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Abstract— This paper presents an approach to computing
the time-limited backwards reachable set (BRS) of a semialge-
braic target set for controlled polynomial hybrid systems with
semialgebraic state and input constraints. By relying on the
notion of occupation measures, the computation of the BRS of
a target set that may be distributed across distinct subsystems
of the hybrid system, is posed as an infinite dimensional linear
program (LP). Computationally tractable approximations to
this LP are constructed via a sequence of semidefinite programs
each of which is proven to construct an outer approximation
of the true BRS with asymptotically vanishing conservatism.
In contrast to traditional Lyapunov based approaches, the
presented approach is convex and does not require any form
of initialization. The performance of the presented algorithm
is illustrated on 2 nonlinear controlled hybrid systems.

I. INTRODUCTION

Hybrid systems have been widely adopted as a modeling
tool due to their expressive power while describing the
dynamics of systems undergoing continuous and discrete
transitions simultaneously. Consequently, the development of
computationally tractable algorithms for reachability analy-
sis is critical not only for verifying safe system behavior,
but also due to its applicability during incremental control
design [20]. This paper presents a numerical approach to
construct the set of points that reach a given target set
at a specified finite time for controlled polynomial hybrid
systems.

Many algorithms have been proposed to compute this
backwards reachable set (BRS) for a hybrid system. The
most popular of such techniques rely either upon the linearity
of the distinct subsystems of the hybrid system under inves-
tigation [10], [21], the Hamilton-Jacobi-Bellman Equation
[22], or Lyapunov-type analysis [14], [17], [18]. Though the
Hamilton-Jacobi-Bellman based methods work even in the
presence of general nonlinear dynamics, they rely upon state-
space discretization which can restrict their applicability to
systems of low dimensionality. In contrast, Lyapunov based
methods can be applied to higher dimensional systems. These
approaches rely on checking Lyapunov’s criteria for stability
using sums-of-squares (SOS) programming which are formu-
lated as semi-algebraic constraints and casted as SOS con-
straints using the S-procedure. However, constructing these
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Lyapunov functions requires solving a nonconvex bilinear
program that is solved using some form of alternation, which
is not guaranteed to converge to global or even local optima
and requires feasible initialization.

In this paper, we address these issues by presenting a
convex approach to computing the BRS of a semialgebraic
target set for a controlled polynomial hybrid system in
the presence of semialgebraic state and input constraints.
Our approach is inspired by the method presented in [8],
which describes a framework based on occupation measures
for computing the BRS for classical polynomial dynamical
systems. Our contributions are three–fold. First, in Section
II, we formulate the determination of the BRS as an infinite
dimensional linear program (LP) over the space of nonneg-
ative measures. The target set in this formulation can in fact
be divided amongst the distinct subsystems of the hybrid
system. Second, in Section IV, we construct a sequence
of finite dimensional relaxations to our infinite dimensional
LP in terms of semidefinite programs (SDP)s. Finally, in
Section IV-B, we prove that each solution to the sequence
of SDPs is an outer approximation to the largest possible
BRS with asymptotically vanishing conservatism. In Section
V, we demonstrate the performance of our approach on 2
examples.

II. PRELIMINARIES

In this section, we formalize our problem of interest,
construct an infinite dimensional LP, and note that the
solution of this LP is equivalent to solving our problem of
interest. We make substantial use of measure theory, and the
unfamiliar reader may wish to consult [6] for an introduction.

A. Notation

Given an element y ∈ Rn, let [y]i denote the (i)–th
component of y. We use the same convention for elements
belonging to any multidimensional vector space. Let N we
denote the non-negative integers, and Nnk refer to those
α ∈ Nn with |α| =

∑n
i=1[α]i ≤ k. Let R[y] denote the

ring of real polynomials in the variable y. For a compact
set K ⊂ Rn, let M(K) denote the space of signed Radon
measures supported on K. The elements of M(K) can
be identified with linear functionals acting on the space of
continuous functions C(K), that is, as elements of the dual
space C(K)′ [6, Corollary 7.18]. The duality pairing of a
measure µ ∈M(K) on a test function v ∈ C(K) is:

〈µ, v〉 =

∫
K

v(z)µ(z). (1)



In addition, let spt(µ) denote the support of a measure µ
and λn denote the Lebesgue measure on Rn. Given n ∈ N
and D ⊂ Rn, ∂D denotes the boundary of D. Recall that
given a collection of sets {Sα}α∈A, the disjoint union of
this collection is

∐
α∈A Sα =

⋃
α∈A Sα × {α}. Throughout

the paper we abuse notation and say that given ᾱ ∈ A
and x ∈ Sᾱ, then x ∈

∐
α∈A Sα, even though we should

write ιᾱ(x) ∈
∐
α∈A Sα, where ιᾱ : Sᾱ →

∐
α∈A Sα is the

canonical identification ιᾱ(x) = (x, ᾱ).

