
Reachability-Guided Sampling
for Planning Under Differential Constraints

Alexander Shkolnik, Matthew Walter, and Russ Tedrake

Abstract— Rapidly-exploring Random Trees (RRTs) are
widely used to solve large planning problems where the scope
prohibits the feasibility of deterministic solvers, but the effi-
ciency of these algorithms can be severely compromised in the
presence of certain kinodynamics constraints. Obstacle fields
with tunnels, or tubes are notoriously difficult, as are systems
with differential constraints, because the tree grows inefficiently
at the boundaries. Here we present a new sampling strategy
for the RRT algorithm, based on an estimated feasibility set,
which affords a dramatic improvement in performance in these
severely constrained systems. We demonstrate the algorithm
with a detailed look at the expansion of an RRT in a swingup
task, and on path planning for a nonholonomic car.

I. INTRODUCTION

The problem of robotic motion planning, whether for
a wheeled robot, an aerial vehicle, or a quadruped, has
motivated the development of powerful tools for planning in
high dimensional spaces. Of these techniques, randomized
sample-based planning strategies have proven particularly
effective in quickly solving for a series of actions that drive
the system to a desired state. Perhaps the most widely used
single-query sample-based planners are those based upon
Rapidly-exploring Randomized Trees (RRTs). RRTs have
been used to solve a broad range of planning problems that
include motion for manipulators and kinematic chains [1],
[2].

It is well-known that these algorithms can quickly become
inefficient when planning on systems with complicated kin-
odynamic constraints [3], and there has been considerable
work in attempting to modify the basic RRT algorithm for
these situations [3], [4]. The essential symptom of this inef-
ficiency is that nodes at the boundaries of these constraints
tend to be sampled and expanded repeatedly, with little
progress towards the ultimate goal.

In this paper, we present a modified adaptive sampling
strategy for the RRT algorithm which takes into account
local reachability, as defined by differential constraints, while
building the tree. The algorithm is based on the observation
that sampling points at random and checking collisions is
relatively cheap, but adding extra nodes to the tree (through
the Extend algorithm) is relatively more expensive - both in
its instantaneous cost and in the added cost of having a larger
tree. Therefore, we attempt to build sparse trees through
kinodynamic obstacles, with a simple heuristic that quickly
throws away random samples that otherwise would not have
the effect of extending the tree into previously unexplored
regions of state space. This effectively changes the sampling
distribution, so that points are selected uniformly from a

The authors are in the Computer Science and Artificial
Intelligence Lab, Massachusetts Institute of Technology, 32
Vassar St. Room 32-380, Cambridge, MA 02139, USA
{shkolnik, mwalter, russt}@mit.edu

potentially small portion of the configuration (or state) space
in which the tree is capable of growing. The result of this
simple algorithm is a dramatic practical improvement in the
total computation time involved with finding a solution in a
constrained search problem.

In order to illustrate the mechanisms involved with the
new sampling strategy, we focus our attention in this paper
on a low-dimensional torque-limited pendulum swing-up
example, where the Voronoi regions can be illustrated and
the entire tree can be visualized effectively. To illustrate the
generality of the approach, we also discuss the planning for a
nonholonomic vehicle through a tight corridor. In both cases,
the algorithm makes a substantial enough improvement in
planning speed to consider real-time planning. Finally, we
discuss the applicability of the algorithm to high dimensional
spaces.

II. RRT PLANNING UNDER DIFFERENTIAL

CONSTRAINTS

In this section, we analyze the performance of the RRT in
the presence of kinodynamic constraints, with an emphasis
on planning for underactuated systems. Before proceeding
with the analysis, we first review the basic operation of the
general RRT algorithm.

A. Basic RRT Operation

The fundamental process by which the vanilla RRT op-
erates is relatively simple. Given an initial state, xinit ∈ X
and a goal state, xgoal ∈ X , the planner incrementally builds
a set of trajectories through the state space, X , in search
of a path that connects the initial state with the goal. These
trajectories are modeled as a set, T , of inter-connected points
that form a tree-like structure over a region of the state
space. At each iteration of the algorithm, one draws a random
sample, xrand, from the state space according to a predefined
sampling distribution, prand (x). The algorithm then identifies
the node in the tree that is closest to the sample, xnear, as
defined by the specified distance metric, ρ(x). This point is
expanded towards the random sample based upon the best
known input that drives the state towards the sample and the
resulting state, xnew, is added to the tree.

