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Abstract
A motion planning algorithm is described for bounding over rough terrain with the LittleDog robot. Unlike walking gaits,
bounding is highly dynamic and cannot be planned with quasi-steady approximations. LittleDog is modeled as a planar
five-link system, with a 16-dimensional state space; computing a plan over rough terrain in this high-dimensional state
space that respects the kinodynamic constraints due to underactuation and motor limits is extremely challenging. Rapidly
Exploring Random Trees (RRTs) are known for fast kinematic path planning in high-dimensional configuration spaces in
the presence of obstacles, but search efficiency degrades rapidly with the addition of challenging dynamics. A computa-
tionally tractable planner for bounding was developed by modifying the RRT algorithm by using: (1) motion primitives to
reduce the dimensionality of the problem; (2) Reachability Guidance, which dynamically changes the sampling distribu-
tion and distance metric to address differential constraints and discontinuous motion primitive dynamics; and (3) sampling
with a Voronoi bias in a lower-dimensional “task space” for bounding. Short trajectories were demonstrated to work on
the robot, however open-loop bounding is inherently unstable. A feedback controller based on transverse linearization was
implemented, and shown in simulation to stabilize perturbations in the presence of noise and time delays.

Keywords
Legged locomotion, rough terrain, bounding, motion planning, LittleDog, RRT, reachability-guided RRT, transverse
linearization

1. Introduction

While many successful approaches to dynamic legged loco-
motion exist, we do not yet have approaches which are
general and flexible enough to cope with the incredible
variety of terrain traversed by animals. Progress in motion
planning algorithms has enabled general and flexible solu-
tions for slowly moving robots, but we believe that in order
to quickly and efficiently traverse very difficult terrain,
extending these algorithms to dynamic gaits is essential.

In this work we present progress towards achieving agile
locomotion over rough terrain using the LittleDog robot.
LittleDog (Figure 1) is a small, 3-kg position-controlled
quadruped robot with point feet and was developed by
Boston Dynamics under the DARPA Learning Locomo-
tion program. The program ran over several phases from
2006 to 2009, and challenged six teams from universities
around the United States to compete in developing algo-
rithms that enable LittleDog to navigate known, uneven
terrain, as quickly as possible. The program was very suc-
cessful, with many teams demonstrating robust planning
and locomotion over quite challenging terrain (e.g. Pongas
et al. 2007; Rebula et al. 2007; Kolter et al. 2008; Zucker
2009), with an emphasis on walking gaits, and some short

Fig. 1. LittleDog robot, and a corresponding five-link planar
model.

stereotyped dynamic maneuvers that relied on an intermit-
tent existence of a support polygon to regain control and
simplify planning (Byl et al. 2008). In this paper, we present
a method for generating a continuous dynamic bounding
gait over rough terrain.
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Achieving bounding on LittleDog is difficult for a num-
ber of reasons. First, the robot is mechanically limited:
high-gear ratio transmissions generally provide sufficient
torque but severely limit joint velocities and complicate
any attempts at direct torque control. Second, a stiff frame
complicates impact modeling and provides essentially no
opportunity for energy storage. Finally, and more gener-
ally, the robot is underactuated, with the dynamics of the
unactuated joints resulting in a complicated dynamical rela-
tionship between the actuated joints and the interactions
with the ground. These effects are dominant enough that
they must be considered during the planning phase.

In this work, we propose a modified form of the Rapidly
Exploring Random Tree (RRT) (LaValle and Kuffner 2001)
planning framework to quickly find feasible motion plans
for bounding over rough terrain. The principal advan-
tage of the RRT is that it respects the kinematic and
dynamic constraints which exist in the system, however for
high-dimensional robots the planning can be prohibitively
slow. We highlight new sampling approaches that improve
the RRT efficiency. The dimensionality of the system is
addressed by biasing the search in a low-dimensional task
space. A second strategy uses reachability guidance as a
heuristic to encourage the RRT to explore in directions that
are most likely to successfully expand the tree into previ-
ously unexplored regions of state space. This allows the
RRT to incorporate smooth motion primitives, and quickly
find plans despite challenging differential constraints intro-
duced by the robot’s underactuated dynamics. This planner
operates on a carefully designed model of the robot dynam-
ics which includes the subtleties of motor saturations and
ground interactions.

Bounding motions over rough terrain are typically not
stable in open loop: small disturbances away from the nom-
inal trajectory or inaccuracies in physical parameters used
for planning can cause the robot to fall over. To achieve reli-
able bounding it is essential to design a feedback controller
to robustly stabilize the planned motion. This stabilization
problem is challenging due to the severe underactuation of
the robot and the highly dynamic nature of the planned tra-
jectories. We implemented a feedback controller based on
the method of transverse linearization which has recently
emerged as an enabling technology for this type of con-
trol problem (Hauser and Chung 1994; Shiriaev et al. 2008;
Manchester et al. 2009; Manchester 2010).

The remainder of this paper is organized as follows: in
Section 2 we begin by reviewing background information,
including alternative approaches to achieve legged loco-
motion over rough terrain with particular attention given
to motion planning approaches. In Section 3 we present
a comprehensive physics-based model of the LittleDog
robot and the estimation of its parameters from experi-
ments. Section 4 discusses motion planning for bounding,
with a detailed description of the technical approach
and experimental results. In Section 5, we describe the
feedback control design and show some simulation and

Fig. 2. Dog bounding up stairs. Images from video available at
http://www.flickr.com/photos/istolethetv/3321159490/

experimental results. Section 6 concludes the paper, and
discusses remaining open problems.

2. Background

The problem of fast locomotion over rough terrain has been
an active research topic in robotics, beginning with the sem-
inal work by Raibert in the 1980s (Raibert 1986; Raibert
et al. 1986). The research can be roughly divided into two
categories. The first category uses knowledge of the robot
and environment within a motion planning framework. This
approach is capable of versatile behavior over rough terrain,
but motion plans tend to be slow and conservative. The
other category is characterized by a limit-cycle approach,
which is usually blind to the environment. In this approach,
more dynamic motions may be considered, but typically
over only a limited range of behavior. In this section we
review these approaches in turn.

2.1. Planning Approaches

Planning algorithms have made significant headway in
recent years. These methods are particularly well devel-
oped for kinematic path planning in configuration space,
focusing on maneuvers requiring dexterity, obstacle avoid-
ance, and static stability. Sampling-based methods such as
the RRT are very effective in planning in high-dimensional
humanoid configuration spaces. The RRT has been used
to plan walking and grasping trajectories amidst obsta-
cles by searching for a collision-free path in configura-
tion space, while constraining configurations to those that
are statically stable (Kuffner et al. 2002, 2003). The robot
is statically stable when the center of mass (COM) is
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directly above the support polygon, therefore guarantee-
ing that the robot will not roll over as long as the motion
is executed slowly enough. After finding a statically feasi-
ble trajectory of configurations (initially ignoring velocity),
the trajectory is locally optimized for speed and smooth-
ness, while maintaining the constraint that at least one foot
remains flat on the ground at all times. This approach
has been extended to account for moving obstacles and
demonstrated on the Honda Asimo (Chestnutt et al. 2005).
An alternative approach is to first generate a walking pat-
tern while ignoring obstacles and collisions, and then use
random sampling to modify the gait to avoid obstacles
while verifying constraints to ensure the robot does not
fall (Harada et al. 2007). Current methods are adept at
planning in high-dimensional configuration spaces, but typ-
ically only for limited dynamic motions. Sampling-based
planning algorithms are in general not well suited for plan-
ning fast dynamic motions, which are governed largely by
underactuated dynamics.

The use of static stability for planning allows one to
ignore velocities, which halves the size of the state space,
and constrains the system to be fully actuated, which greatly
simplifies the planning problem. Statically stable motions
are, however, inherently conservative (technically a robot is
truly statically stable only when it is not moving). This con-
straint can be relaxed by using a dynamic stability criteria
(see Pratt and Tedrake (2005) for review of various metrics).
These metrics can be used either for gait generation by the
motion planner, or as part of a feedback control strategy.
One popular stability metric requires the center of pressure,
or the Zero Moment Point (ZMP), to be within the support
polygon defined by the convex hull of the feet contacts on
the ground. While the ZMP is regulated to remain within
the support polygon, the robot is guaranteed not to roll over
any edge of the support polygon. In this case, the remain-
ing degrees of freedom can be controlled as if the system is
fully actuated using standard feedback control techniques
applied to fully actuated systems. Such approaches have
been successfully demonstrated for gait generation and exe-
cution on humanoid platforms such as the Honda Asimo
(Sakagami et al. 2002; Hirose and Ogawa 2007), and the
HRP series of walking robots (Kaneko et al. 2004). Lower-
dimensional “lumped” models of the robot can be used
to simplify the differential equations that define ZMP. In
Kajita et al. (2003), the HRP-2 robot was modeled as a cart
(rolling point mass) on top of a table (with a small base
that should not roll over). Preview control was then applied
to generate a COM trajectory which regulates the desired
ZMP position. Note that although the ZMP is only defined
on flat terrain, some extensions can be applied to extend the
idea to 3D, including using hand contacts for stability, for
example by considering the Contact Wrench Sum (CWS)
(Sugihara 2004).