B. Controlled Polynomial Hybrid Systems

Motivated by the definition in [4], we define the class of
hybrid systems of interest in this paper.
Definition 1: A controlled polynomial hybrid system is a
tuple H = (J ,Γ,D, U,FG,S,R), where:
• J is a finite set indexing the discrete states of H;
• Γ ⊂ J × J is a set of edges, forming a directed graph

structure over J ;
• D =

∐
j∈J Xj is a disjoint union of domains, where

Xj =
{
x ∈ Rnj | hXji

(x) ≥ 0, hXji
∈ R[x],∀i =

{1, . . . , nXj
}
}

is a compact subset where nj ∈ N;
• U = {u ∈ Rm | hUi ≥ 0, hUi ∈ R[u],∀i ∈ {1, . . . , nU}}

is a compact, convex subset which describes the range
space of the control inputs where m ∈ N;

• FG = {(fj , gj)}j∈J is a set of control affine systems,
where fj : R × Xj → Rnj , gj : R × Xj → Rnj , for t ∈
R, x ∈ Xj , and u ∈ U , f(t, x) + g(t, x)u is a tangent
vector on Xj at x, and f, g ∈ R[t, x];

• S =
∐
e∈Γ Se is a disjoint union of the guards, where each

S(j′,j) =
{
x ∈ ∂Xj | h(j′,j)i(x) = 0, h(j′,j)i ∈ R[x],∀i =

{1, . . . , n(j′,j)}
}

is a compact, co-dimension 1 guard that
defines a transition from domain j ∈ J to domain j′ ∈ J
and S(j′,j)∩S(k′,j) = ∅, ∀(j′, j), (k′, j) ∈ Γ when k′ 6= j′;

• R = {Re}e∈Γ is a set of reset maps, where each
R(j′,j) : S(j′,j) → Xj′ defines the transition from guard
S(j′,j) to Xj′ , R(j′,j) ∈ R[x] where x ∈ Xj , and R(j′,j)

is an injective, continuously differentiable function whose
Jacobian is nonzero for every x ∈ S(j′,j).

For convenience, we sometimes refer to controlled polyno-
mial hybrid systems as just hybrid systems, and we refer
to the distinct vertices within the graph structure associated
with a controlled polynomial hybrid system as modes.

Next, we define an execution of a hybrid system via
construction in Algorithm 1. This definition agrees with
the traditional intuition about executions of hybrid systems,
which describes an execution as evolving as a dynamical
system until a guard is reached, at which point a discrete
transition occurs to a new domain using a reset map, and
evolution continues again as a dynamical system.

Hybrid systems can suffer from Zeno executions, i.e. exe-
cutions that undergo an infinite number of discrete transitions
in a finite amount of time. Since the state of the trajectory
after the Zeno occurs maybe undefined, we do not consider
hybrid systems with Zeno executions:
Assumption 1: H has no Zeno execution.

Algorithm 1 Execution of Hybrid System H
Require: t = 0, j ∈ J , (x0, j) ∈ D, and u : R → U

Lebesgue measurable.
1: Set x(0) = x0.
2: loop
3: Let γ : I → Xj be an absolutely continuous functiona

such that:
(i) γ̇(s) = f(s, γ(s)) + g(s, γ(s))u(s) for almost

every s ∈ I with respect to the Lebesgue measure
on I ⊂ [0,∞],

(ii) γ(t) = x(t), and
(iii) for any other γ̃ : Ĩ → Xj satisfying (i) and (ii)

Ĩ ⊂ I .
4: Let t′ = sup I and x(s) = γ(s) for each s ∈ [t, t′)b.
5: if t′ = ∞, or @(j′, j) ∈ Γ such that γ(t′) ∈ S(j′,j)

then
6: Stop.
7: end if
8: Let (j′, j) ∈ Γ be such that γ(t′) ∈ S(j′,j).
9: Set x(t′) = R(j′,j) (γ(t′)), t = t′, and j = j′.

10: end loop

aNote that the existence of a curve satisfying conditions (i),(ii), and (iii)
follows from [3, Theorem 10.1.4]

bNote if t′ <∞, then γ(t′) ∈ ∂Xj . [3, Theorem 10.1.12]

C. Problem Statement

Next, we describe the target set whose BRS we are
interested in computing. First, we define the projection of
the target set in each mode j ∈ J :

XTj=
{
x ∈ Xj |hTji

(x) ≥ 0, hTji
∈ R[x],∀i = {1, . . . , nTj

}
}
.

(2)
The target set is then defined as:

XT =
∐
j∈J

XTj
. (3)

Given a finite final time T > 0, our goal is to compute
the time–limited BRS of XT which is defined as:

X =
{

(x0, j) ∈ D | ∃u : [0, T ]→ U Lebesgue measurable

s.t. x : [0, T ]→ D defined via Algorithm 1,

x(0) = x0 ∈ Xj , x(T ) ∈ XT

}
. (4)

We denote the projection of X in each mode j as:

Xj =
{
x0 ∈ Xj | (x0, j) ∈ X

}
(5)

We make the following assumption to solve this problem:
Assumption 2: XTj

is compact for all j ∈ J .

D. Liouville’s Equation

We compute X by defining measures over [0, T ] × Xj

for each j ∈ J whose supports’ model the evolution of
families of trajectories in each mode. An initial condition
and its relationship with respect to the terminal set can be
understood via Algorithm 1, but the relationship between a



family of trajectories and the terminal set is best understood
differently. To appreciate this distinct perspective, first define
the linear operator Lj : C1

(
[0, T ]×Xj

)
→ C

(
[0, T ]×Xj×

U
)

on a test function v as:

Ljv =
∂v

∂t
+

nj∑
i=1

∂v

∂xi

(
[f(t, x)]i + [g(t, x)u(t)]i

)
, (6)

and its adjoint operator L′j : C
(
[0, T ] × Xj × U

)′ →
C1
(
[0, T ]×Xj

)′
by the adjoint relation:

〈L′jµ, v〉 = 〈µ,Ljv〉 =

∫
[0,T ]×Xj×U

Ljv(t, x, u)dµ(t, x, u) (7)

for all µ ∈M
(
[0, T ]×Xj × U

)
and v ∈ C1

(
[0, T ]×Xj

)
.