The pattern by which nodes are selected for expansion is
a function of both the sampling distribution and the nearest-
neighbor distance metric. Typically, samples are drawn uni-
formly over the state space while the most common metric
for the nearest-neighbor selection is the Euclidean distance
between points. In this case, the expansion pattern of the
tree is modeled by the Voronoi diagram over the nodes
within the tree. The probability of a node being expanded
is directly proportional to the volume of its corresponding
Voronoi region. Nodes that have a larger Voronoi region are

−5 −4 −3 −2 −1 0 1 2

−10

−8

−6

−4

−2

0

2

4

6

8

10

θ

θ̇

Fig. 1. Example state space trajectory for the torque-limited, single link
pendulum. Due to the torque limits at the shoulder, a swing up phase is
necessary to drive the pendulum from the vertical downward position to
the stationary upright position. The two black dots connected by a segment
shows that the Euclidean metric is not a good measure of cost-to-go

more likely to be chosen for expansion and are referred
to as major nodes. In the case of the Euclidean metric,
these nodes tend to lie on the outside of the tree during
the initial exploration. Conversely, inner or minor nodes
have smaller Voronoi regions and often lie on the inside
of the tree. Once the tree has explored the state space,
these become major nodes as the algorithm begins to fill
in the space. This phenomenon of favoring some nodes over
others is referred to as the Voronoi bias, and yields an initial
preference towards the exploration of the state space. Over
time, the Voronoi regions become more uniform in volume
and, in the case of planning for holonomic systems, the
likelihood of expanding a node tends toward the sampling
distribution [5].

B. Performance with Kinodynamic Constraints

The efficiency by which the RRT algorithm is able to
grow the tree and explore the space is highly sensitive to
the distance metric. In the presence of kinematic (eg, joint
limits, obstacles, or non-holonomic constraints) or dynamic
(eg, torque limits, or underactuation constraints), widely-
used metrics like the Euclidean distance are a very poor
representation for the true distance between points in the
space. As a result, the algorithm often repeatedly attempts
to extend the same nodes without growing the tree any closer
to the sampled region.

Consider the swing-up task for a torque-limited pendu-
lum. The two-dimensional state space consists of the joint
angle and the angular rate, x =

[
θ, θ̇

]�
. The task is

to bring the pendulum from a stationary down position,
xinit =

[
−π/2, 0

]�
, to the fixed upright goal pose, xgoal =

[
π/2, 0

]�
. If the torque-limits are severe, then a swing

up phase is required in order to drive the system to most
states in the state space, including the goal pose. The spiral
state trajectories in Figure 1 demonstrate this behavior as the
pendulum is swung back and forth to reach the goal.

The Euclidean distance metric is ignorant to the fact that
the differential constraints on the pendulum dynamics require
a swing up phase to reach most of the state space. Consider
the pair of points connected with a black line, shown in
Figure 1. The Euclidean distance metric would suggest that

this pair is very close to each other, but the pendulum
is unable to transition between these two parts of state
space without swing up. While RRT-based planners have
successfully solved swing up control for the underactuated
pendulum [6] using the Euclidean metric, it comes at a cost
of expanding a large number of fruitless nodes. Often times,
this is tolerable for low-dimensional systems like the single-
link pendulum, but not so for higher-dimensional systems for
which sample-based planners are typically well-suited.

C. RRT Modifications

The motion planning literature contains a number of
attempts to improve the performance in constrained sys-
tems. An obvious solution is to use a metric other than
the Euclidean distance that is better-suited to the problem.
Perhaps an ideal metric would be the optimal cost-to-go in
terms of the time or energy required to drive the system
between a pair of states [7]. Unfortunately, computing the
ideal cost is intractable for most higher-order systems since
it is equivalent to optimally solving the original motion
planning problem [2]. Instead, RRT-based planners often
compromise and utilize a sub-optimal heuristic function that
has been tuned to the particular problem as the distance
measure. The metric is not as accurate as the optimal cost-
to-go, but typically performs much better than the Euclidean
distance. Unfortunately, these metrics rely upon domain-
specific knowledge and are not generalizable across different
systems.