The works described so far were mostly demon-
strated on relatively flat terrain. Other quasi-static plan-
ning approaches were applied to enable climbing behavior

and walking over varied terrain with the HRP-2 humanoid
robot (Hauser et al. 2008; Hauser 2008). In that work,
contact points and equilibrium (static) stances, acting as
way points, were chosen by using a Probabilistic Road
Map (Kavraki et al. 1996), an alternative sampling-based
planning strategy. The planner searched for paths through
potentially feasible footholds and stances, while taking into
account contact and equilibrium constraints to ensure that
the robot maintains a foot or hand hold, and does not slip.
Motion primitives were then used to find quasi-static local
motion plans between stances that maintain the non-slip
constraints. With a similar goal of traversing very rough
terrain with legged robots, the DARPA Learning Locomo-
tion project, utilizing the LittleDog robot, has pushed the
envelope of walking control by using careful foot place-
ment. Much of the work developed in this program has
combined path planning and motion primitives to enable
crawling gaits on rough terrain (e.g. Pongas et al. 2007;
Rebula et al. 2007; Kolter et al. 2008; Ratliff et al. 2009).
Similar to the approaches of the other teams, during the first
two phases of the program, MIT utilized heuristics over the
terrain to assign a cost to potential footholds. A* search was
then used to find a trajectory of feasible stances over the
lowest cost footholds, and a ZMP-based body motion and
swing-foot motion planner was used to generate trajectories
to walk over rough terrain.

Use of stability metrics such as ZMP have advanced the
state of the art in planning gaits over rough terrain, how-
ever these stability constraints result in very conservative
dynamic trajectories, for example by requiring that at least
one foot is always flat on the ground. Because ZMP-based
control systems do not reason about underactuated dynam-
ics, the humanoid robots do not perform well when walking
on very rough or unmodeled terrain, cannot move nearly
as quickly as humans, and use dramatically more energy
(appropriately scaled) than a human (Collins et al. 2005).
Animals do not constrain themselves to such a regime of
operation. Much more agile behavior takes place precisely
when the system is operating in an underactuated regime,
for example during an aerial phase, or while rolling the foot
over the toe while walking. In such regimes, there is no
support polygon, so the legged robot is essentially falling
and catching itself. Furthermore, underactuated dynamics
might otherwise be exploited: for example, a humanoid
robot can walk faster and with longer strides by rolling the
foot over the toe.

2.2. Limit-cycle Approach

Somewhat orthogonal to the planning approaches, a signif-
icant body of research focuses on limit-cycle analysis for
walking. Tools developed for limit-cycle analysis allow one
to characterize the behavior of a particular gait, typically on
flat terrain. Stable limit-cycle locomotion can be achieved
by using compliant or mechanically clever designs that
enable passive stability using open-loop gaits (e.g. Collins
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et al. 2005), or otherwise through the use of reflexive con-
trol algorithms that tend to react to terrain. Recent appli-
cations of these strategies, for example on the Rhex robot
(Altendorfer et al. 2001) and BigDog (Raibert et al. 2008),
have produced impressive results, but these systems do not
take into account knowledge about upcoming terrain.

Feedback control of underactuated “dynamic walking”
bipeds has recently been approached using a variety of
control methods, including virtual holonomic constraints
(Chevallereau et al. 2003; Westervelt et al. 2003, 2007) with
which impressive results have been demonstrated for a sin-
gle limit-cycle gait over flat terrain. In this paper, we use an
alternative method based on the combination of transverse
linearization and time-varying linear control techniques
(Shiriaev et al. 2008; Manchester et al. 2009; Manchester
2010). This allows one to stabilize more general motions,
however a nominal trajectory is required in advance, so this
feedback controller must be paired with a motion planning
algorithm which takes into account information about the
environment.

2.3. Dynamic Maneuvers

In order to use sample-based planning for a highly dynamic,
underactuated robot, the search must take place in the com-
plete state space, as velocities play an important role in
the dynamics. This effectively doubles the dimension of the
search. Furthermore, when there are underactuated dynam-
ics, the robot cannot accelerate in arbitrary directions, and
therefore can only move in state space in very limited direc-
tions. This makes straightforward application of sample-
based planning extremely challenging for these types of
systems. In the second phase of the LittleDog program, our
team began to integrate dynamic lunging, to move two feet
at a time (Byl et al. 2008; Byl and Tedrake 2009), into the
otherwise quasi-static motion plans to achieve fast loco-
motion over rough terrain. This paper describes the MIT
team approach in the third (final) phase of the project. We
show that careful foot placement can be combined with
highly dynamic model-based motion planning and feedback
control to achieve continuous bounding over very rough
terrain.

3. LittleDog Model

An essential component of any model-based planning
approach is a sufficiently accurate identification of the sys-
tem dynamics. Obtaining an accurate dynamic model for
LittleDog is challenging owing to subtleties in the ground
interactions and the dominant effects of motor saturations
and transmission dynamics. These effects are more pro-
nounced in bounding gaits than in walking gaits, due to the
increased magnitude of ground reaction forces at impact
and the perpetual saturations of the motor; as a result, we
required a more detailed model. In this section, we describe
our system identification procedure and results.

The LittleDog robot has 12 actuators (two in each hip,
one in each knee) and a total of 22 essential degrees of
freedom (six for the body, three rotational joints in each
leg, and one prismatic spring in each leg). By assuming that
the leg springs are over-damped, yielding first-order dynam-
ics, we arrive at a 40-dimensional state space (18× 2+ 4).
However, to keep the model as simple (low-dimensional) as
possible, we approximate the dynamics of the robot using
a planar five-link serial rigid-body chain model, with rev-
olute joints connecting the links, and a free base joint, as
shown in Figure 3. The planar model assumes that the back
legs move together as one and the front legs move together
as one (see Figure 1). Each leg has a single hip joint, con-
necting the leg to the main body, and a knee joint. The foot
of the real robot is a rubber-coated ball that connects to the
shin through a small spring (force sensor), which is con-
strained to move along the axis of the shin. The spring is
stiff, heavily damped, and has a limited travel range, so it is
not considered when computing the kinematics of the robot,
but is important for computing the ground forces. In addi-
tion, to reduce the state space, only the length of the shin
spring is considered. This topic is discussed in detail as part
of the ground contact model.

The model’s seven-dimensional configuration space, C =
R

2 × T
5, consists of the planar position of the back foot

( x, y), the pitch angle ω, and the 4 actuated joint angles
q1, . . . , q4. The full state of the robot, x = [q, q̇, l] ∈ X , has
16 dimensions and consists of the robot configuration, the
corresponding velocities, and the two prismatic shin-spring
lengths, l = [l1, l2], one for each foot. The control com-
mand, u, specifies reference angles for the four actuated
joints. The robot receives joint commands at 100 Hz and
then applies an internal PD controller at 500 Hz. For sim-
ulation, planning and control purposes, the dynamics are
defined as

x[n+ 1] = f ( x[n], u[n]) , (1)

where x[n+1] is the state at t[n+1], x[n] is the state at t[n],
and u[n] is the actuated joint position command applied
during the time interval between t[n] and t[n+1]. We some-
times refer to the control time step, �T = t[n+ 1]− t[n] =
0.01 seconds. A fixed-step fourth-order Runge–Kutta inte-
gration of the continuous Euler–Lagrange dynamics model
is used to compute the state update.

A self-contained motor model is used to describe the
movement of the actuated joints. Motions of these joints
are prescribed in the five-link system, so that as the dynam-
ics are integrated forward, joint torques are back-computed,
and the joint trajectory specified by the model is exactly fol-
lowed. This model is also constrained so that actuated joints
respect bounds placed on angle limits, actuator velocity lim-
its, and actuator torque limits. In addition, forces computed
from a ground contact model are applied to the five-link
chain when the feet are in contact with the ground. The
motor model and ground contact forces are described in
more detail below. The actuated joints are relatively stiff,
so the model is most important for predicting the motion of
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Fig. 3. LittleDog model. The state space is X = [q, q̇, l], where q = [x, y, ω, q1, q2, q3, q4], and l = [l1, l2] are feet spring lengths used
in the ground contact model. The diagram also illustrates the geometric shape of the limbs and body, information used for collision
detection during planning.

the unactuated degrees of freedom of the system, in partic-
ular the pitch angle, as well as the horizontal position of the
robot.

3.1. Motor Model

The motors on LittleDog have gear ratios of approximately
70 : 1. Because of the high gear ratio, the internal second-
order dynamics of the individual motors dominate in most
cases, and the rigid-body dynamics of a given joint, as well
as effects of inertial coupling and external forces on the
robot can be neglected. The combination of the motor inter-
nal dynamics with the PD controller with fixed PD gains
can be accurately modeled as a linear second-order system:

q̈i = −bq̇i + k( ui − qi) , (2)

where q̈i is the acceleration applied to the ith joint, given
the state variables [qi, q̇i] and the desired position ui. To
account for the physical limitations of actual motors, the
model includes hard saturations on the velocity and accel-
eration of the joints. The velocity limits, in particular, have
a large effect on the joint dynamics.

Each of the four actuated joints is assumed to be con-
trolled by a single motor, with both of the knee joints having
one pair of identical motors, and the hip joints having a dif-
ferent pair of identical motors (the real robot has different
mechanics in the hip versus the knee). Owing to this, two
separate motor parameter sets: {b, k, vlim, alim} are used, one
for the knees, and one for the hips.

Figure 4 shows a typical fit of the motor model to real tra-
jectories. The fits are consistent across the different joints of
the robot and across different LittleDog robots, but depend
on the gains of the PD controller at each of the joints. As

seen from the figure, the motor model does well in tracking
the actual joint position and velocity. Under large dynamic
loads, such as when the hip is lifting and accelerating the
whole robot body at the beginning of a bound, the model
might slightly lead the actual joint readings. This can be
seen in Figure 4 (top) at 5.4 s. For the knee joint and for
less aggressive trajectories with the hip, the separation is
not significant. In addition, note that backlash in the joints
is not modeled. The joint encoders or located on the motors
rather than the joint axes, which makes it very difficult to
measure and model backlash.

