
Path Planning in 1000+ Dimensions
Using a Task-Space Voronoi Bias

Alexander Shkolnik and Russ Tedrake

Abstract— The reduction of the kinematics and/or dynamics
of a high-DOF robotic manipulator to a low-dimension “task
space” has proven to be an invaluable tool for designing
feedback controllers. When obstacles or other kinodynamic
constraints complicate the feedback design process, motion
planning techniques can often still find feasible paths, but these
techniques are typically implemented in the high-dimensional
configuration (or state) space. Here we argue that providing
a Voronoi bias in the task space can dramatically improve
the performance of randomized motion planners, while still
avoiding non-trivial constraints in the configuration (or state)
space. We demonstrate the potential of task-space search by
planning collision-free trajectories for a 1500 link arm through
obstacles to reach a desired end-effector position.

I. INTRODUCTION

Planning trajectories through space with obstacles is a
computationally challenging, PSPACE complete problem [1].
The notion of planning a trajectory in a system with over
a thousand dimensions seems remote. Yet, many systems
in nature have hundreds of controlled Degrees of Freedom.
The human body, for example has over 600 muscles, and
over 200 bones, more than half of which are found in the
hands and feet. Recent advances in randomized kinodynamic
planners, including the Rapidly exploring Randomized Tree
(RRT) [2], [3], have enabled fast average-time planning,
including guarantees for probabilistic completeness. These
planners can be very fast when planning trajectories within
configuration space [1], [4] (C-Space). Despite the success
of RRTs in certain classes of high-dimensional problems,
the performance of the algorithm can be very sensitive to
its implementation, particularly in how random samples are
chosen, and the distance metric used. Additionally, as with
most planners, the performance scales super-linearly with the
number of dimensions.

In this paper, we argue that fast planning in high di-
mensional systems can sometimes be achieved by exploring
actions in a low dimensional Task Space. This approach
is commonly used in feedback control design, and is often
called Task Space Control [5]. Consider a humanoid robot
which needs to find its way from a start pose to cross a
room full of obstacles, and pick up an object [6]. For such
problems, it is natural to consider the task space. Rather
than specifying a particular set of desired joint angles for
the whole robot which accomplishes a grasping task, one

A. Shkolnik is a PhD candidate in EECS at the Computer Science and
Artificial Intelligence Lab, MIT, 32 Vassar St., Cambridge, MA 02139, USA
shkolnik@mit.edu

R. Tedrake is an Assistant Professor of EECS at the Computer Science
and Artificial Intelligence Lab, MIT, 32 Vassar St., Cambridge, MA 02139,
USA russt@mit.edu

Fig. 1. Simple example, demonstrating an RRT planning in a 3D
configuration space, while constrained to actions in a 2D task space. The
task depicted is to find a path from the starting node (blue circle), to the
goal in task space (green line), while avoiding an obstacle (Black Box).
For simplicity, we resolve redundancy by restricting the search to lie in a
plane (shown by red dash) perpendicular to the goal line, but other suitable
choices for redundancy resolution would not be constrained to a manifold.
The intersection of the obstacle on this plane is shown in blue dash line.
For problems like this, planning in a lower dimensional projection can be
much more efficient than planning in the full space.

may consider only the hand position. There are an infinite
number of potential goal configurations which correspond
to the desired hand position. Having a large set of goals
can sometimes make planning easier, as there will be more
trajectories that lead to a goal configuration. Furthermore,
we argue that the defined task space can be used to guide
the search, even when planning still occurs in the high-
dimensional space in order to enforce all of the system
constraints.

To date, task space has been somewhat neglected in the
planning literature, though there are a few recent examples
that utilize it. In [7], for example, the sampling of points
is biased by a heuristic function which includes distance
to the goal, so that points closer to the goal in task space
are more often randomly selected. The selected nodes are
then extended with a randomly applied action. In a variation
of this work by [8], a standard RRT is implemented which
occasionally chooses to grow toward the goal in task space
by using the Jacobian Transpose method. The goal of that
work was to solve the problem of inverse kinematics at the

goal region because infinite configurations may correspond
to a single point in task space. Most recently, [9] proposed an
approach that enables bidirectional RRT search [10], where a
backward tree (grown from the goal) is grown in Task Space,
and a forward tree (from the start pose) is grown in the full
configuration space. Occasionally, the forward tree attempts
to follow the backward tree using either random sampling of
controls or the Jacobian transpose. These works utilize task
space as an intuitive way of defining an infinite (continuous)
set to describe a goal position, rather than using task space
as a potential way to constrain the exploration of the full
space.

