
Motion Planning for Bounding on Rough Terrain
with the LittleDog Robot

Alexander Shkolnik, Michael Levashov, Sara Itani and Russ Tedrake

Abstract— In this paper we develop an RRT-based motion
planner that achieved bounding in simulation with the LittleDog
robot over extremely rough terrain. LittleDog is a quadruped
robot that has 12 actuators, and a 36-dimensional state space;
the task of bounding involves differential contstraints due to
underactuation and motor limits, which makes motion plan-
ning extremely challenging. Rapidly-exploring Random Trees
(RRTs) are well known for fast kinematic path planning in high
dimensional configuration spaces in the presence of obstacles,
but the performance of the basic RRT algorithm rapidly
degrades with addition of differential constraints and increasing
dimensionality. To speed up the planning we modified the basic
RRT algorithm by (1) biasing the search in task space, (2)
implementing the Reachability-Guided RRT, which dynamically
changes the sampling region, and (3) by implementing a motion
primitive which reduces the dimensionality of the problem.
With these modifications, the planning algorithm succesfully
generated plans over very rough terrain. Short trajectories were
demonstrated to work open-loop on a real robot.

I. INTRODUCTION

Agile locomotion over rough terrain seems easy for ani-
mals, but has proven very challenging for robots. Reliable
mobility within human environments is currently a limiting
factor preventing robots from being utilized more in society.
In this work we present progress towards achieving agile
locomotion over rough terrain using the LittleDog robot.
LittleDog is a small 3kg position controlled quadruped robot
with point feet and was developed by Boston Dynamics
under the DARPA Learning Locomotion program. Our task
is to navigate known uneven terrain, as quickly as possi-
ble. An A* based motion planning algorithm can be used
to generate a statically-stable gait for walking over rough
terrain. To speed up the motions and make the robot capable
of traversing more difficult terrain, dynamic maneuvers are
necessary. Such maneuvers consist of lifting several feet at
the same time. While improving gait speed, this behavior
eliminates the support polygon, which makes planning and
control more difficult. We have previously demonstrated the
ability to introduce short stereotyped dynamic maneuvers
into a gait, while relying on the intermittent existence of
a support polygon to regain control between motions [1].

A. Shkolnik is a PhD candidate in EECS at the Computer Science and
Artificial Intelligence Lab, MIT, 32 Vassar St., Cambridge, MA 02139, USA
shkolnik@mit.edu

M. Levashov is a PhD candidate in the dept. of Aeronautics
And Astronautics, MIT, 32 Vassar St., Cambridge, MA 02139, USA
levashov@mit.edu

S. Itani is an undergraduate in EECS, MIT, 32 Vassar St., Cambridge,
MA 02139, USA levashov@mit.edu

R. Tedrake is an Assistant Professor of EECS at the Computer Science
and Artificial Intelligence Lab, MIT, 32 Vassar St., Cambridge, MA 02139,
USA russt@mit.edu

Doing more agile maneuvers continuously over rough terrain
is intuitively what an animal would do, but is a challenging
motion planning problem on many levels.

The LittleDog robot, like many robots used in walking
research, is moderately stiff, designed to accurately position
its joints (limbs). The robot uses a high gear ratio, making
the joints non-backdriveable, and has limited compliant ele-
ments. The large gear ratio enables an onboard PD controller
to generate precise movements with little regard for applied
torques. Although these types of robots have fairly good
position accuracy, the design trade-offs include a limit on the
maximum speed of motion and inability to transfer between
kinetic and potential energy via compliant mechanisms.
These limitations present a significant challenge in achieving
highly dynamic maneuvers over rough terrain where position
accuracy is also required. In this work we utilize task-space
biasing and reachability-guidance to implement an RRT-
type motion planning framework to quickly find feasible
bounding motion plans, in which the robot alternates between
supporting itself with the hind legs and the front legs. The
RRT respects the kinodynamic constraints, and the generated
plans can then be locally optimized and executed on the robot
with feedback stabilization. The focus of this paper is on the
motion planning component itself.