3.2. Ground Interaction Model

LittleDog is mostly incapable of an aerial phase due to the
velocity limits in the joints, so at least one foot is usually
in contact with the ground at any time. The ground interac-
tion is complicated, because the robot’s foot may roll, slide,
stick, bounce, or do some combination of these. A contin-
uous, elastic ground interaction model is used, where the
foot of the robot is considered as a ball, and at each point in
time the forces acting on the foot are computed. The ground
plane is assumed to be compressible, with a stiff non-linear
spring damper normal to the ground that pushes the foot
out of the terrain. A tangential friction force, based on a
non-linear model of Coulomb friction is also assumed. The
normal and friction forces are balanced with the force of
the shin spring at the bottom of the robot’s leg. The rate of
change of the shin spring, l̇, is computed by the force bal-
ancing and used to update the shin-spring length, l, which is
a part of the state space. The resulting normal and friction
forces are applied to the five-link model.

Appendix A discusses the details of the foot roll calcula-
tion, the normal force model, the friction model, and their
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Fig. 4. Example of a hip trajectory, demonstrating position command (thin dashed red), motor model prediction (solid magenta), and
actual encoder reading (thick dashed blue).

use in computing ground contact forces. The ground contact
model is also illustrated in Figure 21 of the Appendix.

3.3. Parameter Estimation

There are many coupled parameters that determine the
behavior of the model. In theory, they could all be fit
to a large enough number of robot trajectories, but it
would require thoroughly exploring relevant regions of the
robot’s {STATE-SPACE × ACTION-SPACE}. This is difficult,
because LittleDog cannot easily be set to an arbitrary point
in state space, and the data we collect only covers a tiny
fraction of it. An easier and more robust approach relies on
the model structure to separate the fitting into sub-problems
and to identify each piece separately. The full dynamical
model of the robot consists of the five-link rigid body,
the motor model, and the ground force model. A series
of experiments and a variety of short bounding trajecto-
ries were used to fit the model parameters to actual robot
dynamics by minimizing quadratic cost functions over sim-
ulation error. Appendix B discusses the approach for the

fit and lists the parameters and their values. In total, 34
parameters were measured or fit for the model.

3.4. Model Performance

Figure 5 shows a comparison of a bounding trajectory in
simulation versus 10 runs of the same command executed
on the real robot. The simulated trajectory was generated
using the planning algorithm described in the next section,
which used the developed model. The control input and the
starting conditions for all open-loop trajectories in the fig-
ure were identical, and these trajectories were not used for
fitting the model parameters.

Three of the four plots are of an unactuated coordi-
nate (x, y, and body pitch), the fourth plot is of the back
hip, an actuated joint. The figure emphasizes the difference
between directly actuated, position controlled joints com-
pared with unstable and unactuated degrees of freedom.
While the motor model tracks the joint positions almost per-
fectly, even through collisions with the ground, the unactu-
ated coordinates of the open-loop trajectories diverge from
each other in less than 2 seconds. Right after completing
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trajectory on a real LittleDog robot. In (c), the “x” shows where trajectories begin to separate, and the “o” show where trajectories finish
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the first bounding motion, at about 1.5 s, the trajectories
separate as LittleDog is lifting its body on the back feet. At
about 1.9 s, in half of the cases the robot falls forward and
goes through a second bounding motion, while in the rest
of the cases it falls backward and cannot continue to bound.
The horizontal position and body pitch coordinates are both
highly unstable and unactuated, making it difficult to stabi-
lize them. The control problem is examined in more detail
later in this paper.

The most significant unmodeled dynamics in LittleDog
include backlash, stiction in the shin spring, and more
complex friction dynamics. For example, even though the
friction model fits well to steady-state sliding of Little-
Dog, experiments on the robot show that during a bound-
ing motion there are high-frequency dynamics induced in
the legs that reduce the effective ground friction coeffi-
cient. Also, the assumption of linearity in the normal force

in Coulomb friction does not always hold for LittleDog
feet. Modeling these effects is possible, but would involve
adding a large number of additional states with non-linear
high-frequency dynamics to the model, making it much
harder to implement and less practical overall. In addition,
the new states would not be directly observable using cur-
rently available sensors, so identifying the related param-
eters and initializing the states for simulation would be
difficult.

In general, for a complex unstable dynamical system
such as LittleDog, some unmodeled effects will always
remain no matter how detailed the model is. Instead of cap-
turing all of the effects, the model approximates the overall
behavior of the system, as seen from Figure 5. We believe
that this model is sufficiently accurate to generate relevant
motion plans in simulation which can be stabilized using
feedback on the real robot.
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Fig. 6. Sketch of a virtual obstacle function, �m( x), in relation to
the ground, γ ( x).

4. Motion Planning Algorithm

4.1. Problem Formulation

Given the model described in the previous section, we can
formulate the problem of finding a feasible trajectory from
an initial condition of the robot to a goal region defined by
a desired location of the COM. We describe the terrain as
a simple height function, z = γ ( x), parameterized by the
horizontal position, x. We would like the planned trajectory
to avoid disruptive contacts with the rough terrain, however
the notion of “collision-free” trajectories must be treated
carefully since legged locomotion requires contact with the
ground in order to make forward progress.

To address this, we define a virtual obstacle function,
�( x), which is safely below the terrain around candidate
foothold regions, and above the ground in regions where
we do not allow foot contact (illustrated in Figure 6). In our
previous experience with planning walking gaits (Byl et al.
2008; Byl and Tedrake 2009), it was clear that challenging
rough terrain could be separated into regions with useful
candidate footholds, as opposed to regions where footholds
would be more likely to cause a failure. Therefore, we had
developed algorithms to pre-process the terrain to iden-
tify these candidate foothold regions based on some simple
heuristics, and we could potentially use the same algorithms
here to construct �( x). However, in the current work, which
makes heavy use of the motion primitive described in the
following sections, we found it helpful to construct sepa-
rate virtual obstacles, �m( x), parameterized by the motion
primitive, m, being performed. Once the virtual obstacles
became motion primitive dependent, we had success with
simple virtual obstacles as illustrated in Figure 6. The col-
lision function illustrated is defined relative to the current
position of the feet. In the case shown in the figure, the vir-
tual function forces the swing leg to lift up and over the
terrain, and ensures that the back foot does not slip, which
characterizes a successful portion of a bound. As soon as
the front feet touch back down to the ground after com-
pleting this part of the bound, a new collision function is
defined, which takes into account the new footholds, and
forces the back feet to make forward progress in the air.

We are now ready to formulate the motion planning
problem for LittleDog bounding: find a feasible solu-
tion, {x[0], u[0], x[1], u[1], . . . , x[N]}, which starts in the
required initial conditions, satisfies the dynamics of the

model, x[n + 1] = f( x[n], u[n]), avoids collisions with the
virtual obstacles, �( x), does not violate the bounds on joint
positions, velocities, accelerations, and torques, and reaches
the goal position.

Given this problem formulation, it is natural to consider
a sample-based motion planning algorithms such as RRTs
due to their success in high-dimensional robotic planning
problems involving complex geometric constraints (LaValle
and Branicky 2002). However, these algorithms perform
poorly when planning in state space (where the dynam-
ics impose “differential constraints”) (Cheng 2005; LaValle
2006), especially in high dimensions. When applied directly
to building a forward tree for this problem, they take pro-
hibitive amounts of time and fail to make any substantial
progress towards the goal. In the following sections, we
describe three modifications to the basic algorithm. First,
we describe a parameterized “half-bound” motion primitive
which reduces the dimensionality of the problem. Second,
we describe the Reachability-Guided RRT, which dynami-
cally changes the sampling distribution and distance metric
to address differential constraints and discontinuous motion
primitive dynamics. Finally, we describe a mechanism for
sampling with a Voronoi bias in the lower-dimensional task
space defined by the motion primitive. All three of these
approaches were necessary to achieve reasonable run-time
performance of the algorithm.

4.2. Macro Actions/Motion Primitive

The choice of action space, e.g. how an action is defined for
the RRT implementation, will affect both the RRT search
efficiency, as well as completeness guarantees, and, per-
haps most importantly, path quality. In the case of planning
motions for a five-link planar arm with four actuators, a
typical approach may be to consider applying a constant
torque (or some other simple action in joint space) that is
applied for a short constant time duration, �T . One draw-
back of this method is that the resulting trajectory found by
the RRT is likely be jerky. A smoothing/optimization post-
processing step may be performed, but this may require
significant processing time, and there is no guarantee that
the local minima near the original trajectory is sufficiently
smooth. Another drawback of using a constant time step
with such an action space is that in order to ensure com-
pleteness, �T should be relatively small (for LittleDog
bounding, 0.1 seconds seems to be appropriate). Empiri-
cally, however, the search time increases approximately as
1/�T , so this is a painful trade-off.

For a stiff PD-controlled robot, such as LittleDog, it
makes sense to have the action space correspond directly
to position commands. To do this, we generate a joint tra-
jectory by using a smooth function, G, that is parameterized
by the initial joint positions and velocities, [q( 0) , q̇( 0)], a
time for the motion, �Tm, and the desired end joint posi-
tions and velocities, [qd( �Tm) , q̇d( �Tm)]. This action set
requires specifying two numbers for each actuated degree
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Fig. 7. First half of a double bound. The robot is shown moving
from right to left. The back leg “opens up”, pushing the robot for-
ward (to the left) while generating a moment around the stance
foot causing the robot to rear-up. Meanwhile, the front legs tuck-
in, and then un-tuck as they get into landing position. Axes are in
meters.