Using this operator, we can understand the evolution of
any test function v ∈ C1

(
[0, T ]×Xj

)
in Xj . To make this

explicit, consider the evolution of a point xτi ∈ Xj beginning
at time τi ∈ [0, T ] under the control input u(·|τi, xτi)
according to Algorithm 1, which we denote by x(·|τi, xτi).
Define the first hitting time of a guard in Xj as:

τf (τi, xτi) = min
{
T, inf{τ ≥ τi | ∃k ∈ J s.t.

x(τ |τi, xτi) ∈ Gk,j}
}
. (8)

It follows from Equation (6) that:

v(τf , x(τf |τi, xτi))−v(τi, xτi)=

∫ τf

τi

d

dt
v(t, x(t|τi, xτi))dt (9)

=

∫ τf

τi

Ljv(t, x(t|τi, xτi), u(t|τi, xτi))dt, (10)

where we have suppressed the dependence on τi and xτi
in τf . A standard approach to determining the BRS of a
system imposes Lyapunov conditions on the test functions
and their derivatives. However, this results in nonconvex
bilinear matrix inequalities. Instead we examine conditions
on the space of measures–the dual to the space of continuous
functions–in order to arrive at a convex formulation.

To do this, we begin by defining an occupation measure:

µ(A×B × C|τi, xτi) =∫ T

0

IA×B×C (t, x(t|τi, xτi), u(t|τi, xτi))) dt, (11)

for all subsets A × B × C in the Borel σ-algebra of
[0, T ] × Xj × U , where IA×B×C(·) denotes the indicator
function on a set A × B × C. As a result of its definition,
the occupation measure of a set A × B × C quantifies the
amount of time the graph of a solution and its associated
control, (t, x(t|τi, xτi), u(t|τi, xτi)), spends in A×B × C.
For any measurable function h : [0, T ] × Xj × U → R an
occupation measure by construction satisfies the following
property:∫ T

0

h(t, x(t|τi, xτi), u(t|τi, xτi))dt =∫
[0,T ]×Xj×U

h(t, x, u)dµ(t, x, u|τi, xτi) (12)

As a result, Equation (10) then becomes:

v(τf , x(τf |τi, xτi))−v(τi, xτi) =

∫
[0,T ]×Xj×U

Ljv(t, x, u)dµ(t, x|τi, xτi).

(13)
If the initial state whose evolution was of interest was not

just a single point at a specific time, but was a family of
points each beginning at distinct times, then we could define
an initial measure, µi ∈ M([0, T ] × Xj), whose support
coincided with this family of points and their initialization
times. We could then define an average occupation measure,
µ ∈M ([0, T ]×Xj × U) by:

µ(A×B×C) =

∫
X

µ(A×B×C|τi, xτi)dµi(τi, xτi), (14)

and a final measure, µf ∈M ([0, T ]×Xj) by:

µf (A×B) =

∫
[0,T ]×Xj

IA×B(τf (τi, xτi), x(τf |τi, xτi))dµi(τi, xτi).

(15)
Integrating with respect to µi, introducing the average oc-
cupation measure and final measure, and using the property
defined in Equation (12), Equation (13) becomes:

〈µf , v〉−〈µi, v〉 = 〈µ,Ljv〉, ∀v ∈ C1([0, T ]×Xj). (16)

The support of µ models the flow of trajectories beginning in
the support of µi, and the support of µf represents the dis-
tribution of states at some final time after being transported
along system trajectories from the initial measure.

Notice that Equation (16) is linear in its measure compo-
nents. Since Equation (16) must hold for all test functions,
we obtain a linear operator equation:

µf − µi = Ljµ, (17)

called Liouville’s Equation, which is a classical result in
statistical physics that describes the evolution of a density
of particles within a fluid [2]. The occupation measures
µi, µ and µf , along with Liouville’s equation allow us to
reason about families of trajectories of a classical dynamical
system. This equation is satisfied by families of trajectories
generated according to Algorithm 1 starting from the initial
distribution µi. The converse statement is true for control
affine systems with a convex admissible control set, as we
have assumed. We refer the reader to [8, Appendix A] for an
extended discussion of Liouville’s Equation. Extending the
applicability of this result to hybrid systems requires careful
modification and selection of the initial and final measures.

III. INFINITE DIMENSIONAL LINEAR PROGRAM

In this section, we derive an infinite-dimensional LP
characterization of the BRS of XT . The basic idea is to
introduce and then maximize the mass of initial occupation
measures defined just at t = 0 in each of the hybrid modes,
denoted µj0, under the constraint that it is dominated by
the Lebesgue measure, i.e., λ ≥ µji . System dynamics in
each mode are captured by Liouville’s Equation (17) on
each mode and state and terminal constraints are handled



by suitable constraints on the support of the measures. To
describe all trajectories of a hybrid system, two modifications
are required.

First, trajectories arriving at a guard in each mode must
be detected. By splitting the final measure in each mode into
two types of measures this detection can be accomplished:

µjf = µjT +
∑

(j′,j)∈Γ

µS(j′,j) (18)

with µjT ∈M({T}×XTj
) and µS(j′,j) ∈M([0, T ]×S(j′,j)).