Rather than design a system specific metric for planning,
another option is to adaptively learn a suitable metric during
planning. Such is the approach of Cheng [3, Ch. 6], who
scores nodes according to their consistency with constraints
as well as that of their children in the tree. These values
are updated while building the tree and used to select
nodes during exploration. The RRT extension proposed in
[8] is similar, in which the algorithm keeps the history of
expansion attempts on nodes, considering failed attempts as
both collisions, as well as repetition of previous expansions.
Furthermore, in place of the Euclidean distance metric, this
algorithm calculates the cost-to-go from each node in the
tree toward the sample using a linear approximation of the
dynamics for each node. The approach alleviates some of
the problems with the Euclidean distance metric, but can be
computationally expensive to compute, and is sensitive to
how well the linearization approximates the actual cost-to-
go.

The dynamic-domain RRT [9] combats futile oversam-
pling by altering the size of the Voronoi regions for those
nodes that are close to obstacles. By lowering the bias associ-
ated with these nodes, the dynamic-domain RRT reduces the
likelihood of drawing samples from regions of the state space
that are more likely to induce collisions. More specifically,
the algorithm identifies boundary nodes as those for which a
collision occurred while expanding a sample. The domain of
samples that can then be matched with a boundary node is
then restricted to a sphere of fixed radius in the state space.
One limitation of the dynamic-domain RRT is that it must
first encounter collisions before modifying the Voronoi bias.
Additionally, it currently supports only spherical domains
centered about the boundary nodes, which do not necessarily
reflect the best sampling regions.

−2.5 −2 −1.5 −1 −0.5
−4

−3

−2

−1

0

1

2

3

4

5

6

θ

θ̇

−umax

umax

x

R(x)

Fig. 2. The reachable set, R(x), for the underactuated pendulum consists
of an approximately linear segment, the endpoints of which are defined by
the points in state space that are achieved by applying the minimum and
maximum torques at the shoulder.

Other modifications to the RRT assume a discretized set
of actions. In the RRT-Blossom algorithm [10], whenever a
node is chosen for expansion, all possible (discrete) actions
are attempted, while sparse expansion is encouraged by
weeding out any expansions of the tree if the expanded node
is closer to other nodes in the tree other than the parent.
Once a node is visited once, it never needs to be visited
again, so redundant exploration is a non-issue. However, in
some problems (for example the pendulum) it does not make
sense to remove child nodes in this way since child nodes
will be near other nodes in the tree, unless the integration
time step Δt is very small, which will increase the size of
the resulting tree exponentially. Another variant that assumes
discrete actions, but was only demonstrated on path planning
problems without differential constraints, is the Rapidly-
Exploring Random Leafy Tree (RRLT) [11]. Leaf nodes,
corresponding to nodes that are reachable in one time step
from the current tree are stored in the tree. The algorithm
picks the closest leaf node to a random sample, converts it to
a main node in tree, and then generates new reachable leaf
nodes from this new node.

III. REACHABILITY-GUIDED RRT

In the previous section, we presented an analysis of the
shortcomings of existing RRT-based planners in dealing
with systems with differential constraints. In particular, we
emphasized the sensitivity of RRTs to the nearest neighbor
metric and the implications that this has for building the tree.

We now present the Reachability-Guided Rapidly-
exploring Random Tree (RG-RRT) as an alternative planning
strategy for general systems that are subject to differential
constraints. The RG-RRT takes the form of a modified RRT
that explicitly accounts for the limitations of the system
dynamics to shape the Voronoi bias so as to emphasize
nodes within the tree that exhibit the greatest contribution
towards exploring the state space. The RG-RRT alleviates
the sensitivity to the distance metric and, in turn, does not
require a system-specific metric heuristic. The result is an
expansion of the tree that makes efficient use of the system
dynamics to more rapidly reach the goal.