The remainder of this paper is organized as follows: 1)
we begin by reviewing background information, including
alternative approaches to achieve legged locomotion; 2) a
framework for bounding is presented, including discussion
of a physics based model of the LittleDog robot and various
constraints that are imposed; 3) we review the concept of
Reachability Guidance (RG) to improve RRT search speed
for dynamic systems; 4) this is followed by discussion of a
simple motion primitive for bounding, which fits neatly into
the RG framework; 5) we then describe a sampling strategy
based on the motion primitive which is of reduced dimension
so as to produce a Task Space bias; 6) a fast method for
approximating the Reachable set is presented; 7) Results are
described, which demonstrate fast bounding motion planning
in simulation over extremely rough terrain, and feasibility of
the approach is explored by experiments using the motion
primitive executed open loop on the LittleDog robot hard-
ware; 8) we conclude with discussion.

II. BACKGROUND

The problem of fast locomotion over rough terrain has
long been a research topic in robotics, beginning with the
seminal work by Raibert in the 1980’s [2], [3]. Many of
the past approaches have utilized compliant or mechanically

clever designs that enable passive stability, or reflexive
control algorithms that tend to react to terrain in an attempt
to enforce stability with “local feedback”. Such methods do
not take into account knowledge about upcoming terrain.
Kinodynamic planning algorithms have also made significant
headway, but have been used mostly for kinematic path plan-
ning in configuration space, focusing on maneuvers requiring
dexterity and obstacle avoidance, but where velocities are
not important for the task. Such an approach excludes agile
locomotion that relies on dynamic gaits, which is sensitive
to configurations and velocities. In this work we attempt to
bridge this gap, by demonstrating a framework for fast global
motion planning that respects kinodynamic constraints. This
is a necessary step to enable agile locomotion on a position
controlled robot, and would be complemented by local
trajectory optimization, feedback stabilization, a good model
of the dynamics as well as good sensing of the state and
environment. The benefit of a model based approach is that
inherent limitations of the system, which are present in many
robots, can be taken into full consideration when determining
a motion plan, enabling a generalized controller.

Work in legged robotics can be approximately classified
into three categories: 1) passively stabilizing, e.g. through
clever mechanical design, 2) actively stabilizing by reflex-
ively adjusting a gait, and 3) locomotion with careful foot
placement.

In the first category, in one extreme, there are passive
dynamic walkers that require little or no control input or
even actuators in order to walk if provided with a flat,
slightly downward sloping surface [4]. Many other robot
systems utilize open loop walking or bounding gaits, and
through the coupling between the mechanical system and
careful gait design, attain desired behavior even with small
disturbances in the terrain. For example, quadruped robots
with elastic elements in the joints can bound using very
simple frequency or gait-based control algorithms thanks to
the mechanical design [5]. Other approaches utilize adaptive
control together with similar designs with elastic elements
to constantly tune CPG or harmonic based gait parameters
online, e.g. [6]–[9]. These approaches can achieve moderate
speed, and are stable over mildly varying terrain, but are
reactive, and do not preempt the gait with knowledge of
upcoming terrain. Another very successful example is Rhex
[10], which was developed around the concept of anchoring
a hexapod robot to a simplified dynamic model that can
be easily controlled, but also relies on clever mechanical
design for stabilization on rougher terrain and is not capable
of careful foot placement. The Raibert / Leg Lab hopper
robots also rely on simplification of the problem, for example
by relying on an aerial phase of the gait, and assuming
that (near) massless legs can move into landing position
without impacting the dynamics of the rest of the system
[2]. This approach has worked well, and research continues
on the BigDog platform [11], but requires powerful (typically
hydraulically driven) actuators.

Many robots utilize high frequency feedback for stabiliza-
tion. Many of the position controlled bipeds use it for ZMP

Fig. 1. Dog bounding up stairs.
Images from video at http://www.flickr.com/photos/istolethetv/3321159490/

stabilization [12], [13], while BigDog uses it for pitch and
roll stabilization. TVLQR or LQR based on transverse lin-
earization [14] can also be used. However, with the exception
of the biped community, most of the approaches discussed
so far utilize reactive feedback for stability, and do little in
terms of careful foot placement which will be required for
traversing rougher terrain. The Learning Locomotion project,
utilizing the LittleDog robot, has pushed the envelope on
walking control using careful foot placement. Much of this
work has combined path planning and motion primitives to
enable crawling gaits on rough terrain e.g. [15], [16].