Another body of literature has focused on sample based
planning algorithms for systems that are constrained to a
manifold defined by a lower-dimensional workspace, for
example for a robot that is writing on a wall, it must keep
the end effector on the surface of the wall [11]. In that work
samples are constructed in configuration space that meet the
constraints imposed by the lower-dimensional manifold, but
no attention is given to how the particular choice of sampling
affects planner performance, which is important given that
there may be infinite ways to construct such a sampling
schema. In the ATACE framework [12], configurations are
sampled uniformly in C-Space, while a workspace constraint
is imposed by utilizing a Jacobian pseudoinverse method.
A similar C-Space sampling based method with task space
constraints is provided by [13]. Our method differs in that
we propose to sample directly within Task Space. Doing
so creates a Voronoi bias in Task Space, rather than in
Configuration Space, which for many systems leads to more
direct exploration. The other difference is that we do not
require a low dimensional manifold constraint, but instead
consider the projection into Task Space. Because of this,
our method could theoretically directly search the full high
dimensional C-Space, despite the attention to exploring in
the lower dimensional Task Space.

Constraining a search to a lower dimensional space can be
a powerful notion. For visualization, consider for example the
task of planning in a 3D configuration space. The goal might
be to find a path from a starting coordinate to some region of
the space, while avoiding obstacles. Suppose the goal region
is a line. Then one way to explore the space is to grow in
the plane which is perpendicular to the line, and intersects
the starting node (as shown in Figure 1). If there were no
obstacles present, this type of search could produce the most
direct (shortest) path in configuration space. Because this
plane slices through the 3D configuration space, as long
as the plane has a path from start to goal, then it would
make sense to actually plan while constrained to this 2D
plane, which drastically reduces the set of potential solutions
that need to be explored. Now imagine if rather than a
3D configuration space, we have a large DOF system. If
a plane can be defined which captures a large portion of
the feasible set of trajectories from start to goal, then it
would be much more efficient to plan within this plane
rather than the full configuration space. A potential objection
would be that if the planning problem can be solved in this

low-dimensional space, then it is not a challenging planning
problem. However, we would argue that in fact many of
the success stories in whole-body motion planning have this
property.

In this paper we propose a framework for task-space
biased exploration for search algorithms. For simplicity, as
an example, we extend the standard forward RRT [2] so
that when trying to grow from a particular node on the tree
toward a sample, this growth is done in a low-dimensional
task space. The growth can be done efficiently by using
the Jacobian Pseudoinverse (J+) method, commonly used in
feedback task-space controllers, which eliminates the need
for exact inverse kinematics solutions. This task space will
have an associated nullspace, the use of which is left to the
freedom of the algorithm implementation. The pseudoinverse
method allows for redundancy resolution via a hierarchical
control structure which takes advantage of the nullspace. One
can think of the standard RRT as randomly exploring in the
nullspace. However, when actions are constrained (which is
usually the case), then as the dimensionality increases, it
is increasingly likely that a random vector in configuration
space is orthogonal to a direction in task space, producing
a trade off between exploring directly in task space, or
exploring the configuration space.

Extending nodes in task space by the (J+) method also
opens the door to sampling directly in task space, without
considering the full space. If using a uniform sampling
strategy over the task space, and a euclidean distance metric,
then the proposed algorithm has the property that the Voronoi
bias associated with the RRT will be in task space instead of
in configuration space. We will show that the two spaces are
quite different, and for certain problems, the Voronoi bias in
task space can significantly improve the search performance.
The algorithm is demonstrated for path planning a collision
free trajectory in an N-link arm, with the task of putting the
end-effector at a desired coordinate. We are able to efficiently
plan paths with up to 1500 degrees of freedom in under a
minute.

The proposed method can be thought of as planning in task
space, while checking and validating constraints in the full
configuration (or state) space. The forward RRT was chosen
for its simplicity, but this method can be extended to a variety
of planning algorithms, including PRMs [14], bidirectional
RRT’s, e.g. [10] - either by implementing BiSpace [9], or
directly if goal(s) are known in configuration space.