Fig. 8. Second half of a double bound. The front (left) foot moves
towards the back (right) of the robot, helping to pull the robot for-
ward. The back leg meanwhile swings forward, while tucking and
un-tucking to help avoid collision with the terrain.

of freedom: one for the desired end position and one for the
desired end velocity. A smooth function generator which
obeys the end point constraints, for example a cubic-spline
interpolation, produces a trajectory which can be sampled
and sent to the PD controller.

If one considers bounding in particular and examines
how animals, and even some robots such as the Raibert
hoppers, are able to achieve bounding behavior, it becomes
apparent that some simplifications can be made to the action
space. We can define a motion primitive that uses a much
longer �T and, therefore, a shorter search time, while also
producing smooth, jerk-free joint trajectories. The insight
is based on the observation that a bound consists of two
phases: (1) rocking up on the hind legs while moving the
front legs forward and (2) rocking up on the front legs, while
the hind legs move forward. In the first half-bound primi-
tive, the hind legs begin moving backwards, propelling the
body forwards. This forward acceleration of the COM also
generates a rotational moment around the pseudo-pin joint
at the hind foot–ground interface. In this case, the front
legs come off the ground, and they are free to move to a
position as desired for landing. In this formulation, the hind
legs move directly from the starting pose to the ending pose

in a straight line. Because the front feet are light, and not
weight bearing, it is useful to “tuck” the feet, while mov-
ing them from the start to the end pose, in order to help
avoid obstacles. To take advantage of a rotational moment
produced by accelerating the stance leg, the back leg begins
moving a short time before the front foot leg starts moving.
Once both the hind and the front legs have reached their
desired landing poses, the remaining trajectory is held con-
stant until the front legs impact the ground. An example of
such a trajectory is shown in Figure 7.

A similar approach is utilized to generate motions for
the second phase of bounding, with the difference that the
hip angles are “contracting” instead of “opening up”. As
the front leg becomes the stance leg, the front foot begins
moving backwards just before impact with the ground. The
back leg movement is delayed for a short period to allow the
system to start rocking forward on to the front legs. When
both legs reach their final positions, the pose is held until
the back leg touches down. The back leg tucks in while
swinging into landing position to help avoid obstacles. The
resulting motions are shown in Figure 8.

Note that for the start and end conditions of the motion
primitive, the actuated-joint velocities are zero, a factor
which reduces the action space further. Using these motion
primitives requires a variable time step, �Tbound, because
this has a direct influence on accelerations and, there-
fore, moments around the passive joints. However, for each
phase, one only needs to specify four degrees of freedom,
corresponding to the pose of the system at the end of
the phase. Using this motion primitive, the entire bound-
ing motion is achieved with a simple, jerk-free actuator
trajectory. Because these primitives are naturally smooth,
post-processing the RRT generated trajectory becomes an
optional step.

The motion primitive framework used here is somewhat
similar in approach to the work in Frazzoli et al. (2005).
In addition to formally defining motion primitives in the
context of motion planning, that work proposed planning
in the framework of a Maneuver Automaton. The automa-
ton’s vertices consist of steady-state trajectories, or trim
primitives (in the context of helicopter flight), which are
time invariant and with a zero-order hold on control inputs.
The edges of the automaton are maneuver primitives, which
are constrained so that both the start and the end of the
maneuver are compatible with the trim primitives. This is
illustrated in the context of LittleDog bounding in Figure
9. Of course, feet collisions in LittleDog act like impulses
or hybrid dynamics, which negate the underlying invariance
assumptions of a trim primitive in Frazzoli et al. (2005) and
Frazzoli et al. (2002), but the idea is still representative.

4.3. Reachability-guided RRT Overview

Sample-based planning methods such as the RRT can be
very fast for certain applications. However, such algorithms
depend on a distance metric to determine distance from
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Fig. 9. Maneuver automaton for LittleDog bounding.

samples to nodes in the tree. The Euclidean distance metric
is easy to implement, and works well for holonomic path
planning problems, but it breaks down when constraints
imposed by the governing equations of motion restrict the
direction that nodes can grow in. To deal with this, we
developed a modified version of the RRT algorithm called
the Reachability-Guided RRT (RG-RRT) (Shkolnik et al.
2009). The algorithm uses rejection sampling, which was
previously shown to be beneficial for growing trees in con-
figuration space through narrow tunnels (Yershova et al.
2005). Reachability guidance extends this idea to planning
for dynamic systems in state space. The RG-RRT biases
the RRT search toward parts of state space that are locally
reachable from the tree. Reachability information is stored
in each node in the tree; the algorithm works by sampling
and then measuring the Euclidean (or scaled-Euclidean)
distance to each node in the tree, as well as to each reach-
able set of the tree. If a sample is closer to the tree itself,
rather than to the reachable set of the tree, then there are no
actions which are able to extend that node in the direction
of the sample. This sample–node pair is therefore not useful
for exploration, and is discarded. On the other hand, if the
sample is closer to a reachable region, the parent node in the
tree, which generated the closest reachable region, is grown
towards the sample. Thus, by keeping track of locally reach-
able parts of the tree and using a simple Euclidean-type
distance metric, the algorithm is able to overcome many
of the inherent difficulties when implementing an RRT for
dynamic systems.

In this work, we show that the RG-RRT algorithm can
be useful for motion planning in a system with motion
primitives. Conceptually, a motion primitive in a dynamic
system is one which occurs over a fairly substantial dura-
tion of time, e.g. an action which moves the system from
one state to another state that is relatively distant from
the current state. Therefore, the states produced by tak-
ing macro actions or motion primitives may be discon-
tinuous or even discrete in relation to a generating state,

which would invalidate the use of a proper Euclidean dis-
tance metric that assumes a smooth continuous space of
actions. The idea of Reachability can be an especially pow-
erful notion for sample-based planning in the context of
macro actions, as the reachable region does not have to
be local to its parent node. A continuous motion primitive
action space can be approximated by sampling in the action
space, resulting in a discrete set of reachable nodes, which
might be far in state space from their parent node. This
idea suggests that the RG-RRT also naturally extends to
models with hybrid dynamics, simply by sampling actions
and integrating through the dynamics when generating the
reachable set.

Definition 1. For a state x0 ∈ X , we define its reachable
set, R�t( x0), to be the set of all points that can be achieved
from x0 in bounded time, �t ∈ [�Tlow, �Thigh], according
to the state equations (1) and the set of available control
inputs, U .

Algorithm 1 T ← BUILD-RG-RRT( xinit)
1: T ← INITIALIZETREE( xinit);
2: R← APPROXR( [ ], T , xinit);
3: for k = 1 to K do
4: RejectSample← true;
5: while RejectSample do
6: xrand ← RANDOMSTATE( ) ;
7:

(
[ ], distT

)← NEARESTSTATE( xrand, T ) ;
8:

(
rnear, distR

)← NEARESTSTATE( xrand,R) ;
9: if distR < distT then

10: RejectSample← false;
11: xnear ← ParentNode( rnear,R, T ) ;
12: end if
13: end while
14: u← SOLVECONTROL( xnear, xrand) ;
15: [xnew, isFeasible]← NEWSTATE( xnear, u) ;
16: if isFeasible then
17: T ← INSERTNODE( xnew, T );
18: R← APPROXR(R, T , xnew);
19: if ReachedGoal(xnew) then
20: return T
21: end if
22: end if
23: end for
24: return [ ]

The structure of the RG-RRT algorithm is outlined in
Algorithm 1. Given an initial point in state space, xinit, the
first step is to initialize the tree with this state as the root
node. Each time a node is added to the tree, the APPROXR( )
function solves for R�t( xnew), an approximation of the set
of reachable points in the state space that are consistent with
the differential constraints (1). The approximated reach-
able set for the whole tree is stored in a tree-like structure,
R�t( T ), or simply R for shorthand notation, which con-
tains reachable set information as well as pointers to the
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Fig. 10. Two consecutive steps in a single iteration of the RG-RRT, as demonstrated for the underactuated pendulum. In (a), a random
sample is drawn from the state space and paired with the nearest node in the tree and the closest point in its reachable set according to
the Euclidean distance metric. Shown in (b), the algorithm then expands the node towards the point in the reachable set and adds that
point to the tree. Only the reachable region of the newly added point is shown here for clarity.

parent nodes for each node in the corresponding tree, T .
For many systems of interest, the approximate bounds of
the reachable set, Rhull, can be generated by sampling over
the limits in the action space, and then integrating the cor-
responding dynamics forward. For these systems, assuming
a relatively short action time step, �t, integrating actions
between the limits results in states that are within, or rea-
sonably close to being within, the convex hull of Rhull. In
such cases it is sufficient to consider only the bounds of
the action set to generate the reachability approximation.
When the dimension of the action space becomes large, it
may become more efficient to approximate the reachable
set with a simple geometric function, such as an ellipsoid.
We found that the reachable set approximation does not
need to be complete, and even a crude approximation of
the set can vastly improve planner performance in systems
with dynamics. Another benefit of approximating the reach-
able set by sampling actions is that the resulting points can

be efficiently tested for collisions before they are added to
the reachable set approximation. This reduces the likelihood
of trajectories leaving free space as part of the exploration
phase.

After a node and its corresponding reachable set is added
to the tree, a random state-space sample, xrand, is drawn.
The NEARESTSTATE( xrand, [T ,R]) function compares the
distance from the random sample to either the nodes of
the tree, T , or the reachable set of the tree, R. The func-
tion returns the closest node as well as the distance from
the node to the sample. Samples that are closer to the tree,
T , rather than the reachable set, R, are rejected. Sampling
continues until a sample is closer to R, at which point, the
ParentNode function returns the node in T , which is the
parent of the closest reachable point in R.