III. FRAMEWORK

We use a five-link planar rigid-body model of LittleDog,
with continuous dynamics obtained by system identification,
with discrete-time control decisions made at 100Hz. The
planar model assumes that the back legs move together as
one and the front legs move together as one. For control
purposes, we define the dynamics as

x[n+ 1] = f(x[n],u[n]), (1)

Fig. 2. Sketch of a virtual obstacle function, Γm(x) in relation to the
ground, γ(x).

where x ∈ X = [q, q̇], q is the 7 dimensional (two posi-
tions, pitch, and 4 joint angles) configuration space. f comes
from a fixed-step 4th order Runge-Kutta integration of the
continuous model fit from our system identification proce-
dure. A stateless ground model was implemented, assuming
a spring in the leg, e.g. a spring mounted approximately
parallel to the lower leg located at the foot, in addition
to a stiffer vertical spring in the ground itself. A friction
model controlled horizontal sliding. In total there were 35
parameters of the system which were fit.

Given an initial condition x0, a goal center of mass loca-
tion, xG, and a ground height function γ(x), we formulate
the trajectory design problem as:

min
u[1],...u[nf]

nf∑
n=1

(u[n]− qa[n])TR(u[n]− qa[n]),

subject to
x(0) = x0,

comx(x[nf]) ≥ xG,
∀i ∈ [1, ..., 4],∀n |q̇a,i[n]| ≤ vlimi,

∀i ∈ [1, ..., 4],∀n |q̈a,i(qa,i[n], q̇a,i[n], ui[n])| ≤ alimi,

∀i ∈ [1, ..., 4],∀n |τi(x[n],u[n])| ≤ taulimi,

∀l ∈ [1, 2],∀n footposz(x[n], l) ≥ Γm(footposx(x[n], l),

where mn+1 ∈ [mn,mn + 1] = S(mn, xn) (2)

where vlimi, alimi and taulimi are the i’th motor velocity
acceleration and torque limits. qa is the position vector of
each actuated joint, and therefore (u − qa) is correlated
with the motor torque. The functions z = Γm(x) are virtual
obstacle functions, an example of which is sketched in
Figure 2. The enumerator, m, is the current sub-motion
being performed, and is kept track of by a state machine
S. Sub-motions in the context of this paper are based on
motion primitives which will be described in depth below.
In this paper, the state machine simply increments when
a foot touches the ground between bounding motions. The
Γm(x) function shown above provides a virtual constraint
which ensures that feet during stance do not slip much,
and requires the front foot to achieve some clearance over
the ground when moving it forward. The function Γm+1(x)
would prevent the front foot from slipping, while ensuring
the back foot clears the terrain briefly when making forward
progress. In this paper, the Γ virtual obstacle functions are
defined by the feet positions of the robot at the time when
the state machine increments. An alternative strategy, not
pursued further in this work, is to utilize a higher level foot-
hold planner, and predefine the Γ functions around these
footholds.

IV. REACHABILITY-GUIDED RRT OVERVIEW

Random sample based planning methods such as the
RRT can be very fast for certain applications. However,
such algorithms depend on a distance metric to determine
distance from samples to nodes in the tree. The Euclidean
distance metric is easy to implement, and works well for

holonomic path planning problems, but this metric breaks
down when constraints imposed by the governing equations
of motion restrict the direction that nodes can grow to.
To deal with this, we developed a modified version of the
RRT algorithm called the Reachability-Guided RRT (RG-
RRT) [17]. Reachability-guidance biases the RRT search
toward parts of state space that are locally-reachable from
the tree. Reachability information is stored in each node in
the tree; the algorithm works by sampling, and measuring
the Euclidean (or scaled-Euclidean) distance to each node
in the tree, as well as to each reachable set of the tree. If a
sample is closer to the tree itself, rather than to the reachable
set of the tree, then there are no actions which are able to
extend that node in the direction of the sample, and therefore
such a sample-node pair is not useful for exploration, and is
discarded. On the other hand, if the sample is nearest to a
reachable region of the tree, the parent node corresponding
to the reachable region is grown towards the sample. Thus,
by keeping track of locally reachable parts of the tree, and
using a simple Euclidean type distance metric, the algorithm
is able to overcome many of the inherent difficulties when
implementing an RRT for dynamic systems.

