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Abstract— Kinodynamic planning algorithms have the po-
tential to find feasible control trajectories which accomplish a
task even in very nonlinear or constrained dynamical systems.
Underactuation represents a particular form of a dynamic
constraint, inherently present in many machines of interest (e.g.,
walking robots), and necessitates planning for long-term control
solutions. A major limitation in motion planning techniques,
especially for real-time implementation, is that they are only
practical for relatively low degree-of-freedom problems. Here
we present a model-based dimensionality reduction technique
based on an extension of partial feedback linearization control
into a task-space framework. This allows one to plan motions
for a complex underactuated robot directly in a low-dimensional
task-space, and to resolve redundancy with lower-priority tasks.
We illustrate the potential of this approach with an extremely
simple motion planning system which solves the swing-up
problem for multi-link underactuated pendula, and discuss
extensions to the control of walking.

I. INTRODUCTION

A robotic system is “underactuated” if a control system
cannot produce arbitrary accelerations in some of the de-
grees of freedom at every instant in time. Underactuated
systems are typified by robots that have more degrees-of-
freedom (DOFs) than actuators, such as the Acrobot [1]
or Pendubot [2]. Many important classes of robots are un-
avoidably underactuated, including most walking, swimming,
and flying machines. For instance, walking machines are
typically underactuated at the interface between the foot
and the ground; the control system cannot produce arbitrary
ground reaction forces or moments. This is especially true
for point-foot walkers (e.g., [3]), but is also true for flat-
foot walkers like Honda’s ASIMO’s [4] or Kawada’s HRP-2
[5]. For machines with large support polygons, the location
of the Zero-Moment Point (ZMP) has proven to be a useful
metric for avoiding the dynamic constraints of underactuation
- when the ZMP is regulated to stay inside a large flat foot,
the foot will not roll, and the remaining degrees of freedom
can be controlled as if the system is fully actuated. But
this ZMP constraint results in overly conservative dynamic
trajectories. Because the control systems do not reason
about the underactuated dynamics, the humanoid robots do
not perform well when walking on any significantly rough
or unmodelled terrain, cannot move nearly as quickly as
humans, and use dramatically more energy (scaled) than a
human [6].

There has been a considerable amount of work on control
design for underactuated systems. Such systems are not
feedback linearizable, but in many cases it is possible to
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Fig. 1. Schematic of an underactuated manipulator (top left) and the lower-
dimensional fully-actuated model (bottom left) that defines the task space
of the problem. Plans generated in task space are mapped back to the active
joints of the underactuated system, and are verified to satisfy any constraints
in the underactuated system. (White circles represent passive joints.)

achieve a partial feedback linearization (PFL) [7], in which
the dynamics of some subset of the degrees of freedom are
replaced (through feedback) with the dynamics of a simple
linear system. This subset is not restricted to simply the
actuated joints, in fact it is often possible to exploit inertial
coupling to linearize the dynamics of the unactuated joints.
The machinery developed for partial feedback linearization
includes a very compact and straight-forward mechanism
for reasoning about, and controlling, the couplings between
actuated and unactuated joints in robotic manipulators.

In this paper, we present an extension of the PFL ideas
to control in task space. Task space control [8] has become
very popular in recent years, in part, because of the natural
mechanism of redundancy resolution and task prioritization
(e.g., [8], [9]); we include these ideas in our derivation. Task
space control has been widely explored in fully actuated
systems, as well as Operation Space control in floating-base
systems [10]. However, to accomplish sophisticated tasks,
underactuated systems with joint constraints must reason
about the possibility that the control system cannot execute
arbitrary trajectories in task space. In fact, [2] anticipated
an extension of PFL to task space but observed that finding
feasible trajectories can be very difficult, [11] developed a
Cartesian-space PFL and suggested the need for planning,
and [12] used a constrained configuration space planner in
an initial attempt to design feasible trajectories for a subclass



of underactuated systems with brakes.
Recent advances in kinodynamic motion planning algo-

rithms [13], [14], spurred on by randomized motion planners,
have matured our understanding of computational methods
for designing feasible trajectories in task space. An essential
observation in our work is that planning in task space,
when done correctly, is a much lower-dimensional planning
problem than planning directly in the state space of the
robot. In a real sense, the control mapping we provide from
task space to (underactuated) joint space is a mechanism for
exploiting known properties of the dynamics of the robot in
order to dramatically improve the efficiency of search. To
be practical, the task-space planner must respect constraints
that exist only in the higher-dimensional state space (such as
joint and torque limits). The concept of planning in a low
dimensional task space and verifying constraints in joints
space is illustrated in Figure 1. In this paper we present
an extremely simple planning scheme which satisfies this
framework, which is only feasible because of the significant
reduction in dimensionality in the search. We hope that the
success reported here will inspire more work on intelligent
planning algorithms which can exploit the task-space map-
ping, and we expect that fast randomized planners such as
Rapidly-exploring random trees (RRTs) in particular, will be
amenable to the approach presented.