Second, once trajectories arriving at a guard, S(j′,j), are
detected they must be re-initialized after the application of
the reset map, R(j′,j), in mode j′ ∈ J . To accomplish this
task, the mass of the occupation measure at each guard at
each time between [0, T ] must be transferred exactly to the
new domain after resetting:
Lemma 1: Let H be a controlled polynomial hybrid system
as in Definition 1 and µS(j′,j) ∈ M([0, T ] × S(j′,j)). Let
σ ∈M([0, T ]×R(j′,j)(S(j′,j))) be such that:

〈σ, v〉 = 〈R∗(j′,j)µ
S(j′,j) , v〉 ∀v ∈ C([0, T ]×Xj′), (19)

where 〈R∗(j′,j)µ
S(j′,j) , v〉 is defined as:∫

[0,T ]×S(j′,j)

v(t, R(j′,j)(x))|det(DR(j′,j))(x)|dµS(j′,j)(t, x), (20)

and DR(j′,j) is the Jacobian of R(j′,j), then x ∈ spt(µS(j′,j))

(x /∈ spt(µS(j′,j))) if and only if R(j′,j)(x) ∈ spt(σ) (x /∈
spt(σ)).
Proof. This follows directly from [7, Theorem 263D].
As a result of this lemma, for any t ∈ [0, T ] the support of
R∗(j′,j)µ

S(j′,j)(t, ·) characterizes exactly the reinitialization
in mode j′ after the application of the reset map R(j′,j) of
points arriving at the guard Sj′,j at time t. By splitting the
initial measure in each mode into two types of measures this
reinitialization can be accommodated:

µji = µj0 +
∑

(j,j′)∈Γ

R∗(j,j′)µ
S(j,j′) (21)

with µj0 ∈M({0} ×Xj) and µS(j,j′) ∈M([0, T ]× S(j,j′)).
With these two modifications, we can define an infinite

dimensional LP, P , that maximizes the size of the BRS,
modeled by

∑
j∈J spt(µj0), for a given target set, modeled

by spt(µjT ) for each j ∈ J 1. That is, define P as:

sup
∑
j∈J

µj0(Xj) (P )

s.t. L′jµj=µ
j
T +

∑
(j′,j)∈Γ

µS(j′,j)−µj0 −
∑

(j,j′)∈Γ

R∗(j,j′)µ
S(j,j′) ∀j ∈ J ,

µj0 + µ̂j0 = λnj
∀j ∈ J ,∑

j∈J
µjT (XTj

) =
∑
j∈J

µj0(Xj),

µj , µj0, µ̂
j
0, µ

j
T ≥ 0 ∀j ∈ J ,

µSe ≥ 0 ∀e ∈ Γ,

1Refer to Theorem 2 to relate maximizing spt(µj0) to µj0(Xj)

where the given data are H and XT and the supremum
is taken over a tuple of measures (µ, µ0, µ̂0, µT , µS) ∈(
M([0, T ]×D)×M({0}×D)×M({0}×D)×M({T}×
XT )×M([0, T ]×S)

)
. For notational convenience, we denote

the j ∈ J slice of µ using the super index j (i.e. for any
(t, x) ∈ [0, T ] × Xj set µj(t, x) = µ(t, x, j)) and applied
a similar convention to µ0, µ̂, and µT . Similarly, we denote
the (j, j′) ∈ Γ slice of µS using the notation µS(j,j′) .

The constraint
∑
j∈J µ

j
T (XTj ) =

∑
j∈J µ

j
0(Xj) ensures

that the BRS computes only points arriving at the target set at
time T rather than at any of the guards at time T . The slack
measures (denoted with “hats”) are introduced to impose the
constraints λ ≥ µj0 which ensures that the optimal value of
P is the Lebesgue measure of the largest achievable BRS.
These observations are summarized next:
Theorem 2: The optimal value of P is equal to∑
j∈J λnj

(Xj), i.e. the sum of the Lebesgue measures of
the BRS restricted to each domain of the hybrid system.
Proof. Notice that for any initial condition in x0 ∈ X there is
a hybrid trajectory constructed via Algorithm 1 with x(T ) ∈
XT . As a result for any initial measure µ0 with spt(µ0) ⊂ X
there exists occupation measures µ̂0, µ, µ

T , and µS such that
the constraints of P are satisfied. Thus p∗ ≥

∑
j∈J λnj (Xj).

To prove the other direction, notice that as a result of [8,
Theorem 1] p∗ =

∑
j∈J λnj (spt(µj0)). Suppose then for con-

tradiction that ∃j ∈ J such that λnj (spt(µj0)\Xj) > 0. Using
[8, Lemma 3] there exists a family of trajectories generated
via Algorithm 1 starting from µj0 generating the occupation
measures µj and µjT +

∑
j′,j µ

S(j′,j) . If the trajectories arrive
at XT , then we have a contradiction, so suppose there exists
some j′ ∈ J such that the trajectories arrive at S(j′,j). Using
Lemma 1, we can reset these trajectories and reapply the
same argument to extend the family of trajectories through
modes of the system. Notice that due to Assumption 1 the
times of transitions for this family of trajectories are strictly
monotonic. If at the final time T the family of trajectories
generated according to Algorithm 1 are in spt(µT ), then we
have a contradiction, so suppose that they are at a guard. In
that instance

∑
j∈J µ

j
T (XTj ) <

∑
j∈J µ

j
0(Xj) which would

violate a constraint in P , so we have a contradiction and
p∗ =

∑
j∈J λnj

(spt(µj0)) ≤
∑
j∈J λnj

(Xj).
Next, lets define the dual program to P denoted D as:

inf
∑
j∈J

∫
Xj

wj(x)dλnj
(x) (D)

s.t. Ljvj(t, x, u) ≤ 0 ∀(t, x, j, u) ∈ [0, T ]×D × U
wj(x) ≥ vj(0, x) + p+ 1 ∀(x, j) ∈ D,
wj(x) ≥ 0 ∀(x, j) ∈ D
vj(T, x) ≥ −p ∀(x, j) ∈ XT

vj(t, x) ≥ vj′(t, R(j′,j)(x)) ∀(t, (x, (j′, j)))∈[0, T ]× S

where the given data are H and XT and the infimum is taken
over the tuple (v, w, p) ∈

(
C1([0, T ]×D)×C(D)×R

)
. As

before, for notational convenience, we denote the j ∈ J slice
of v using the subscript j (i.e. for every (t, x) ∈ [0, T ]×Xj



set vj(t, x) = v(t, x, j)) and apply a similar convention to w.
The next result verifies that there is no duality gap between
the two programs:
Theorem 3: There is no duality gap between P and D.
Proof. Due to space limitations, we omit the proof, which
follows from [1, Theorem 3.10].