Consider planning on a simple torque-limited pendulum,
which has interesting dynamics, and can be easily visual-
ized, because the state space is two dimensional. A single
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Fig. 11. RG-RRT Voronoi diagrams for a pendulum (best viewed
in color online). The diagram in (a) corresponds to the RG-RRT
after 30 nodes have been added while that in (b) corresponds to
the tree with 60 nodes. Magenta dots are discretely sampled reach-
able points affiliated with each tree. Green regions are areas where
samples are “allowed”, and correspond to Voronoi areas associ-
ated with the reachable set. Samples that fall in gray areas are
discarded.

expansion step of the RG-RRT is shown in Figure 10. The
tree nodes are shown in black, with the reachable approx-
imation shown in gray. Figure 11 shows the associated
Voronoi regions of the combined set of { R, T } for an RG-
RRT growing on a torque-limited pendulum. The rejected
sampling region is shown in gray, while the allowed regions
are shown in green. Note that the sampling domain in the
RG-RRT is dynamic, and adapts to the tree as the tree
expands, producing a Voronoi bias that is customized by
the system dynamics defined by the tree. Also note that
although the Euclidean distance is used, we are warping this
distance metric by computing the distance to the reachable
set rather than to the tree. This warped metric produces a
Voronoi bias to “pull” the tree in directions in which it is
capable of growing.

4.4. Approximating the Reachable Set

We have shown that Reachability Guidance can improve
RRT planning time in underactuated systems such as the
torque-limited pendulum and Acrobot (Shkolnik et al.
2009). In those systems, the reachable set was approximated

by discretizing the action space. However, to achieve Lit-
tleDog bounding, even a reduced four-dimensional action
space becomes too large to discretize efficiently. For exam-
ple, using only three actions per dimension (and assuming
a constant motion primitive time step), there would be 81
actions to apply and simulate in order to approximate the
reachable set for each node.

Instead of discretizing in such a high-dimensional action
space, the reachable set can be approximated by under-
standing the failure modes of bounding. Failures may occur
primarily in one of three ways: (1) the robot has too much
energy and falls over; (2) the robot has too little energy,
so the stance foot never leaves the ground, violating our
assumption that one foot always leaves the ground in a
bounding gait; or (3) a terrain collision occurs. In the case
when the system has a lot of kinetic energy, the best thing
to do is to straighten all of the limbs, which raises the COM
and converts the kinetic energy into potential energy. At
the other extreme, if the robot does not have much kinetic
energy, an action that lowers the COM while accelerating
the limbs inwards tends to produce a rotational moment, if it
is possible to do so. Thus, two extreme motions can be gen-
erated, for each phase of bounding, which prevent the two
common failure modes. The reachable set is then generated
by interpolating joint positions between the two extremes.
This one-dimensional discretization is usually rich enough
to capture the energy related failure modes and generate
bounds which strike the right balance to continue bounding
further.

The reachable set helps the RG-RRT to plan around
Regions of Inevitable Collisions (RIC) (LaValle and
Kuffner 2001; Fraichard and Asama 2003; Fraichard 2007;
Chan et al. 2008). Nodes which have empty reachable sets,
which may occur because the node has too much or too lit-
tle energy, in the case of LittleDog bounding, are in XRIC,
even if the node itself is collision free (Xfree). The RG-RRT
takes advantage of this, because when a node has an empty
reachable set, the node serves as a “blocking” function for
sampling. Owing to the rejection sampling of the RG-RRT,
such a node cannot be expanded upon, and any samples that
map to this node will be discarded, encouraging sampling in
other areas that can be expanded.

4.5. Sampling in Task Space

In the RRT algorithm, sampling is typically performed
uniformly over the configuration space. An action is cho-
sen which is expected to make progress towards the sam-
ple. The sampling creates a Voronoi bias for fast explo-
ration by frequently selecting nodes of the tree near unex-
plored regions, while occasionally refining within explored
regions. We have previously shown that the Voronoi bias
can be implemented in the configuration (or state) space
or alternatively the bias can be in a lower-dimensional task
space (Shkolnik and Tedrake 2009). This can be achieved
simply by sampling in task space, and finding the node
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in the configuration-space tree, the projection of which
is closest to the task-space sample. Reducing the dimen-
sionality of the search with a task-space Voronoi bias can
significantly improve search efficiency and, if done care-
fully, does not have an impact on the completeness of the
algorithm.

As described in the previous section, our action space
involves a half-bound (half a period of a complete bound).
At the start and end of an action (e.g. the state at any
given node on the tree), the robot is approximately touching
the ground with both feet, and joint velocities are approxi-
mately zero. Samples are therefore similarly constrained. In
addition, samples are chosen such that they are not in col-
lision, and respect joint bounds, with some minimum and
maximum stance width. The region in actuated joint space
can be mapped to a region in Cartesian space for the back
and front foot, corresponding to a four-dimensional mani-
fold. A sample is drawn by first choosing a horizontal coor-
dinate, x, of the robot’s back foot, and then selecting four
joint angles from the manifold, while checking to ensure
that collision constraints are validated.

Given a sample described above, the y-coordinate of the
robot foot is set to the ground position at x, and the pas-
sive joint is computed using the constraint that both feet are
on the ground. Thus, sampling the five-dimensional space
maps to a point qs in the seven-dimensional configuration
space of the robot. The five-dimensional sampling space,
which neglects velocities, is significantly smaller than the
complete 16-dimensional state space, and produces a task-
space Voronoi Bias. When a sample is drawn, the closest
node is found by minimizing the Euclidean distance from
the sample to the tree, as well as to the reachable region of
the tree. The sampling is repeated until a sample closest to
the reachable region is found. An action, u, is then created
by selecting the four actuated joint angles from the sample,
qs. An action time interval �Tbound is chosen by uniformly
sampling from T ∈ [0.3, 0.7] seconds.

4.6. Simulation Results

In this section, we have presented three modifications to
the standard implementation of the RRT to plan bound-
ing motions with LittleDog: (1) a simple motion primitive;
(2) reachability guidance; and (3) task-space biasing. Each
of these components could be implemented separately, but
they worked particularly well when combined. To show
this, we qualitatively compare results by applying various
combinations of these modifications.

First, a standard RRT was implemented, without any
modifications, with the task of finding bounding motions
on flat terrain. The state space was sampled uniformly in
the regions near states that have already been explored. We
experimented with several types of action spaces, includ-
ing a zero-order hold on accelerations in joint space, or a
zero-order hold on velocities in joint space. Reasonable

results were found by specifying a change in joint
positions (�qa), and using a smooth function generator to
create position splines with zero start and end velocities.
This approach worked best using time intervals of 0.1–0.15
seconds, but the resulting RRT was not able to find a com-
plete bounding motion plan in a reasonable amount of time
(hours). By implementing reachability-guidance and task-
space sampling, the planner was able to find a double-bound
trajectory on flat terrain, after 2–3 minutes of search on
average. Some of these plans were successfully executed
on flat terrain by the actual robot. In addition to being rela-
tively slow to plan motions, the trajectories returned by the
RRT had high-frequency components which were difficult
for the robot to execute without saturating motors. The long
planning time and sub-optimal gaits were not ideal for this
task. Plans might be smoothed and locally optimized, but
this is a time-consuming process given the complexity of
the dynamics.

When we utilized the half-bound motion primitive, the
trajectories produced were smooth by the way the primitive
is defined, with one hip movement and one knee move-
ment per each half-bound motion. Furthermore, the half
bound has a relatively long duration, typically 0.5 seconds
in length, which shortens the search time. The complete
planner described in this section is able to plan a double-
bound on flat terrain in a few seconds. A continuous bound
over 2 m is typically found in less than a minute. The com-
plete planner was also able to plan over intermittent terrain,
where foot holds were not allowed in given regions. In addi-
tion, the planner was successful in handling a series of
7-cm steps, and was also successful in planning bounds to
get up on top of a terrain with artificial logs with a maxi-
mum height difference of 8 cm. The simulated log terrain
corresponds to a laser scan of real terrain board used in
the Learning Locomotion program to test LittleDog perfor-
mance. An example of a bounding trajectory is shown in
Figures 12 and 13, and a video of this trajectory is included
in Extension 1. The bottom link in the robot leg is 10 cm,
and the top link is 7.5 cm; given that the bottom of the body
is 3 cm below the hip, variations of 7 cm in terrain height
represents approximately 50% of maximum leg travel of the
robot.

Planning was also attempted using the motion primi-
tive, but without reachability guidance. To do so, samples
were drawn in each iteration of the RRT algorithm, and the
nearest-neighbor function returned the closest node in the
tree. Because the closest node in the tree and the sample
often looked similar, it did not make sense to try to expand
towards the sample. Instead, once a sample was chosen, a
motion primitive action was chosen at random. Using ran-
dom actions is an accepted approach for RRTs, and the sam-
pling itself produces a Voronoi bias to encourage the tree to
expand into unexplored regions of space, on average. In this
case, however, the motion primitive-based RRT was never
able to find feasible plans over rough terrain without reach-
ability guidance, even when given over 12 hours to do so.
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Fig. 12. Bounding trajectory over logs (Part 1).

Fig. 13. Bounding trajectory over logs (Part 2).

The combination of motion primitives, task-space biasing
and reachability guidance, however, is able to plan trajec-
tories over the log terrain repeatedly, within 10–15 minutes
of planning time required on average. Of course, on simpler
terrain, the planning time is much faster.