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−6

−4

−2

0

2

4

6

θ

θ̇

(a)

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−6

−4

−2

0

2

4

6

θ

θ̇

(b)

Fig. 3. Two consecutive steps in a single iteration of the RG-RRT, as
demonstrated for the underactuated pendulum. In (a), a random sample is
drawn from the state space and paired with the nearest node in the tree and
the closest point in its reachable set according to the Euclidean distance
metric. Shown in (b), the algorithm then expands the node towards the
point in the reachable set and adds that point to the tree.

Additionally, we strictly ensure that any nodes added to the
tree must make progress towards a given sample. A primary
idea here is that for a given tree, particularly in a system
subject to dynamic constraints, it is often not able to expand
into certain regions of state space. We implement what is
effectively an adaptive sampling strategy, which constantly
changes the allowed regions of samples for which expansions
are attempted, based on the local capabilities of expansion
of the current tree.

A. Problem Formulation

We consider the problem of path planning for a system
subject to differential constraints. Let X denote the state
space that applies to kinodynamic systems and let C represent
the general configuration space. We are concerned with
finding a time-varying control input, u(t) ∈ U for t ∈ [0, T]
that drives the system from some initial state, xinit, to an
arbitrary goal state, xgoal, in finite time, T . The resulting
trajectory, x(t), must be free of collisions, i.e. x(t) ∈ X free

where Xfree denotes free space, and satisfy the differential
constraints according to the state transition function,

ẋ = f(x, u). (1)

The problem becomes even more challenging when con-
sidering systems that are additionally constrained to be
underactuated or nonholonomic.

B. The RG-RRT Algorithm

The Reachability-Guided RRT is derived from the
premise that sampling is relatively inexpensive compared
to the process of searching for collision-free trajectories
from a node while satisfying differential constraints. The

RG-RRT provides a means for choosing nodes that have
a better chance of yielding consistent trajectories without
having to redefine the metric function. Instead, the RG-RRT
actively constrains the set of nodes under consideration
for nearest-neighbor pairing with a sample to those that
are actually able to expand towards the given sample.
Effectively, it applies the Euclidean metric to nodes for
which it is a valid indication of the approximate cost-to-go
under the differential constraints. The RG-RRT does so
by considering the reachable region of the state space
associated with each node.

Definition 1: For a state x0 ∈ X and a finite local
integration time step Δt, we define its reachable set,
RΔt(x0), to be the set of all points that can be achieved from
x0 in finite time, Δt, according to the state equations (1)
and the set of available control inputs, U .

In the case of the torque-limited, single-link pendulum, the
reachable set for a state is an approximately linear segment,
the bounds of which are found by integrating the dynamics
while applying the maximum negative and positive torque,
−umax and umax. Figure 2 depicts the reachable set for a node
in the tree. Any state along the segment can be achieved in
time Δt by an allowable control input, |u| ≤ umax.

Algorithm 1 T ← BUILDRRT(xinit)
1: T ← INITIALIZETREE();
2: T ← INSERTNODE(xinit, T);
3: for k = 1 to k = K do
4: xrand ← RANDOMSTATE();
5:

(
xnear, x

r
near

)
← NEARESTSTATE(xrand, T);

6: while xnear = {} do
7: xrand ← RANDOMSTATE();
8:

(
xnear, x

r
near

)
← NEARESTSTATE(xrand, T);

9: end while
10: u← SOLVEINPUT(xnear, x

r
near, xrand, T);

11: xnew ← NEWSTATE(xnear, u);
12: T ← INSERTNODE(xnew, T);
13: end for
14: return T

The RG-RRT algorithm builds and maintains a standard
RRT, T =

(
V , E

)
, consisting of a set of vertices,

{
xi

}

connected by edges. Associated with each node is a rep-
resentation of its reachable set, xi.R. At a high level, the
RG-RRT algorithm possesses much the same structure as
standard RRT-based planners. The primary differences lie in
the use of a node’s reachable set to focus sampling on regions
of the state space that are most likely to promote expansion
under the differential constraints.