In addition to developing the framework, we report the
results of our experiments on a classically hard motion
planning problem - the swing-up task for an underactuated
pendulum with an arbitrary number of links (aka, the N -link
pendulum). The computational complexity of the algorithm
we describe is invariant to the number of links; we focus
here on results with a five-link pendula. Finally, we discuss
some extensions to motion planning for dynamic locomotion
on rough terrain.

II. TEMPLATES AND ANCHORS

The concept of “embedding” low-dimensional dynamics
into a high-dimensional dynamical system has a long history
in control, and robotic locomotion research is no exception
(e.g., [15], [16]). [17] gave this idea some broad appeal by
describing “templates and anchors”, and suggesting that the
embedding of simple models (the templates) can describe
neuromechanical invariants in real animals (the anchors).
One of the hallmark examples of this work is the spring-
loaded inverted pendulum (SLIP) model, which explains
center-of-pressure to center-of-mass dynamics in an incred-
ible diversity of creatures, and also has been used to design
control systems for dynamic locomotion in robots [18].
Most work in templates and anchors (e.g., [19], [20]) use
an inverse-dynamics mapping to produce the embedding;
consequently when the anchor is underactuated, the tem-
plate must be chosen carefully to guarantee that dynamics
remain invertible. Our approach in this paper is different,
as we attempt to embed a fully-actuated template into an
underactuated anchor.

The disadvantage of embedding a fully-actuated system
into an underactuated system is readily apparent - not all
trajectories of the underlying fully-actuated system are fea-
sible due to constraints. This would complicate any analytical
controller design process. Our motivation here is different;
we mean to exploit computational methods for generating

feasible trajectories in the template system. The key element
is not an analytical simplification of the control design, but
simply a reduction in the dimensionality of the problem
designed to facilitate computational solutions via search.

III. TASK SPACE CONTROL OF UNDERACTUATED
SYSTEMS

Without loss of generality, the equations of motion of an
underactuated system can be broken down in two compo-
nents, one corresponding to unactuated joints, q1, and one
corresponding to actuated joints, q2:

M11q̈1 + M12q̈2 + h1 + φ1 = 0 (1)
M21q̈1 + M22q̈2 + h2 + φ2 = τ (2)

with q ∈ <n, q1 ∈ <m, q2 ∈ <l, l = n −m. Consider an
output function of the form,

y = f(q),

with y ∈ <p, which defines the task space. Define J1 = ∂f
∂q1

,
J2 = ∂f

∂q2
, J = [J1,J2].

Theorem 1 (Task Space PFL): If the actuated joints are
commanded so that

q̈2 = J̄+
[
v − J̇q̇ + J1M−1

11 (h1 + φ1)
]
, (3)

where J̄ = J2 − J1M−1
11 M12. and J̄+ is the right Moore-

Penrose pseudo-inverse,

J̄+ = J̄T (J̄J̄T )−1,

then we have
ÿ = v. (4)

subject to
rank

(
J̄
)

= p, (5)

Proof: Differentiating the output function we have

ẏ = Jq̇

ÿ = J̇q̇ + J1q̈1 + J2q̈2.

Solving 1 for the dynamics of the unactuated joints we have:

q̈1 = −M−1
11 (M12q̈2 + h1 + φ1) (6)

Substituting, we have

ÿ =J̇q̇− J1M−1
11 (M12q̈2 + h1 + φ1) + J2q̈2 (7)

=J̇q̇ + J̄q̈2 − J1M−1
11 (h1 + φ1) (8)

=v (9)

Note that the last line required the rank condition (5) on J̄ to
ensure that the rows of J̄ are linearly independent, allowing
J̄J̄+ = I.

In order to execute a task space trajectory one could
command

v = ÿd + Kd(ẏd − ẏ) + Kp(yd − y).

Assuming the internal dynamics are stable, this yields con-
verging error dynamics, (yd − y), when Kp,Kd > 0 [21].



For a position control robot, the acceleration command of
(3) suffices. Alternatively, a torque command follows by
substituting (3) and (6) into (2).

A. Collocated and Non-Collocated PFL

The task space derivation above provides a convenient
generalization of the partial feedback linearization (PFL) [7],
which emcompasses both the collocated and non-collocated
results. If we choose y = q2 (collocated), then we have

J1 = 0,J2 = 1, J̇ = 0, J̄ = 1, J̄+ = 1.