4.7. Experimental Results

In experiments with the real robot, open-loop execution of
the motion plan found by the RRT quickly diverged with
time from the model predictions, even on flat terrain. Tra-
jectories are unstable in the sense that given the same initial
conditions on the robot and a tape of position commands
to execute, the robot trajectories often diverge, sometimes
catastrophically. To demonstrate the feasibility of using the

motion primitives described in this paper, these motion
primitives were used to achieve a short bound sequence over
the log terrain. Unlike in the model, the actual logs are not
planar. To address this, tracks were laid on the logs corre-
sponding to the stance width of the robot along the terrain.
The planner was constrained to only allow foot holds where
the points on adjacent tracks were of the same height. With
some tuning, the motion primitives produced bounding over
the logs on the real robot, shown in Figure 14. This trajec-
tory was successful approximately 20% of the time, even
though care was taken to have the same initial position for
each trial.

Feedback stabilization is required to enable execution of
long bounding trajectories. Feedback can compensate for
model errors and the inherent instability of the system itself.
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Fig. 14. Bounding over logs with LittleDog.
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Fig. 15. The sensing and control environment for LittleDog.

Trajectory optimization may also help to improve perfor-
mance. Care was taken to ensure that the simulation is
smooth and continuous, so gradients can be used to help
in these tasks. The next section describes a feedback con-
trol strategy, and discusses the feasibility for this strategy to
stabilize bounding gaits on rough terrain.

5. Feedback Stabilization

Figure 15 shows the sensing and control environment for
LittleDog. For most feedback control methods, one selects
a state space suitable for the task at hand, and uses an
observer to construct an estimate of the current state using
available measurements. An accurate observer requires a
good dynamical model of the robot and knowledge of the
characteristics (e.g. delays and noise) of each measurement.

Having estimated the state, the controller must select an
action to take, which stabilizes the bounding motion. This
is a non-trivial task because of the highly non-linear nature
of the dynamics and the limited control authority available
for the unactuated coordinate. Several recent efforts in con-
trol of underactuated systems have found success in taking
a three-stage approach (Westervelt et al. 2003; Song and
Zefran 2006; Westervelt et al. 2007; Shiriaev et al. 2008;
Manchester et al. 2009):

1. From encoder, inertial measurement unit (IMU), and
motion-capture measurements, estimate the current
state of the system in terms of generalized coordinates
x̂( t) = ( q̂( t) , ˆ̇q( t) ).

2. Based on the current state estimate x̂( t), find the loca-
tion on the planned trajectory which is “closest” in some
reasonable sense. That is, perform a projection to a
point in the planned motion x�( τ ) where τ is computed
as some function of x̂( t).

3. From the deviation x̂( t)−x�( τ ), and some precomputed
local control strategy, compute control actions which
bring the system closer to the desired trajectory.

For example, in the method of virtual constraints for
biped control (Westervelt et al. 2003, 2007), the planned tra-
jectory is parametrized in terms of a phase variable which

is often the unactuated coordinate (e.g. the ankle angle), or
some function of all coordinates (e.g. angle from foot con-
tact point to hip), which is monotonic over each step and
can thus be considered a reparametrization of time. The pro-
jection (step 2) is done by computing the current value of
the phase coordinate and finding the unique point on the
planned trajectory with the same value. The positions of all
actuated joints are then synchronized to this joint via high-
gain feedback. This method has been successful in biped
control (Chevallereau et al. 2003) but poses challenges for
quadruped bounding due to the lack of a configuration vari-
able that evolves monotonically over each half-bound and
can be used as a phase variable.

An alternative approach is the transverse linearization,
in which the projection can be a more general function.
Transverse linearizations are a classical tool by which to
study stability of periodic systems (Hahn 1967; Hale 1980;
Hauser and Chung 1994) and more recently have been used
for constructive controller design (Song and Zefran 2006;
Shiriaev et al. 2008; Manchester et al. 2009; Manchester
2010). The n-dimensional dynamics around the target tra-
jectory are decomposed into two parts: (1) a scalar “phase
variable” τ which represents the position along the trajec-
tory and can be considered a reparametrization of time; and
(2) an ( n−1)-dimensional vector x⊥ representing dynamics
transverse to the target trajectory.

In some region around the target orbit, the continuous-
time dynamics in the new coordinate system are well
defined and have the form

ẋ⊥ = A( τ ) x⊥ + B( τ ) δu+ h( x⊥, τ ) , (3)

τ̇ = 1+ g( x⊥, τ ) . (4)

Here δu = u− u�( τ ), h( ·) contains terms second order and
higher in x⊥, and g( ·) contains terms first order and higher
in x⊥ and τ .

The first-order approximation to the transverse compo-
nent is known as the transverse linearization:

ẋ⊥ = A( τ ) x⊥ + B( τ ) δu. (5)

Exponential stabilization of the transverse linearization is
equivalent to orbital exponential stabilization of the orig-
inal non-linear system to the target motion. A construc-
tion based on a Lagrangian model structure (Shiriaev et al.
2008) has been used to stabilize non-periodic motions of
an underactuated biped over rough terrain, and validated in
experiments (Manchester et al. 2009). Our model of Lit-
tleDog includes highly non-linear compliance and ground-
contact interactions, and does not fit in the Lagrangian
framework. To derive the controller we used a more gen-
eral construction of the transverse linearization which will
be presented in more detail elsewhere (Manchester 2010).

To stabilize LittleDog, we discretized the transverse lin-
earization (5) to a zero-order-hold equivalent, and com-
puted controller gains using a finite-time LQR optimal
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control on the transverse linearization, i.e. the controller
minimizing the following cost function:

J =
T∑

k=0

[
x⊥( k)′Q( k) x⊥( k)+δu( k)′ R( k) δu( k)

]

+x( T)′QFx( T)

where Q( ·) , R( ·) , and QF are weighting matrices. This
gives a sequence of optimal controller gains:

δu( k)= −K( k) x⊥( k)

which are computed via the standard Riccati difference
equation.

From the combination of a projection P from x to ( τ , x⊥)
and the LQR controller, one can compute a controller for
the full non-linear system:

( τ , x⊥) = P( x) , (6)

u = u�( τ )−K( τ ) x⊥, (7)

where K( τ ) is an interpolation of the discrete-time control
gain sequence coming from the LQR. We refer to this as the
“transverse-LQR” controller.

Note that the above strategy can be applied with a
receding-horizon and particular final-time conditions on
the optimization in order to ensure stability (Manchester
et al. 2009). We found with LittleDog, however, that relax-
ing these conditions somewhat by performing a finite-
horizon optimization over each half-bound, with QF = 0,
was sufficient, even though it is not theoretically guaran-
teed to give a stabilizing controller. In this framework,
the transverse-LQR controller is applied until just before
impact is expected. During the impact, the tape is executed
open loop, and the next half-bound controller takes over
shortly after impact.

5.1. Selection of Projection and Optimization
Weights

Using the transverse-LQR controller we were able to
achieve stable bounding in simulations with several types of
perturbations. The success of the method is heavily depen-
dent on a careful choice of both the projection P( x) and the
weighting matrices Q and R.

For the projection, LittleDog was represented as a float-
ing five-link chain but in a new coordinate system: the first
coordinate was derived by considering the vector from the
point of contact of the stance foot and the COM of the
robot. The angle θ of this line with respect to the hori-
zontal was the first generalized coordinate. The remaining
coordinates were the angles of the four actuated joints, and
the ( x, y) position of the non-stance (swing) foot. In this
coordinate system, the projection on to the target trajec-
tory was taken to be the closest point under a weighted
Euclidean distance, with heaviest weighting on θ , somewhat

lighter weighting on θ̇ , and much lighter weighting on the
remaining coordinates.

Projecting in this way resulted in significantly improved
robustness compared with projection in the original coordi-
nates under a standard Euclidean metric. One can explain
this intuitively in terms of controllability: the distance to a
point on the target trajectory should be heavily weighted in
terms of the states which are most difficult to control. The
angles of the actuated joints and the position of the swing
foot can be directly controlled at high speed. Therefore,
deviations from the nominal trajectories of these coordi-
nates are easy to correct and these coordinates are weighted
lightly. In contrast, the angle of the COM and its velocity
are not directly controlled and must be influenced indi-
rectly via the actuated links, which is more difficult. There-
fore, deviations in these coordinates have a much heavier
weighting.

For choosing the optimization weighting matrices Q and
R we have a similar situation: the dynamics of Little-
Dog are dominated on θ and θ̇ . Roughly speaking, these
states represent its “inverted pendulum” state, which is a
common reduced model for walking and running robots.
Although we derive a controller in the full state space,
the optimization is heavily weighted towards regulating
θ and θ̇ .

5.2. Simulation Results

We have simulated the transverse-linearization controller
with a number of RRT-generated bounding trajectories. For
some trajectories over flat terrain in simulation, we were
able to stabilize these trajectories even when adding a com-
bination of: (1) slight Gaussian noise to the state estimate
(σ = 0.01 for angles, σ = 0.08 for velocities), (2) signifi-
cant velocity perturbations up to 1 rad s−1 after each ground
impact, (3) model parameter estimation error of up to 1 cm
in the main body COM position, and (4) delays of up to
0.04 seconds. In this section we will show some results of
stabilization on two example terrains: bounding up stairs
and bounding over logs.

Since the impact map is the most sensitive and difficult-
to-model phase of the dynamics, we can demonstrate the
effectiveness of the controller by adding normally dis-
tributed random angular velocity perturbation to the passive
(stance–ankle) joint after each impact. Figure 16 shows
example trajectories of LittleDog bounding up stairs (per-
turbations with standard deviation of 0.2 rad s−1), and Fig-
ure 17 shows it bounding over logs (perturbations with
standard deviation of 0.1 rad s−1).