The structure of the RG-RRT algorithm is outlined in
Algorithm 1. Given an initial point in state space, x init,
the first step is to add the state as a node in the tree.
Given the point xinit, the INSERTNODE() function solves
for the set of reachable points in the state space that are
consistent with the differential constraints (1). For many
systems of interest, the approximate bounds of the reachable
set can be generated by discretizing the action space, and
then integrating the corresponding dynamics forward using

−4 −3 −2 −1 0 1 2 3
−8

−6

−4

−2

0

2

4

6

8

θ

θ̇

(a) 30 nodes

−4 −3 −2 −1 0 1 2 3
−8

−6

−4

−2

0

2

4

6

8

θ

θ̇

(b) 60 nodes

Fig. 4. RG-RRT Voronoi diagrams for a pendulum. The blue diagram
in (a) corresponds to the tree after 30 nodes have been added while that
in (b) corresponds to the tree with 60 nodes. Magenta dots are discretely
sampled reachable points affiliated with the tree. Green regions are areas
where samples are ‘allowed’, and correspond to Voronoi areas associated
with the reachable set. Samples that fall in any grey areas are discarded.
Note that these regions are constantly changing as the tree grows.

any favored integration method. In some cases, with a short
enough Δt, taking actions between the limits results in
an integrated state that lies between the states produced
when taking the actions at their limits. In such cases it is
sufficient to consider only the bounds of the action set. The
reachable set may also be approximated or learned. When
the dimension of the action space increases, in particular, it
may become more efficient to approximate the reachable set
with a simple geometric function, for example an ellipsoid, if
such a function can approximate the actual reachable volume.
One benefit of generating the reachable set using discretized
actions is that points that comprise the reachable set can also
be efficiently tested for collisions before they are added to the
Reachable set, in order to reduce the likelihood of trajectories
leaving free space as part of the exploration phase.

With the node and its corresponding reachable set added
to the tree, we draw a random sample, x rand, from the state
space, typically according to a uniform distribution, and use
it to grow the tree. We do so through a variation on the
nearest-neighbor matching strategy, that restricts its domain
to nodes that are more likely to promote the expansion of the
state space. More specifically, the NEARESTSTATE(xrand, T)
function compares the distance from the random sample not
only to the nodes, but also to the points within their reachable

−5 −4 −3 −2 −1 0 1 2
−15

−10

−5

0

5

10

15

θ

θ̇

(a) Standard RRT

−5 −4 −3 −2 −1 0 1 2
−15

−10

−5

0

5

10

15

θ

θ̇

(b) RG-RRT

Fig. 5. The trees for the underactuated pendulum after adding 360 nodes
for (a) the standard RRT-based kinodynamic planner and (b) the RG-RRT
planner. While the RG-RRT algorithm has reached the goal state, the RRT-
based planner has yet to explore much of the state space. The RG-RRT
converged in 3 seconds.

sets. If the closest Reachable point is closer to the sample
than the closest node of the tree, then both this reachable
point, xr

near, and its corresponding parent node, xnear, are
returned. Otherwise, if the closest node of the tree is nearer
to the sample than any Reachable point, the function returns
an empty point pair, in which case the RG-RRT throws this
sample away, and draws a new sample from the state space
and repeats the process.

Figure 3 demonstrates this process for the pendulum
example. The figure shows a tree grown from the initial state
corresponding to the pendulum down with zero rotational
velocity. The nodes and edges comprising the tree are in
blue while the magenta points that emanate from each node
correspond to the bounds of its reachable set. In Figure 3(a),
we have drawn a sample from the state space and computed
the Euclidean distance to each of their nodes and the two
points that bound each of their reachable sets. Of these
nodes and their reachable set, the NEARESTSTATE(x rand, T)
function identifies one of the two extreme points (indicated
by the solid green line) within the reachable set of a leaf
node (dashed green line) as a suitable point for expansion.

−5 −4 −3 −2 −1 0 1 2
−15

−10

−5

0

5

10

15

θ

θ̇

Fig. 6. The final tree generated with the standard kinodynamic RRT-based
planner. The tree consists of over 2300 nodes and required 75 seconds to
generate.