Importantly, the dual allows us to obtain outer approxima-
tions of the BRS:
Theorem 4: For every j ∈ J , Xj ⊂ {x0 ∈ Xj |wj(x) ≥ 1}
for any feasible wj of D. Furthermore, there is a sequence
of feasible solutions to D such that for each j ∈ J , the
wj-component converges from above to IXj in the L1 norm
and almost uniformly.
Proof. To prove the first result, consider a feasible (v, w) in
D. Given any (x0, j0) ∈ X , there exists a u such that u(t) ∈
U for all t ∈ [0, T ] and x(T ) ∈ XT where x : [0, T ] → D
is generated via Algorithm 1. Let {τi}ni=0 ⊂ [0, T ] be the
strictly monotonic and finite sequence of transition times of
the trajectory (which exists by Assumption 1) with τ0 = 0
and τn = T and {ji}ni=0 ⊂ J be the sequence of visited
modes. Due to D’s constraints:

−p ≤ vjn(T, x(T )) = vjn−1
(τn−1, R(jn,jn−1)(x(τn−1)))+

+

∫ τn

τn−1

Ljnvjn(t, x(t), u(t))dt

≤ vjn−1
(τ−n−1, x(τ−n−1))

= vjn−2
(τn−2, R(jn−1,jn−2)(x(τn−2)))+

+

∫ τn−1

τn−2

Ljn−1
vjn−1

(t, x(t), u(t))dt

...

≤ vj0(0, x0) ≤ wj0(x0)− p− 1,

which proves the first statement since (x0, j0) was arbitrary.
The second result follows from a straightforward extension
to [8, Theorem 3]

IV. NUMERICAL IMPLEMENTATION

The infinite–dimensional problems P and D are not
directly amenable to computation. However, a sequence of
finite–dimensional approximations in terms of SDPs can be
obtained by characterizing measures in P by their moments,
and restricting the space of functions in D to polynomials.
The solutions to each of the SDPs in this sequence can be
used to construct outer approximations that converge to the
solution of the infinite–dimensional LP. A comprehensive
introduction to such moment relaxations can be found in [11].

For each j ∈ J , measures on the set [0, T ] × Xj are
completely determined by their action (via integration) on
a dense subset of the space C1([0, T ] × Xj) [6]. Since
[0, T ]×Xj is compact by assumption, the Stone–Weierstrass
Theorem [6, Theorem 4.45] allows us to choose the set of
polynomials as this dense subset. Every polynomial on Rn,
say p ∈ R[x], can be expanded in the monomial basis via:

p(x) =
∑
α∈Nn

pαx
α, (22)

where α ∈ Nn ranges over vectors of non-negative integers,
xα =

∏n
i=1[x]

[α]i
i , and vec(p) = (pα)α∈Nn is the vector of

coefficients of p. By definition, the pα are real and only
finitely many are non-zero. We define Rk[x] to be those
polynomials such that pα is non-zero only for α ∈ Nnk . The
degree of a polynomial, deg(p), is the smallest k such that
p ∈ Rk[x].

The moments of a measure µ ∈M(K) for K ⊂ Rn are:

yαµ =

∫
xαdµ(x). (23)

Integration of a polynomial with respect to a measure µ can
be expressed as a linear functional of its coefficients:

〈µ, p〉 =

∫
p(x)dµ(x) =

∑
α∈Nn

pαy
α
µ = vec(p)T yµ. (24)

Integrating the square of a polynomial p ∈ Rk[x], we obtain:∫
p(x)2dµ(x) = vec(p)TMk(yµ)vec(p), (25)

where Mk(yµ) is the truncated moment matrix defined by

[Mk(yµ)](α,β) = yα+β
µ (26)

for α, β ∈ Nnk . Note that for any positive measure µ,
the matrix Mk(yµ) must be positive semidefinite. Similarly,
given h ∈ R[x] one has:∫

p(x)2h(x)dµ(x) = vec(p)TMk(h, yµ)vec(p), (27)

where Mk(h, y) is a localizing matrix defined by

[Mk(h, yµ)](α,β) =
∑
γ∈Nn

hγy
α+β
µ (28)

for all α, β ∈ Nnk . Note that the positive semidefiniteness
of a localizing matrix for a moment sequence guarantees the
existence of a Borel measure on the semialgebraic set defined
by h [11, Theorem 3.8]. The localizing and moment matrices
are symmetric and linear in the moments.