In this work, we show that the RG-RRT algorithm can
be useful for motion planning in a system with motion
primitives. Conceptually, a motion primitive in a dynamic
system is one which occurs over a fairly substantial duration
of time, e.g. an action which moves the system from one state
to another state that is relatively distant from the current one.
Therefore, the states produced by taking macro actions or
motion primitives may be discontinuous or even discrete in
relation to a generating state - which would invalidate the use
of a proper Euclidean distance metric that assumes a smooth
continuous space of actions. The idea of Reachability can
be an especially powerful notion for sample based planning
in the context of macro actions, as the Reachable region
does not have to be local to its parent node. Discrete actions
can be explicitly determined and stored as discrete reachable
states. Or, a continuous motion primitive action space can
also be approximated by a discretization of the action space,
resulting in a discrete set of reachable nodes which might
be quite far in state space from their parent node. This idea
suggests the RG-RRT also naturally extends to models with
hybrid dynamics, simply by integrating through the dynamics
when generating the reachable set.

Definition 1: For a state x0 ∈ X , we define its reachable
set, R∆t(x0), to be the set of all points that can be achieved
from x0 in bounded time, ∆t ∈ [∆Tlow,∆Thigh], according
to the state equations (1) and the set of available control
inputs, U .

The structure of the RG-RRT algorithm is outlined in
Algorithm 1. Given an initial point in state space, xinit,
the first step is to add the state as a node in the tree.
Given the point xinit, the INSERTNODE() function solves
for the set of reachable points in the state space that are
consistent with the differential constraints (1). For many
systems of interest, the approximate bounds of the reachable

Algorithm 1 T ← BUILD-RG-RRT(xinit)

1: T ← INITIALIZETREE();
2: T ← INSERTNODE(xinit, T);
3: for k = 1 to k = K do
4: xrand ← RANDOMSTATE();
5:

(
xnear, x

r
near

)
← NEARESTSTATE(xrand, T);

6: while xnear = {} do
7: xrand ← RANDOMSTATE();
8:

(
xnear, x

r
near

)
← NEARESTSTATE(xrand, T);

9: end while
10: u← SOLVEINPUT(xnear, x

r
near, xrand, T);

11: xnew ← NEWSTATE(xnear, u);
12: T ← INSERTNODE(xnew, T);
13: end for
14: return T

set can be generated by discretizing the action space, and
then integrating the corresponding dynamics forward using
any favored integration method. In some cases, with a short
enough ∆t, taking actions between the limits results in
an integrated state that lies between the states produced
when taking the actions at their limits. In such cases it is
sufficient to consider only the bounds of the action set. The
reachable set may also be approximated or learned. When
the dimension of the action space increases, in particular, it
may become more efficient to approximate the reachable set
with a simple geometric function, for example an ellipsoid, if
such a function can approximate the actual reachable volume.
One benefit of generating the reachable set using discretized
actions is that points that comprise the reachable set can also
be efficiently tested for collisions before they are added to the
Reachable set, in order to reduce the likelihood of trajectories
leaving free space as part of the exploration phase.

With the node and its corresponding reachable set added
to the tree, we draw a random sample, xrand, in state space,
typically from a uniform distribution, and use it to grow the
tree. The NEARESTSTATE(xrand, T) function compares the
distance from the random sample not only to the nodes, but
also to the points within their reachable sets. If the closest
Reachable point is closer to the sample than the closest node
of the tree, then both this reachable point, xrnear, and its
corresponding parent node, xnear, are returned. Otherwise,
if the closest node of the tree is nearer to the sample than
any Reachable point, the function returns an empty point
pair, in which case the RG-RRT throws this sample away,
and draws a new sample from the state space and repeats the
process. As demonstrated in Figure 3, the sampling domain
in the RG-RRT is dynamic, and adapts to the tree as the tree
expands, producing a Voronoi bias that is customized by the
system dynamics defined by the tree.