From this, the command in (3) reduces to q̈2 = v. The torque
command is then

τ = −M21M−1
11 (M12v + h1 + φ1) + M22v + h2 + φ2,

and the rank condition (5) is always met.
If we choose y = q1 (non-collocated), we have

J1 = 1,J2 = 0, J̇ = 0, J̄ = −M−1
11 M12.

The rank condition (5) requires that rank(M12) = l, in
which case we can write J̄+ = −M+

12M11, reducing the
rank condition to precisely the “Strong Inertial Coupling”
condition described in [7]. Now the command in (3) reduces
to

q̈2 = −M+
12 [M11v + (h1 + φ1)] (10)

The torque command is found by substituting q̈1 = v and
(10) into (2), yielding the same results as in [7].

B. Redundancy Resolution

In situations where l is greater than p, there are infinite
solutions to achieve the desired task-space command. We
may use a Null-space projection to execute a second-priority
task in actuator-space:

Theorem 2 (Task Space PFL w/ Redundancy Resolution):
If the actuated joints are commanded so that

q̈2 = J̄+
[
v − J̇q̇ + J1M−1

11 (h1 + φ1)
]

+α(I− J̄+J̄)q̈ref
2 ,

(11)
and the condition (5) is met, then we have

ÿ = v.

Proof: The proof is identical to Theorem 1, because
the null-space terms are canceled by the pre-multiplication
of J̄, and therefore do not contribute to ÿ.

Redundancy resolution is a very important aspect of task
space control, particularly for underactuated systems (see e.g.
[22]). The command q̈ref

2 can be thought of as a lower-
priority task, which will be executed in the null-space of the
high priority task. If the command is zero, the controller will
return the solution with the smallest norm. More clever re-
dundancy resolution tasks can help ensure the underactuated
system stays dynamically within a regime where there are
more actions that can be taken, a characteristic which can
improve search performance.

Fig. 2. Acrobot Control: Top, trajectory of control output function (angle
from base to end effector); Blue is desired, red is actual. Bottom, snapshots
of Acrobot during execution. Red is first link, Blue is second link, Magenta
is commanded angle.

IV. FEEDBACK CONTROL OF THE ACROBOT

We begin by exploring task space control on a two link
arm with a passive base joint. From herein we will refer to
N-link arms with mixtures of Passive and Actuated joints by
shorthand notation of combinations of P and A representing
the respective type of joint. This two link system, PA, is
known as the Acrobot [23]. Direct application of task-space
PFL on this system without planning clearly demonstrates the
power of the feedback linearization and the need for motion
planning.

Specifically, we control an Acrobot to execute behaviors
where the task space consists of either 1) the angle from
the base to the COM, θCOM or 2) the angle from base
to the end effector, θend. We consider two potential out-
put trajectories: 1) maintain a constant angle of 1 radian;
θd(t) = 1, or 2) follow an arbitrary desired trajectory -
in this case we define it as θd(t) = 1 + .5 sin(4t). When
the task space is θCOM and the torque is unconstrained
both output trajectories are followed well, but the controller
commands excessive torques and the actuated joint spins.
We obtain similar results for controlling the end-effector
angle, however in the special case if the second link is
substantially longer than the first link, then the link does
not spin, and instead the system “oscillates” back and forth
along the line specified by yendd

(t) = 1, as shown in figure
2. This is a demonstration of how the choice of task space
can drastically affect the system dynamics. If the goal is to
perform swing-up behavior, for the Acrobot it may be better
to control the end effector. As we may only control one
degree of freedom with one actuator, treating the system as
a pendulum and controlling the center of mass angle ignores
the constantly changing length, which makes the pendulum
(angle to COM) a poor choice of template. With redundant
degrees of freedom for cases where N > 2, however, we
may regulate both the angle and length of the pendulum,
and so this becomes our task space of choice.

Similar results can be attained with higher DOF systems.
These simulation experiments reveal the need for motion
planning to enforce joint and torque limits. The dynamic
constraint imposed by the rank condition in equation 5 was
never actually violated - degeneracy in the Jacobian always



Fig. 3. A low-dimensional template for the underactuated swing-up task.

presented itself with excessive torques before the mapping
became truly singular.

