inexact Ball Tree performed
very well (see Figure 5).

Finally, A 10-Link arm planning problem is shown in
Figure 6. The arm must wrap through some narrow passages
to find its way to the goal configuration. The figure shows
examples of a few arm positions along a solution trajectory,

TABLE I
COMPARISON OF RUN TIMES (ALL DATA IN SECONDS) AND NUMBER OF NODES REQUIRED TO SOLVE SEVERAL TYPES OF PROBLEMS.

PROBLEM Algorithm Mean Time (sec) Median Time Std Dev. Min Time Max Time Mean # Nodes
Alpha Puzzle 1.0 Ball-tree 36.9 32.7 20.5 17.2 83 833
Alpha Puzzle 1.0 RRT 114.7 109.6 45.3 51.1 210.0 1888
Bug Trap Ball-tree 14.6 11.2 12.4 3.9 73 246
Bug Trap RRT 75.4 58.3 59.9 18.4 300+ 17,739
2D Lidar Data Ball-tree 1.1 1.0 .5 .35 2.3 156
2D Lidar Data RRT 2.4 2.1 1.3 .5 5.9 663
10-Link Manipulator Ball-tree 40.2 36.6 18.7 13.9 84.0 1044
10-Link Manipulator RRT 68.6 55.45 48.57 15.9 228.1 2252

Fig. 5. Left: Map of Cambridge near MIT, collected with lidar data; Middle: RRT-Connect; Right: Inexact Ball-Tree

Fig. 6. 10-Link arm, planning through obstacles with narrow passage. Left: Projection of Ball Tree into workspace (showing end-effector coordinate for
each node in tree); Right: Projection of RRT.

and also displays the end-effector coordinate affiliated with
each node of the tree. Although the Ball Tree finds solutions
more quickly than the RRT, the gains are not as impressive
as some of the other applications. This is true because in
this particular problem, almost every configuration is near a
collision surface in some dimension. Because the Ball Tree
uses spherical volumes, if a single joint is near collision,
then the ball radius is reduced, which penalizes the other
dimensions. An obvious extension may be to use ellipses
instead of balls, at the trade-off that more pruning may be
required to trim the volumes to appropriate dimensions.

V. CONCLUDING REMARKS

The algorithm presented in this paper uses volumes to
characterize the free space which is reachable from a tree.
The approach results in sparse trees and improved search
efficiency. When applied in an RRT-like framework, a sparse
tree results in fewer distance checks to compute nearest
neighbors. Furthermore, fewer expansion attempts are made,
so less collision checking is required. This comes at the
added computational expense of rejection sampling, but this

trade off seems worthwhile for many planning applications.
The bug trap type problem is particularly amenable to the
Ball Tree planning method. For such problems, containing
intertwined regions of large empty free space, and small
narrow passages, the Ball Tree will quickly identify the
empty regions, and focus on sampling near collision surfaces
to try to continue expanding the tree. In the limit where all
configurations are near some obstacle, each node volume is
pruned to near-zero radius, and the algorithm will converge
to behave like an RRT.

The Exact Ball Tree was presented because it is concep-
tually very simple, and demonstrates the rejection sampling
ideas. In practice, it is difficult to ascertain the closest colli-
sion distance, so an Inexact Ball Tree method was presented,
in which nodes are added to the tree with an arbitrarily
large volume. The volume is verified and pruned whenever
unexpected collisions are encountered. The performance of
the inexact tree actually outperforms the exact version. This
is because 1) volumes are very quickly trimmed to reasonable
values, typically requiring only a few expansion attempts;
and 2) sharp corners in free space are more effectively

Fig. 7. Alpha Puzzle 1.0, and partial solution trajectory from Ball Tree.
Puzzle has two intertwined pieces. The blue (obstacle) remains in fixed
position. The red (robot) moves around the obstacle to free itself.

covered by balls which are slightly overlapping obstacles,
resulting in fewer nodes needed to cover the same space.

Like the RRT, the Ball Tree is simple to implement,
and efficiently searches for paths. It is likely that many of
the modifications that work with the RRT can be directly
applied to the Ball Tree as well. A number of modifications
to the algorithm are possible. For one, the proof suggests
that any distance metric can be used to construct volumes.
Instead of L2 hyperspheres, a metric such as L∞ may work
better in high dimensional spaces, since the volume of a
Euclidean sphere decays to zero as dimension increases. In
general, volumes may be defined by sublevel-sets of any
valid cost function. Additionally, instead of level-sets (in
which a volume is specified by a single number or radius),
it may be interesting to use other convex volumes such as
ellipses with the Euclidean distance metric, so long as there
is an efficient method for computing distance to the surface
of the nodes.