A. Approximating Problems

Finite dimensional SDPs approximating P can be obtained
by replacing constraints on measures with constraints on mo-
ments. All of the equality constraints of P can be expressed
as an infinite–dimensional linear system of equations which
the moments of the measures appearing in P must satisfy.
This linear system is obtained by restricting to polynomial
test functions: v(t, x) = tαxβ and w(x) = xβ , ∀α ∈ N
and ∀β ∈ Nn. For example, the Liouville equation in P is
obtained via:∫

[0,T ]×Xj×U
Ljvj(t, x, u)dµj(t, x, u) =

∫
XTj

vj(T, x)dµT (x)+

+
∑

(j′,j)∈Γ

∫
[0,T ]×S(j′,j)

vj(t, x)dµS(j′,j)(t, x)−
∫
Xj

vj(0, x)dµ0(x)−

+
∑

(j,j′)∈Γ

∫
[0,T ]×S(j,j′)

v(t, R(j,j′)(x))|det(DR(j,j′)(x))|dµS(j,j′)(t, x)



Notice in particular that |det(DR(j,j′)(x))| is a polynomial
function by Definition 1.

A finite–dimensional linear system is obtained by truncat-
ing the degree of the polynomial test functions to 2k. Let
ΞJ =

∐
j∈J µ

j , Ξ0 =
∐
j∈J {µ

j
0, µ̂

j
0}, ΞΓ =

∐
e∈Γ µ

Se ,
and ΞT =

∐
j∈J µ

j
T . Let yηk = (yk,ξ) ⊂ R be a vector

of sequences of moments truncated to degree 2k for each
(ξ, j) ∈ Ξη and for each η ∈ {J , 0,Γ, T}. The finite–
dimensional linear system is then represented by the linear
system:

Ak(yJk ,y
0
k,y

Γ
k ,y

T
k ) = bk. (29)

Constraints on the support of the measures also need to be
imposed (see [11] for details). Let the k-th relaxed SDP
representation of P , denoted Pk, be defined as:

sup
∑
j∈J

y0
k,µj

0

(Pk)

s.t. Ak(yJk ,y
0
k,y

Γ
k ,y

T
k ) = bk,

Mk(yk,ξ) � 0 ∀(ξ, j) ∈ {ΞJ ,Ξ0,ΞΓ,ΞT },
MkXji

(hXji
, yk,ξ) � 0 ∀(i, ξ, j) ∈ {1, . . . , nXj

} × ΞJ ,

MkXji
(hXji

, yk,ξ) � 0 ∀(i, ξ, j) ∈ {1, . . . , nXj
} × Ξ0,

MkSei
(hei , yk,ξ) � 0 ∀(i, ξ, e) ∈ {1, . . . , ne} × ΞΓ,

MkTji
(hTji

, yk,ξ) � 0 ∀(i, ξ, j) ∈ {1, . . . , nTj} × ΞT ,

Mk−1(hτ , yk,ξ) � 0 ∀(ξ, j) ∈ {ΞJ ,ΞΓ},

where the given data are H and XT and the supremum
is taken over the sequence of moments, yJk ,y

0
k,y

Γ
k ,y

T
k ,

hτ = t(T − t), kXji
= k − ddeg(hXji

)/2e, kSei
= k −

ddeg(hei)/2e, kTji
= k − ddeg(hTji

)/2e, and � 0 denotes
positive semi-definiteness. For each k ∈ N, p∗k denote the
supremum of Pk.

The dual of Pk can be constructed as a sums-of-squares
(SOS) program denoted Dk for each k ∈ N. It is obtained by
restricting the optimization space in the D to the polynomial
functions with degree truncated to 2k and replacing the non-
negativity constraint D with an SOS constraint [16]. To make
this explicit, for each j ∈ J , let Qk(hXj1

, . . . , hXjnXj

) ⊂
R2k[x] be the set of polynomials q ∈ R2k[x] (i.e. of total
degree less than 2k) expressible as:

q = s0 +

nXj∑
i=1

sihXji
, (30)

for some SOS polynomials {si}
nXj

i=0 ⊂ R2k[x]. Every such
polynomial is clearly non-negative on Xj . Similarly, for
each j ∈ J and e ∈ Γ, define Q2k(hτ , hXj1

, . . . , hXjnXj

) ⊂
R2k[t, x], Q2k(hTj1

, . . . , hTjnTj

) ⊂ R2k[x], and

Q2k(hτ , hTe1
, . . . , hTene

) ⊂ R2k[t, x]. Employing this
notation, the k-th relaxed SDP representation of D, denoted

Dk, is defined as:

inf
∑
j∈J

lT vec(wj) (Dk)

s.t. − Ljvj ∈ Q2k(hτ , hXj1
, . . . , hXjnXj

) ∀j ∈ J ,

wj − vj(0, ·)− p− 1 ∈ Q2k(hXj1
, . . . , hXjnXj

) ∀j ∈ J ,

wj ∈ Q2k(hXj1
, . . . , hXjnXj

) ∀j ∈ J ,

vj(T, ·) + p ∈ Q2k(hTj1
, . . . , hTjnTj

) ∀j ∈ J ,

vj−vj′◦(1, Re)∈Q2k(hτ , hTe1
, . . . , hTene

) ∀e := (j′, j) ∈ Γ,

where the given data are H and XT , the infimum is taken
over the vector of polynomials (v, w, p) ∈

∐
j∈J R2k[t, x]×∐

j∈J R2k[x]× R, and l is a vector of moments associated
with the Lebesgue measure (i.e.

∫
X
wj dλ = lT vec(wj) for

all wj ∈ R2k[x] and j ∈ J ). For notational convenience in
the description of Dk we denote the j ∈ J slice of v using
the subscript j (i.e. for every (t, x) ∈ [0, T ] × Xj we let
vj(t, x) = v(t, x, j)) and apply a similar convention to w.
For each k ∈ N, let d∗k denote the infimum of Dk. In fact,
the following result holds:
Theorem 5: For each k ∈ N, there is no duality gap between
Pk and Dk.
Proof. Due to space limitations, we omit the proof, which
follows by establishing that Pk is bounded due to the
constraint µ0 + µ̂0 = λ and then arguing that the feasible set
of the SDP, Dk, has an interior point which is sufficient to
establish zero duality gap [23, Theorem 5].