V. PLANNING

In dealing with the dimensionality problem, we suggest
planning in a lower dimensional task space. Taking actions
in task space (ÿ) confines the possible actions which can
be taken from any given state (τ ). Constraining potential
actions in this way is a feature that many planners can take
advantage of. Unfortunately, although we can map actions
from task space to joint space, we can not map constraints
from joint space to task space. Thus, the planner must
consider what happens in joint space when a given task is
applied. Typically, this can be accomplished by computing
the mapping from task accelerations to torques, simulating
the full system given those torques, and verifying that no
constraints are violated. The intent is that the reduced set of
potential actions is powerful enough to enable the planner
to find a path from start to goal. However, reachability
to the goal will also depend on the choice of redundancy
resolution. We should note that the task controller does not
necessarily carve out a manifold within state space. The
controller constrains the actions, but the entire feasible state
space may still be reachable. Thus, completeness remains a
function of the higher-level planner, and is not necessarily
constrained by the controller.

If the task space is of low enough dimension, a simple
quasi-exhaustive tree search may be performed. More clever
algorithms such as RRTs [24] can be utilized and will
only improve the performance, but we begin by exploring
a near-brute-force search approach illustrated in Algorithm
1, which would clearly not work in higher dimensional sys-
tems. This illustrates the effectiveness of the dimensionality
reduction. Except for line 23, this is essentially a brute force
search algorithm. The pruning step of line 23 keeps the tree
from expanding exponentially at each depth.

VI. GENERALIZED SWING UP CONTROL FOR N-LINK
PENDULA WITH PASSIVE JOINTS

A. Simulations of a 5-link pendulum
We consider a general, and classical, problem in under-

actuated control - the swing-up task (e.g., [25]). Consider a
multi-link underactuated pendulum in a gravitational field.
The task is to move the center of mass of the pendulum
to the vertical configuration. Many of the control solutions

Fig. 4. COM trajectories

investigated in this problem use energy-based methods; for
simple pendula, regulating the total energy of the system is
enough to place the system on a homoclinic orbit [26]. Most
work on pendula with passive joints have focused on cases
with 2 or 3 links [23], [27]. With more degrees of freedom, if
searching directly for a torque trajectory over the actuators,
the problem is crippled by the curse of dimensionality
[28]. In addition to increased system dimension, we further
complicate the problem by considering limitations of joint
positions, and torques.

For reasons alluded to previously, we consider a two-
DOF pendulum, with control over angle and length as our
template. This template and an example 5-Link pendulum
is illustrated in Figure 3. We ran our algorithm on the
following systems: AAAAA, PAAAA, PAPAA, and PAPAP.
In all cases, we were able to find a trajectory to the goal.
Parameters of the system were as follows:

Mass of each link .2kg
Length .2m
Moment of Inertia .05kg ·m2

Torque Limitation 2 Nm

In practice, we utilized the method in Algorithm 2 for
pruning, where the metric function, M, was based on the
energy difference between a given state and the goal, and pe-
nalized by a weighted sum of joint space distance away from
the straight pose, where joints closest to the base were more
heavily weighted and therefore encouraged to be straighter
than joints further from the base. This metric encourages
pumping energy into the system, but tries to stay away
from poses which wrap around. Nodes are probabilistically
pruned, biased by the metric, a step that helps to ensure that
some feasible paths remain if most high-scoring nodes are
actually headed to a dead-end.

Example center of mass trajectories for all four cases
are compared in Figure 4. An entire swing-up trajectory is
illustrated for the PAAAA case in Figure 6, and the final



Algorithm 1 Simple Planning
Require: discrete set of actions, V ∈ RNxp , Depth limit of

D, Depth node limit of B
1: Add-node (x0, root)
2: for depth d = 1 to D do
3: n⇐ 0
4: for each node, xn at depth d do
5: for each Vi ∈ V do
6: tauH ⇐ task-control(xn, Vi)
7: if |tauH < tauLIMIT | then
8: Simulate: xnew ⇐ f(xn, tauH ,∆T )
9: if NO-CONSTRAINTS-VIOLATED( xnew )

then
10: Add-node(xnew, Xn)
11: n⇐ n+ 1
12: end if
13: end if
14: end for
15: end for
16: if Goal Reached then
17: RETURN (GOAL REACHED)
18: end if
19: if n == 0 then
20: RETURN (NO PATH FOUND)
21: end if
22: if n > B then
23: prune B-n leaves from depth d
24: end if
25: end for

Algorithm 2 Probabilistic Pruning
Require: set of leaves, Xleaves, leaf limit B, goal Xgoal,

0 < α < 1
1: Compute a distance metric: H = M(X,Xgoal), where

H is normalized between 0 (furthest) and 1 (closest).
This metric can also account for ”‘bad poses”’ or any
other costs on the state.

2: Sort( (α(H/2) + (1− α) )*Random-Number-Generator
3: Return best N nodes

three swings for the PAPAA case are shown in Figure 7. We
omit the first half of the PAPAA trajectory and the PAPAP
trajectory for brevity, but the full swing-ups are shown in the
accompanying video.