II. TS-RRT: PLANNING IN TASK SPACE WITH THE RRT
A. RRT and TS-RRT Definitions

The standard RRT algorithm [3] is provided for reference
in Algorithm 1 and 2. In our notation, we denote a vector
in configuration space with q ∈ <N , and a vector in task
space with x ∈ <M , with an associated task-space mapping
x = f(q), and a Jacobian defined as J ∈ <M×N = ∂f(q)

q . A
C-Space sample, qrand, is chosen at random, usually from a
uniform distribution over some bounded region. The closest
node on the tree, qnear, is selected, usually using a Euclidean
distance metric, in the NEAREST-NEIGHBOR() function.

Algorithm 1 BUILD-RRT (q0)
1: T.init(q0)
2: for k = 1 to K do
3: if with some probability P then
4: qrand ⇐ RANDOM-SAMPLE() ∈ <N

5: else
6: qrand ⇐ qgoal

7: end if
8: EXTEND(T,qrand)
9: end for

Algorithm 2 EXTEND (T, q)
1: qnear ⇐ NEAREST-NEIGHBOR(q,T)
2: u⇐ CONTROL(qnear, qrand)
3: qnew ⇐ NEW-STATE(qnear, u)
4: if COLLISION-FREE (qnear, qnew) then
5: T.add-node(qnear, qnew, u)
6: end if

An action, u is then derived in the CONTROL() function.
Finally a new state, qnew, is integrated in the function NEW-
STATE() from qnear when control u is applied for some
∆t. Ideally, the control action is computed such that qnew is
closer to qrand than qnear. The new state is then added to
the tree, while keeping track of the action and parent node.

The RRT works well because the search has a Voronoi
bias, meaning that nodes in the tree which are closest to
the largest regions of unexplored space are most likely to be
chosen for expansion into these regions. Thus, RRT’s have
a tendency to quickly branch into unexplored regions. When
the unexplored regions become smaller and more uniformly
distributed, then the search begins to fill in gaps with
increasingly uniform coverage, ensuring that the algorithm
is probabilistically complete, meaning that it will find a path
if one exists as K goes to infinity.

B. TS-RRT

The proposed planner, given in Algorithm 3, is called
Task-Space RRT (TS-RRT). It is similar to the standard RRT
approach, except that a random sample, xrand is generated
directly in Task Space, typically using a uniform distribution
over a bounded region. The TS-EXTEND() function, shown
in Algorithm 4, is similar to the standard RRT, but works
in Task Space rather than C-Space. The TS-NEAREST-
NEIGHBOR() function selects the nearest point on the tree
in Task Space. Each node on the tree contains both C-Space
and Task Space information, so the computation of TS-
NEAREST-NEIGHBOR() would be less than the comparable
function in a standard RRT. A full configuration space
action is generated in TS-CONTROL(). Ideally, this control
attempts to grow the nearest node of the tree towards the
random sample in Task Space. There are many ways of
implementing this type of control, and the action can even
be random, as done in [7]. A more efficient approach is to
use the Jacobian pseudoinverse in a feedback type controller,
as shown in Algorithm 5). A new state in C-Space, qnew

Algorithm 3 BUILD-TS-RRT (q0)
1: T.init(q0)
2: for k = 1 to K do
3: if with some probability P then
4: xrand ⇐ RANDOM-SAMPLE() ∈ <M

5: else
6: xrand ⇐ xgoal

7: end if
8: TS-EXTEND(T,xrand)
9: end for

Algorithm 4 TS-EXTEND (T, x)
1: [qnear, xnear]⇐ TS-NEAREST-NEIGHBOR(x,T)
2: u⇐ TS-CONTROL(qnear, xnear, xrand)
3: qnew ⇐ NEW-STATE(qnear, u)
4: xnew ⇐ f(qnew)
5: if COLLISION-FREE (qnear, qnew) then
6: T.add-node(qnear, qnew, xnear, u)
7: end if

is integrated using the same NEW-STATE() function as in
the RRT. After checking for collisions in the full C-Space,
qnew, its Task Space mapping xnew, and the control action
are added to the tree.

Because the sampling occurs in Task Space, the Voronoi
bias when growing the tree is now in this space, rather than
in the configuration space. This encourages the planner to
quickly explore empty regions within task space, which re-
sults in more efficient planning, assuming paths in this space
exist and there are no narrow channels, using the selected
Task Space mapping. Approaches for ensuring completeness
are discussed in section IV.