B. Convergence of Approximating Problems
Next, we prove the convergence properties of Pk and Dk.

We begin by proving that the polynomial wj approximates
the indicator function on Xj . As we increase k, this approxi-
mation gets tighter. The following theorem, whose proof we
omit since it is a straightforward extension of Theorem 5 in
[8], makes this statement precise.
Theorem 6: For each k ∈ N and j ∈ J , let wjk ∈ R2k[x]
denote the j-slice of the w-component of the solution to Dk,
and let w̄jk(x) = mini≤kwji(x). Then, wjk converges from
above to IXj in the L1 norm, and w̄jk(x) converges from
above to IXj

in the L1 norm and almost uniformly.
As a result of Theorems 1 and 6 we have:
Corollary 1: {d∗k}∞k=1 and {p∗k}∞k=1 converge monotonically
from above to the optimal value of D and P .

Next, we prove that for each j ∈ J the 1-superlevel set
of wj converges in Lebesgue measure to Xj .
Theorem 7: For each k ∈ N and j ∈ J , let wjk ∈
R2k[x] denote the j-slice of the w-component of the solution
to Dk, and let Xjk := {x ∈ Rn|wjk(x) ≥ 1}. Then,
limk→∞ λnj (Xjk\Xj) = 0.
Proof. Via Theorem 4 we see wjk ≥ IXjk

≥ IXj . From
Theorem 6, wjk → IXj

in the L1 norm on Xj . Hence:

λnj
(Xj)= lim

k→∞

∫
Xj

wjkdλnj
≥ lim
k→∞

∫
Xj

IXjk
dλnj

=lim
k→∞

λnj
(Xjk).

Since Xj ⊂ Xjk for all k, limk→∞ λnj
(Xjk) = λnj

(Xj).



Fig. 1. Rimless wheel system

V. IMPLEMENTATION AND EXAMPLES

In this section, we describe the performance of our
approach on two examples. The relaxed problems were
prepared using YALMIP and solved using MOSEK on a
machine with an Intel i7-4820k 3.70GHz processor with
16GB RAM [12]. We briefly describe an extension of our
algorithm to the case when our goal is to determine whether
an initial condition is able to reach a target set within a pre-
specified time T rather than exactly at T , which we refer
to as the time-free backwards reachable set problem. This is
done by allowing the support of µT ∈M([0, T ]×D) in P .
Consequently, the only modification on the dual program D
is that the non-negativity constraint on v is imposed for all
t ∈ [0, T ]. Each of the aforementioned corollaries, lemmas,
and theorems extend with nearly identical proof and the nu-
merical implementation extends in a straightforward manner.
The measures are supported on variables corresponding to
time, states and control inputs, totaling (1+n+m) variables
where n is the number of states and m is the number of
control inputs. The total number of moments in the primal
problem scales as O((1 + n+m)k) for a fixed relaxation k
and O(k1+n+m) for a fixed n,m. Assuming a linear reset
map, the number of variables in the dual problem scale
as O(max(nvnfj , nvngjnu)) where nv, nfj , ngj , nu are the
degrees of v, fj , gj , and u, respectively.

A. Rimless Wheel

The rimless wheel is a simple planar walking model
illustrated in Figure 1. It consists of a single point mass with
spokes radiating outward with dynamics given by an inverted
pendulum f(θ, θ̇) = [θ̇; sin(θ)], where θ is the angle between
the vertical and pinned spoke. The front spoke hits the ground
when θ = α + γ, upon which the system undergoes a reset
where [θ+, θ̇+] := [2γ − θ−, cos(2α)θ̇−].

The limit cycle and basin of attraction of this system have
been studied analytically[5]. By choosing α = 0.4, γ = 0.2,
the rimless wheel has a stable limit cycle where the energy
lost during ground impact is equal to the change in potential
energy through the cycle. Figure 2 illustrates this limit cycle
along with the phase portrait, with the guard shown in dotted
red and the image of the reset map shown in solid red. We
considered the task of determining the BRS of the limit cycle
with T = 10 and for implementation we considered a third-
order Taylor expansion of the dynamics and reset map. The

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
−0.5

0

0.5

1

θ

θ̇

Fig. 2. BRS of the Rimless Wheel. The limit cycle of the system is drawn
in as a dotted black line. The magenta, green, and blue lines denote outer-
approximations of the BRS degree 6, 8, and 10, respectively. 50 points
were sampled drawn in blue circles within the degree 10 BRS, used as
initial conditions, and evolved using the dynamics of the Rimless Wheel
(not the Taylor approximation). Their final time state is plotted with the
blue X. 20 points were sampled outside the BRS starting at the red circles
and their evolutions are plotted.

result of our computation is illustrated in Figure 2. The time
to compute the BRS for degrees 6, 8, and 10 were 1.5s, 4.8s,
and 18s, respectively.

B. Vehicle Dynamics

Next, we compute the forward reachable set of the vehicle
illustrated in Figure 3a. Motivated by [19] we model its
dynamics as follows:

mẍ1 = mẋ2ψ̇ + 2Fx1f + 2Fx1r

mẍ2 = −mẋ1ψ̇ + 2Fx2f + 2Fx2r

Izψ̈ = 2aFx2f − 2bFx2r

(31)

where m = 2050 and Iz = 3344 denote the vehicle mass
and inertia, respectively, a = 1.43 and b = 1.47 denote the
distances from the vehicle’s center of gravity to the front
and rear axles, respectively. The states ẋ1 and ẋ2 denote
the vehicle’s longitudinal and lateral velocities, respectively,
and ψ̇ denotes the vehicle’s yaw rate about the center of
gravity. Fx1f and Fx2f are the forces of the front tire in the
longitudinal and lateral axis, respectively, and Fx1r and Fx2r

are the forces of the rear tire in the longitudinal and lateral
axis, respectively.