In each figure, the trajectory of the COM is plotted for
three cases: (1) the nominal (unperturbed) motion, as com-
puted by the RRT planner, (2) running the nominal control
inputs open-loop with passive-joint velocity perturbations,
and (3) the transverse-LQR stabilized robot with the same
perturbations. One can see that for both terrains, after the
first perturbation, the open-loop robot deviates wildly and
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Fig. 16. Illustration of bounding up steps with center-of-mass trajectories indicated for nominal, open loop with perturbations, and
stabilized with perturbations.

Fig. 17. Illustration of bounding over logs with center-of-mass trajectories indicated for nominal, open loop with perturbations, and
stabilized with perturbations.

falls over. This shows the inherent instability of the motion.
In contrast, the stabilized version is able to remain close to
the nominal trajectory despite the perturbations. Videos of
these trajectories can be found in Multimedia Extension 1.

We analyze this behavior in more detail in Figure 18.
Here we depict the phase portrait of the COM angle θ

and its derivative θ̇ during a single bound for the same
three cases. This coordinate is not directly actuated, and
can only be controlled indirectly via the actuated joints.
Note that the nominal trajectory comes quite close to the
state θ = π/2, θ̇ = 0. This state corresponds to the robot
being balanced upright like an inverted pendulum, and is
an unstable equilibrium (cf. the separation of trajectories
in Figure 5). One can see that when running open-loop, a
small perturbation in velocity pushes the robot to the wrong
side of this equilibrium, and the robot falls over. In contrast,
the transverse-LQR stabilized robot moves back towards the
nominal trajectory.

5.3. Experimental Results

We are currently working to implement the transverse-LQR
system on the real robot. At present, the main difficulty
stems from the measurement system on the experimental
platform, seen in Figure 15. In order to implement our con-
troller, we must have knowledge of the state of the robot,
and in experiments this is derived from a combination of
an on-board IMU, motor encoders, and the motion-capture
system.

The motion-capture system has quite large delays, of the
order of 0.02–0.03 s, and the IMU is noisy. Furthermore, the
joint encoders measure position of the motors, which can be
substantially different to the true joint positions due to back-
lash. When we implement our controller on the real robot,
we typically see large, destabilizing oscillations. We can
reproduce similar oscillations in our simulation by includ-
ing significant noise and delay in the state estimate used for
feedback control (see Figure 19).
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We believe that if we can obtain better state estimates
with less noise and reduced delay, we will be able to achieve
stable bounding on the real robot, but this remains to be
tried in future work.

6. Concluding Remarks and
Future Directions

In this paper, we have demonstrated motion planning for
the LittleDog quadruped robot to achieve bounding on very
rough terrain. The robot was modeled as a planar system

with a 16-dimensional state space. A physics-based simula-
tion was developed and identified using data from the real
robot. An efficient RRT-based planner was implemented.
This planner used motion primitives to reduce the size of the
action space, and also to produce smooth trajectories with-
out an optimization step. Task-space guidance was imple-
mented by sampling from a five-dimensional subset of the
state space. The reduction in sampling dimension ignores
pitch, vertical position, and velocities which significantly
improves search efficiency. To handle challenging dynamic
constraints associated with bounding, we used reachability
guidance, so that random samples were chosen such that
they were closer to reachable regions of the tree, rather than
to the tree itself. Doing so increases the likelihood that the
expansion step of the RRT algorithm can make progress in
the direction of the sample, which dramatically improves
RRT performance. The RRT motion planner was demon-
strated to achieve bounding over steps and over logs, with
terrain height differences corresponding to approximately
50% of the leg length. Without reachability guidance,
12 hours was not sufficient to plan in the otherwise iden-
tical conditions. Using task-space biasing and reachability
guidance, we were able to plan within minutes. A primary
reason for this is that a standard RRT implementation does
not look ahead. Many of the nodes on the outer edges of
the tree (the exact nodes which the Voronoi bias selects
most often, because they are near the unexplored regions
of state space) correspond to nodes that are either incapable
of bounding on the next step because not enough energy
is carried over, or have too much energy and no possible
action could be applied on the next step to keep the robot
from falling over. Expanding on these nodes is futile, but the
standard RRT will try to expand them repeatedly causing
the algorithm to fail to find a plan.

The motion primitives used for the motion planner were
tested on the robot, and shown to be capable of bounding
on rough terrain. The trajectories implemented on the robot
using the motion primitives are naturally smooth, and our
model captures the resulting dynamics quite well for short
trajectories. However, the forward simulation and the actual
behavior of the robot tended to diverge after about 1 second,
despite having a relatively elaborate physics model of the
robot that was identified on data collected from the robot.
This is not surprising since the robot trajectories from sim-
ilar initial conditions can diverge when executing the same
open-loop trajectories. To address this, a transverse-LQR
feedback controller was developed to stabilize the motion
plan returned by the RRT. Unlike standard time-varying
LQR methods, the transverse LQR makes no attempt to
force the robot to converge to a trajectory in time, but rather
forces it to converge to the trajectory as a path through
state space, i.e. it is orbitally stabilizing. This makes it sub-
stantially more robust than regular LQR for underactuated
systems. This type of control was shown to handle moderate
disturbances as well as small delays in simulation. Signifi-
cant delay and noise in the state estimate were shown to be
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destabilizing in simulation, producing similar behavior to
what is observed on the real robot. In the future, we plan to
address these issues by implementing better state estimation
techniques, including a model-based observer, and continue
the development of improved feedback control strategies.

In this work, the robot was assumed to be planar in order
to reduce the state dimension for planning. As future work,
the constraint that left and right feet move as one may be
relaxed in order to extend this work to the 3D world where
terrain heights are not even on both feet. The feet may be
commanded different heights in order to conform to the
terrain, while the planner assumes the foot position to be
the average of the left and right foot positions. It would
also be interesting to try to stabilize yaw and roll by asym-
metrically changing the foot height on the right and left
feet while bounding. Another direction for improving the
planner would be to better characterize more of the reach-
able set, perhaps by incorporating knowledge about nearby
terrain. Lastly, we believe the proposed motion planning
approach can be generalized, and applied to a variety of
other systems. In the near future, we expect to try a similar
planning algorithm on a dynamic biped to achieve walking
over rough terrain, and on a forklift operating in a highly
constrained environment.
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Appendix A: Ground Interaction Model

This appendix gives on overview of the computation of
ground contact forces for the LittleDog model.

Ground contact models can be discrete or continuous (see
Gilardi and Sharf (2002) for an overview). Discrete colli-
sion modeling can range from using a constant coefficient
of elasticity to more advanced approaches that can predict
slipping behavior and the presence or absence of bounce
(Berges and Bowling 2006). Discrete modeling is advan-
tageous because of its simplicity, but is not well suited
to LittleDog, because it assumes an instantaneous change
in momentum, whereas on the robot compression of shin
springs extends the collision duration to a time scale com-
parable with the rest of LittleDog dynamics. Continuous
impact modeling is more suited for LittleDog and can be
subdivided into modeling the forces normal and tangential
to the surface.

The continuous ground contact model presented here
carefully computes the interaction of LittleDog feet with
rough terrain, allowing it to predict shin-spring displace-
ment, foot roll, foot slip, compliance and energy dissipation
during ground collision, and bounce when too little energy
is dissipated.

A.1. Terrain Model and Foot Roll

The feet on LittleDog are small rubber balls about 2 cm in
diameter. When the angle of the leg to the terrain changes,
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the ball rolls, producing a noticeable displacement. This is
equivalent to a movement of the ball’s center along a dif-
ferent terrain, which is offset from the original by the foot
radius. To account for this effect, given a terrain height map,
γ ( x), a new terrain height map, γ ∗( x), is computed such
that every point on it is exactly one ball radius, rb, away
from the original terrain:

rb = minz

{
( γ ∗( x)−γ ( z) )2 + ( x− z)2

}
,∀x

γ ∗( x) > γ ( x) ,∀x (8)

Both height maps can be seen in Figure 3, where the bottom
light blue horizontal line is γ ( x), the original terrain, and
the black line above it is γ ∗( x), the terrain computed by
Equation (8). In this case, γ ∗( x)= γ ( x)+rb, but this is not
generally true for non-flat terrain.

When a LittleDog foot rolls, the velocity of the foot cen-
ter is different from the velocity at the ground contact by
rbθ̇ , where θ̇ is the absolute angular velocity of the foot.
The new height map and the adjustment to ground contact
velocity completely capture the foot roll behavior.

All ground contact computations use the new height map,
γ ∗( x), referred to as “the terrain” below. A function for the
slope of the terrain, α( x), is computed from γ ∗( x).

A.2. Ground Friction Model

The friction force between the ground and the feet is
assumed to be a smooth function of velocity and to be
tangent to the ground surface:

Ff

N
= Kf arctan( Kdṡ) . (9)

Here, Ff is the friction force, N is the surface normal force,
ṡ is the ground contact velocity, and Kf and Kd are model
parameters.

To fit the data, the robot was commanded to hold its
legs straight and placed on an inclined surface. The steady-
state velocity as well as the normal and tangential forces
were measured for a variety of slopes and are shown in
Figure 20, along with a fit of the friction model.