The result of this policy of throwing out samples for
which the nearest node is closer than its reachable set is
a change in the Voronoi bias. The RG-RRT then allows
samples only from Voronoi regions for which the differential
constraints permit the expansion of the node towards the
sample. While samples may be drawn from anywhere within
the state space, only a subset of regions are actually used to
grow the tree. This has the effect of modifying the Voronoi
bias to emphasize nodes that are better suited to explore
the state space while growing the tree. Figure 4 depicts this
phenomenon for the pendulum. The plot presents the Voronoi
regions for each of the nodes within the tree and identifies
in green the regions for which drawn samples are deemed
as valid. Many of the large Voronoi regions associated with
outer nodes have appropriately been identified as not suitable
for expansion, since it is impossible to grow the tree into
these regions in time Δt under the differential constraints.
The nodes may still be expanded upon, but towards samples
drawn towards the inside of the tree. These nodes, which
would otherwise serve as major nodes with standard RRT-
based planners using the Euclidean distance, are instead
treated as minor nodes.

Upon identifying a suitable node for expansion,
the RG-RRT extends the tree from the node. The
SOLVEINPUT(xnear, x

r
near, xrand, T) function can either search

for a consistent action that drives the system from the
state towards the sample or returns the control associated
with the reachable point, xr

near. In either case, lines 10 and
11 in Algorithm 1 identify a collision-free trajectory to a
state within R(xnear) that obeys the system’s differential
constraints. Figure 3(b) demonstrates this step where we have
extended the node to the point, xnew = xr

near, in its reachable
set that was the nearest to the sample. The new point, xnew,
is added as a node to the tree together with its reachable set,
R

(
xnew

)
, as before. The RG-RRT then continues with the

next iteration of the algorithm.

IV. RESULTS

We implemented the RG-RRT to perform kinodynamic
planning for two different systems in simulation. The first
application is to find swing up trajectories for the single-

link, torque-limited pendulum. We then applied the algorithm
to solve for collision-free trajectories for a simple nonholo-
nomic car driving amongst obstacles. For comparison, we
also applied the standard RRT-based kinodynamic planner
within both simulations. The two planners used a uniform
distribution over the state space to generate samples and the
Euclidean metric to identify nodes for expansion.

A. Swing Up Control for an Underactuated Pendulum

We first applied the RG-RRT to solve for a swing up
controller for the underactuated pendulum. The control au-
thority at the shoulder was limited in magnitude. The system
parameters were set to a mass of m = 1, a length of l = 0.5,
a damping coefficient of b = 0.1, gravitational constant of
9.8, and a maximum torque of |u| ≤ 0.1.

Figure 5 compares the trees for the standard RRT and the
RG-RRT after 360 nodes have been expanded. At this point,
the RG-RRT algorithm has identified a path to the goal that
is consistent with the differential constraints. In contrast, the
planner based upon the standard RRT has yet to explore
much of the state space. Instead, we see the aforementioned
sensitivity to the Euclidean metric, which has resulted in the
expansion of many major (outer) nodes for which the torque
limits allow the tree to only grow inwards. This is evident in
the large number of overlapping branches that extend inward
rather than extending towards the larger Voronoi regions.
Referring back to the Voronoi diagrams in Figure 4(a), note
that the only valid Voronoi regions for these nodes would be
on the inside of the tree where sampling is consistent with
the ability to grow the tree inwards.

The RG-RRT was able to solve for a swing up controller
for the pendulum after expanding the tree 360 times. The
overall search took 3 seconds in MATLAB. Meanwhile, the
standard RRT-based planner converged to the goal after
adding 2300 nodes to the tree, a process that required 75
seconds to complete. All simulations in this paper were run
on a 3ghz Intel Xeon X5450 CPU. Figure 6 presents the final
tree generated by the standard RRT.

While it’s not obvious from the tree, the RG-RRT results in
an approximately bang-bang trajectory for swing up control.
This behavior is more evident in Figure 3(a) where each node
corresponds to one of the extreme points, i.e. |u| = umax,
that bound the reachable set for its parent node. This control
policy agrees with the bang-bang control strategies that have
been proposed elsewhere for the inverted pendulum [12].