Another extension is the Multi-Ball Tree. This algorithm
might start with two trees, one from the start node, and one
from the goal node. If an expansion step fails, but the random
sample is collision free, then a new tree is initialized with that
sample as a first node. For each sample which is not inside
any tree volume, choose to expand the closest tree towards
the sample. If the expansion succeeds, then check for overlap
between the newly added volume, and the other trees. If there
is overlap (implying a connection between trees), attempt to
connect the trees. This will either trim the radius of the new
node so there is no overlap between trees, or it will merge
two trees together. Continue until the tree containing the goal
node is merged into the tree containing the start node.

Finally, it is worth mentioning that other sampling-based
approaches such as the PRM may benefit from similar ideas.
The PRM lays down a number of samples in C-Space,
then tries to connect proximal nodes to build a connected
graph which can be searched. The process may be accom-

plished efficiently by iteratively sampling, and associating
each sample with a volume, then checking for valid edges
between overlapping volumes of the graph. The process
can be repeated, building up a graph, while using rejection
sampling so that only regions that are not currently in the
volume of the graph are searched over.

ACKNOWLEDGMENT

The authors would like to thank Michael Levashov for
helping to flush out the ideas in this paper, and Abraham
Bachrach for providing the lidar data sets of Cambridge.

REFERENCES

[1] T. Lozano-Perez, M. T. Mason, and R. H. Taylor, “Automatic synthesis
of fine-motion strategies for robots,” International Journal of Robotics
Research, vol. 3, no. 1, pp. 1–34, December 1983.

[2] L. Kavraki, P. Svestka, J. Latombe, and M. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,”
IEEE Transactions on Robotics and Automation, vol. 12, no. 4, pp.
566–580, August 1996.

[3] J. Kuffner and S. Lavalle, “RRT-connect: An efficient approach to
single-query path planning,” in Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), 2000, pp. 995–1001.

[4] Brock, O., Kavraki, and L.E., “Decomposition-based motion planning:
a framework for real-time motion planning in high-dimensional con-
figuration spaces,” vol. 2, 2001, pp. 1469 – 1474 vol.2.

[5] Rickert, M., Brock, O., Knoll, and A., “Balancing exploration and
exploitation in motion planning,” in Robotics and Automation, 2008.
ICRA 2008. IEEE International Conference on, May 2008, pp. 2812–
2817.

[6] Morales, M., Pearce, R., Amato, and N.M., “Analysis of the evolution
of c-space models built through incremental exploration,” in Robotics
and Automation, 2007 IEEE International Conference on, april 2007,
pp. 1029 –1034.

[7] S. Rodriguez, S. Thomas, R. Pearce, and N. Amato, “Resampl: A
region-sensitive adaptive motion planner,” in Algorithmic Foundation
of Robotics VII, ser. Springer Tracts in Advanced Robotics, S. Akella,
N. Amato, W. Huang, and B. Mishra, Eds. Springer Berlin /
Heidelberg, 2008, vol. 47, pp. 285–300, 10.

[8] R. Diankov, N. Ratliff, D. Ferguson, S. Srinivasa, and J. Kuffner, “Bis-
pace planning: Concurrent multi-space exploration,” in Proceedings of
Robotics: Science and Systems IV, June 2008.

[9] M. Zucker, J. Kuffner, and J. A. D. Bagnell, “Adaptive workspace
biasing for sampling based planners,” in Proc. IEEE Int’l Conf. on
Robotics and Automation, May 2008.

[10] Holleman, C., Kavraki, and L.E., “A framework for using the
workspace medial axis in prm planners,” in Robotics and Automation,
2000. Proceedings. ICRA ’00. IEEE International Conference on
Robotics and Automation, vol. 2, 2000, pp. 1408–1413.

[11] S. M. LaValle, Planning Algorithms. Cambridge University Press,
2006.

[12] B. Yamrom, “Alpha puzzle 1.0,” Provided by DSMFT research group
at Texas A&M University.

[13] R. Tedrake, I. R. Manchester, M. M. Tobenkin, and J. W. Roberts,
“LQR-Trees: Feedback motion planning via sums of squares verifica-
tion,” International Journal of Robotics Research, vol. 29, pp. 1038–
1052, July 2010.

[14] P. Reist and R. Tedrake, “Simulation-based LQR-trees with input and
state constraints,” in Proceedings of the International Conference on
Robotics and Automation (ICRA), 2010.

[15] A. Shkolnik, M. Walter, and R. Tedrake, “Reachability-guided sam-
pling for planning under differential constraints,” in Proceedings of
the International Conference on Robotics and Automation (ICRA).
IEEE/RAS, 2009, pp. 2859–2865.

[16] Yershova, A., Jaillet, L., Simeon, T., LaValle, and S.M., “Dynamic-
domain rrts: Efficient exploration by controlling the sampling domain,”
Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005
IEEE International Conference on, pp. 3856–3861, April 2005.

[17] Jaillet, L., Yershova, A., L. Valle, S.M., Simeon, and T., “Adaptive
tuning of the sampling domain for dynamic-domain rrts,” Intelligent
Robots and Systems, 2005. (IROS 2005). 2005 IEEE/RSJ International
Conference on, pp. 2851–2856, Aug. 2005.