The growth mechanism in Algorithm 5 allows for a
secondary command, q̇ref , to be defined in terms of the
configuration (state) space. If left as zero, then this controller
will simply take the shortest path within the configuration
(state) space. However, this function can be used to encour-
age the system to go toward certain configurations as much
as possible, and can be similar in spirit to the workspace
centering (e.g. [15]), used in the more typical feedback based
task-space control.

III. SCALABILITY OF TS-RRT COMPARED TO RRT

A. Path Planning for the N-Link Arm

In this section, we examine a kinematic search problem,
in which an N-link arm needs to find a suitable trajectory
from a given start pose, with the task of putting its end
effector at a particular coordinate. Figure 2 demonstrates a
5-link version of this problem. The task space utilized is the
Cartesian coordinate of the end effector. This path planning
problem does not have dynamics, and therefore does not have
any second-order effects including gravity and torque limits.
However, the joints are limited to move less than .05 radians
per each ∆t, and obstacles are imposed within the Cartesian
plane, which are checked for collisions against all links.

Algorithm 5 Example TS-CONTROL(qnear, xnear, xrand)
1: uts ⇐ (xrand − xnear)/∆t
2: uts ⇐ CROP-WITHIN-LIMITS(uts)
3: J⇐ COMPUTE-JACOBIAN(qnear)
4: q̇ref = SECONDARY-CONTROL(qnear,xrand)
5: q̇⇐ J+ · uts + α(I− J+ · J) · q̇ref

6: return ∆q⇐ q̇ ·∆t

Fig. 2. Projection of RRT into End Effector Cartesian Coordinates for a 5-
link arm (shown in Magenta). The starting configuration ([0, 0, 0, 0, 0]T) is
shown in Blue, and the achieved goal configuration is shown in green. TOP:
Standard RRT search was performed in the 5-D configuration space. This
tree has 2000 nodes. Obstacles in the workspace are shown in red, with
collision checking performed for 10 evenly spaced points along each link.
BOTTOM: the resulting RRT using TS-RRT is shown, where exploration
is constrained to the 2D task space. This tree has 150 nodes.

Furthermore, joint limits of +/- 2.5 radians were imposed
on all links. This problem was explored with a constant set
of obstacles, shown in red in Figure 2. A constant start pose
(all angles = 0), and a constant desired goal pose were used.
The number of links, N, is variable, with the link length set
to 1/N so that the total arm length is always 1.

Two algorithms were explored on this problem. First, a
standard forward RRT was implemented. Because there are

Fig. 3. The number of nodes that the RRT algorithm searches before
finding a feasible trajectory for the problem shown in figure 3 is shown as
a function of N, the number of dimensions. The obstacles and goal task
are held constant, and the link lengths are set to 1/N so that the total arm
length remains constant. Note that the x axis is on a log scale, starting with
N=2, going up to N=1000. RED: TS-RRT, which remains approximately
constant. BLUE: full configuration space RRT, which grows super-linearly.

infinite potential goal poses which correspond to the goal
task in this problem, the configuration space was randomly
sampled until 20 poses were found that were collision free
and whose end effector positions were close to the desired
position. The RRT Algorithm 1 was then run, with samples
drawn uniformly in configuration space (∈ <N with bounds
of +/- pi). With probability P=.1, one of the 20 goal config-
urations was chosen at random to be used as the sample to
grow the tree toward. A Euclidean metric (all joints weighted
equally) was used in NEAREST-NEIGHBOR. Node growth
occurred by computing the vector between a sample and the
closest node on the tree, and cropping the components of
this vector to be within +/- .05 radians.

In addition to the standard RRT, a forward TS-RRT was
run on the same problem. The Jacobian pseudoinverse was
used to calculate a desirable change in q to grow a selected
node toward a sample in task space. The nullspace reference
command utilized was set to ∆qref = −q, which encourages
the arm to straighten when possible. ∆q was normalized so
that the max norm was .05. Random samples were taken
uniformly in task space (∈ <2 with bounds of +/- 1.1), and
a Euclidean distance metric was used in task space to select
the closest nodes on the tree. With probability .1 the goal task
was chosen as the sample. Most of the code between the two
implementations was shared, with an attempt to minimize

tuning toward each problem / implementation.