V. MOTION PLANNER

A. Macro-Actions / motion-primitive

The choice of action space, e.g. how an action is defined
for the RRT implementation, will affect both the RRT search

−4 −3 −2 −1 0 1 2 3
−8

−6

−4

−2

0

2

4

6

8

θ

θ̇

(a) 30 nodes

−4 −3 −2 −1 0 1 2 3
−8

−6

−4

−2

0

2

4

6

8

θ

θ̇

(b) 60 nodes

Fig. 3. RG-RRT Voronoi diagrams for a pendulum. The blue diagram
in (a) corresponds to the tree after 30 nodes have been added while that
in (b) corresponds to the tree with 60 nodes. Magenta dots are discretely
sampled reachable points affiliated with the tree. Green regions are areas
where samples are ‘allowed’, and correspond to Voronoi areas associated
with the reachable set. Samples that fall in any grey areas are discarded.
Note that these regions are constantly changing as the tree grows.

efficiency, as well as completeness guarantees, and perhaps
most importantly, path quality. In the case of planning
motions for a 5 link planar arm with 4 actuators, a typical
approach may be to consider applying a constant torque (or
some other simple action in joint space) that is applied for
a short constant time duration, ∆T . One drawback of this
method is the resulting trajectory found by the RRT will
likely be jerky. A smoothing / optimization post-processing
step may be performed, but this may require significant pro-
cessing time, and there is no guarantee that the local minima
near the original trajectory be sufficiently smooth. Another
drawback of using a constant time step is that in order to
ensure completeness with such an action space, ∆T should
be relatively small (for LittleDog bounding, we found that .1
seconds seems to be appropriate). Empirically, however, the
search time increases approximately in proportion to 1/∆T ,
so this is a painful trade-off.

For a stiff PD controlled robot, such as LittleDog, it
makes sense to have the action space correspond directly
to position commands. Thus, a desired trajectory over ∆T
can be generated using a smooth function G : [x,u,∆T] 7→
X[0,∆T] constrained to have the initial position and velocity

of the start node, x, and a given end position and velocity
specified by u. This action set requires specifying two
numbers for each actuated DOF, one for position, one for
velocity. A smooth function generator which obeys the end
point constraints, for example a cubic-spline interpolation,
produces a trajectory which can be sampled and sent to the
PD controller.

Fig. 4. First half of a double bound. Initial pose shown in red, final pose
shown in magenta. Axes are in meters.

Fig. 5. Second half of a double bound. Initial pose shown in red, final
pose shown in magenta. Notice that in both of these figures, the swing foot
”tucked in” in order to clear the step.

If one considers bounding in particular and examines how
animals, and even some robots such as the Raibert hoppers,
are able to achieve bounding behavior, one can see that
some simplifications can be made to the action space. This
results in a much longer ∆T and, therefore, a shorter search
time, while also producing smooth, jerk free trajectories. The
insight is based on the observation that a bound consists of
two phases: (1) rocking up on the hind legs while moving the
front legs forward and (2) rocking up on the front legs, while
the hind legs move forward. In phase-1, the hind legs begin
moving first, and the motion is always ”opening” the hip
angles. This produces a forward acceleration of the COM,
which ideally also generates a rotational moment around the
pseudo pin joint around the hind foot. In this case, the front
legs come off the ground, and they are free to move to a
position as desired for landing. In this formulation, the hind
legs move directly from starting pose to the ending pose
in a straight line. The front feet move from the start to
the end pose, however, because these feet are not weight
bearing, it is useful to ”tuck” the feet while moving them in
order to help avoid obstacles. Once the hind legs and front
legs have reached their desired landing pose, the remaining

trajectory is held constant until the front legs impact the
ground. Examples of such a trajectory are shown in Figure
4 and the top image in Figure 6.

A similar approach is utilized to generate motions for the
second phase of bounding, with the difference that the hip
angles are ”contracting” instead of ”opening up”. The front
leg begins the movement just before impact with the ground,
and the back leg may be delayed slightly. The resulting
motions are shown in Figure 5 and the second image in
Figure 6.