The longitudinal and lateral tire force components in the
vehicle body frame are modeled as:

Fx1? = Fl? cos(u?)− Fc? sin(u?),

Fx2? = Fl? sin(u?) + Fc? cos(u?),
(32)

where ? denotes f or r for the front and rear tire and u?
denotes the steering angle at the wheel. For this example, we
assume only the front tire can be controlled, thus uf = u
and ur = 0. The longitudinal force in the tire frame is Fl? =
4269.125. As described in [15], we model the dynamics as a
hybrid system by splitting Fc?,the force due to tire friction,



(a) Vehicle Model
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Fig. 3. (a) An illustration depicting the forces modeled in the vehicle body-fixed frame (Fx1? and Fx2?), the forces in the tire-fixed frame (Fl? and
Fc?), and the rotational and translational velocities used in the vehicle model described in Equation (31). (b) An illustration of four trajectories of the
vehicle beginning at x0 with constant input −0.3,−0.2,−0.1 and 0. The green dots on the trajectory denote states that when evaluated with respect to
the computed w belonged to the 1-superlevel set. The red dots along the trajectory denote corresponding states that did not belong to the 1-superlevel set
of w. Note that the trajectory with constant input 0.2 and 0.3, in contrast with the other two trajectories, has portions of its trajectory that are red. Portions
of the trajectory drawn in black, magenta, and blue illustrate when the system was in mode 1, 2, and 3, respectively. (c) An illustration of the value of
the computed w for different trajectories starting at x0 with 200 distinct inputs all constrained to [−0.1, 0.1]. Notice that for all time, the value of w is
greater than 1 indicating the trajectories lie in the forward reachable set.

into different zones depending upon the longitudinal velocity:

Fc? =


− ẋ2+aψ̇

18 , if ẋ1 ∈ [15, 21) - Mode 1

− ẋ2+aψ̇
24 , if ẋ1 ∈ [21, 27) - Mode 2

− ẋ2+aψ̇
30 , if ẋ1 ∈ [27, 33) - Mode 3

For this example, we look at the forward reachable set of a
vehicle beginning at x0 which is equal to x1 = −32, x2 =
0, ψ = 0, ẋ1 = 15, ẋ2 = 0, and ψ̇ = 0 with the steering
input u constrained to [−0.1, 0.1]. We use small angle
approximations for the trigonometric terms in Equation (32).
We compute the full forward reachable set, as illustrated in
Figures 3b and 3c, by running our degree 6 relaxation of our
algorithm on the time-reversed dynamics and by solving the
time-free backwards reachable set problem. It took 40m to
compute the BRS.

VI. CONCLUSION

We presented an approach for computing the BRS of a hy-
brid system using an infinite dimensional LP over the space
of non-negative measures. Finite dimensional approximations
to this LP in terms of SDPs were then constructed to obtain
outer approximations of the BRS. In contrast to previous ap-
proaches relying on Lyapunov’s stability criteria, our method
is convex and does not require feasible initialization. We
are currently pursuing methods to extend our approach to
feedback control synthesis, region of attraction computation,
and inner approximations for hybrid systems as in [9], [13].
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[12] J. Löfberg. YALMIP : A toolbox for modeling and optimization in
MATLAB. In Proceedings of the CACSD Conference, Taipei, Taiwan,
2004.

[13] A. Majumdar, R. Vasudevan, M. M. Tobenkin, and R. Tedrake. Con-
vex Optimization of Nonlinear Feedback Controllers via Occupation
Measures. International Journal of Robotics Research, to appear.

[14] I. R. Manchester. Transverse dynamics and regions of stability for
nonlinear hybrid limit cycles. arXiv preprint arXiv:1010.2241, 2010.

[15] G. Palmieri, M. Baric, F. Borrelli, and L. Glielmo. A robust lateral
vehicle dynamics control. In International Symposium on Advanced
Vehicle Control, 2010.

[16] P. A. Parrilo. Structured Semidefinite Programs and Semialgebraic
Geometry Methods in Robustness and Optimization. PhD thesis,
California Institute of Technology, May 18 2000.

[17] M. Posa, M. Tobenkin, and R. Tedrake. Lyapunov analysis of rigid
body systems with impacts and friction via sums-of-squares. In
Proceedings of the 16th international conference on Hybrid systems:
computation and control, pages 63–72. ACM, 2013.

[18] S. Prajna and A. Jadbabaie. Safety verification of hybrid systems using
barrier certificates. In Hybrid Systems: Computation and Control,
pages 477–492. Springer, 2004.

[19] R. Rajamani. Vehicle Dynamics and Control, 1st ed. Springer US,
2005.

[20] R. Tedrake, I. R. Manchester, M. M. Tobenkin, and J. W. Roberts.
LQR-Trees: Feedback motion planning via sums of squares verifica-
tion. International Journal of Robotics Research, 29, July 2010.

[21] A. Tiwari. Approximate reachability for linear systems. In Hybrid
Systems: Computation and Control, pages 514–525. Springer, 2003.

[22] C. J. Tomlin, I. Mitchell, A. M. Bayen, and M. Oishi. Computational
techniques for the verification of hybrid systems. Proceedings of the
IEEE, 91(7):986–1001, 2003.
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