B. Motion Planning for the Acrobot

For comparison in a similar problem with a higher dimen-
sional search space, we implemented a modified bidirectional
version of the RG-RRT algorithm, and applied it on a
simulated torque-limited Acrobot [13], a two link pendula
with an actuator at the elbow, and a passive joint at the
base. In our simulation, each link weighed 2kg and was
.5m in length with the COM in the center of the link. The
reachable set was approximated by discretizing actions into
three possible torques values. A standard bidirectional RRT
was also run for comparison using the same code base. We
found that the standard RRT worked fastest when the control
was sampled from a uniform distribution between the torque
limits. The bi-directional RG-RRT was run 10 times and took

−5 0 5
−10

−8

−6

−4

−2

0

2

4

6

8

10

(a) RG-RRT

−5 0 5
−10

−8

−6

−4

−2

0

2

4

6

8

10

(b) Standard RRT

Fig. 7. A comparison of the final collision-free trajectories that lead the
simple car model from its initial position in the lower left-hand corner of
the environment to the goal at the upper right. The final tree for (a) the
RG-RRT consists of 292 nodes and was generated in under 3 seconds. In
contrast, the tree built with the standard RRT-based planner includes 1350
nodes and required 43,000 expansion attempts and 73 seconds to compute.

an average of 38 seconds to run, compared to 112 seconds
for the standard RRT.

C. Motion Planning for a Simple Nonholonomic Car

Another class of problem that we consider is a nonholo-
nomic car navigating through a set of corridors bounded by
obstacles as shown in Figure 7. We represent the state of the
vehicle by its position, heading, and forward velocity, i.e.
(x, y, θ, v). The control inputs to the system consist of the
angular rate and the forward acceleration, u =

[
θ̇, v̇

]
, both

of which are bounded in magnitude. For our simulation, the
vehicle is restricted to forward motion. The task is to find
a collision-free trajectory that brings the rectangular-shaped
vehicle through the narrow corridors from the lower-left to
the upper-right corners of the environment, both with an
Eastward heading. The setup of this problem is challeng-
ing because the only feasible paths require the vehicle to
substantially slow down and make a wide turn in order to
avoid collision around the tight turns.

One can visualize the state of the system in two dimen-
sions where the location of a point denotes the vehicle’s
(x, y) position. The direction of a vector extending from the
point represents the heading, θ, while the length of the vector
denotes the forward velocity, v. In this space, the reachable
set, R, is bound by a quadrilateral positioned in front (per
the orientation vector) of the point in space where the four
corners correspond to the four pairs of saturated control
inputs. Any point within this quadrilateral is reachable in
time Δt according to the differential constraints.

We applied both the RG-RRT as well as the standard RRT
planner to solve for a sequence of control inputs that drive
the vehicle to the goal pose while satisfying the differential
constraints and avoiding obstacles. Both algorithms utilized
the Euclidean distance metric, and shared much of the same
code base. Figure 7 compares examples of trees resulting
from both algorithms. Each was run a total of 20 times, with
the same start and goal poses and obstacle configuration as
shown in the figure. On average, the RG-RRT found a path in
2.3 seconds, with a mean of 405 nodes in the tree, and a mean
total of 2150 integrations. Five integrations were performed
for each expansion, including four required to generate a
reachable set for each new node. On the other hand, the
standard RRT required 51 seconds on average, with a mean
of 1700 nodes in the tree, and 35,000 integrations required.
The large number of integrations resulted from a substantial
proportion of expansion attempts that failed due to collision.

V. DISCUSSION

The RG-RRT algorithm alleviates the sensitivity of ran-
domized sampling for systems with differential constraints
to the metric that is employed to expand the tree. Essentially,
the RG-RRT utilizes the metric only for regions of the state
space for which it is valid. The result is a modified Voronoi
bias that emphasizes nodes that are more likely to promote
exploration given the constraints on the system dynamics.
The RG-RRT takes advantage of the fact that sampling is
cheap compared to the process of expanding a node and,
therefore, is willing to resample until a point is drawn from
a region that yields better exploration.