Note that the start and end velocities in this motion
primitive are always zero, a factor which reduces the ac-
tion space further. Using these motion primitives requires
a variable time step, ∆T , because this directly influences
accelerations and, therefore, moments around the passive
joints. However, for each phase, one only needs to specify
4-DOF, corresponding to the end pose of the system at the
end of the phase.

B. Sampling in Task Space

In the RRT algorithm, sampling is typically performed uni-
formly over the Configuration Space, and actions are taken
either to move directly towards the sample, or actions may
be sampled uniformly over the Action Space. Such sampling
creates a Voronoi Bias for fast exploration by often selecting
nodes of the tree near unexplored regions, while occasionally
refining within explored regions. We have previously shown
that the Voronoi Bias can exist in the Configuration (State)
Space, or it can be implemented in a lower dimensional
Task Space [18]. Reducing the dimensionality of the search
with a Task Space Voronoi Bias can significantly improve
search efficiency and, if done carefully, does not impact the
completeness of the algorithm.

As described in the previous section, our action space
involves a half-bound (half a period of a complete bound). At
the start and end of an action (e.g. the state at any given node
on the tree), the robot is approximately touching the ground
with both feet, and joint velocities are approximately zero.
Samples are therefore similarly constrained. Additionally,
samples are chosen such that they are not in collision, and
respect joint bounds, with some minimum and maximum
stance width. The region in actuated joint space can be
mapped to a region in Cartesian space for the back and front
foot, corresponding to a 4-dimensional manifold. A sample
is drawn by first choosing an x position of the robot, and then
selecting 4 joint angles from the manifold, while checking
to ensure that collision constraints are validated.

Given a sample described above, the y-coordinate of the
foot is set to the ground position at x, and the passive joint is
computed by the constraint that both feet are on the ground.
Thus, sampling the 5 dimensional space maps to a point
qs in the 7 dimensional configuration space of the robot.
When a sample is created, the closest node is found by
minimizing the Euclidean distance from the sample to the
Tree as well as to the Reachable Region of the Tree. The
sampling is repeated until a sample is found which is closest
to the Reachable region. An action, u, is then created by

Fig. 6. Bounding trajectory over logs

selecting the 4 actuated joint angles from the sample, qs.
An action time interval ∆T is chosen by uniformly sampling
from T ∈ [.4, .7] seconds.

C. Generating the Reachable Set

We have demonstrated that Reachability Guidance can
deal with issues imposed by dynamic constraints in systems
such as the pendulum and acrobot [17]. In those systems,
the action of the single actuator can be discretized, and
the reachable set was approximated by interpolating along
the resulting states achieved by applying the discrete set

Fig. 7. Bounding trajectory over logs, continued

of actions. For the work described here, however, even the
reduced 4-dimensional action space becomes too large to
discretize efficiently. For example, discretizing with only 3
actions per dimension, there would be 81 actions to apply
and simulate in order to approximate the reachable set for
each node.

Instead of discretizing in joint space, we found that the
reachable set can be better approximated by understanding
the failure modes of bounding. Failures may occur primarily
in one of three ways: 1) the robot has too much energy, and
flips over; 2) the robot has too little energy, so the stance
foot never leaves the ground, violating our assumption that
one foot always leaves the ground in a bounding gait; or 3) a
terrain collision occurs. In the case when the system has a lot
of kinetic energy, the best thing to do is to straighten all of
the limbs, which raises the center of mass, and converts the
kinetic energy into potential energy. On the other extreme,
if the robot does not have much kinetic energy, an action
that lowers the COM, while accelerating the limbs inwards
tends to produce a rotational moment if it is possible to do
so. Thus, two extreme motions can be generated, for each
phase of bounding, which prevent the two common failure
modes. The reachable set is then generated by interpolating
joint positions between these two extremes. Feasible actions
between these extremes are usually rich enough to produce
the desired bounding behavior, if it is possible for a given
node.