B. Results

Each RRT was run 20 times, while varying the number
of links (N) in the arm from 2 to 1000 (TS-RRT), and
from 2 to 15 (RRT). The median number of nodes explored
by each tree is shown in Figure 3, as a function of N.
The standard RRT quickly started exploring thousands of
nodes as N increased above 4, while the TS-RRT exploration
remained approximately constant. Of course, the Jacobian
pseudoinverse and nullspace calculations are expensive to
compute, but in our implementation, using standard Matlab
functions, they added an overhead of 50 percent to the time
needed to grow a node, including collision checking. As an
example of the actual time to compute paths, the TS-RRT
algorithm took 4-8 seconds with N = 200 (approximately 200
nodes), which was comparable to the standard RRT when
using N = 6 (approximately 1500 nodes). Note, the time
difference per node is due mainly to increased computation
for collision checking in higher dimensions, rather than to
the Pseudoinverse computation.

A comparison of an example of trees produced by each
algorithm, with N=5, projected into task space, is shown in
Figure 2. It is clear that the TS-RRT searches more directly
and evenly within task space. A comparison of the trees
produced, shown in the full configuration space (for N=3), is
shown in Figure 4. The figure shows two different views of
the same two trees, the blue corresponding to TS-RRT, and
the magenta being the standard RRT. The rectangular obsta-
cles in task space correspond to large cylindrical (pancake-
like) obstacles in configuration space, shown by red dots in
the figure. The goal task point is denoted by green dots in
the figure. The standard RRT produces a tree which seems to
evenly spread out in the 3D configuration space, as expected.
The TS-RRT, on the other hand, is more surface-like, but is
able to navigate the obstacles.

The standard RRT could only run up to N=15 in a
reasonable time (approx. 20 minutes to solve). However, we
were able to find trajectories with N = 1500 in less than a
minute with TS-RRT. Two example trajectories (and trees)
are shown in Figure 5. In one trajectory, the arm bends, and
then changes the direction of the bend part way through. In
the other trajectory (bottom), the arm actually tied a knot
through itself in order to reach the goal.

We should note that in order to handle singularities,
we simply restricted the maximum magnitude of angular
displacement, ∆q for any child node. One can see that the
starting pose is singular, but because the planner is sample
based it tends to immediately break out of any singular
regions. More acute examples of the influence of singular
regions can be seen at the extremes of the workspace in
Figure 5. Towards the edges of the reachable workspace, the
TS-RRT becomes slightly irregular, with some nodes being
selected repeatedly and expansion restricted. More clever
handling of singularities is possible as is done in standard
feeback control, but was not required for the task presented
here as the system performance was still quite good.

Fig. 4. TOP/BOTTOM are two rotated views of the same 3D plot. This
figure shows the configuration space view of an RRT tree (magenta), and a
TS-RRT (blue), both for a 3-link arm. Obstacles (same as those shown in
Figure 2) are shown by red dots, and the goal task point is shown by green
dots in the configuration space. The standard RRT has good coverage in the
space, as expected. Both trees converge to a collision free trajectory, but it
clear that the TS-RRT is much more direct.

IV. EXTENSIONS AND POSSIBLE MODIFICATIONS

The algorithm is amenable to various modifications, and
problem specific implementations.

A. Dynamic and Underactuated Systems

It is possible to extend the TS-RRT algorithm to dynamic
systems where new states are generated by integrating the
dynamics forward. The torque (or action) used can be
computed once per step, or incrementally, where uts is
recomputed inside the integration loop as xnear changes.
Algorithm 5 utilized a pseudoinverse Jacobian based velocity
controller, but any preferred method for computing velocity
or acceleration based inverse kinematics ([16] for review,
[17] for an example applied to a 12-DOF quadruped) can be
utilized and integrated forward to generate a new state given
a desired point in task space.

Fig. 5. Two example trajectories and RRT plans, found with N = 1500.
Total computation time was less than one minute.

This method may also be extended to control underactu-
ated systems, if a carefully chosen task space is used, as
in [18], which demonstrated swing-up of a 5-link pendulum
with up to 3 passive joints, by controlling the center of mass
of the system. Potential applications for planning in high
dimensional dynamic systems are far reaching, and because
the task-space control allows for hierarchical control (e.g.
the secondary control q̇ref is only applied in the nullspace
of ẋref , but q̇ref may have been computed from another
task space with a nullspace, allowing for a tertiary controller,
and so on). An example of this might be planning humanoid
grasping movement, by using the Cartesian coordinate of the
hand as a primary task, the orientation as a secondary task,
and a desirable grip posture (e.g. to leave fingers open) as
a a tertiary task. Or, for walking problems, [17], [19] have
proposed to use Center of Mass control as a primary task,
with swing-foot position as a secondary task.