B. Computational Efficiency
It is easy to see that Algorithm 1 is

O(D ·K ·N (2p)).

This is substantially better than the case without pruning,
which would grow exponentially on D.

To illustrate the time savings offered by the dimensionality
reduction, consider the PAAAA example of the preceding
section, with 1 passive joint, 4 actuators, and a 2-DOF task
space consisting of the angle and length to COM (l = 1, m=4,
p=2). Let K = (B/Np) be the average branching factor
per node. In the results presented above, we use K=2, D=65
(∆T=.15), N=11. Then if we search in the lower dimensional
task space where p=2, the search time is O(D∗K∗N (2p)) ∝

Fig. 5. LittleDog

2 million nodes. If we attempted to search with the same
discretization factor in the full joint space (note the branching
factor blows up to B = K ∗N4), the equivalent time would
be O(D ∗K ∗N (2p)) ∝ 30 billion nodes.

Although conventional RRTs could potentially solve the 5
link swing-up problem, note that the computational efficiency
of the search proposed here is invariant to the number of
links.

VII. DISCUSSION

A. Planning
The planning algorithm presented here was intentionally

kept simple, and was meant to demonstrate the power of
the dimensionality reduction in the search, as a planning
algorithm with similar search density in the full state space
would have been computationally intractable. The contri-
bution here is in addressing the underactuated control as
a search problem, and using task space to constrain the
search. We note, however, that any planner can be used if
it satisfies the framework of Figure 1. For example, recent
work on RRTs has begun to address task-space search. [14]
utilizes task space to enable a bidirectional RRT in a grasping
problem. A forward RRT grows from the start pose in
configuration space, and backward tree grows from the goal
in task space; occasionally the forward tree is allowed to
grow along the task tree as far as possible. Another related
work is the JT-RRT [29] which occasionally has the forward
tree grow in task space towards the goal using the Jacobian
transpose. Such an approach would be very amenable to the
task space controller presented in this paper, and is a future
direction we are exploring to enable real-time planning for
underactuated systems.

Note that the result of our planning system is a feasible
open-loop trajectory of the underactuated system, but that
our derivation also provides a feedback stabilization for that
trajectory.

B. Choice of template
Our first attempts to generate a swing up controller were

done by using a 1-DOF pendulum as a template. It seemed
logical that we could stabilize length in the Null space, and
focus on increasing energy by controlling only the angle of
the COM. In practice, the torques required to keep the 5-link
pendulum of constant length were too great, and exhaustive
search fails. We find that allowing the length to very acts like
a spring, and can relieve tension in the system. When COM
angular velocity is high, and inertia is greatest, expanding the
lengths helps minimize torques and keeps the system within
torque bounds.



Fig. 6. PAAAA

Fig. 7. PAPAA

C. Applications to locomotion
Many legged robots can be modeled by rigid body dy-

namics. Our lab has been working with the LittleDog robot,
a position controlled quadruped robot developed by Boston
Dynamics, Inc for the DARPA Learning Locomotion pro-
gram. The task is to develop a controller for LittleDog to
traverse extremely rough terrain. The robot has point feet,
and we are currently working on modeling the robot in the
sagittal plane as a 5 link PAAAA system. We have had some
success generating open loop trajectories which allow the
robot to rear-up on its hind legs in an attempt to place its front
legs on very high obstacles [30]. Figure 5 shows the robot
rearing back, as well as a corresponding 5-link model and
2-DOF template. We are working to utilize the techniques
developed in this paper to generate a bounding gait that can
be stabilized by the task space linearization. Because the
actual robot has 12 actuated DOF, we can utilize the null
space for foot placement. Related applications are plentiful,
and include stabilizing foot roll in humanoid robots.

VIII. CONCLUSIONS

In this work we demonstrated a framework for planning
in underactuated systems by utilizing task space control and
partial feedback linearization. The power of this approach
was demonstrated by application of a feedback controller
in the Acrobot (PA), which was able to closely track an
arbitrary trajectory of its end-effector. Feedback control can
fail due to constraints on the system, including torque limita-
tions, physical obstacles in the environment, joint limits, etc.
We proposed a model based motion planner to graphically

search for trajectories from start to goal without violating
constraints. This planner takes advantage of a reduced action
space imposed by the task space control. This planner was
successful in producing swingup behavior in 5-link models
with anywhere from 0 to 4 passive joints. This toy problem
lays the foundation for real-world applications which we are
working on, including stabilizing dynamics gaits of a point-
food quadruped robot, and roll in a humanoid.
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