VI. RESULTS

The planning algorithm described in this paper was im-
plemented to successfully find bounding trajectories up a
series of 7cm steps, and was also successful in planning
bounds to get up on top of a terrain with artificial logs
with a maximum height difference of 8cm. An example of a
bounding trajectory is shown in Figures 6 and 7. The bottom
link in the robot leg is 10cm, and the top link is 7.5cm; if we
take into account that the bottom of the body is 3cm below
the hip, 7cm represents approximately 50% of maximum leg
travel of the robot, which corresponds to extremely rough
terrain.

Experimenting with the real robot, we found, as expected,
that openloop execution of the motion plan found by the RRT
diverges with time from model predictions. Trajectories are
typically unstable in the sense that given the same initial
conditions on the robot and a tape of position commands
to execute, the robot trajectories often diverge, sometimes
catastrophically. To demonstrate the feasibility of using our
motion primitives in our planning system we used the
motion primitives defined in this paper to find a short bound
sequence on the log terrain. Given that, unlike our model,
the logs are not planar, we laid tracks corresponding to the
stance width of the robot along the terrain and constrained
the system to only allow foot holds where the points on
adjacent tracks were of the same height. With some tuning,
we were able to find some actions that produced bounding
over the logs on the real robot, shown in Figure 8, using
the motion primitives described above. This trajectory was

successful approximately 20% of the time, even though we
took care to have the same initial position for each trial.

Trajectory optimization and feedback stabilization will be
required to enable the execution of the complete trajectory.
Feedback will help to compensate for model errors and the
inherent instability of the system itself, as demonstrated by
our experiments on the actual robot. We took great care to
ensure that our physics model is smooth and continuous, so
gradients can be used to help in these tasks, but the actual
implementation of a feedback controller is left to future
work.

Fig. 8. Bounding over logs with LittleDog

VII. CONCLUDING REMARKS AND FUTURE DIRECTIONS

In this paper we have demonstrated motion planning in
simulation of the LittleDog quadruped robot to achieve
bounding on very rough terrain. The robot has a 36 dimen-
sional state space, which was reduced to a 14 dimensional
state space in a planar model. A physics based model was
developed, and identified using data from the real robot. An
efficient RRT based planner was implemented. This planner
used motion primitives to reduce the size of the action space.
Corresponding to the idea of Task-space guided RRT search,
we sampled over a 5-dimensional manifold, with an injective
mapping to the full 14 dimensional state space, so that
the Euclidean distance metric could be applied efficiently.
To handle challenging dynamic constraints associated with
bounding, we used Reachability Guidance, so that random
samples were chosen such that they were closer to reachable
regions of the tree than the tree itself. Doing so ensures that

the expansion step of the RRT algorithm can make progress
in the direction of the sample, and this vastly improves RRT
performance. The RRT motion planner was demonstrated
to achieve bounding over steps and over logs, with terrain
height differences corresponding to approximately 50% of
the leg length. Without Reachability Guidance, 12 hours was
not sufficient to plan in the otherwise identical conditions.
Using task-space biasing and Reachabiliy Guidance, we were
able to plan within minutes. A primary reason for this is
that a standard RRT implementation does not look ahead.
Many of the nodes on the edges of the tree – the exact
nodes which the Voronoi Bias most often selects because
they are near unexplored regions of state space – correspond
to nodes that are either incapable of bounding on the next
step because not enough energy is carried over, or have too
much energy, and no possible action could be applied on the
next step to keep the robot from falling over. Expanding on
these nodes is futile, but the standard RRT will try to expand
them repeatedly causing the algorithm to fail to find a plan.

The motion primitives used for the motion planner were
tested on the robot, and shown to be capable of bounding
on rough terrain, including the logs terrain board that we
were able to plan on. The trajectories implemented on
the robot using the motion primitives are smooth, and our
model captures the resulting dynamics quite well for short
trajectories. However, the forward simulation and the actual
behavior of the robot tended to diverge after about 1 second,
despite having a relatively elaborate physics model of the
robot that was identified on data collected from the robot.
Future work can focus on constructing a feedback controller
that stabilizes the motion plan produced by the algorithm
disclosed in this paper.

ACKNOWLEDGMENT

This work was supported by the DARPA Learning Loco-
motion program (AFRL contract # FA8650-05-C-7262).