B. On Completeness

The obvious drawback to exploring directly in task space
is that the planner may lose completeness, in the sense that

Fig. 6. With more challenging obstacles, a hybrid approach can be used to
search efficiently by exploring directly in task space part of the time, and
directly in configuration space the remaining time.

it may no longer be possible to guarantee that a path will be
found, given that the set of trajectories which can be explored
has been severely restricted. Thus the choice of task space
is critical, as is the choice of redundancy resolution (e.g.
selection of q̇ref). If a task space can encode actions with
enough breadth such that feasible solutions exist, it remains
unnecessary to explore in the full state space. If a solution
exists within the task space, given the redundancy resolution
mechanism employed, then this planner will still remain
probabilistically complete. Additionally, depending on the
redundancy resolution mechanism, taking an action (in task
space) in one direction and then taking the reverse action
can have the effect that the system returns to the original
point in task space, but to a different point in state space.
As such, it may be possible that all points in state space
are reachable with some action sequence, implying that the
proposed algorithm is still probabilistically complete.

The TS-RRT algorithm presented can also be modified
so that samples are chosen in configuration space, as in
the standard RRT. The standard NEAREST-NEIGHBOR
function would be used, so that a configuration space metric
is used to evaluate and find the closest node on the tree.
The remainder of the algorithm is the same, where a node
chosen for expansion grows toward the sample in task space.
Note, it is possible to augment or define the q̇ref term in
Algorithm 5, the secondary task in the control function, with:
(qrand − qnear)/∆t. In such a case the system will try to
move toward the sample in configuration space, making the
algorithm more similar to the standard RRT. By tuning α,
growth can be biased to explore more in task space, or to
explore more in configuration space, like the standard RRT.
However, it is important to realize that a drawback to such
an approach is that the Voronoi bias within task space will
be disrupted by the sampling within configuration space,
because uniform sampling in one space usually does not map
to a uniform sampling in the other space.

C. Hybrid Approach

Because book-keeping is virtually the same for both the
RRT and TS-RRT algorithms, they are quite interchangeable,
and in fact, we can combine both approaches by searching in
configuration space with some probability, while searching
in task space the remaining time. A variation of may be to
search in task space until it is detected that the tree is not
expanding, at which point the algorithm can start to sample
in configuration space. Any sampling in C-Space ensures
probabilistic completeness, while sampling in T-Space allows
for faster, more direct exploration when possible. Figure 6
demonstrates the resulting RRT which used such a hybrid
approach. Nodes were expanded using either RRT or with
TS-RRT with a probability P = .5, to solve a difficult trajec-
tory problem for a 10 link arm with obstacles that define very
narrow passable channels. The solution in this configuration
is typically found after exploring fewer than 5000 nodes.
Interestingly, we were unable to find a trajectory for this
problem setup if using exclusively either the standard-RRT
or the non-augmented TS-RRT, even after 200,000 nodes of
exploration.

In the worst case, if all extend operations in C-space
are inefficient (approximately perpendicular to all solution
trajectories), then the maximum slowdown of this approach
is a factor of < 1/P compared to searching in T-space alone.
However, this may be a small price to pay in order to achieve
probabilistic completeness. Generally, the more challenging
the problem, defined by the degree of complexity of obstacles
(e.g. narrow obstacles), the more it will benefit to explore
more often in C-space. We leave a more thorough analysis
of such a hybrid approach to future work.

V. CONCLUDING REMARKS

Task Space Control [5] is widely used in feedback control,
but has been widely neglected in the planning community.
We have shown that for some classes of problems, a carefully
chosen task space may offer a tremendous improvement in
planning performance because a Voronoi bias encourages
exploration of empty regions in task space, rather than in
the full configuration space, which allows for solutions to
be found more directly. It is not unreasonable to assume
that problems that can be solved this way in low dimensions
can be scaled to higher dimensions in approximately linear
time, as the number of nodes needed to find a path stays
approximately constant with N, and only the time to check
collisions and to compute the Jacobian pseudoinverse in-
creases. Although this paper was specifically targeted toward
modifying the RRT algorithm in particular, the concept of
task-space exploration may be a powerful tool to enable a
variety of planning algorithms to work in higher dimensions.
Furthermore, the applications are numerous, especially given
that 1) many real world systems are high dimensional and 2)
It is often natural to specify low dimensional tasks for many
problems.