The size distribution for the modified Voronoi regions
under the RG-RRT varies as the tree explores the state space.

Initially, there is a large variability in the size of the different
Voronoi regions but, as the tree expands, the size tends to
become more uniform. The lower bound on the size of the
regions, typically corresponding to the inside of the tree, is
inversely proportional to the resolution of the reachable set.
In turn, the sampling of the space will be probabilistically
complete so long as the resolution of the reachable set is
sufficient relative to the smallest “gap” in the state space.

As we investigate higher dimensional problems, if the
reachable set cannot be concisely parameterized, then we
must employ a sampling strategy to describe the set. This
has the drawback that the sampling will grow exponentially
on the dimension of the action space (not the state space).
Clever parameterizations may be possible, but we have not
addressed this challenge yet.

Overall, the algorithm presented is a clean way of elimi-
nating metric and sampling specificity in the RRT algorithm
implementation, which is particularly useful when there are
differential constraints, or when reachable sets are otherwise
non-spherical. The algorithm has shown significant time im-
provements in planning on two different example problems.

ACKNOWLEDGMENT

This work was supported by the DARPA Learning Loco-
motion program (AFRL contract # FA8650-05-C-7262)

REFERENCES

[1] J. Cortés and T. Siméon, “Sampling-based motion planning under kine-
matic loop-closure constraints,” in Proceedings of the 6th International
Workshop on Algorithmic Foundations of Robotics (WAFR), 2004, pp.
59–74.

[2] S. LaValle, Planning Algorithms. Cambridge University Press, 2006.
[3] P. Cheng, “Sampling-based motion planning with differential con-

straints,” Ph.D. dissertation, University of Illinois, Urbana-Champaign,
Urbana, IL, August 2005.

[4] B. Burns and B. O., “Utility-guided random trees,” Computer Science
Department, University of Massachusetts Amherst, Tech. Rep. 06-29,
June 2006.

[5] J. Kuffner, J.J. and S. M. LaValle, “RRT-connect: An efficient ap-
proach to single-query path planning,” in Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), vol. 2,
San Francisco, CA, April 2000, pp. 995–1001.

[6] M. Branicky and M. Curtiss, “Nonlinear and hybrid control via RRTs,”
in Proceedings of the International Symposium on Mathematical
Theory of Networks and Systems, South Bend, IN, August 2002.

[7] E. Frazzoli, M. A. Dahleh, and E. Feron, “Real-Time Motion Planning
for Agile Autonomous Vehicles,” Journal of Guidance, Control, and
Dynamics, vol. 25, no. 1, pp. 116–129, JanuaryFebruary 2002.

[8] J. Kim, J. M. Esposito, and V. Kumar, “An rrt-based algorithm for
testing and validating multi-robot controllers,” in Robotics: Science
and Systems I. Robotics: Science and Systems, June 2005.

[9] A. Yershova, L. Jaillet, T. Siméon, and S. M. LaValle, “Dynamic-
domain RRTs: Efficient exploration by controlling the sampling
domain,” in Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), Barcelona, April 2005, pp. 3856–
3861.

[10] M. Kalisiak, “Toward More Efficient Motion Panning with Differential
Constraints,” Ph.D. dissertation, University of Toronto, 2008.

[11] Morgan, S., Branicky, and M.S., “Sampling-based planning for dis-
crete spaces,” Intelligent Robots and Systems, 2004. (IROS 2004).
Proceedings. 2004 IEEE/RSJ International Conference on, vol. 2, pp.
1938–1945 vol.2, Sept.-2 Oct. 2004.

[12] K. Furuta, M. Yamakita, and S. Kobayashi, “Swing up control of
inverted pendulum,” in Proceedings of the International Conference
on Industrial Electronics, Control, and Instrumentation, vol. 3, Kobe,
Japan, October 1991, pp. 2193–2198.

[13] M. W. Spong, “Swing up control of the acrobot,” in Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA),
1994, pp. 2356–2361.