REFERENCES

[1] K. Byl, A. Shkolnik, S. Prentice, N. Roy, and R. Tedrake, “Reliable
dynamic motions for a stiff quadruped,” in Proceedings of the 11th
International Symposium on Experimental Robotics (ISER), 2008.

[2] M. H. Raibert, Legged Robots That Balance. The MIT Press, 1986.
[3] Raibert, M. H., Chepponis, M., Brown, and H. B., “Running on

four legs as though they were one,” IEEE Journal of Robotics and
Automation, vol. 2, no. 2, pp. 70–82, 1986.

[4] S. H. Collins, A. Ruina, R. Tedrake, and M. Wisse, “Efficient bipedal
robots based on passive-dynamic walkers,” Science, vol. 307, pp.
1082–1085, February 18 2005.

[5] F. Iida, G. Gomez, and R. Pfeifer, “Exploiting body dynamics for
controlling a running quadruped robot,” in Proceedings of the 12th
International Conference on Advanced Robotics (ICAR), July 2005,
pp. 229–235.

[6] Y. Fukuoka, H. Kimura, and A. H. Cohen, “Adaptive dynamic walking
of a quadruped robot on irregular terrain based on biological concepts,”
International Journal of Robotics Research, vol. 22, no. 3-4, pp. 187–
202, March-April 2003.

[7] J. Buchli, F. Iida, and A. J. Ijspeert, “Finding resonance: Adaptive
frequency oscillators for dynamic legged locomotion,” Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS 06), pp. 3903 – 3909, 2006.

[8] Buchli, Jonas, Ijspeert, and A. Jan, “Self-organized adaptive legged
locomotion in a compliant quadruped robot,” Auton. Robots, vol. 25,
no. 4, pp. 331–347, 2008.

[9] M. Ahmadi and M. Buehler, “A control strategy for stable passive
running.” IEEE Int. Conf. Intelligent Robots and Systems, 1995, pp.
152–157.

[10] R. Altendorfer, U. Saranli, H. Komsoglu, D. Koditschek, H. B. Brown,
M. Buehler, N. Moore, D. McMordie, and R. Full, “Evidence for
spring loaded inverted pendulum running in a hexapod robot,” in
Proceedings of the 7th International Symposium on Experimental
Robotics (ISER), 2000.

[11] M. Raibert, K. Blankespoor, G. Nelson, R. Playter, and the Big-
Dog Team, “Bigdog, the rough-terrain quadruped robot,” Proceedings
of the 17th World Congress, The International Federation of Automatic
Control, 2008.

[12] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiware, K. Harada, K. Yokoi,
and H. Hirukawa, “Biped walking pattern generation by using preview
control of zero-moment point,” in ICRA IEEE International Confer-
ence on Robotics and Automation. IEEE, Sep 2003, pp. 1620–1626.

[13] M. Hirose and K. Ogawa, “Honda humanoid robots development,”
Philosophical Transactions of the Royal Society, vol. 365, no. 1850,
pp. 11–19, Jan 2007.

[14] I. R. Manchester, U. Mettin, F. Iida, and R. Tedrake, “Stable dynamic
walking over rough terrain: Theory and experiment,” in Proceedings
of the International Symposium on Robotics Research (ISRR), 2009.

[15] J. Rebula, P. Neuhaus, B. Bonnlander, M. Johnson, and J. Pratt,
“A controller for the littledog quadruped walking on rough terrain,”
Proceedings of the 2007 IEEE International Conference on Robotics
and Automation (ICRA), Rome, Italy, 2007.

[16] J. Z. Kolter, M. P. Rodgers, and A. Y. Ng, “A control architecture for
quadruped locomotion over rough terrain,” in Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), 2008,
pp. 811–818.

[17] A. Shkolnik, M. Walter, and R. Tedrake, “Reachability-guided sam-
pling for planning under differential constraints,” in Proceedings of
the IEEE/RAS International Conference on Robotics and Automation
(ICRA). IEEE/RAS, 2009.

[18] A. Shkolnik and R. Tedrake, “Path planning in 1000+ dimensions us-
ing a task-space Voronoi bias,” in Proceedings of the IEEE/RAS Inter-
national Conference on Robotics and Automation (ICRA). IEEE/RAS,
2009.