ACKNOWLEDGMENT

This work was supported by the DARPA Learning Loco-
motion program (AFRL contract # FA8650-05-C-7262). The
authors would like to thank Thomas Kollar for his suggestion
to explore the N-Link arm.

REFERENCES

[1] S. M. LaValle, Planning Algorithms. Cambridge University Press,
2006.

[2] S. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” Iowa State University, Dept. of Computer Science, Tech.
Rep. 98–11, 1998.

[3] S. M. LaValle, J. J. Kuffner, and Jr., “Randomized kinodynamic
planning,” The International Journal of Robotics Research, vol. 20,
no. 5, pp. 378–400, 2001.

[4] T. Lozano-Perez, M. T. Mason, and R. H. Taylor, “Automatic synthesis
of fine-motion strategies for robots,” International Journal of Robotics
Research, vol. 3, no. 1, pp. 1–34, December 1983.

[5] A. Liegeois, “Automatic supervisory control of the configuration and
behavior of multibody mechanisms,” IEEE Trans. Syst. Man Cybern.,
vol. SMC-7, no. 12, pp. 868 – 871, December 1977.

[6] J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, and H. Inoue, “Motion
planning for humanoid robots under obstacle and dynamic balance
constraints,” Robotics and Automation, 2001. Proceedings 2001 ICRA.
IEEE International Conference on, vol. 1, pp. 692–698 vol.1, 2001.

[7] Bertram, D., Kuffner, J., Dillmann, R., Asfour, and T., “An integrated
approach to inverse kinematics and path planning for redundant ma-
nipulators,” Robotics and Automation, 2006. ICRA 2006. Proceedings
2006 IEEE International Conference on, pp. 1874–1879, 15-19, 2006.

[8] M. V. Weghe, D. Ferguson, and S. Srinivasa, “Randomized path
planning for redundant manipulators without inverse kinematics,” in
IEEE-RAS International Conference on Humanoid Robots, November
2007.

[9] R. Diankov, N. Ratliff, D. Ferguson, S. Srinivasa, and J. Kuffner, “Bis-
pace planning: Concurrent multi-space exploration,” in Proceedings of
Robotics: Science and Systems IV, June 2008.

[10] J. J. Kuffner, J. Steven, and M. Lavalle, “RRT-connect: An efficient
approach to single-query path planning,” in Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), 2000,
pp. 995–1001.

[11] X. Tang, S. Thomas, and N. M. Amato, “Efficient planning of spatially
constrained robot using reachable distances,” Texas A&M University,
Tech. Rep. TR07-001, September 2006.

[12] Z. Yao, Gupta, and K., “Path planning with general end-effector
constraints: using task space to guide configuration space search,”
Intelligent Robots and Systems, 2005. (IROS 2005). 2005 IEEE/RSJ
International Conference on, pp. 1875–1880, Aug. 2005.

[13] M. Stilman, “Task constrained motion planning in robot joint space,” in
Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE, 2007, pp. 3074–3081.

[14] L. Kavraki, P. Svestka, J. Latombe, and M. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,”
IEEE Transactions on Robotics and Automation, vol. 12, no. 4, pp.
566–580, August 1996.

[15] L. Sentis and O. Khatib, “Control of free-floating humanoid robots
through task prioritization,” in Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), 2005.

[16] J. Nakanishi, R. Cory, M. Mistry, J. Peters, and S. Schaal, “Compar-
ative experimental evaluations of task space control with redundancy
resolution,” in Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2005.

[17] A. Shkolnik and R. Tedrake, “Inverse kinematics for a point-foot
quadruped robot with dynamic redundancy resolution,” in Proceedings
of the 2007 IEEE International Conference on Robotics and Automa-
tion, April 2007.

[18] A. Shkolnik and R. Tedrake, “High-dimensional underactuated motion
planning via task space control,” in Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE/RSJ, 2008.

[19] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiware, K. Harada, K. Yokoi,
and H. Hirukawa, “Biped walking pattern generation by using preview
control of zero-moment point,” in ICRA IEEE International Confer-
ence on Robotics and Automation. IEEE, Sep 2003, pp. 1620–1626.