For high magnitudes of velocity, the friction force equa-
tion resembles that of Coulomb friction. As the magnitude
decreases, the force drops off to smoothly change direc-
tion at zero velocity. The smoothness of the function is
important for integration purposes and seems to be a good
approximation except for extremely small velocities. At
small velocities, the friction coefficient is small and might
produce drift, but it is negligible in typical timescales of
a simulation run (less than 1 minute). An arc-tangent was
selected for the functional form because it fits the available
data well, but other sigmoids could be used.

A.3. Ground Forces Computation

A diagram of a foot in collision with flat terrain is shown in
Figure 21. The figure shows a portion of the robot shin in

−0.1 −0.05 0 0.05 0.1 0.15
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Ground Contact Velocity (m/s)

F
f/N

Fig. 20. Friction coefficient versus steady-state velocity on an
inclined plane.

Fig. 21. Ground contact model. A foot with a center at [px, py] is
attached to a shin spring of length l at an angle of θ to the terrain.
The foot penetrates a distance h into the ground, which is mod-
eled as a compressible plane. A velocity-dependent friction force
is applied at the point of ground contact. The terrain angle at the
ground contact point is equal to α, and is not shown in the figure.

the top right, connected to the shin spring of length l, which
is modeled as a non-linear spring damper. Connected to the
shin spring is the foot, the center of which is shown below
the ground in the figure at position [px, py]. The center of
each foot is computed from the current state of the robot.
Whenever a foot center [px, py] is below the terrain, py <

γ ∗( px), the foot is considered to be in collision.
The foot below the shin spring is assumed to be massless.

Therefore, the sum of forces acting on it is zero and is given
by

�Ff + �N + �M + �P = 0, (10)
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where Ff is the friction force, N is the normal force, M is the
shin-spring force, and P is the perpendicular force applied
on the foot by the spring housing.

The normal force model uses a non-linear spring damper
of the form introduced by Hunt and Crossley (1975):

N = Khh( 1− ζhḣ) , (11)

where h is the penetration depth, ḣ is the rate of change
of the penetration, and Kh and ζh are constants. Compared
with linear damping, it has the advantage of being continu-
ous across the ground contact and avoiding sticking forces
between surfaces for almost all cases (Marhefka and Orin
1996). The penetration depth, h, is computed as the shortest
distance between the foot center and the height map, γ ∗( x),
and is perpendicular to the height map. Since on the actual
robot the foot cannot overlap the terrain, it is assumed that
any overlap is due to compliance in the leg, the rubber foot,
or the ground.

Note that ḣ is an algebraic function of [ṗx, ṗy], the foot
center velocity, which in turn is an algebraic function of the
known robot state and l̇. Unlike l, l̇ is not a part of the state,
so ḣ cannot be computed directly. The normal force is affine
in l̇, so, for a robot in state x, Equation (11) can be rewritten
as

N = Nx( x)+Nl( x) l̇, (12)

where Nx( x) an Nl( x) are non-linear functions of the state.
The actual shin spring on the robot is limited in its range

of travel. During a bounding motion, it is typical for the
spring to reach the limits of motion, where it hits a hard
stop. The spring is modeled as linear in its normal range
and to have a hard collision at the travel limits of the same
functional form as the normal force. Assuming a rest length
of l0, the displacement from rest is δl = l− l0, and the range
of travel for δl is between 0 and lmax, the force is given by

M =

⎧
⎪⎨

⎪⎩

Ksδl + bs l̇ + Kcδl( 1+ ζl l̇ ) , δl < 0

Ksδl + bs l̇, 0 ≤ δl < lmax

Ksδl + bs l̇ + Kc( δl − lmax) ( 1− ζl l̇ ) , lmax ≤ δl,
(13)

where Ks and Kc 
 Ks are stiffness parameters, and bs and
ζl are damping parameters. Similarly to the normal force,
the spring force is affine in l̇ and can be written as

M = Mx( x)+Ml( x) l̇ (14)

for some non-linear functions of the state Mx( x) and Ml( x).
The friction force is given by Equation (9), where ṡ is the

velocity of the foot center along the height map γ ∗( x) and
can be computed from the state of the robot x, the slope of
the terrain at the ground contact α, and l̇.

The force applied to the foot by the spring housing, P,
is unknown, but can be eliminated from the force balance
by only considering the component of Equation (10) that
is orthogonal to P. Noting that M ⊥ P, Ff ⊥ N , the angle

between the spring and the ground is θ−α, and substituting
(9) into (10) gives

0 = Ff cos( θ − α) + N( x, l̇ ) sin( θ − α)−M( x, l̇ )

= [Kf arctan ( Kdṡ( x, l̇ ) cos( θ − α) )+ sin( θ − α) ]

N( x, l̇ )−M( x, l̇ ) , (15)

which is just a function of the robot state and l̇, and where
N( x, l̇)and M( x, l̇) are given by Equations (11) and (14),
respectively.

By approximating the arc-tangent function, Equation
(15) is used to find l̇, which is then used to find the normal
and friction forces using Equations (11) and (9). The forces
are then applied to the appropriate point of the rigid five-
link model and l̇ is used to update the shin-spring length.
Although for some parameters and system states, Equa-
tion (15) might have multiple solutions for l̇, in practice,
the l̇ with the lower magnitude can be chosen as the physi-
cally plausible solution. All of the ground interaction forces
are dissipative, so the dynamics are guaranteed to remain
stable.

For a foot not in collision, no forces are applied on the
foot, so Ff = N = 0→ M = 0. The rate of change of the
shin length is then, from Equation (14),

l̇ = −Ml( x)

Mx( x)
, (16)

which is a fast, stable non-linear system that drives l to l0
quickly after the foot leaves the ground.

Appendix B: Model Parameters

The motor model was assumed to be independent of the
other parameters and fit to real joint trajectory data. The
fit accurately predicts the behavior of the joints, as seen in
Figure 4, which shows the model performance on a dif-
ferent trajectory. The friction coefficients in the ground
force model were fit to steady-state sliding as described
in Appendix A. The rest of the ground contact model was
identified by commanding the robot to hold its legs straight
down, parallel to each other, dropping it vertically onto
flat terrain, and fitting the parameters to the resulting body
trajectory.

The total mass of the robot, the lengths of each link, and
the maximum shin spring travel were measured directly.
The remaining parameters, including inertias of the links,
the mass distribution between the links, and COM loca-
tions, were fit to a large number of short bounding trajecto-
ries. The cost function for the fit was a quadratic form on the
distance between actual and simulated feet positions, which
captures the effect of the three unactuated variables (x, y,
and body pitch), neglecting the unactuated shin springs that
are not considered to be a part of the configuration.

All of the fits were computed with non-linear func-
tion optimization (using MATLAB’s fminsearch). In total,
34 parameters were fit for the model. Table 1 lists the
parameters and their values.
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Table 1. LittleDog model parameters.

SymbolValue Units Description

Rigid-body model

Shin

m1 0.13 kg Mass of shin
l1 9.2 cm Length of shin
I1 7× 10−5 kg m2 Inertia of shin
cx1 5.7 cm Center of mass in x for shin
cy1 0.3 cm Center of mass in y for shin

Upper leg

m2 0.24 kg Mass of upper leg
l2 7.5 cm Length of upper leg
I2 6× 10−6 kg m2 Inertia of upper leg
cx2 4.8 cm Center of mass in x for upper leg
cy2 −0.9 cm Center of mass in y for upper leg

Main body

m3 2.3 kg Mass of body
l3 20.2 cm Length of body
I3 2.2× 10−3kg m2 Inertia of body
cx3 8.7 cm Center of mass in x for body
cy3 −0.2 cm Center of mass in y for body

Motor model

Hip joint

khip 3,800 s−2 Hip gain
bhip 98 s−1 Hip damping
v̄hip 7.9 rad s−1 Hip velocity saturation
āhip 200 rad s−2 Hip acceleration saturation

Knee joint

kknee 9,700 s−2 Knee gain
bknee 148 s−1 Knee damping
v̄knee 12 rad s−1 Knee velocity saturation
āknee 430 rad s−2 Knee acceleration saturation

Ground contact model

Friction

Kf 0.5 — Friction gain
Kd 1,000 s m−1 Friction velocity slope

Normal spring

Kh 1.4× 105 N m−1 Ground stiffness
ζh 1.4 s m−1 Ground damping

Shin spring

Ks 7,500 N m−1 Spring linear stiffness
bs 180 Ns m−1Spring linear damping
Kc 7,500 N m−1 Spring limit stiffness
ζl 180 s m−1 Spring limit damping
lmax 0.88 cm Maximum spring travel

(spring limit)
β 0.29 rad Angle between spring and shin joint
rb 1.0 cm Foot radius

For the rigid body model, the parameters are heavily cou-
pled and some of the individual values might not be accu-
rate. This is true of the inertias and to some degree of the
centers of masses. Because the planar model lumps two Lit-
tleDog legs into a single leg, the leg masses and inertias,
as well as some of the stiffnesses and damping values, are
twice as large as their physical counterparts for a single leg.

The length of the shin is given from the knee joint to
the foot center, assuming full extension of the shin spring.
Centers of masses are given in the reference frames of their
links, with x pointing along its link and y perpendicular to
it in a right-handed convention. The origin of the back shin
is at the back foot and x̂ points toward the knee joint, the
origin of the back upper leg is at the knee joint and its x̂
points toward the hip joint, and the origin of the body is at
the back hip joint, with its x̂ pointing toward the front hip
joint. The front links have mirror symmetry with the back
legs.

Appendix C: Index to Multimedia Extensions

The multimedia extension page is found at http://www.
ijrr.org

Table 2. Table of Multimedia Extensions

Extension Type Description

1 Video Simulation results: demonstration
of motion plans over rough
terrain, and feedback stabilization
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